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Article 
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Abstract: Autonomous navigation in dynamic environments poses a significant challenge in the field of 
robotics with the primary goals of ensuring both smooth and safe movement. This study introduces control 
strategy based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance autonomous robot 
navigation in dynamic environments, emphasizing on collision-free path planning. This strategy employs, a 
path planning technique to develop a trajectory that allows the robot to navigate smoothly while avoiding 
collisions with both static and dynamic obstacles. The developed control system incorporates four ANFIS 
controllers: two are tasked with guiding the robot toward its end point, and the other two are activated for 
obstacle avoidance. The experimental setup conducted in CoppeliaSim involves a mobile robot equipped with 
ultrasonic sensors navigating in an environment with static and dynamic obstacles. Simulation experiments 
are conducted to demonstrate the model's capability in ensuring collision-free navigation, employing a path 
planning algorithm to ascertain the shortest route to the target destination. The simulation results highlight the 
superiority of the ANFIS-based approach over conventional methods, particularly in terms of computational 
efficiency and navigational smoothness. 

Keywords: mobile robot; navigation; sensors; path planning; static and dynamic obstacles; neuro-
fuzzy controllers; CoppeliaSim  

 

1. Introduction 

The robotics research community has a strong focus on autonomous navigation in dynamic 
environments, particularly for the development of intelligent autonomousguided robots with 
significant industrial applications. The use of mobile robots in manufacturing, warehousing, and 
construction is on the rise. Real-world scenarios pose challenges when robots and humans share the 
same environment, necessitating effective human-robot interaction mechanisms. For example, in 
manufacturing, autonomous guided vehicles may encounter human obstructions and need to 
implement collision avoidance measures. Researchers in this field have explored a range of 
methodologies incorporating various sensor types, including laser measurement systems [1], lidar 
sensors [2,3], cameras [4], among others.  

Artificial intelligence (AI) techniques show significant potential in addressing complex 
challenges within dynamic and uncertain environments. Robots capable of demonstrating complex 
behaviors by interpreting their environment and adapting their actions through sensors and ANFIS 
control mechanisms are commonly referred to as behavior-based systems. The application of fuzzy 
logic and neural networks has shown effectiveness in the field of autonomous robot navigation. [5–
11]. 

Al-Mayyahi et al. [5] present a novel approach that utilizes an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) to address navigation challenges encountered by an Autonomous Guided Vehicle 
(AGV). The system is comprised of four ANFIS controllers; two regulate the AGV's angular velocities 
for reaching the target and two for optimal heading adjustments to avoid obstacles. For low-level 
motion control, the velocity controllers receive input from three sensors, including front distance, 
right distance and left distance. For the target reaching mission, the heading controllers consider only 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2024                   doi:10.20944/preprints202407.0439.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202407.0439.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

one input, which is the angle difference between the AGV's current heading and the target point in 
order to determine the optimal direction. This work primarily emphasizes on the optimal heading 
adjustment to ensure collision avoidance, but does not consider any path planning method for 
trajectory optimization. 

Miao et al. [6] presented a novel obstacle avoidance fuzzy controller utilizing fuzzy control 
algorithms. This controller utilized operational data to establish an AGV adaptive neuro-fuzzy 
network system, capable of providing precise behavioral commands for AGV's dynamic obstacle 
avoidance. 

Haider et al. [7] introduced a solution that leverages an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) in conjunction with a Global Positioning System (GPS) for control and navigation, effectively 
addressing issues such as low performance in cluttered and unknown environments, high 
computational costs and multiple controller models for navigation. The proposed approach 
automates mobile robot navigation in densely cluttered environments, integrating GPS and heading 
sensor data fusion for global path planning and steering. A fuzzy inference system (FIS) is employed 
for obstacle avoidance, incorporating distance sensor data as fuzzy linguistics. Furthermore, a type-
1 Takagi–Sugeno FIS is utilized to train a five-layered neural network for local robot planning, with 
ANFIS parameters fine-tuned through a hybrid learning method. 

Farahat et al. [8] focuses on an extensive analysis and investigation into AI algorithm techniques 
for controlling the path planning of a four-wheel autonomous robot, enabling it to autonomously 
reach predefined objectives while intelligently circumventing static and dynamic obstacles. The 
research explores the viability of employing Fuzzy Logic, Neural Networks, and the Adaptive Neuro-
Fuzzy Inference System (ANFIS) as control algorithms for this intricate navigation task. 

Jung et al. [9] explores a vision guidance system for Automated Guided Vehicles (AGVs) that 
leverages an ANFIS. The vision guidance system is founded on a driving method capable of 
recognizing salient features such as driving lines and landmarks, providing a data-rich alternative to 
other induction sensors in AGVs. Due to the camera’s sensitivity to lighting variations, a "dark-room 
environment" was developed to ensure consistent lighting conditions, minimizing brightness 
disturbances that affect camera performance. This controlled environment limits external light 
interference, stabilizing illumination to enhance the reliability of the vision system. Although this 
approach restricts the camera's viewing angle and presents control challenges at high speeds or 
sudden changes in direction, it proves effective with ANFIS-enhanced steering control, offering an 
improvement over traditional Proportional–Integral–Derivative (PID) methods. This specialized 
setup acknowledges the challenges of camera-only systems and contrasts with broader autonomous 
driving technologies that integrate multiple sensors to adapt to diverse environmental conditions. 

Khelchandra et al. [10] introduced a method for path planning considering mobile robot 
navigation within environments with static obstacles, which combines neuro-genetic-fuzzy 
techniques. This approach involves training an artificial neural network to select the most suitable 
collision-free path from a range of available paths. Additionally, a genetic algorithm is employed to 
enhance the efficiency of the fuzzy logic system by identifying optimal positions within the collision-
free zones. 

Faisal et al. [11] presented a technique for fuzzy logic-based navigation and obstacle avoidance 
in dynamic environments. This method integrates two distinct fuzzy logic controllers: a tracking 
fuzzy logic controller, which steers the robot toward its target, and an obstacle avoidance fuzzy logic 
controller. The principal aim of this research is to demonstrate the utility of mobile robots in material 
handling tasks within warehouse environments. It introduces a notable departure from the 
traditional colored line tracking approach, replacing it with wireless communication methods. 

A thorough review of recent literature highlights various control strategies employed for 
obstacle avoidance in robotic systems, which are centered around ANFIS [12–19] and fuzzy logic [20–
25]. Various artificial intelligence techniques including reinforcement learning, neural networks, 
fuzzy logic and genetic algorithms enhance the reactive navigation capabilities of mobile robots. 
Particularly, fuzzy logic is notable for its capacity to articulate linguistic terms and make reliable 
decisions amidst uncertainty and imprecise data, proving invaluable in control systems. Fuzzy 
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control systems, which are rule-based and draw on domain knowledge or expert insights, use fuzzy 
if-then rules to simplify decision-making without needing detailed computations. These systems are 
widely recognized for their ability to handle a broad range of tasks effectively. Fuzzy logic excels in 
dynamic or unknown environments by mimicking human reasoning and decision-making processes, 
thus facilitating robust and quick-responsive navigation. This approach not only adapts to the 
unpredictable nature of real-world settings but also does not require precise environmental models 
for effective navigation [26]. 

