
Article Not peer-reviewed version

Explicit Solutions for Coupled Parallel

Queues

Herwig Bruneel * and Arnaud Devos

Posted Date: 9 July 2024

doi: 10.20944/preprints202407.0693.v1

Keywords: parallel queues; discrete-time; joint system-content distribution; explicit solutions

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2875734
https://sciprofiles.com/profile/1827108


Article

Explicit Solutions for Coupled Parallel Queues

Herwig Bruneel * and Arnaud Devos

SMACS Research Group Department of Telecommunications and Information Processing Ghent University
* Correspondence: herwig.bruneel@ugent.be

Abstract: We consider a system of two coupled parallel queues, queue 1 and queue 2, with infinite waiting

rooms. The time setting is discrete. In either queue, the service of a customer requires exactly one discrete time

slot. Arrivals of new customers occur independently from slot to slot, but the numbers of arrivals of both types

within a slot may be mutually interdependent. Their joint probability generating function (pgf) is indicated as

A(z1, z2) and characterizes the whole model. It is well-known that, in general, determining the steady-state

joint probability mass function (pmf) u(m, n), m, n ≥ 0 or the corresponding joint pgf U(z1, z2) of the system

contents (i.e., numbers of customers present) in both queues is a formidable task. Only in a number of isolated

cases, for very specific choices of the arrival pgf A(z1, z2), explicit results are known in the literature. In this

paper, we identify a multi-parameter, generic class of arrival pgfs A(z1, z2), for which we can explicitly determine

the system-content pgf U(z1, z2). We find that, for arrival pgfs of this class, U(z1, z2) has a denominator which

is a product, say r1(z1)r2(z2) of two univariate functions. This property allows a straightforward inversion of

U(z1, z2), resulting in a pmf u(m, n) which can be expressed as a finite linear combination of bivariate geometric

terms. We also observe that our generic model encompasses most of the previously known results as special cases.

Keywords: parallel queues; discrete-time; joint system-content distribution; explicit solutions

1. Introduction

This paper fits into a greater scientific effort which aims at finding explicit analytic solutions for
the joint probability distribution (or probability generating function) of the numbers of customers in
a system of two coupled discrete-time queues. Various instances of such systems have been studied
before, both differing in the cause of the coupling between the two queues or in the scientific perspective
taken in the study.

With no claim on completeness, we mention a number of possible causes for the presence of
coupling between queues. A first cause may be that the arrival streams into the queues are mutually
interdependent or state-dependent, i.e., dependent on the system contents, i.e., the numbers of customers
present in the queues. Mutual dependence between arrivals occurs, for instance, in the context of
communications networks, where the nodes of the network contain switching systems which have to
forward digital packets from many different origins to many different destinations. In such switches,
each destination has (at least, conceptually) its own dedicated buffer to temporarily store arriving
packets, and, since packets destined to one destination do not enter the output buffer associated to
another destination, the arrivals within such output buffers are mutually correlated. Buffered slotted
switches were studied, e.g., in [1–6]. State-dependence of arrivals occurs, for instance, in join-the-shortest-
queue systems, where arriving customers adapt their behavior at the entrance of the system to the
system contents upon arrival; see, e.g., [7–9]. More conceptual studies of queues with interdependent
arrivals include [5,6,10,11].

Another (major) cause of coupling may be that the queues of the system have to share the same
service facilities. This situation occurs, for instance, in polling systems, where one server periodically
visits multiple customer queues to serve a number of customers and then go to the next queue; various
variants of polling systems have been studied quite intensively in the past (see, e.g., [12–19]). Sharing of
servers also occurs in so-called alternating service systems, where one server is allocated for alternating
random durations of time to either of the two queues, regardless of the states of these queues, (see, e.g.,
[11,20–28]), or in priority queues, where one common service facility gives preferential service to one
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class of customers over the other class(es) of customers; a large body of research results is available
on various types of priority queueing systems (see, e.g., [29–46]). Similar ideas are also implemented
in so-called (generalized) processor sharing (GPS) systems, whereby the service facility is randomly
allocated to multiple queues according to preset weights; as opposed to randomly alternating service
systems, however, GPS-systems usually allow the server to deliver service to customers of a queue to
which it is not allocated when the queue to which it is allocated is empty, thus making the system
work-conserving. In fact, GPS-systems can also be viewed as systems with alternating priorities; some
papers dealing with GPS-systems are [25,47–51]. We should also mention serve-the-longest-queue systems,
where, upon a service completion, a server can autonomously decide to give preference to the queue
that contains the largest number of customers; see, e.g, [52,53]. Recently, some authors have examined
the combined join-the-shortest-queue and serve-the-longest-queue scenario; see [54,55].

A third possible cause of coupling in two-queue systems can be that (part of) the output stream of
one queue constitutes (part of) the input stream into the other queue, such as in the context of tandem
queues (see, e.g., [45,56,57]), or, more generally, in a network environment.

As far as the scientific perspective taken by various authors in the literature is concerned, we see a
main difference between considering the involved (two-queue) queueing system as the basic concept
of the study, where the determination of the joint (or, total) system-content distribution of both queues,
the overflow probabilities, the customer delays, etc. is the main objective, versus a more fundamental,
mathematically-oriented point of view, whereby the underlying random walks that model the system
contents of both queues are the basic concepts of the study (see, e.g., [58–62]). Usually, the aim of such
papers is to shed more light on the structural properties of these random walks required to admit
elegant solutions. Moreover, the involved random walks are often of nearest-neighbor type, which is
rather restrictive in a queueing context, and the structure of their transition probabilities may be quite
arbitrary and not necessarily reflect the behavior of a queueing system.

The present paper does not take the mathematical study of the random walk that models the
two-queue system explicitly as a major point of interest, but rather concentrates on the explicit
determination of the joint pgf of the two system contents in the two queues of the system. Specifically,
we consider a conceptually very simple system of two coupled parallel discrete-time queues. The
queues are named queue 1 and queue 2, both have their own dedicated server and infinite storage
capacity. Customers arriving to queue 1 and to queue 2 are referred to as type-1 and type-2 customers,
respectively. The service times of the customers are deterministically equal to one time slot, regardless
of the customer type. New customer arrivals of both types occur independently from slot to slot, but
are possibly type-interdependent within a slot. This is the only source of coupling in this model. Earlier
studies of various instances of this type of two-queue system include [1–6,10,11,63].

It is well-known that, in general, determining the steady-state joint pgf U(z1, z2) of the system
contents in a system of two coupled queues is a formidable task, because it requires the solution
of a possibly complicated, nonlinear functional equation for U(z1, z2), which contains the unknown
boundary functions U(z1, 0) and/or U(0, z2). In many previous papers, the analysis consists of first
determining these boundary functions through various complex-analysis techniques, upon which
U(z1, z2) can be computed from the functional equation by subsequent substitution of the expressions
found for U(z1, 0) and/or U(0, z2). In this paper, we use a different, purely algebraic, technique, which
can be best described as a two-step process: first, we make an educated guess of the solution for U(z1, z2),
and, next, we prove that the proposed U(z1, z2) indeed satisfies the functional equation. Of course,
in this approach, making an educated guess of the solution is crucial. In fact, this step is essentially a
process of trial and error, based on the intuition gained from the preliminary study of a large number
of simple special cases in earlier papers.

For the specific coupled-queues system considered in this paper, explicit results have been
obtained thus far only in a number of isolated cases, for very specific choices of the arrival pgf A(z1, z2)

(see, e.g., [5]). Furthermore, these special cases are of a rather simple nature: either the arrivals of both
types should be mutually independent, or the two queues should receive identical numbers of arrivals in
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each slot, or one of both queues should receive no more than one single arrival per slot, implying that
in this queue no accumulation of customers occurs. Some initial indications to extend the class of
“solvable” arrival pgfs A(z1, z2) were also given in [5], but the extensions are limited.