A notable limitation of fuzzy controllers is the absence of a systematic design methodology, 
frequently resulting in labor-intensive tuning of membership function parameters. The integration of 
neural network learning techniques with fuzzy logic has enabled the development of neuro-fuzzy 
controllers, significantly accelerating the design process and enhancing performance. This hybrid 
approach has become a prominent area of research within the field of robot navigation in uncertain 
environments [14]. 

Significant progress has been made in applying fuzzy control and ANFIS to mobile robotics, 
enhancing adaptability in dynamic environments. Despite these advances, traditional systems still 
struggle with rapid adaptability to new or evolving conditions and exhibit computational 
inefficiencies in complex scenarios. This underscores the necessity for further research aimed at 
developing simpler, more efficient control models. Simplifying these systems would not only 
expedite response times but also decrease computational demands, thereby advancing the 
capabilities of autonomous navigation technologies. 

In our present work, we employ a combination of four Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) to facilitate mobile robot navigation towards a desired destination while ensuring collision 
avoidance capabilities for both stationary and mobile obstacles. This approach focuses on the 
application of a path planning algorithm to establish an efficient route from the start point to the end 
point, ensuring a smooth path within a static environment. During this initial phase, two ANFIS 
controllers are dedicated to tracking and guiding the robot towards the end point. However, if the 
robot encounters a mobile obstacle during its trajectory, another pair of ANFIS controllers is 
activated, specifically designed for obstacle avoidance maneuvers. Once the obstacle avoidance 
action is executed, the robot smoothly resumes its original planned path. 

In our experimental evaluations, we conduct a comparative analysis between the ANFIS 
controllers and fuzzy logic controllers. Significantly, our ANFIS controllers exhibit improved 
operational efficiency, employing fewer rules compared to the fuzzy logic controllers, emphasizing 
a simpler approach. The proposed control algorithm, with ANFIS at its core, is proved to be both 
simple yet effective, providing valuable insights into robotic navigation in dynamic environments 
within the existing literature. 

The innovation of this work is summarized around four key points: 
1. Development of a novel control strategy that employs the ANFIS model's capabilities to simplify 

and facilitate the decision-making process, thereby enhancing the system’s computational 
efficiency. 

2. Application of four Adaptive Neuro-Fuzzy Inference Systems (ANFIS) that are expertly 
optimized to minimize the rule set of fuzzy controllers, while maintaining system efficiency. 

3. Enabling efficient navigation in environments cluttered with obstacles through a simplified rule 
structure. 

4. Integration of a path planning algorithm that adds a layer of sophistication, enhancing the 
determination of optimal trajectories and significantly improving the efficiency and effectiveness 
of autonomous robot navigation. 
The paper is organized as follows: Section 2 provides a concise overview of the kinematics of 

Autonomous Guided Vehicles, essential for understanding the subsequent development of the 
control system. Section 3 introduces the novel path planning strategy, crucial for autonomous 
navigation. Section 4 presents a comparative analysis of ANFIS and PID controllers, underscoring 
the advantages of ANFIS in dynamic environments. Section 5 presents the design of the ANFIS 
controllers, explaining their roles in tracking and avoidance within the robotic control system. In 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2024                   doi:10.20944/preprints202407.0439.v1

https://doi.org/10.20944/preprints202407.0439.v1


 4 

 

Section 6, the simulation experiments conducted in CoppeliaSim are presented. Finally, conclusions 
and directions for future advancements in robotic navigation are presented in Section 7.  

2. Kinematics of a Two-Wheel Drive Robot 

The core focus of this research is to design a control system that ensures safe and reliable 
navigation for a mobile robot in dynamic environments, a process that necessitates a thorough 
consideration of the robot's kinematic and geometric properties. To this end, the kinematics of two-
wheel differential-drive robot, such as Pioneer p_3dx used in this work, are presented in the 
following. 

Figure 1 illustrates two critical frames of reference that describe the robot's movement: a 
stationary global reference frame (I), denoted by 𝑋𝑋𝐼𝐼 and 𝑌𝑌𝐼𝐼, and a moving local reference frame (R), 
denoted by 𝑋𝑋𝑅𝑅 and 𝑌𝑌𝑅𝑅, fixed to the robot. Establishing these frames is fundamental for developing a 
robust control strategy that can dynamically adapt to the environment. It is also noted that θ 
represents the robot’s orientation, and P marks its position. 

 

Figure 1. A visual depiction of the robot within both the global and local reference frames. 

The kinematic model for the wheeled robot's motion builds upon three foundational 
assumptions: each wheel maintains perpendicularity to its respective plane; there's a singular contact 
point between the wheel and the plane and the wheel rolls without slippage. Integrated into this 
model are two key constraints: firstly, the wheel's translational motion along the plane corresponds 
directly with its rotational velocity; secondly, no translational motion occurs perpendicularly to the 
wheel plane. 

In accordance with [22], the differential drive configuration is characterized by two wheels 
placed on the same axis, each independently driven by separate motors. The motion of the robot is a 
cumulative outcome of the contributions from each of these wheels, and understanding this dynamic 
is essential for implementing precise control. The model is mathematically described as follows:  

𝑢𝑢 =  
𝑟𝑟
2
�𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 + 𝜔𝜔𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓� (1) 

𝜔𝜔 =  
𝑟𝑟
𝐿𝐿
�𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 −  𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 

 
(2) 

where 𝑢𝑢 denotes the linear velocity of the robot, ω its angular velocity, r the radius of the wheels, 
𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 and 𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 the angular velocities of the right and left wheels respectively, and L the distance 
between the two wheels. 

3. Strategy for Path Planning 

3.1. Path Planning Concepts 

Path planning is a crucial and essential issue in autonomous mobile robot navigation. Over the 
past two decades, extensive research, as presented in [23], has been dedicated to the domain of path 
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planning for mobile robots in various environments. This procedure involves the identification of a 
collision-free path that connects two points while minimizing the associated route cost. In online path 
planning, the robot utilizes sensor data to gather information about its surroundings and construct 
an environmental map. Conversely, offline path planning entails the robot independently acquiring 
environmental information without dependence on sensors. This process plays a crucial role in 
enabling effective autonomous navigation. 

3.2. The Bump-Surface concept 

In the present study, we implement the Bump-Surface concept [27] as a strategic approach to 
path planning. This method offers a solution to the path-planning challenges encountered by mobile 
robots operating within 2D static environments. The development of the Bump-Surface method 
involves the utilization of a control-point network, the density of which can be adjusted to fulfill 
specific path-planning precision requirements. In summary, increased grid density results in 
enhanced precision. Moreover, leveraging the flexibility of B-Spline surfaces enables us to achieve 
the desired level of accuracy, utilizing their features for both local and global control. Subsequently, 
a genetic algorithm (GA) is employed to explore this surface, aiming to find an optimal collision-free 
path that aligns with the objectives and constraints of motion planning. 

4. Basic Concepts on the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System [28] represents a versatile computational 
framework that integrates the merits of fuzzy logic and neural networks. This fusion equips ANFIS 
to handle intricate problems that might pose challenges for conventional mathematical 
methodologies. Essentially, ANFIS combines the human-like, intuitive reasoning of fuzzy logic with 
the data-driven capabilities of neural networks. It serves as a valuable tool for tasks involving 
modeling, prediction, and rule-based decision-making. ANFIS models encompass fuzzy logic 
membership functions that collaborate with adaptive neural network nodes. These nodes undergo 
learning and enhancement through training. The integration of fuzzy and neural components renders 
ANFIS adaptable and robust, making it a powerful tool for addressing real-world issues, ranging 
from system control to pattern recognition. 

The ANFIS method features a structure that combines a fuzzy inference system with a neural 
network, utilizing input and output data pairs. This configuration acts as a self-adapting and flexible 
hybrid controller with embedded learning algorithms. Fundamentally, this method enables fuzzy 
logic to dynamically adjust the parameters of membership functions, aligning the fuzzy inference 
system with the input and output data of the ANFIS model. Adapting neural networks to manage 
fuzzy rules necessitates specific modifications in the conventional neural network structure, enabling 
the integration of these two vital components. 

ANFIS combines the strengths of fuzzy logic and neural networks, making it highly effective for 
complex problems that challenge standard mathematical methods. While PID controllers are effective 
for environments with linear and nonlinear characteristics, ANFIS exhibits superior performance 
particularly in dynamically evolving environments without necessitating a complex mathematical 
model, allowing it to handle unpredictably changing conditions more effectively. This capability 
allows ANFIS to navigate through unpredictably changing conditions more effectively, as it fuses the 
intuitive, human-like reasoning of fuzzy logic with the learning power of neural networks, enhancing 
its adaptability and overall effectiveness. 

ANFIS models use fuzzy logic membership functions and adaptive neural network nodes that 
learn and improve through training. This allows ANFIS to adjust automatically to unexpected 
changes, such as obstacles or varying terrain—something PID controllers struggle with. The system 
integrates fuzzy and neural elements to become both adaptable and robust, making it ideal for real-
world applications like system control and pattern recognition. ANFIS features a unique setup that 
merges a fuzzy inference system with a neural network, using data pairs to guide adjustments. This 
setup forms a flexible, self-learning hybrid controller that can adjust fuzzy rules dynamically, a 
necessary feature for integrating fuzzy logic with neural networks. 
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5. Designing the ANFIS Controllers for the Automated Guided Vehicle 

In this section, we conduct a comprehensive analysis of the proposed ANFIS controllers, which 
have been designed and implemented using the ANFIS Toolbox in MATLAB R2019b. Notably, we 
have devised four individual ANFIS controllers, each serving a distinct role: initially, two ANFIS 
controllers are designed to facilitate reaching the end point by following a predefined path, while the 
remaining two ANFIS controllers are created to manage obstacle avoidance tasks. 

5.1. ANFIS Tracking Controllers 

The primary goal of our robot is to navigate towards a specified end point within its 
environment, utilizing sensor feedback for real-time adjustments. The tracking controller's role is to 
align the robot's orientation with the desired point. It operates based on two inputs: the position error 
and the heading error. The position error is calculated using the Euclidean distance between the 
current position of the mobile robot and its target point along the planned trajectory. This error is 
measured in meters and normalized within the range of [0,1]. The heading error, measured in 
degrees, represents the angular discrepancy between the robot's current heading and the direct line 
to the target. It is normalized between [-1, 1].  

To achieve the goal of reaching the end point, two ANFIS tracking controllers are introduced. 
One controller manages the right motor velocity, while the other is responsible for the left motor 
velocity. Both controllers have two inputs: the position error and the heading error, which collectively 
determine the motors velocity (right and left), as shown in Figure 2. Importantly, when the position 
error reaches zero, indicating that the robot has reached its target, the robot stops moving to prevent 
further unnecessary motion. 

 

Figure 2. ANFIS Tracking Controllers: inputs: position and heading errors – outputs motor velocities 
for path tracking. 

5.1.1. Data Set for ANFIS Tracking Controllers 

To create the dataset for training the ANFIS tracking controllers, we first developed a fuzzy logic 
tracking controller. Following that, we utilized this fuzzy logic tracking controller to generate the 
dataset required for training the ANFIS tracking controllers. 

The fuzzy logic tracking controller has two inputs and two outputs. The first input is the position 
error, and the second is the heading error. The first output controls the velocity of the right motor, 
and the second output controls the velocity of the left motor. 

The position error range is set to [0, 1] and the heading error range is [-1, 1]. The fuzzy sets 
expressing the position error use trapezoid membership functions to define linguistic terms, namely 
"small", "medium" and "large" (Figure 3). These terms are employed to represent position error values 
as follows: 

To analyze position errors more thoroughly within the range of 0 to 1, we've categorized them 
into three fuzzy sets: 'small,' 'medium,' and 'large.' (Figure 3). Each fuzzy set represents a different 
degree of error. 
• 'small' represents values from 0 to 0.13, indicating that the robot is very close to the target. 
• 'medium' ranges from 0.05 to 0.3, suggesting a moderate distance from the target. 
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• 'large' encompasses values from 0.15 to 1, indicating that the robot is far from the target. 

 

Figure 3. Fuzzy logic tracking controller position error fuzzy sets. 

The same approach is applied to heading error, as shown in Figure 4: Five fuzzy sets, namely 
'negative big,' 'negative small,' 'zero,' 'positive small,' and 'positive big,' represent different ranges of 
heading deviations. This approach helps us better understand and manage the AGV's orientation 
during navigation tasks. 
• 'negative big' represents values ranging from -1 to -0.3, indicating a significant deviation in the 

negative direction. 
• 'negative small' spans values from -0.55 to -0.07, suggesting a moderate negative deviation. 
• 'zero' encompasses values from -0.15 to 0.15, indicating no deviation from the desired heading. 
• 'positive small' extends from 0.07 to 0.55, representing a moderate positive deviation. 
• 'positive big' ranges from 0.3 to 1, indicating a significant deviation in the positive direction. 

 

Figure 4. Fuzzy logic tracking controller heading error fuzzy sets. 

In this study, the output velocity (m/s) of both the left and right motors, play a crucial role in the 
performance of our AGV navigation system. For better understanding of the velocity output, we have 
categorized this range into three fuzzy sets: "slow", "medium" and "fast" (Figure 5), as follows: 
• 'slow': covering values from 0 to 0.4, representing slower motor speeds. 
• 'medium': ranging from 0.27 to 0.6, indicating intermediate motor speeds. 
• 'fast': extending from 0.47 to 1, denoting higher motor speeds. 
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Figure 5. Fuzzy logic tracking controller output velocity fuzzy sets (right and left motors). 