In this paper, we introduce a multi-parameter, generic class of arrival pgfs A(z1, z2), for which we
succeed to explicitly determine the joint pgf U(z1, z2), using the algebraic approach described above.
By making specific choices for the many parameters of the model, we also define three interesting
subclasses of arrival pgfs which lead to even more explicit solutions. We find that for arrival pgfs of the
classes considered in this paper, the bivariate joint system-content pgf U(z1, z2) has a denominator
which is a product, say r1(z1)r2(z2) of two univariate functions. This property allows a straightforward
inversion of the pgf U(z1, z2) by means of an inversion technique we developed in a previous paper
[11], resulting in a pmf u(m, n) which can be expressed as a finite linear combination of bivariate
geometric terms. We observe that our generic model encompasses most of the previously known
results as special cases. In fact, it was by studying these special cases that we developed the intuition
needed to be able to identify the class of arrival pgfs introduced in this paper.

The rest of this paper is organized as follows. In section 2 we introduce the detailed mathematical
model of the system under study and establish a functional equation for the joint pgf U(z1, z2). The
solution of this functional equation is, in fact, the main purpose of the paper. Section 3 defines the
generic class of arrival pgfs A(z1, z2) that will be studied in this paper. In section 4, we present and
prove the main result of the paper in the form of Theorem 1 which gives an explicit expression for
the joint system-content pgf U(z1, z2) associated to the joint arrival pgf A(z1, z2) defined in section
3. Section 5 defines three interesting subclasses, named A, B and C, of the generic class of arrival
pgfs A(z1, z2) defined in section 3, and establishes even more explicit formulas for the associated
system-content pgfs U(z1, z2) in these cases, in the form of three corrolaries, also named A, B and C,
of Theorem 1. In section 6, we consider several instances of subclasses A, B and C, whereby specific
choices are made for the various parameters and functions appearing in the formulations of Corrolaries
A, B and C. Section 7 discusses a fundamental method to invert the system-content pgf U(z1, z2),
i.e., to determine the pmf u(m, n) from the pgf U(z1, z2), and illustrates this techniques by means of
specific examples within subclasses A, B and C. Finally, we state some concluding remarks in section
8.

2. Mathematical Model and Queueing Analysis

We define the random variables a1,k and a2,k as the numbers of type-1 and type-2 arrivals, re-
spectively, during slot k. Their joint probability mass function (pmf) a(i, j) and probability generating
function (pgf)A(z1, z2) are indicated as

a(i, j) ≜ Prob[a1,k = i and a2,k = j] , i, j ≥ 0 ,

A(z1, z2) ≜ E
[
za1,k

1 za2,k
2

]
≜

∞

∑
i=0

∞

∑
j=0

a(i, j) zi
1zj

2 , (1)

which are independent of k. The (marginal) pgfs of a1,k and a2,k are given by

A1(z1) ≜ E
[
za1,k

1

]
= A(z1, 1) , A2(z2) ≜ E

[
za2,k

2

]
= A(1, z2) , (2)

respectively. The mean number of arrivals of type i per slot is denoted as λi ≜ A′
i(1). A graphical

representation of the system under study is shown in Figure 1.
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A1(z1)

A2(z2)

A(z1, z2)

1

2

Figure 1. System of two coupled parallel queues

Let u1,k and u2,k indicate the system contents, i.e., the total numbers of customers present, in queue
1 and queue 2, respectively, including the customer(s) in service, if any, at the beginning of slot k. We
indicate their joint pgf as

Uk(z1, z2) ≜ E
[
zu1,k

1 zu2,k
2

]
. (3)

Furthermore, let q1,k and q2,k indicate the queue contents, i.e., the numbers of waiting customers, in
queue 1 and queue 2, respectively, excluding the customer(s) in service, if any, at the beginning of slot k.
We indicate their joint pgf as

Qk(z1, z2) ≜ E
[
zq1,k

1 zq2,k
2

]
. (4)

It is not difficult to see that the following relationships exist between the system contents and the queue
contents:

q1,k = (u1,k − 1)+ , q2,k = (u2,k − 1)+ , (5)

where we have introduced the notation (x)+ to indicate the quantity max(0, x).
The main purpose of the paper is to analyze the steady-state behavior of the queueing system

under study, i.e., we are interested in determining the steady-state joint pgfs of the two system contents
and/or queue contents, provided that such a steady state exists. Specifically, we wish to study the
following limit functions:

U(z1, z2) ≜ lim
k→∞

Uk(z1, z2) , Q(z1, z2) ≜ lim
k→∞

Qk(z1, z2) , (6)

if they exist. A steady state exists if and only if both queues are stable, i.e., receive, on average, less
customers per slot than they can serve, i.e., if and only if the following stability conditions are fulfilled:

λ1 < 1 , λ2 < 1 . (7)

As mentioned in e.g., [5,6], the evolution of the system contents is described by the following system
equations:

u1,k+1 = a1,k + (u1,k − 1)+ , u2,k+1 = a2,k + (u2,k − 1)+ . (8)

Using standard z-tranform techniques, the equations (8) can be translated into one corresponding
transform equation between the joint pgfs Uk(z1, z2) and Uk+1(z1, z2), by using definition (3). Assum-
ing the system reaches a steady state, i.e., assuming the stability conditions (7) are met, letting the time
parameter k go to infinity, and using the definitions (3) and (6), the latter transform equation translates
into the following functional equation for the steady-state system-content pgf U(z1, z2):

K(z1, z2)U(z1, z2) = A(z1, z2)L(z1, z2) , (9)

where the unknown function L(z1, z2) is defined as

L(z1, z2) ≜ (z2 − 1)U(z1, 0) + (z1 − 1)U(0, z2) + (z1 − 1)(z2 − 1)U(0, 0) (10)
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and the kernel K(z1, z2) is given by

K(z1, z2) ≜ z1z2 − A(z1, z2) . (11)

Although, in general, the functional Equation (9) is hard to solve for U(z1, z2), it is fairly easy
to derive explicit expressions for the marginal pgfs U(z1, 1) and U(1, z2) of the individual system
contents in queues 1 and 2, by choosing either z2 = 1 or z1 = 1 in (9), because such choices greatly
simplify the L-function. As a result, we then obtain

U(z1, 1) =
U(0, 1)(z1 − 1)A1(z1)

z1 − A1(z1)
, U(1, z2) =

U(1, 0)(z2 − 1)A2(z2)

z2 − A2(z2)
. (12)

Invoking the normalization condition U(1, 1) = 1 yields U(0, 1) = 1 − λ1 and U(1, 0) = 1 − λ2. The
expressions in (12) are very well-known in the context of discrete-time queueing theory; see, for
instance [64]; they will be very useful further in this paper.

We now turn our attention to the queue contents. Using (5) in (8), we readily get

u1,k+1 = a1,k + q1,k , u2,k+1 = a2,k + q2,k .

Transforming these relationships to pgfs, we obtain, on account of the definitions (3) and (4),

Uk+1(z1, z2) = A(z1, z2)Qk(z1, z2) .

In view of (6), this implies that

U(z1, z2) = A(z1, z2)Q(z1, z2) , Q(z1, z2) =
U(z1, z2)

A(z1, z2)
. (13)

Equation (13) makes clear that Q(z1, z2) is known as soon as U(z1, z2) is known, and vice versa. In the
remainder of this paper, we mainly concentrate on the determination of U(z1, z2).

3. Defining a Class of Arrival pgfs A(z1, z2)

Let f1(z1), f2(z2), g1(z1), g2(z2), h1(z1), h2(z2) denote one-dimensional probability generating
functions. Furthermore, let n11, n12, n21, n22 denote a set of normalized probabilities, i.e.,

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 ,

and d1 and d2 two nonnegative real parameters. We then use all the above quantities to define a whole
class of bivariate functions A(z1, z2) as follows:

A(z1, z2) =
n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
. (14)

We now show that the above function is a genuine joint pgf, i.e., it can be developed as a two-
dimensional power series in z1 and z2 with nonnegative coefficients which add up to 1.