Based on our knowledge of the AGV navigation system, a set of 15 expert rules is defined 
guiding the AGV's actions across various scenarios, effectively establishing a fuzzy tracking 
controller. This set of rules is a crucial component of our navigation control strategy (Table 1). 

The training dataset has been generated in accordance with the expert logical rules described 
previously. These rules define the connections between position error, heading error, and motor 
velocities within the AGV navigation system. Following these rules ensures that the training data 
thoroughly encompasses a wide spectrum of scenarios and behaviors, accurately capturing the 
AGV's responses to various error conditions. This dataset is fundamental for training the AGV 
navigation system and optimizing its performance. A sample of training data for the ANFIS tracking 
controller is presented in Table 2.  

Table 1. Rule set for fuzzy tracking controller. 

rule position error heading error 
right motor 

velocity 
left motor 
velocity 

1 large negative big medium fast 
2 large negative small slow medium 
3 large zero fast fast 
4 large positive small medium slow 
5 large positive big fast medium 
6 medium negative big medium fast 
7 medium negative small slow medium 
8 medium zero fast fast 
9 medium positive small medium slow 

10 medium positive big fast medium 
11 small negative big slow fast 
12 small negative small slow fast 
13 small zero slow slow 
14 small positive small fast slow 
15 small positive big fast slow 
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Table 2. Sample of training data generated by the fuzzy tracking controller. 

position error heading error expected right 
motor velocity 

expected left motor 
velocity 

0.9 0 0.7578 0.7578 

0.8 0 0.7578 0.7578 

0.7 0 0.7578 0.7578 

0.6 0 0.7578 0.7578 

0.5 0 0.7578 0.7578 

0.4 0 0.7578 0.7578 

0.3 0 0.7578 0.7578 

0.2 0 0.7572 0.7572 

0.1 0 0.6055 0.6055 

0 0.9 0.7578 0.1674 

0 0.8 0.7578 0.1674 

0 0.7 0.7578 0.1674 

0 0.6 0.7578 0.1674 

0 0.5 0.7578 0.1674 

0 0.4 0.7546 0.1713 

5.1.2. Training ANFIS For Tracking Controllers (left and right) 

In this work, a dataset consisting of 228 data points is generated using the fuzzy logic tracking 
controller to train the ANFIS tracking controllers (left and right). In the proposed ANFIS system 
setup, three membership functions have been used for each input for each controller. These functions 
are of the trapezoidal type, contribute to capturing complex patterns effectively. For the output, linear 
membership functions are chosen, ensuring straightforward mapping of rules. The system is 
generated using a grid partition approach for efficient input organization and a hybrid optimization 
method is applied during training to improve performance. Finally, the system is trained over 200 
iterations (epochs). The training error is calculated as the root mean square error (RMSE) between the 
predicted motor velocities (outputs of the ANFIS controller) and the actual motor velocities (target 
outputs). These settings enhance the precision and adaptability of our system for various robotics 
applications. Figure 6 presents the training data for the left motor ANFIS tracking controller and 
while Figure 7 depicts the training error for the same controller through 200 epochs. 

 
Figure 6. Training Data for the Left Motor ANFIS Tracking Controller. 
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Figure 7. Training Error for Left Motor ANFIS Tracking Controller. 

Figure 8 displays the training and FIS output data for the Left Motor ANFIS tracking controller 
after the ANFIS is trained. The proposed ANFIS model performed well during training with a 
minimal error of 0.045806. It has a total of 35 components, consisting of 27 linear and 24 nonlinear 
parameters. These components work together to make the model accurate and capable of handling 
complex data patterns. The ANFIS controller features 9 rules, demonstrating a decrease of 6 rules 
compared to the fuzzy tracking controller, which contained 15 rules (refer to section 5.1.1). 

 

Figure 8. Data after the ANFIS is trained (Left Motor ANFIS Tracking Controller). 

Figure 9 displays the training data for the right motor ANFIS tracking controller and Figure 10 
displays the training error for the right motor ANFIS tracking controller. 

 
Figure 9. Training Data for the Right Motor ANFIS Tracking Controller. 

 
Figure 10. Training Error for Right Motor ANFIS Tracking Controller. 
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Figure 11 shows the training and FIS output data for the right motor ANFIS tracking controller 
after completion of the ANFIS training process. The proposed ANFIS model performed well during 
training with a minimal error of 0.046201. It uses a combination of 35 components, including 27 linear 
and 24 nonlinear parameters. The ANFIS tracking controller for the right motor follows a similar 
pattern, employing 9 rules, which is a reduction of 6 rules compared to the previous fuzzy controller 
with 15 rules. 

 
Figure 11. Data after the ANFIS is trained (Right Motor ANFIS Tracking Controller). 

This ANFIS model is versatile and can be useful for various robotics applications. 

5.2. ANFIS Avoidance Controllers 

The primary objective of the robot's obstacle avoidance controller is to navigate safely within its 
environment by avoiding collisions with obstacles. This controller is composed of two ANFIS 
avoidance controllers, one specifically governing the left motor and the other the right motor. Each 
controller takes two crucial inputs: the left sensor reading and the right sensor reading. These sensor 
values provide information about the proximity of obstacles on either side of the robot, with a range 
scaled from 0 to 1. 

The output of each ANFIS avoidance controller corresponds to the velocity (m/s) of the 
respective motor (left and right) as shown in Figure 12. These controllers collaboratively work to 
dynamically adapt motor velocities, enabling the robot to navigate around obstacles and maintain a 
collision-free path. By processing sensor data, the ANFIS avoidance controllers are capable of making 
real-time decisions regarding motor speeds, ensuring effective obstacle avoidance in the robot's 
navigation process. This mechanism enhances the robot's safety and reliability. 

 

Figure 12. ANFIS Avoidance Controllers: inputs: sensor readings – outputs: motor velocities for 
obstacle navigation. 

5.2.1. Data Set for ANFIS Avoidance Controllers 

To create the dataset for training the ANFIS avoidance controllers, we first developed a fuzzy 
avoidance controller. Following that, we utilized this fuzzy avoidance controller to generate the 
dataset required for training the ANFIS avoidance controllers. The fuzzy avoidance controller has 
two inputs: the left sensor value and the right sensor value as shown in Figure 12. The controller also 
features two outputs: the left motor velocity and the right motor velocity. For the two inputs (left and 
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right sensors), trapezoidal membership functions are defined for the linguistic terms " very close" , " 
close" , " medium"," far" , and " very far", as shown in Figure 13. 

 
Figure 13. Fuzzy logic avoidance controller inputs (left and right sensor) fuzzy sets. 

The membership functions for the outputs (left and right motor velocity) are shown in Figure 14 
and are characterized by the linguistic terms 'slow' and 'fast'.  

 

Figure 14. Fuzzy logic avoidance controller output velocity fuzzy sets (right and left motors). 

Afterwards, a set of 25 expert rules shown in Table 3 is established that governs the behavior of 
the AGV in different situations.  

Table 3. Rule set for fuzzy avoidance controller. 

rule left sensor right sensor right motor velocity left motor velocity 
1 very close very close slow slow 
2 very close close slow fast 
3 very close medium slow fast 
4 very close far slow fast 
5 very close very far slow fast 
6 close very close fast slow 
7 close close slow slow 
8 close medium slow fast 
9 close far slow fast 
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10 close very far slow fast 
11 medium very close fast slow 
12 medium close fast slow 
13 medium medium slow slow 
14 medium far slow fast 
15 medium very far slow fast 
16 far very close fast slow 
17 far close fast slow 
18 far medium fast slow 
19 far far fast fast 
20 far very far slow fast 
21 very far very close fast slow 
22 very far close fast slow 
23 very far medium fast slow 
24 very far far fast slow 
25 very far very far fast fast 

This process effectively forms a fuzzy avoidance controller providing the foundation for 
generating training data for our ANFIS avoidance controller. The training dataset follows the expert 
logical rules outlined in Table 3. These rules precisely define how the AGV's sensors relate to its 
motor velocities. By following these rules, a diverse dataset is generated encompassing a wide range 
of scenarios and behaviors. This systematic approach guarantees that the AGV is ready to navigate 
and adapt to real world situations ensuring efficient and reliable performance. A sample of training 
data for the ANFIS avoidance controllers is presented in Table 4. 

Table 4. Sample of training data for the ANFIS avoidance controllers. 

left sensor right sensor expected right 
motor velocity 

expected left motor 
velocity 

0 1 0.6186 0.1276 

0.1 0.9 0.6186 0.1276 

0.2 0.8 0.6186 0.1276 

0.3 0.7 0.6175 0.1292 

0.4 0.6 0.5377 0.1364 

0.5 0.5 0.1276 0.1276 

0.6 0.4 0.1363 0.5377 

0.7 0.3 0.1292 0.6175 

0.8 0.2 0.1276 0.6186 

0.9 0.1 0.1276 0.6186 

1 0 0.1276 0.6186 

5.2.2. Training ANFIS for Avoidance Controllers (Left and Right) 

In this study, 32 datasets are generated using the fuzzy logic avoidance controller to train the 
ANFIS avoidance controllers (left and right). In the proposed ANFIS model, four membership 
functions are established for each input (left and right sensor), characterized by trapezoidal shapes. 
The output membership functions are linear. The Fuzzy Inference System is constructed employing 
grid partitioning and the hybrid optimization method is applied. The model was trained over 50 
epochs. The training error is calculated as the root mean square error (RMSE) between the predicted 
motor velocities (outputs of the ANFIS controller) and the actual motor velocities (target outputs). 
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Figure 15 displays the training data for the left motor ANFIS avoidance controller and Figure 16 
depicts the training error for the left motor ANFIS avoidance controller. 

 
Figure 15. Training Data for the Left Motor ANFIS Avoidance Controller. 

 
Figure 16. Training Error for Left Motor Velocity ANFIS Avoidance Controller. 

Figure 17 displays the training and FIS output data for the left motor ANFIS avoidance controller 
after the ANFIS is trained. In this ANFIS model, a minimal training RMSE of 0.001669 is achieved. 
The model utilizes 53 nodes with a combination of 48 linear and 32 nonlinear parameters, totaling 80 
parameters. Notably, this model is built upon 16 fuzzy rules, demonstrating a notable decrease when 
compared to the fuzzy avoidance controller, which is comprised of 25 rules (see section 5.2.1). 

 

Figure 17. Data after the ANFIS is trained (Left Motor ANFIS Avoidance Controller). 

The same approach is applied for the right motor. Figure 18 displays the training data for the 
right motor ANFIS avoidance controller and Figure 19 displays the training error for the right motor 
ANFIS avoidance controller. 
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Figure 18. Training Data for the Right Motor ANFIS Avoidance Controller. 

 
Figure 19. Training Error for Right Motor ANFIS Avoidance Controller. 

Figure 20 displays the training and FIS output data for the right motor ANFIS avoidance 
controller, after ANFIS is trained. In this ANFIS model, a minimal training RMSE of 0.001670 is 
attained. The model employs 53 nodes, comprising 48 linear and 32 nonlinear parameters, summing 
up to 80 parameters in total. As before, this ANFIS integrates 16 fuzzy rules, which is a reduction of 
9 rules compared to the 25 rules in the fuzzy avoidance controller. 

 

Figure 20. Data after the ANFIS is trained (Right Motor ANFIS Avoidance Controller). 

6. Simulation Experiments 

The experiments were conducted in a simulated environment configured using CoppeliaSim, a 
robot simulator that provided the necessary robustness and versatility for preliminary validation. 
The use of CoppeliaSim was crucial in overcoming the practical limitations of real-world 
experimentation, such as time and cost constraints, enhancing both the thoroughness and efficiency 
of the proposed control strategy. 

6.1. Robot System and Kinematics 

The mobile robot chosen for this research is the Pioneer p_3dx, a compact two-wheel differential-
drive robot, notable for its integration of 16 ultrasonic sensors. The maximum sensing range of the 
ultrasonic sensors used on the Pioneer p_3dx robot is set to 1 meter. This setting standardizes the 
measurement scale, ensuring that all distance readings are directly comparable and appropriately 
scaled for input into our ANFIS controllers. In this study, an effort is made to simplify the complexity 
of the ANFIS obstacle avoidance controller by exclusively utilizing the six frontal sensors, organized 
into two sets, as shown in Figure 21. 

The determination of the right and left sensor values is computed as follows: 
Right Sensor Value = ((Measurement from Sensor 1 + Measurement from Sensor 2 + 

Measurement from Sensor 3)) / 3 
Left Sensor Value = ((Measurement from Sensor 4 + Measurement from Sensor 5 + Measurement 

from Sensor 6)) / 3 
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Figure 21. Left and Right Sensor. 

6.2. Simulation Results 

Simulations have been conducted in three environmental setups including different obstacle 
arrangements with varying numbers, sizes, and both static and dynamic obstacles. To test the 
robustness of our navigation method, 10 test cases were conducted for each environment, each 
featuring varied start and end points which led to different paths determined by the path planning 
algorithm and obstacles that originated from different locations and moved into various directions. 
Due to space limitations, two representative test cases conducted from different environmental 
setups, illustrating the robot's ability to successfully navigate to the endpoint, effectively handling 
different numbers, shapes, and sizes of both dynamic and static obstacles. 

Firstly, a scene is established using CoppeliaSim, where both the start and end points are 
specified for the robot’s navigation. Our primary objective is to guide the robot towards its 
designated end point while avoiding any obstacles, either static or dynamic. This scene includes five 
warehouse racks, four boxes in the lower left corner and a control room in the upper right corner, as 
shown in Figure 22. 