Let us denote the numerator and the denominator of (14) as n(z1, z2) and d(z1, z2), respectively,
i.e.,

A(z1, z2) =
n(z1, z2)

d(z1, z2)
= n(z1, z2)

( 1
d(z1, z2)

)
, (15)

with
n(z1, z2) ≜ n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2) ,

d(z1, z2) ≜ 1 + d1 + d2 − d1g1(z1)− d2g2(z2) .
(16)
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It is clear that both n(z1, z2) and d(z1, z2) are normalized, i.e., n(1, 1) = 1 and d(1, 1) = 1, which
implies that A(z1, z2) is also normalized, i.e., A(1, 1) = 1. The numerator n(z1, z2) is a probabilistic
mixture of four valid pgfs, and, therefore, is a valid pgf too. The function 1/d(z1, z2) is also a genuine
pgf since it can be developed as a two-dimensional power series in z1 and z2 with nonnegative
coefficients as follows:

1
d(z1, z2)

=
1

(1 + d1 + d2)− d1g1(z1)− d2g2(z2)

=
1

(1 + d1 + d2)
(
1 − π1g1(z1)− π2g2(z2)

)
=

(
1

1 + d1 + d2

) ∞

∑
i=0

(
π1g1(z1) + π2g2(z2)

)i ,

where the probabilies π1 and π2 have been defined as

π1 =
d1

1 + d1 + d2
, π2 =

d2

1 + d1 + d2
.

Equation (15) thus shows that A(z1, z2) can be expressed as the product of two valid joint pgfs, and,
therefore, is a valid joint pgf too.

In this paper, we will examine a parallel-queues system with joint arrival pgf A(z1, z2) defined in
(14). The corresponding marginal arrival pgfs A1(z1) and A2(z2) are

A1(z1) = A(z1, 1) =
n(z1, 1)
d(z1, 1)

=
(n11 + n12)z1 + n21 f1(z1) + n22h1(z1)

1 + d1 − d1g1(z1)
,

A2(z2) = A(1, z2) =
n(1, z2)

d(1, z2)
=

(n11 + n21)z2 + n12 f2(z2) + n22h2(z2)

1 + d2 − d2g2(z2)
.

(17)

The mean arrival rates λ1 and λ2 are

λ1 ≜ A′
1(1) = n11 + n12 + n21 f ′1(1) + n22h′1(1) + d1g′1(1)

λ2 ≜ A′
2(1) = n11 + n21 + n12 f ′2(1) + n22h′2(1) + d2g′2(1) .

(18)

We assume that λ1 < 1, λ2 < 1.

4. The Main Result

According to (12), the marginal system-content pgfs are given by

U(z1, 1) =
U(0, 1)(z1 − 1)A1(z1)

z1 − A1(z1)
=

U(0, 1)(z1 − 1)n(z1, 1)
k1(z1)

,

U(1, z2) =
U(1, 0)(z2 − 1)A2(z2)

z2 − A2(z2)
=

U(1, 0)(z2 − 1)n(1, z2)

k2(z2)
,

(19)

where
k1(z1) ≜ z1d(z1, 1)− n(z1, 1) , k2(z2) ≜ z2d(1, z2)− n(1, z2) . (20)

We are now ready to formulate the main result of this paper.
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Theorem 1:
In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

d(z1, z2)
=

n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
, (21)

where f1(z1), f2(z2), g1(z1) and g2(z2) are arbitrary one-dimensional pgfs, and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 , (22)

the steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) =
n(z1, z2)U(z1, 1)U(1, z2)

n(z1, 1)n(1, z2)
=

U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)n(z1, z2)

k1(z1)k2(z2)
, (23)

provided that the functions h1(z1) and h2(z2) are genuine one-dimensional pgfs, given by

h1(z1) = α1z1 + β1 f1(z1) + γ1z1g1(z1) ,

h2(z2) = α2z2 + β2 f2(z2) + γ2z2g2(z2) ,
(24)

where {α1, β1, γ1} and {α2, β2, γ2} are two sets of “normalized constants”, i.e.,

α1 + β1 + γ1 = 1 , α2 + β2 + γ2 = 1 , (25)

satisfying the restrictions

β1 > 0 , , β2 > 0 , γ1 =
d1β1

n21
≥ 0 , γ2 =

d2β2

n12
≥ 0 . (26)

4.1. Some Remarks on the Terms of Theorem 1

According to equations (24), Theorem 1 requires that h1(z1) be a linear combination of z1, f1(z1)

and z1g1(z1), and, similarly that h2(z2) a linear combination of z2, f2(z2) and z2g2(z2), with coefficients
that add up to 1. It is easily seen that, as required, this implies that h1(z1) and h2(z2) are normalized,
i.e., h1(1) = h2(1) = 1. However, for arbitrary choices of the parameters β1, β2, d1, d2, n12 and n21,
the functions h1(z1) and h2(z2), as given in (24), could, in general, contain linear terms in z1 or z2

with a negative coefficient, which would prevent them from being genuine pgfs. Indeed, whereas the
coefficients β1, γ1, β2 and γ2 are certainly nonnegative, this not necessarily the case for the coefficients
of the linear terms in (24). It is clear that sufficient conditions to guarantee that h1(z1) and h2(z2) are
valid pgfs are

α1 ≥ 0 , α2 ≥ 0 , (27)

but these conditions are not necessary. In order to determine the linear terms in (24) completely, it is
useful to decompose the functions f1(z1), f2(z2), g1(z1) and g2(z2) as follows:

f1(z1) = f10 + f11z1 + z2
1v1(z1) , f2(z2) = f20 + f21z2 + z2

2v2(z2) , (28)

and
g1(z1) = g10 + z1w1(z1) , g2(z2) = g20 + z2w2(z2) . (29)

Substitution of (28) and (29) in (24) yields

h1(z1) = β1 f10 +
(
α1 + β1 f11 + γ1g10

)
z1 +

(
β1v1(z1) + γ1w1(z1)

)
z2

1

h2(z2) = β2 f20 +
(
α2 + β2 f21 + γ2g20

)
z2 +

(
β2v2(z2) + γ2w2(z2)

)
z2

2 .
(30)
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The above expressions make clear that h1(z1) and h2(z2) are genuine pgs if and only if

α1 + β1 f11 + γ1g10 ≥ 0 , α2 + β2 f21 + γ2g20 ≥ 0 , (31)

which are milder conditions than (27).

4.2. Proving Theorem 1

In order to prove Theorem 1, we first establish a technical lemma. Let us define the bivariate
function e(z1, z2) as

e(z1, z2) ≜ n(0, 1)n(1, 0)n(z1, z2) + n(0, 1)n(z1, 0)k2(z2) + n(1, 0)n(0, z2)k1(z1)

+ n(0, 0)k1(z1)k2(z2) .
(32)

Lemma 1: The function e(z1, z2) can be expressed as

e(z1, z2) = n(0, 1)n(1, 0)z1z2d(z1, z2) .

Proof. Combining (24), (25) and (26), and due to the fact that β1 and β2 are assumed to be strictly
positive, we can compute the functions n21 f1(z1) and n12 f2(z2) in terms of g1(z1), g2(z2), h1(z1) and
h2(z2), as follows:

n21 f1(z1) =
β1z1

(
n21 + d1(1 − g1(z1))

)
+ n21

(
z1 − h1(z1)

)
β1

,

n12 f2(z2) =
β2z2

(
n12 + d2(1 − g2(z2))

)
+ n12

(
z2 − h2(z2)

)
β2

.

(33)

Inserting (33) in (16), we then get

n(z1, z2) = n22
(
h1(z1)h2(z2)− z1z2

)
+ z1z2d(z1, z2)−

n21z2
(
z1 − h1(z1)

)
β1

−
n12z1

(
z2 − h2(z2)

)
β2

,

(34)

where we have also used the definition (16) of d(z1, z2).
Choosing either z1 = 0 or z2 = 0 in (34) yields

n(z1, 0) = f2(0)
(
n12z1 + β2n22h1(z1)

)
, n(0, z2) = f1(0)

(
n21z2 + β1n22h2(z2)

)
, (35)

and, from this,
n(0, 0) = f1(0) f2(0)n22β1β2 . (36)

On the other hand, choosing either z1 = 1 or z2 = 1 in (34) leads to

n(z1, 1) = n22h1(z1) + z1
(
d(z1, 1)− n22

)
−

n21
(
z1 − h1(z1)

)
β1

,

n(1, z2) = n22h2(z2) + z2
(
d(1, z2)− n22

)
−

n12
(
z2 − h2(z2)

)
β2

,

(37)

and, from this,
n(0, 1) = f1(0)

(
β1n22 + n21

)
, n(0, 1) = f2(0)

(
β2n22 + n12

)
. (38)
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Using (37) and (38) in (20), we can express k1(z1) and k2(z2) as

k1(z1) ≜ z1d(z1, 1)− n(z1, 1) =
β1n22 + n21

β1

(
z1 − h1(z1)

)
=

n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

)
,

k2(z2) ≜ z2d(1, z2)− n(1, z2) =
β2n22 + n12

β2

(
z2 − h2(z2)

)
=

n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
.