 

Figure 22. CoppeliaSim scene and static obstacles. 

Based on this scene, the Bump-Surface concept is employed to determine the shortest and 
optimal path for the robot to traverse from its start position to the designated end point. The resulting 
optimal path, computed using a path planning algorithm, is depicted in green color in Figure 23. This 
path serves as a visual representation of the route the robot is intended to follow within the simulated 
environment. 

For the robot tracking process, a vector P is formulated containing the (x, y) coordinates 
necessary for the robot's path to the end point. To this end, the ANFIS tracking controller is deployed. 
This controller facilitates the robot's movement from one point to another within vector P. As the 
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robot reaches each point within the vector, it proceeds towards the next point. This process continues 
until the robot reaches the final end point represented by a green circle in Figure 23.  

 

Figure 23. Optimal path computed using a path planning algorithm. 

In the examined scenario, apart from the obstacles handled using the Bump-Surface concept to 
find the shortest path for the robot towards the end point while avoiding them, three additional 
obstacles have been incorporated into the scene. These include two static obstacles, represented by 
paper boxes, and one dynamic obstacle, represented by a human moving in the environment, as 
shown in Figure 24. These obstacles obstruct the path planning process, requiring the robot to 
maneuver around them to reach the end point. 

 

Figure 24. A scene with static obstacles and a dynamic obstacle. 
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The robot navigation starts by following the predefined path using the ANFIS tracking 
controllers. The ANFIS tracking controller is employed to guide the robot along the predefined path 
(green line). When the robot senses that there is an obstacle blocking its way, the obstacle avoidance 
controller is enabled. The robot then executes a maneuver, temporarily diverting from its pre-
established path to evade a collision with the obstacle. Once the obstacle is avoided, the robot returns 
back to the predefined path. 

The first obstacle encountered is the dynamic obstacle (human); thus, prompting the activation 
of the ANFIS avoidance controllers. The robot then executes a maneuver to avoid the human moving 
close to the robot, as illustrated in the Figure 25. In all Figures, the green line depicts the path 
generated by the path planning algorithm, whereas the yellow line indicates the actual path taken by 
the robot to maneuver around obstacles and reach the end point. 

 
Figure 25. The robot executes a maneuver to avoid the dynamic obstacle. 

Following the robot's maneuver to avoid the human, it resumes its path along the predefined 
path. However, it encounters the first static obstacle, represented by paper boxes, obstructing its 
trajectory. Consequently, the robot executes a second maneuver to navigate around this obstacle, as 
depicted in Figure 26.  

 

Figure 26. The robot executes a maneuver to avoid the first static obstacle. 

After navigating around the first static obstacle (paper boxes), the robot encounters a second 
static obstacle of the same type. In response, it executes a third maneuver to avoid this obstacle, as 
depicted in Figure 27.  
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Figure 27. The robot executes a maneuver to avoid the second static obstacle. 

Figure 28 illustrates the entire path that the robot follows to reach the end point, encompassing 
the maneuvers made to navigate around obstacles encountered along the way. 

 
Figure 28. The robot effectively navigates by avoiding all encountered obstacles to successfully reach 
its designated end point. 

After the simulation test is completed, the robot's performance is evaluated, revealing a 
completion time of 71.4 seconds and a total of 13 turns, as depicted in Figure 29. In this study, a 
targeted approach is implemented to simplify paths and detect turns, aiming to enhance 
computational efficiency and the significance of our findings in robotic navigation. Specifically, a 
'significant turn' in the robot's path is defined as a directional change of 0.2 radians or more. This 
threshold is established through extensive preliminary experimentation, which assessed the impact 
of various turn magnitudes on path efficiency and navigational accuracy. Our findings indicate that 
turns measuring under 0.2 radians generally had negligible impacts on the overall path trajectory, 
making them insignificant for our analysis. 
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Figure 29. Number of turns using ANFIS controllers. 

Aiming to compare the ANFIS strategy and the fuzzy logic controller strategy, Table 5 provides 
a summary of key performance indicators. These indicators include the time taken to reach the end 
point (in seconds), the number of turns executed, and the count of rules for each strategy: ANFIS and 
fuzzy logic controller. 

Table 5. Performance comparison between ANFIS and fuzzy logic controller strategies. 

strategy 
time to reach 
the end point 

(sec) 

number of 
turns 

number of rules 
for tracking 
controller 

number of rules 
for avoidance 

controller 

ANFIS 71.4 13 9 16 

Fuzzy 

system  
73.2 18 15 25 

The comparison shows that the ANFIS strategy outperforms the fuzzy logic strategy in several 
aspects. ANFIS strategy takes a shorter time to reach the end point with 71.4 seconds compared to 
73.2 seconds for fuzzy logic controller. Furthermore, the ANFIS strategy exhibits fewer turns, totaling 
only 13 compared to 18 observed in the fuzzy logic controller (Figure 30), leading to a rule reduction 
of 33.3%. Additionally, the ANFIS strategy employs simpler rules, with 9 rules for tracking controller 
and 16 for avoidance controller (a rule reduction of 40%), while fuzzy logic uses 15 rules for tracking 
and 25 for avoidance (a rule reduction of 36%). These results indicate that the ANFIS strategy 
provides smoother navigation paths, making it more effective for robotic navigation tasks. 
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Figure 30. Number of turns using fuzzy logic controllers. 

Reducing the number of rules offers several key benefits that enhance the system's overall 
performance and efficiency. Firstly, a smaller number of rules leads to a simpler fuzzy model, which 
is generally easier to understand, interpret, and manage. This simplification is crucial for maintaining 
the transparency of the system, particularly valuable in control applications where understanding 
the logic behind decision-making processes is important. Secondly, reducing the number of rules 
decreases the necessary computations required for decision making, thereby lowering the overall 
computational load [29]. This is especially beneficial in real-time applications where decision speed 
is critical, allowing the ANFIS controller to operate more efficiently and respond faster in dynamic 
environments typically encountered by mobile robots. Lastly, models with fewer rules are easier to 
maintain and update, offering better scalability in practical applications, where the environment or 
operational conditions may evolve over time, necessitating model adjustments or updates. 

Next, another scene is established, as shown in Figure 31, depicting both the provided path after 
using the path planning algorithm (green line) and the actual path (yellow line). Figure 31 also 
illustrates the static and two dynamic obstacles (humans) in the environment. The obstacles are 
positioned to intersect the planned path, requiring the robot to change its direction to avoid them. 
The robot navigates following the path succeeding to reach the end point avoiding collisions with 
both static and dynamic obstacles.  
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Figure 31. Another scene including static and dynamic obstacles. 

Figure 32 provides snapshots where the robot effectively maneuvers around obstacles. The robot 
consistently follows the planned path, adjusting its trajectory as needed to avoid collisions. It is worth 
noting that the success rate of the proposed system was 100% across all test cases, demonstrating full 
reliability for reaching the end point without collisions with static and dynamic obstacles. This 
success rate is critical for assessing the effectiveness of the developed navigation algorithms. 

 

Figure 32. Detailed snapshots of the robot navigating around obstacles. 

A limitation identified concerns sensor position and range. Obstacles located beyond the sensor's 
effective range were occasionally not detected early enough, resulting in potential collisions or 
sudden maneuvers. It mainly occurs in rare scenarios, where a moving object approaches from 
beyond the sensor range without altering its path. However, such scenarios are unlikely to occur in 
real-world applications, as humans would notice the robot and either stop or change direction, while 
other robots would use their sensors to avoid collisions. Despite this limitation, the robot successfully 
navigated around both static and dynamic obstacles to reach its endpoint in all tested scenarios. 
Although a few instances involved late detection of objects, leading to sudden maneuvers, the robot 
consistently managed to reach the end point successfully. 

To compare the CPU times, 10 test cases are executed in each of the three environments both 
using ANFIS controllers and fuzzy controllers for comparison. Figure 33 presents the average 
computation times (CPU times) for all test cases conducted within the three environments. It is clear 
that the average CPU time using the ANFIS strategy is lower than its counterpart using the fuzzy 
system strategy. Consequently, the reduction in the number of rules, not only maintains the systems 
performance but also achieves less computational time.  
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Figure 33. The average CPU times for all test cases within the three environments. 

As a concluding remark, the primary advantage of using the ANFIS model over a fuzzy strategy 
model lies in its adaptive learning capabilities. ANFIS refines and adjusts the initial rules, which is 
particularly important as some rules may be weakly fired, contributing minimally to the decision-
making process under certain conditions. By adapting the rules, ANFIS ensures that only the most 
effective rules are applied, enhancing the system's overall efficiency and accuracy.  

7. Conclusions 

In this study, we introduce an innovative ANFIS-based control strategy, representing a notable 
advancement in robotics, especially concerning autonomous mobile robot navigation within dynamic 
environments. The core issue of our research work lies in the integration of the Adaptive Neuro-
Fuzzy Inference System (ANFIS) with a path planning algorithm. This integration establishes a new 
standard for realizing collision-free navigation, simultaneously enhancing both the safety and 
efficiency of the process. 

Our method focuses on a sophisticated combination of four ANFIS controllers, each one 
designed to handle specific aspects of the navigation process. Two of these controllers are responsible 
guiding the robot towards its end point, ensuring precise and reliable path planning. The remaining 
two controllers are activated in the presence of obstacles, enabling the robot to perform avoidance 
maneuvers without deviating from its designated path to the end point. 

Our strategy was rigorously tested using the Pioneer p_3dx mobile robot equipped with 16 
ultrasonic sensors in a simulation environment utilizing the CoppeliaSim platform. The simulation 
results demonstrated the robot's capability to navigate through an environment cluttered with both 
static and dynamic obstacles, utilizing ultrasonic sensors to detect and react to these challenges in 
real-time. 

The simulation outcomes highlight the superiority of the ANFIS-based approach over the 
conventional fuzzy logic methods, demonstrating not only improved computational efficiency but 
also enhanced navigational smoothness. The robot successfully completed its paths, successfully 
avoiding obstacles and reaching its end point in a shorter time frame and with fewer turns compared 
to strategies employing conventional fuzzy logic controllers. 

This study presents a novel ANFIS-based control strategy and also paves the way for future 
research in autonomous robot navigation. Our approach's adaptability and efficiency in dynamic 
environments hold vast potential for a wide array of applications. A noted limitation was the sensor 
range; obstacles beyond the effective range sometimes weren't detected early enough, leading to 
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collisions or abrupt maneuvers. This highlights the need for future improvements in sensor 
capabilities and processing power for earlier obstacle detection and smoother navigation 
adjustments. 

Our future work will be dedicated to enhancing the robustness and intelligence of the ANFIS-
based navigation framework using machine learning models. We aim to extend the system's efficacy 
across diverse and challenging operational scenarios, including outdoor terrains and dynamically 
changing environments. A significant focus will also be placed in sectors like autonomous delivery 
systems, search and rescue operations, and smart mobility solutions, ensuring a broader societal 
impact and real-world utility. 

Author Contributions: Conceptualization, S.S. and P.Z.; methodology, S.S.; software, S.S.; validation, S.S.; 
formal analysis, S.S. and P.Z.; investigation, S.S. and P.Z.; resources, S.S.; data curation, S.S.; writing—original 
draft preparation, S.S. and P.Z.; writing—review and editing, S.S. and P.Z.; visualization, S.S. and P.Z.; 
supervision, P.Z. All authors have read and agreed to the published version of the manuscript 

Funding: “This research received no external funding”  

Data Availability Statement: The original contributions presented in the study are included in the 
article/supplementary material, further inquiries can be directed to the corresponding author/s. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Pratama, P.S.; Jeong, S.K.; Park, S.S.; Kim, S.B. Moving Object Tracking and Avoidance Algorithm for 
Differential Driving AGV Based on Laser Measurement Technology. Int. J. Sci. Eng. 2013, 4(1), 11-15. 

2. Ito, S.; Hiratsuk,a S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based 
Localization for Automated Guided Vehicle. Sensors 2018, 18, 177; doi:10.3390/s18010177 

3. Rozsa, Z.; Sziranyi, T. Obstacle Prediction for Automated Guided Vehicles Based on Point Clouds 
Measured by a Tilted LIDAR Sensor. IEEE T Intell Transp 2018,19(8), 2708-2720. 

4. Lee, J.; Hyun, C.-H.; Park, M. A Vision-Based Automated Guided Vehicle System with Marker Recognition 
for Indoor Use. Sensors 2013, 13, 10052-10073; doi:10.3390/s130810052. 

5. Al-Mayyahi, A.; Wang, W.; Birch, P. Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle 
Navigation. Robotics 2014, 3, 349-370; doi:10.3390/robotics3040349. 

6. Miao, Z.; Zhang, X.; Huang, G. Research on Dynamic Obstacle Avoidance Path Planning Strategy of AGV, 
J. Phys.: Conf. Ser. 2006 012067 DOI 10.1088/1742-6596/2006/1/012067, 2021. 

7. Haider, M.H.; Wang, Z.; Khan, A.A.; Ali, H.; Zheng, H.; Usman, S.; Kumar, R.; Usman Maqbool Bhutta, M.; 
Zhi, P. Robust mobile robot navigation in cluttered environments based on hybrid adaptive neuro-fuzzy 
inference and sensor fusion. Journal of King Saud University - Computer and Information Sciences 2022, 
34, 9060-9070. 

8. Farahat, H.; Farid, S.; Mahmoud, O.E. Adaptive Neuro-Fuzzy control of Autonomous Ground Vehicle 
(AGV) based on Machine Vision. Engineering Research Journal 2019, 163, 218-233; 
doi:10.21608/erj.2019.122532. 