(39)

Substitution of (34), (35), (36) and (39) in (32) then leads to

e(z1, z2) = n(0, 1)n(1, 0)
(

n22
(
h1(z1)h2(z2)− z1z2

)
+ z1z2d(z1, z2)−

n21z2
(
z1 − h1(z1)

)
β1

−
n12z1

(
z2 − h2(z2)

)
β2

)
+ n(0, 1) f2(0)

(
n12z1 + β2n22h1(z1)

) n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
+ n(1, 0) f1(0)

(
n21z2 + β1n22h2(z2)

) n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

)
+ f1(0) f2(0)n22β1β2

n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

) n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
.

(40)

It is then a matter of straightforward algebra to prove that all the terms in the above equation containing
h1(z1) and/or h2(z2) compensate each other. The final result is

e(z1, z2) = n(0, 1)n(1, 0)z1z2d(z1, z2) .

This concludes the proof of Lemma 1.

Proof of Theorem 1
The proof of Theorem 1 consists of two steps. In a first step, we show that the function U(z1, z2),
defined in (23), is a genuine joint pgf. In the second step, we prove that, under the conditions of
Theorem 1, U(z1, z2) satisfies the functional Equation (9) of the system.

Step 1: U(z1, z2) is a genuine joint pgf

Proof. In view of the relationship (13) between U(z1, z2) and Q(z1, z2) (and the corresponding
marginal pgfs), Equation (23) can be rewritten as

U(z1, z2) =
n(z1, z2)U(z1, 1)U(1, z2)

n(z1, 1)n(1, z2)
=

n(z1, z2)A(z1, 1)Q(z1, 1)A(1, z2)Q(1, z2)

n(z1, 1)n(1, z2)
.

Using (17), we then easily obtain

U(z1, z2) =
n(z1, z2)Q(z1, 1)Q(1, z2)

d(z1, 1)d(1, z2)
= n(z1, z2)Q(z1, 1)Q(1, z2)

(
1

d(z1, 1)

)(
1

d(1, z2)

)
,

where the right-hand side is a product of five valid pgfs. Hence, U(z1, z2) is a valid pgf as well.

Step 2: U(z1, z2) satisfies the functional equation

Proof. Combining (9) and (11), we can express the functional equation as(
z1z2 − A(z1, z2)

)
U(z1, z2) = A(z1, z2)L(z1, z2) ,

and, from this,
A(z1, z2)

(
L(z1, z2) + U(z1, z2)

)
= z1z2U(z1, z2) .
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Inserting the expression (15) for A(z1, z2) then leads to

L(z1, z2) + U(z1, z2) =
z1z2d(z1, z2)U(z1, z2)

n(z1, z2)
. (41)

The function L(z1, z2) can be computed from (10) as

L(z1, z2) ≜ (z2 − 1)U(z1, 0) + (z1 − 1)U(0, z2) + (z1 − 1)(z2 − 1)U(0, 0) , (42)

where U(z1, 0) and U(0, z2) can be derived from (23) as

U(z1, 0) =
U(0, 1)U(1, 0)(z1 − 1)n(z1, 0)

n(1, 0)
(
k1(z1)

) , U(0, z2) =
U(0, 1)U(1, 0)(z2 − 1)n(0, z2)

n(0, 1)
(
k2(z2)

, (43)

which also implies

U(0, 0) =
U(0, 1)U(1, 0)n(0, 0)

n(0, 1)n(1, 0)
. (44)

Substitution of (43) and (44) in (45) then leads to

L(z1, z2) = ℓ(z1, z2)b(z1, z2) , (45)

where we have defined ℓ(z1, z2) and b(z1, z2) as short-hand notations for

ℓ(z1, z2) ≜ n(0, 1)n(z1, 0)k2(z2) + n(1, 0)n(0, z2)k1(z1) + n(0, 0)k1(z1)k2(z2) ,

b(z1, z2) ≜
U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)

n(0, 1)n(1, 0)k1(z1)k2(z2)
.

On the other hand, in view of (23), U(z1, z2) can be expressed as

U(z1, z2) = n(0, 1)n(1, 0)n(z1, z2)b(z1, z2) . (46)

Inserting (45) and (46) in (41), we then get(
ℓ(z1, z2) + n(0, 1)n(1, 0)n(z1, z2)

)
b(z1, z2) =

(
n(0, 1)n(1, 0)z1z2d(z1, z2)

)
b(z1, z2) . (47)

It thus suffices to show that the expressions between the large parentheses in the left-hand side and the
right-hand side of (47) are equal. The expression in the left-hand side is exactly the function e(z1, z2),
defined in (32). Lemma 1 thus proves that (47) is fulfilled. This concludes the proof of Theorem 1.

5. Subclasses A, B and C

Theorem 1 provides an explicit solution for the steady-state joint system-contents pgf U(z1, z2),
for any joint arrival pgf A(z1, z2) that satisfies the shape specified in equations (21), (24), (25) and (26),
whereby h1(z1) and h2(z2) are valid pgfs. We now define some interesting subclasses of arrival pgfs
that correspond to specific choices of the (many) parameters that the model contains.

5.1. Subclass A: d1 = 0, d2 = 0

In this special case, d(z1, z2) = 1 and the arrival pgf A(z1, z2), defined in (14), simplifies to

A(z1, z2) = n(z1, z2) = n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2) . (48)
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We define the subclass A of arrival pgfs A(z1, z2) by the condition d1 = 0, d2 = 0. We notice that, within
subclass A, the pgfs g1(z1) and g2(z2) play no role anymore in A(z1, z2). We also observe that, since
A(z1, z2) = n(z1, z2), the joint queue-content pgf Q(z1, z2), given in (13), reduces to

Q(z1, z2) =
U(z1, z2)

n(z1, z2)
,

and, hence, our main result (23) in Theorem 1 is equivalent to

Q(z1, z2) = Q(z1, 1)Q(1, z2) , (49)

i.e., for arrival pgfs within subclass A, the queue contents of both queues are mutually independent.
The parameters γ1 and γ2, defined in (26), are both equal to zero, and, hence, the functions h1(z1)

and h2(z2), defined in (24), are given by

h1(z1) = (1 − β1)z1 + β1 f1(z1) , h2(z2) = (1 − β2)z2 + β2 f2(z2) . (50)

Substitution of (50) in (48) then leads to

A(z1, z2) = n(z1, z2) = n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1)

+ n22
(
(1 − β1)z1 + β1 f1(z1)

)(
(1 − β2)z2 + β2 f2(z2)

)
,

(51)

which can be rewritten as

A(z1, z2) = n(z1, z2) = m11z1z2 + m12z1 f2(z2) + m21z2 f1(z1) + m22 f1(z1) f2(z2) ,

if we define the new parameters m11, m12, m21 and m22 as

m11 ≜ (1 − β1)(1 − β2)n22 , m12 ≜ n12 + (1 − β1)β2n22 ,

m21 ≜ n21 + β1(1 − β2)n22 , m22 ≜ β1β2n22 .

It is easily seen that, if we choose β1 ≤ 1 and β2 ≤ 1, the sufficient conditions (27) are fulfilled, and the
parameters m11, m12, m21 and m22 also represent a normalized set of probabilities, just as the original
parameters n11, n12, n21 and n22, i.e.,

m11, m12, m21, m22 ≥ 0 , m11 + m12 + m21 + m22 = 1 , (52)

The marginal arrival pgfs A1(z1) and A2(z2), given in (17), reduce to

A1(z1) = (m11 + m12)z1 + (m21 + m22) f1(z1) , A2(z2) = (m11 + m21)z2 + (m12 + m22) f2(z2) , (53)

whereas the marginal mean arrival rates, given in (18), simplify to

λ1 = 1 − (m21 + m22)
(
1 − f ′1(1)

]
, λ2 = 1 − (m12 + m22)

(
1 − f ′2(1)

]
. (54)

Hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent with

f ′1(1) < 1 , f ′2(1) < 1 .

The functions k1(z1) and k2(z2), defined in (20), reduce to

k1(z1) = (m21 + m22)
(
z1 − f1(z1)

)
, k2(z2) = (m12 + m22)

(
z2 − f2(z2)

)
,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2024                   doi:10.20944/preprints202407.0693.v1

https://doi.org/10.20944/preprints202407.0693.v1


12 of 30

and, hence, the joint pgf U(z1, z2) can be derived from (23) as

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

z1 − f1(z1)
)(

z2 − f2(z2)
) , (55)

where the constant M is defined as

M ≜
U(0, 1)U(1, 0)

(m21 + m22)(m12 + m22)
.

The only remaining unknown M in Equation (55) can be computed from the normalization condition
U(1, 1) = 1, which results in

M =
(
1 − f ′1(1)

)(
1 − f ′2(1)

)
. (56)

A fully explicit expression for U(z1, z2) then follows from (55) and (56).
In summary, we have thus proven the following corrolary of Theorem 1:
Corrolary A

In the stable parallel-queues system with joint arrival pgf

A(z1, z2) = m11z1z2 + m12z1 f2(z2) + m21z2 f1(z1) + m22 f1(z1) f2(z2) , (57)

where f1(z1) and f2(z2) are arbitrary one-dimensional pgfs, and

m11, m12, m21, m22 ≥ 0 , m11 + m12 + m21 + m22 = 1 , (58)

the steady-state queue contents of both queues are mutually independent, and the steady-state joint system-
content pgf U(z1, z2) is given by

U(z1, z2) =

(
1 − f ′1(1)

)(
1 − f ′2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − f1(z1)
)(

z2 − f2(z2)
) . (59)

Remark
If we define the discriminant D of A(z1, z2) as D ≜ m12m21 − m11m22, then it is easily seen that if D = 0,
the pgf A(z1, z2) has a product form, i.e.,

A(z1, z2) =

(
m11z1 + m21 f1(z1)

)(
m11z2 + m12 f2(z2)

)
m11

,

and the arrivals of both customer types are mutually independent. It is clear from (59) that, in this
case, the pgf U(z1, z2) reduces to a product form too, i.e., the two steady-state system contents are also
mutually independent.

5.2. Subclass B: α1 = 0, α2 = 0

The requirements (27) represent sufficient conditions to guarantee that the functions h1(z1) and
h2(z2) are valid pgfs. A trivial way to satisfy (27) is to choose

α1 = 0 , α2 = 0 . (60)

We define the subclass B of arrival pgfs A(z1, z2) by the condition (60). From (25) and (26), it follows
that (60) is equivalent with

γ1 =
d1

d1 + n21
, γ2 =

d2

d2 + n12
. (61)
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Substitution of (60) in (24) then yields

h1(z1) = (1 − γ1) f1(z1) + γ1z1g1(z1) , h2(z2) = (1 − γ2) f2(z2) + γ2z2g2(z2) . (62)

Equation (62) implies that

h′1(1) = (1 − γ1) f ′1(1) + γ1[1 + g′1(1)] , h′2(1) = (1 − γ2) f ′2(1) + γ2[1 + g′2(1)] ,

so that the mean arrival rates, given in (18), can be expressed as

λ1 = (n11 + n12 + γ1n22) + (n21 + (1 − γ1)n22) f ′1(1) + (d1 + γ1n22)g′1(1) ,

λ2 = (n11 + n21 + γ2n22) + (n12 + (1 − γ2)n22) f ′2(1) + (d2 + γ2n22)g′2(1) .
(63)

The functions k1(z1) and k2(z2), defined in (20), are given by

k1(z1) =
n21 + (1 − γ1)n22

1 − γ1

(
[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)

)
,

k2(z2) =
n12 + (1 − γ2)n22

1 − γ2

(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

)
.

(64)

The joint pgf U(z1, z2) can be derived from (23) and (64) as

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)
)(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

) , (65)

where the constant M has been defined as

M ≜
U(0, 1)U(1, 0)(1 − γ1)(1 − γ2)(

n21 + (1 − γ1)n22
)(

n12 + (1 − γ2)n22
) .

The only remaining unknown M in Equation (88) can be computed from the normalization condition
U(1, 1) = 1, which results in

M =
(
(1 − γ1)[1 − f ′1(1)]− γ1g′1(1)

)(
(1 − γ2)[1 − f ′2(1)]− γ2g′2(1)

)
. (66)

A fully explicit expression for U(z1, z2) then follows from (69) and (70).
Summarizing again, we have thus proven the following corrolary of Theorem 1:
Corrolary B

In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
, (67)

where n(z1, z2) is defined as

n(z1, z2) ≜ n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1)

+ n22
(
(1 − γ1) f1(z1) + γ1z1g1(z1)

)(
(1 − γ2) f2(z2) + γ2z2g2(z2)

)
,

(68)

with f1(z1), f2(z2), g1(z1), g2(z2) arbitrary one-dimensional pgfs, and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 , γ1 ≜
d1

d1 + n21
, γ2 ≜

d2

d2 + n12
,
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the steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)
)(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

) , (69)

with
M ≜

(
(1 − γ1)[1 − f ′1(1)]− γ1g′1(1)

)(
(1 − γ2)[1 − f ′2(1)]− γ2g′2(1)

)
. (70)

5.3. Subclass C: No Linear Terms in h1(z1) and h2(z2)

The requirements (31) are necessary and sufficient conditions in order for h1(z1) and h2(z2) to
represent genuine pgfs. In this subsection, we examine the extreme case whereby the inequalities in
(31) are replaced by equalities, i.e., where

α1 + β1 f11 + γ1g10 = 0 , α2 + β2 f21 + γ2g20 = 0 . (71)

In view of (25) and (26), (71) can be rewritten as

(1 − α1)(n21 f11 + d1g10) + α1(n21 + d1) = 0 , (1 − α2)(n12 f21 + d2g20) + α2(n12 + d2) = 0 . (72)

Solving (72) for α1 and α2, we find

α1 = − n21 f11 + d1g10

n21(1 − f11) + d1(1 − g10)
, α2 = − n12 f21 + d2g20

n12(1 − f21) + d2(1 − g20)
. (73)

In these circumstances, due to (30), the functions h1(z1) and h2(z2) can be expressed as

h1(z1) =
n21 f10 + z2

1
(
n21v1(z1) + d1w1(z1)

)
n21(1 − f11) + d1(1 − g10)

,

h2(z2) =
n12 f20 + z2

2
(
n12v2(z2) + d2w2(z2)

)
n12(1 − f21) + d2(1 − g20)

,

(74)

and, hence, contain no linear terms in z1 and z2, respectively.
In order to further simplify the expressions, let us consider the (further) special case where

v1(z1) = w1(z1) , v2(z2) = w2(z2) . (75)

Of course, we then also have v1(1) = w1(1), v2(1) = w2(1). From (28) and (29), we readily obtain

v1(1) = 1 −
(

f10 + f11
)

, v2(1) = 1 −
(

f20 + f21
)

, w1(1) = 1 − g10 , w2(1) = 1 − g20 ,

and, hence, v1(1) = w1(1), v2(1) = w2(1) implies

f11 = g10 − f10 , f21 = g20 − f20 .