9. Jung, K.; Lee, I.; Song,H.; Kim, J.; Kim, S. Vision Guidance System for AGV Using ANFIS. Proceedings of 
the 5th International Conference on Intelligent Robotics and Applications - Volume Part I, 2012; 
doi:10.1007/978-3-642-33509-9_37. 

10. Khelchandra,T.; Huang, J.; Debnath, S. Path planning of mobile robot with neuro-genetic-fuzzy technique 
in static environment. International Journal of Hybrid Intelligent Systems 2014, 11, 71-80. 

11. Faisal, M.; Hedjar,R.; Al Sulaiman, M.; Al-Mutib, K. Fuzzy Logic Navigation and Obstacle Avoidance by a 
Mobile Robot in an Unknown Dynamic Environment. Int J Adv Robot Syst 2013,1-7. 

12. Anish, P; Abhishek, K. K; Dayal, R. P; Patle ,B.K Autonomous mobile robot navigation between static and 
dynamic obstacles using multiple ANFIS architecture. World Journal of Engineering 2019, 275–286; doi: 
10.1108/wje-03-2018-0092. 

13. Brahim, H; Mohammed, R; Abdelwahab, N An intelligent ANFIS mobile robot controller using an 
expertise-based guidance technique. 14th International Conference on Intelligent Systems: Theories and 
Applications (SITA) 2023. IEEE; doi: 10.1109/SITA60746.2023.10373729. 

14. Singh, M. K.; Parhi, D. R.; Pothal, J. K. ANFIS approach for navigation of mobile robots. International 
Conference on Advances in Recent Technologies in Communication and Computing. 2009, IEEE; doi: 
10.1109/ARTCom.2009.119. 

15. Muhammad, H. H.; Hub, A.; Abdullah, A. K.; Hao, Z.; Usman, M. B.; Shaban, U.; Pengpeng, Z.; Zhonglai, 
V. Autonomous mobile robot navigation using adaptive neuro fuzzy inference system. International 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2024                   doi:10.20944/preprints202407.0439.v1

https://doi.org/10.20944/preprints202407.0439.v1


 25 

 

Conference on Innovations and Development of Information Technologies and Robotics (IDITR). 2022, 
IEEE; doi: 10.1109/IDITR54676.2022.9796495. 

16. Malika, L.; Nacéra, B.; Intelligent system for robotic navigation using ANFIS and ACOr. Applied Artificial 
Intelligence. 2019,33(5):399-419. doi: 10.1080/08839514.2019.1577012. 

17. Muhammad, H. H.; Zhonglai, W.; Abdullah, A. K.; Hub, A.; Hao, Z.; Shaban, U.; Rajesh, K.; Usman, M. B.; 
Pengpeng, Z. Robust mobile robot navigation in cluttered environments based on hybrid adaptive neuro-
fuzzy inference and sensor fusion. Journal of King Saud University - Computer and Information Sciences. 
2022,  doi: 10.1016/j.jksuci.2022.08.031. 

18. Marichal, G.; Acosta, L.; Moreno, L.; Méndez, J.A.; Rodrigo, J.; Sigut, M. Obstacle avoidance for a mobile 
robot: A neuro-fuzzy approach. Fuzzy Sets and Systems, 2001, 124, 171–179. 

19. Vaidhehi, V. The role of dataset in training ANFIS system for course advisor. International Journal of 
Innovative Research in Advanced Engineering (IJIRAE), 2014, 1(6), 249-253. ISSN: 2349–2163. 

20. Sy-Hung, B.; Soo-Y, Y.; An efficient approach for line-following automated guided vehicles based on fuzzy 
inference mechanism. Journal of Robotics and Control (JRC), 2022, Volume 3, Issue 4, ISSN: 2715-5072. DOI: 
10.18196/jrc.v3i4.14787. 

21. Kovács, Sz., Kóczy, L.T. Application of an approximate fuzzy logic controller in an AGV steering system, 
path tracking and collision avoidance strategy. Fuzzy Set Theory and Applications, Tatra Mountains 
Mathematical Publications, Mathematical Institute Slovak Academy of Sciences, 1999, vol. 16, pp. 456-467, 
Bratislava, Slovakia. 

22. Dudek, G.; Jenkin, M. Computational Principles of Mobile Robotics (2nd ed.). Cambridge University Press, 
USA, 2010. 

23. Gul, F.; Rahiman, W.; Sahal Nazli Alhady, S. A comprehensive study for robot navigation techniques. 
Cogent Engineering, 2019, 6, 1-25. 

24. Al-Mallah, M.; Ali, M.; Al-Khawaldeh, M. Obstacles Avoidance for Mobile Robot Using Type-2 Fuzzy Logic 
Controller, Robotics 2022, 11(6), 130. https://doi.org/10.3390/robotics11060130 

25. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. A Novel Evolving Type-2 Fuzzy System for 
Controlling a Mobile Robot under Large Uncertainties. Robotics 2023, 12, 40. 
https://doi.org/10.3390/robotics12020040 

26. Hong, T.S.; Nakhaeinia, D.; Karasfi, A. Application of Fuzzy Logic in Mobile Robot Navigation. Fuzzy 
Logic - Controls, Concepts, Theories and Applications; 2012, doi:10.5772/36358. 

27. Azariadis, P.; Aspragathos, N. Obstacle representation by Bump-Surfaces for optimal motion-planning, 
Journal of Robotics and Autonomous Systems 2005, 51 (2–3) 129–150. 

28. Jang J.-S. R. ANFIS Adaptive-Network-based Fuzzy Inference System. IEEE T Syst Man Cyb 1993, 23(3), 
665-685; doi: 10.1109/21.256541. 

29. Hung C.-C.; Fernandez B. Minimizing rules of fuzzy logic system by using a systematic approach. Second 
IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 1993, pp. 38-44 vol.1, doi: 
10.1109/FUZZY.1993.327466. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2024                   doi:10.20944/preprints202407.0439.v1

https://www.researchgate.net/profile/Philip-Azariadis
https://doi.org/10.20944/preprints202407.0439.v1

	1. Introduction
	2. Kinematics of a Two-Wheel Drive Robot
	3. Strategy for Path Planning
	3.1. Path Planning Concepts
	3.2. The Bump-Surface concept

	4. Basic Concepts on the Adaptive Neuro-Fuzzy Inference System (ANFIS)
	5. Designing the ANFIS Controllers for the Automated Guided Vehicle
	5.1. ANFIS Tracking Controllers
	5.1.1. Data Set for ANFIS Tracking Controllers
	5.1.2. Training ANFIS For Tracking Controllers (left and right)

	5.2. ANFIS Avoidance Controllers
	5.2.1. Data Set for ANFIS Avoidance Controllers
	5.2.2. Training ANFIS for Avoidance Controllers (Left and Right)


	6. Simulation Experiments
	6.1. Robot System and Kinematics
	6.2. Simulation Results

	7. Conclusions
	References