We now choose to additionally simplify the model by assuming

g10 = f10 ≜ 1 − ω1 , g20 = f20 ≜ 1 − ω2 ⇔ f11 = 0 , f20 = 0 , (76)

where we have introduced the new parameters ω1 and ω2, which are valid probabilities.
By definition, we refer to arrival pgfs A(z1, z2) (of the form considered in Theorem 1) as pgfs of

subclass C if and only if they comply with the conditions (71), (75) and (76).
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Using (75) and (76), we obtain the following expressions for h1(z1) and h2(z2) from (74):

h1(z1) =
n21(1 − ω1) + (n21 + d1)z2

1v1(z1)

n21 + d1ω1
, h2(z2) =

n12(1 − ω2) + (n12 + d2)z2
2v2(z2)

n12 + d2ω2
, (77)

From their definitions in (28) and (29), it follows that the functions v1(z1) and v2(z2) only contain
powers of z1 and z2 with nonnegative coefficients, but are not necessarily normalized. It is useful to
replace them by new functions, say c1(z1) and c2(z2), that do satisfy a normalization condition, and,
hence, are genuine pgfs, as follows:

c1(z1) ≜
v1(z1)

v1(1)
=

v1(z1)

ω1
, c2(z2) ≜

v2(z2)

v2(1)
=

v2(z2)

ω2
. (78)

All the defining functions of our model can then be expressed in terms of the pgfs c1(z1) and c2(z2) as
follows:

f1(z1) = 1 − ω1 + ω1z2
1c1(z1) , f2(z2) = 1 − ω2 + ω2z2

2c2(z2) , (79)

g1(z1) = 1 − ω1 + ω1z1c1(z1) , g2(z2) = 1 − ω2 + ω2z2c2(z2) , (80)

h1(z1) = 1 − θ1 + θ1z2
1c1(z1) , h2(z2) = 1 − θ2 + θ2z2

2c2(z2) , (81)

where we have defined the probabilities θ1 and θ2 as

θ1 ≜
(n21 + d1)ω1

n21 + d1ω1
, θ2 ≜

(n12 + d2)ω2

n12 + d2ω2
. (82)

The arrival pgf A(z1, z2) can be determined by substitution of (79), (80) and (81) in (21):

A(z1, z2) =
n(z1, z2)

1 + d1ω1
(
1 − z1c1(z1)

)
+ d2ω2

(
1 − z2c2(z2)

) , (83)

where
n(z1, z2) ≜ n11z1z2 + n12z1

(
1 − ω2 + ω2z2

2c2(z2)
)
+ n21z2

(
1 − ω1 + ω1z2

1c1(z1)
)

+ n22
(
1 − θ1 + θ1z2

1c1(z1)
)(

1 − θ2 + θ2z2
2c2(z2)

)
.

(84)

The marginal mean arrival rates can be computed from (18), which results in

λ1 = 1 − n21 + n22 + ω1d1

n21 + ω1d1

(
n21 + ω1d1 − ω1(n21 + d1)

(
2 + c′1(1)

))

λ2 = 1 − n12 + n22 + ω2d2

n12 + ω2d2

(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
.

(85)

Consequently, the stability conditions λ1 < 1, λ2 < 1 are equivalent with

c′1(1) <
n21 − ω1(2n21 + d1)

ω1(n21 + d1)
, c′2(1) <

n12 − ω2(2n12 + d2)

ω2(n12 + d2)
.
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The functions k1(z1) and k2(z2) that constitute the denominator of U(z1, z2) can be derived from
(39):

k1(z1) =
n21 + n22 + ω1d1

n21 + ω1d1

(
n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2

1c1(z1)
)

,

k2(z2) =
n12 + n22 + ω2d2

n12 + ω2d2

(
n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2

2c2(z2)
)

,

(86)

where we have also used (82). Introducing the notations V1(z1) and V2(z2) as

V1(z1) ≜
z1 − 1

n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2
1c1(z1)

,

V2(z2) ≜
z2 − 1

n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2
2c2(z2)

,
(87)

we can compute the joint pgf U(z1, z2) from (23) and (86) as

U(z1, z2) = MV1(z1)V2(z2)n(z1, z2) , (88)

where the constant M has been defined as

M ≜
U(0, 1)U(1, 0)(n21 + ω1d1)(n12 + ω2d2)

(n21 + n22 + ω1d1)(n12 + n22 + ω2d2)
.

As before, the remaining unknown M can be determined by invoking the normalization condition
U(1, 1) = 1, which results in

M =

(
n21 + ω1d1 − ω1(n21 + d1)

(
2 + c′1(1)

))(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
. (89)

A fully explicit expression for U(z1, z2) then follows from (88), (98) and (89).
Summarizing again, we have thus proven the following corrolary of Theorem 1:
Corrolary C

In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

1 + d1ω1
(
1 − z1c1(z1)

)
+ d2ω2

(
1 − z2c2(z2)

) , (90)

where
n(z1, z2) ≜ n11z1z2 + n12z1

(
1 − ω2 + ω2z2

2c2(z2)
)
+ n21z2

(
1 − ω1 + ω1z2

1c1(z1)
)

+ n22
(
1 − θ1 + θ1z2

1c1(z1)
)(

1 − θ2 + θ2z2
2c2(z2)

)
,

(91)

with c1(z1) and c2(z2) arbitrary one-dimensional pgfs, and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 ,

0 ≤ ω1, ω2 ≤ 1 , θ1 ≜
(n21 + d1)ω1

n21 + d1ω1
, θ2 ≜

(n12 + d2)ω2

n12 + d2ω2
,

the steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) = MV1(z1)V2(z2)n(z1, z2) , (92)
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where
V1(z1) ≜

z1 − 1
n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2

1c1(z1)
,

V2(z2) ≜
z2 − 1

n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2
2c2(z2)

,
(93)

and

M ≜
(

n21 + ω1d1 − ω1(n21 + d1)
(
2 + c′1(1)

))(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
. (94)

6. Special Cases within Subclasses A, B and C

In this section we consider several instances of subclasses A, B and C, whereby specific choices
are made for the various parameters and functions appearing in the formulations of Corrolaries A, B
and C.

6.1. Special Cases within Subclass A

6.1.1. At Most One Arrival per Slot in Queue 1

Here we choose
f1(z1) = 1 − σ1 + σ1z1 , f ′1(1) = σ1 , (95)

which implies that the pgf A(z1, z2), given in (57), reduces to

A(z1, z2) =
(
(m21σ1 + m11)z2) + (m22σ1 + m12) f2(z2)

)
z1 + (1 − σ1)(m21z2 + m22 f2(z2) ,

which is clearly linear in z1, meaning that queue 1 receives at most one arrival per slot. The marginal
arrival pgf A2(z2) and the mean arrival rate λ2 follow from (53) and (54) as

A2(z2) = (m11 + m21)z2 + (m12 + m22) f2(z2) , λ2 = 1 − (m12 + m22)[1 − f ′2(1)] ,

from which we can deduce that

f2(z2) =
A2(z2)− (m11 + m21)z2

m12 + m22
, 1 − f ′2(1) =

1 − λ2

m12 + m22
. (96)

According to Corrolary A, the pgf U(z1, z2) can be obtained from (59) by substitution of (95), i.e.,

U(z1, z2) =
(1 − σ1)

(
1 − f ′2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − (1 − σ1 + σ1z1)
)(

z2 − f2(z2)
) =

(
1 − f ′2(1)

)
(z2 − 1)A(z1, z2)

z2 − f2(z2)
.

Owing to (96) and (52), this can be rewritten as

U(z1, z2) =

(
1 − λ2

)
(z2 − 1)A(z1, z2)

z2 − A2(z2)
.

This particular result is well-known. We first established it through an alternative, more direct,
approach in our earlier short paper [5]. It is interesting that we retrieve it here as a very simple special
case of our more general results.

6.1.2. The Case m12 = m21 = 0

Again in our earlier paper [5], we stated (without proof) the following theorem. Later, we also
provided a formal proof in [11].
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Theorem 2: If V(z1, z2) denotes the joint system-content pgf in a parallel-queues system with joint arrival pgf
E(z1, z2), and a new arrival pgf A(z1, z2) is defined as

A(z1, z2) ≜ (1 − ν)z1z2 + νE(z1, z2) , where 0 < ν ≤ 1 , (97)

then the joint system-content pgf U(z1, z2) corresponding with arrival pgf A(z1, z2) is given by

U(z1, z2) =
V(z1, z2)A(z1, z2)

E(z1, z2)
.

Specifically, if the arrivals of both types are mutually independent in the original system, i.e.,
if E(z1, z2) has a product form, E(z1, z2) = E1(z1)E2(z2), then V(z1, z2) has a product form too, i.e.,
V(z1, z2) = V(z1, 1)V(1, z2), with, similar to (12),

V(z1, 1) =

(
1 − E′

1(1)
)
(z1 − 1)E1(z1)

z1 − E1(z1)
, V(1, z2) =

(
1 − E′

2(1)
)
(z2 − 1)E2(z2)

z2 − E2(z2)
, (98)

and (99) reduces to

U(z1, z2) =
V(z1, 1)V(1, z2)A(z1, z2)

E1(z1)E2(z2)
=

(
1 − E′

1(1)
)(

1 − E′
2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − E1(z1)
)(

z2 − E2(z2)
) . (99)

It is remarkable that we can easily retrieve this property as a simple instance of our subclass-A
results, if we choose

m11 = 1 − ν, m12 = m21 = 0, m22 = ν, f1(z1) = E1(z1), f2(z2) = E2(z2) .

Indeed, equations (57) and (59) from the formulation of Corrolary A are then equivalent with equations
(97) and (99) from the formulation of Theorem 2. We do emphasize that Theorem 2 was proven to be
valid also if E(z1, z2) does not have a product form.

6.1.3. Geometric f -Distributions

Here, we choose geometric distributions with respective mean values σ1 and σ2 for the pgfs f1(z1)

and f2(z2):

f1(z1) =
1

1 + σ1 − σ1z1
, f2(z2) =

1
1 + σ2 − σ2z2

, f ′1(1) = σ1 , f ′2(1) = σ2 . (100)

The arrival pgf A(z1, z2) then follows from (57) as

A(z1, z2) =
F(z1, z2)

(1 + σ1 − σ1z1)(1 + σ2 − σ2z2)
,

where F(z1, z2) is a quadratic polynomial in both z1 and z2, defined as

F(z1, z2) ≜ m22 + m12z1(1 + σ1 − σ1z1) + m21z2(1 + σ2 − σ2z2)

+ m11z1z2(1 + σ1 − σ1z1)(1 + σ2 − σ2z2) .

The marginal mean arrival rates follow from (54):

λ1 = 1 − (m21 + m22)(1 − σ1) , λ2 = 1 − (m12 + m22)(1 − σ2) . (101)

The stability conditions λ1 < 1, λ2 < 1 are therefore equivalent with σ1 < 1, σ2 < 1.
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The system-content pgf U(z1, z2) can be obtained by using (100) in (59):

U(z1, z2) =
(1 − σ1)(1 − σ2)F(z1, z2)

(1 − σ1z1)(1 − σ2z2)
, (102)

a remarkably simple expression. The zeroes of the denominator are

z1 =
1
σ1

> 1 , z2 =
1
σ2

> 1 .

We return to this special case further in the paper.

6.1.4. Binomial f -Distributions

Here, we choose binomial distributions of order 2, again with respective mean values σ1 and σ2,
for the pgfs f1(z1) and f2(z2):

f1(z1) =
(
1 − σ1

2
− σ1

2
z1
)2 , f2(z2) =

(
1 − σ2

2
− σ2

2
z2
)2 , f ′1(1) = σ1 , f ′2(1) = σ2 . (103)

The arrival pgf A(z1, z2) follows from (57) as

A(z1, z2) = m11z1z2 + m12z1
(
1 − σ2

2
− σ2

2
z2
)2

+ m21z2
(
1 − σ1

2
− σ1

2
z1
)2

+ m22
(
1 − σ1

2
− σ1

2
z1
)2(1 − σ2

2
− σ2

2
z2
)2 ,

and is a quadratic polynomial in both z1 and z2. Again, the stability conditions λ1 < 1, λ2 < 1 are
equivalent with σ1 < 1, σ2 < 1.

The system-content pgf U(z1, z2) can be obtained by using (103) in (59):

U(z1, z2) =
16(1 − σ1)(1 − σ2)A(z1, z2)(

(2 − σ1)2 − σ2
1 z1

)(
(2 − σ2)2 − σ2

2 z2
) ,

again a rather simple expression. The zeroes of the denominator are

z1 =

(
2 − σ1

σ1

)2

> 1 , z2 =

(
2 − σ2

σ2

)2

> 1 .

6.1.5. Batch-2-Geometric f -Distributions

Here, we choose batch-2-geometric distributions with respective mean values σ1 and σ2 for the pgfs
f1(z1) and f2(z2):

f1(z1) =
2

2 + σ1 − σ1z2
1

, f2(z2) =
2

2 + σ2 − σ2z2
2

, f ′1(1) = σ1 , f ′2(1) = σ2 . (104)

The terminology batch-2-geometric reflects the fact that a random variable with this distribution can only
take values equal to geometrically distributed multiples of the batch-size 2. The arrival pgf A(z1, z2)

follows from (57) as

A(z1, z2) =
F(z1, z2)(

2 + σ1 − σ1z2
1
)(

2 + σ2 − σ2z2
2
) ,

where F(z1, z2) is a cubic polynomial in both z1 and z2, defined as

F(z1, z2) ≜ 4m22 + 2m12z1(2 + σ1 − σ1z2
1) + 2m21z2(2 + σ2 − σ2z2

2)

+ m11z1z2(2 + σ1 − σ1z2
1)(2 + σ2 − σ2z2

2) .
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Once again, the stability conditions λ1 < 1, λ2 < 1 are equivalent with σ1 < 1, σ2 < 1.
The system-content pgf U(z1, z2) can be obtained by using (104) in (59):

U(z1, z2) =
(1 − σ1)(1 − σ2)F(z1, z2)(

2 − σ1z1(1 + z1)
)(

2 − σ2z2(1 + z2)
) ,

a remarkably simple expression. The zeroes of the denominator lie outside the unit disks {z1 : |z1| ≤ 1}
and {z2 : |z2| ≤ 1} in the complex z1-plane and z2-plane, respectively, and are given by

z1 =

√
σ1(σ1 + 8)− σ1

2σ1
> 1 and z1 = −

√
σ1(σ1 + 8) + σ1

2σ1
< −1

z2a =

√
σ2(σ2 + 8)− σ2

2σ2
> 1 and z2 = −

√
σ2(σ2 + 8) + σ2

2σ2
< −1 .

6.2. Special Cases within Subclass B

In subclass A, the bivariate arrival pgf A(z1, z2) is completely determined by the univariate pgfs
f1(z1) and f2(z2), and the pgfs g1(z1) and g2(z2) play no role. In subclass B, however, all the defining
one-dimensional pgfs contribute to A(z1, z2). In order to specifically examine the effect of g1(z1) and
g2(z2), we consider two examples where f1(z1) = f2(z2) = 1, combined with different choices for
g1(z1) and g2(z2).

6.2.1. The Case f1(z1) = f2(z2) = 1, g1(z1) = z1, g2(z2) = z2

Here, we choose

f1(z1) = f2(z2) = 1, g1(z1) = z1, g2(z2) = z2 , f ′1(1) = f ′2(1) = 0, g′1(1) = 1, g′2(1) = 1 . (105)

The arrival pgf A(z1, z2) follows from (67) and (68) as

A(z1, z2) =
n11z1z2 + n12z1 + n21z2 + n22(1 − γ1 + γ1z2

1)(1 − γ2 + γ2z2
2)

1 + d1 + d2 − d1z1 − d2z2
. (106)

In view of (63), the marginal mean arrival rates are

λ1 = 1 − 1 − 2γ1

1 − γ1

(
n21 + (1 − γ1)n22

)
, λ2 = 1 − 1 − 2γ2

1 − γ2

(
n12 + (1 − γ2)n22

)
,

and, hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent with γ1 < 1/2, γ2 < 1/2.
The joint system-content pgf U(z1, z2) can be obtained by using (105) in (68), (69) and (70), which

results in

U(z1, z2) =
(1 − 2γ1)(1 − 2γ2)

(
n11z1z2 + n12z1 + n21z2 + n22[1 − γ1 + γ1z2

1][1 − γ2 + γ2z2
2]
)

(1 − γ1 − γ1z1)(1 − γ2 − γ2z2)
.

(107)
The zeroes of the denominator are given by

z1 =
1 − γ1

γ1
> 1 , z2 =

1 − γ2

γ2
> 1 .

Remark

It is worth mentioning that a special instance of this case was treated in our recent paper [6]. There,
we considered a parallel-queues system, whereby the total number of arrivals per slot (of both cus-
tomer types together) has a shifted geometric distribution with pgf C(z) and mean value q ≥ 1, i.e.,
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C(z) = z/[q − (q − 1)z], and new arrivals are routed independently and probabilistically to queue 1
or 2 with probabilities p and 1 − p respectively, implying that the joint arrival pgf A(z1, z2) is given by

A(z1, z2) = C(pz1 + (1 − p)z2) =
pz1 + (1 − p)z2

q − (q − 1)pz1 − (q − 1)(1 − p)z2
. (108)

In appendix A of [6], we formally proved that the joint system-content pgf U(z1, z2) for this system is

U(z1, z2) =
(κ1 − 1)(τ1 − 1)

(
pz1 + (1 − p)z2

)
(κ1 − z1)(τ1 − z2)

, with κ1 ≜
1 − p

p(q − 1)
, τ1 ≜

p
(1 − p)(q − 1)

. (109)

The proof in [6] was a (rather complicated) constructive proof, whereby we explicitly solved the
functional Equation (9),

K(z1, z2)U(z1, z2) = A(z1, z2)L(z1, z2) ,

by expressing that the unknown function L(z1, z2) should vanish for all (z1, z2) in the area of conver-
gence of U(z1, z2) for which the kernel K(z1, z2) vanishes. This allowed us to determine the boundary
functions U(z1, 0) and U(0, z2), and, from this, the function L(z1, z2), and, eventually, the pgf U(z1, z2),
as given in (109).

The function A(z1, z2) in (108) is clearly of the form (106) considered in the current subsection,
provided we choose

n11 = 0 , n12 = p , n21 = 1 − p , n22 = 0 , d1 = p(q − 1) , d2 = (1 − p)(q − 1) . (110)

We now show that the solution (109) can be easily retrieved from the results in the current subsection.

Proof. Using (110) in the definitions (61) of our current parameters γ1 and γ2 leads to

γ1 ≜
d1

d1 + n21
=

p(q − 1)
p(q − 1) + 1 − p

, γ2 ≜
d2

d2 + n12
=

(1 − p)(q − 1)
(1 − p)(q − 1) + p

,

and, from this,
1 − γ1

γ1
=

1 − p
p(q − 1)

= κ1 ,
1 − γ2

γ2
=

p
(1 − p)(q − 1)

= τ1 , (111)

and
1 − 2γ1

γ1
=

1 − p
p(q − 1)

= κ1 − 1 ,
1 − 2γ2

γ2
=

p
(1 − p)(q − 1)

= τ1 − 1 . (112)

Inserting (110) in (107) yields

U(z1, z2) =
(1 − 2γ1)(1 − 2γ2)

(
pz1 + (1 − p)z2

)
(1 − γ1 − γ1z1)(1 − γ2 − γ2z2)

. (113)

Division of both the numerator and the denominator of the above expression by γ1γ2 and substitution
of (111) and (112) then clearly shows that (113) is identical to (109).

We have thus been able, once again, to recover a specific existing result as a particular case of the
results of the current paper.

6.2.2. The Case f1(z1) = f2(z2) = 1, g1(z1) = z2
1, g2(z2) = z2

2

Here, we choose

f1(z1) = f2(z2) = 1, g1(z1) = z2
1, g2(z2) = z2

2 , f ′1(1) = f ′2(1) = 0, g′1(1) = 2, g′2(1) = 2 . (114)
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The arrival pgf A(z1, z2) follows from (67) and (68) as

A(z1, z2) =
n11z1z2 + n12z1 + n21z2 + n22(1 − γ1 + γ1z3

1)(1 − γ2 + γ2z3
2)

1 + d1 + d2 − d1z2
1 − d2z2

2
.

The marginal mean arrival rates can be deduced from (63):

λ1 = 1 − 1 − 3γ1

1 − γ1

(
n21 + (1 − γ1)n22

)
, λ2 = 1 − 1 − 3γ2

1 − γ2

(
n12 + (1 − γ2)n22

)
,

and, hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent with γ1 < 1/3, γ2 < 1/3.
The joint system-content pgf U(z1, z2) can be obtained by using (114) in (68), (69) and (70), which

results in

U(z1, z2) =
(1 − 3γ1)(1 − 3γ2)

(
n11z1z2 + n12z1 + n21z2 + n22[1 − γ1 + γ1z3

1][1 − γ2 + γ2z3
2]
)(

1 − γ1 − γ1z1(1 + z1)
)(

1 − γ2 − γ2z2(1 + z2)
) .

(115)
Again, it is easy to show that the zeroes of the denominator lie outside the unit disks {z1 : |z1| ≤ 1}
and {z2 : |z2| ≤ 1} in the complex z1-plane and z2-plane, respectively. We return to this special case in
more detail further in the paper.

6.3. Special Cases within Subclass C

In order to simplify the expressions in this subsection, we first make the following assumptions:

n11 = 0 , n12 = n21 = d1 = d2 = d , n22 = 1 − 2d , ω1 = ω2 =
1
4

. (116)

According to (90) and (91), the arrival pgf is given by

A(z1, z2) =
n(z1, z2)

1 + d
4
(
2 − z1c1(z1)− z2c2(z2)

) ,

where

n(z1, z2) =
d
4

(
z1
(
3 + z2

2c2(z2)
)
+ z2

(
3 + z2

1c1(z1)
))

+
1 − 2d

25
(
3 + z2

2c2(z2)
)(

3 + z2
1c1(z1)

)
. (117)

The marginal mean arrival rates are

λ1 = 1 − 4 − 3d
20

(
1 − 2c′1(1)

)
, λ2 = 1 − 4 − 3d

20
(
1 − 2c′2(1)

)
,

which implies that the stability conditions λ1 < 1, λ2 < 1 are equivalent with c′1(1) < 1/2, c′2(1) < 1/2.
From (93) and (94), we get

V1(z1) =
4(z1 − 1)

d
(
5z1 − 2z2

1c1(z1)− 3
) , V2(z2) =

4(z2 − 1)
d
(
5z2 − 2z2

2c2(z2)− 3
) ,

and

M =
d2

16
(
1 − 2c′1(1)

)(
1 − 2c′2(1)

)
.

It then follows from (92) that the system-content pgf is given by

U(z1, z2) =

(
1 − 2c′1(1)

)(
1 − 2c′2(1)

)
(z1 − 1)(z2 − 1)n(z1, z2)(

3 − 5z1 + 2z2
1c1(z1)

)(
3 − 5z2 + 2z2

2c2(z2)
) ,
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We now make a number of different choices for the pgfs c1(z1) and c2(z2).

6.3.1. Bernoulli c-Distributions

Here, we choose Bernoulli distributions with parameters σ1 and σ2 for the pgfs c1(z1) and c2(z2):

c1(z1) = 1 − σ1 + σ1z1 , c2(z2) = 1 − σ2 + σ2z2 , c′1(1) = σ1 , c′2(1) = σ2 .

The pgf U(z1, z2) then reduces to

U(z1, z2) =
(1 − 2σ1)(1 − 2σ2)n(z1, z2)

(3 − 2z1 − 2σ1z2
1)(3 − 2z2 − 2σ2z2

2)
. (118)

We come back to this special case further in this paper.

6.3.2. Geometric c-Distributions

Here, we choose geometric distributions with respective mean values σ1 and σ2 for the pgfs c1(z1)

and c2(z2):

c1(z1) =
1

1 + σ1 − σ1z1
, c2(z2) =

1
1 + σ2 − σ2z2

, c′1(1) = σ1 , c′2(1) = σ2 . (119)

The pgf U(z1, z2) then reduces to

U(z1, z2) =
(1 − 2σ1)(1 − 2σ2)(1 + σ1 − σ1z1)(1 + σ2 − σ2z2)n(z1, z2)(

3(1 + σ1)− (2 + 5σ1)z1
)(

3(1 + σ2)− (2 + 5σ2)z2
) .

The zeroes of the denominator are given by

z1 =
3(1 + σ1)

2 + 5σ1
> 1 , z2 =

3(1 + σ2)

2 + 5σ2
> 1 .

6.3.3. Negative Binomial c-Distributions

Here, we choose negative binomial distributions of order two for the pgfs c1(z1) and c2(z2):

c1(z1) =
4

(2 + σ1 − σ1z1)2 , c2(z2) =
4

(2 + σ2 − σ2z2)2 , c′1(1) = σ1 , c′2(1) = σ2 . (120)

In this case, the pgf U(z1, z2) is given by

U(z1, z2) = W1(z1)W2(z2)n(z1, z2) ,

where

W1(z1) ≜
(1 − 2σ1)(2 + σ1 − σ1z1)

2(
3(2 + σ1)2 − 4(2 + σ1)(1 + 2σ1)z1 + 5σ2

1 z2
1
) ,

W2(z2) ≜
(1 − 2σ2)(2 + σ2 − σ2z2)

2(
3(2 + σ2)2 − 4(2 + σ2)(1 + 2σ2)z2 + 5σ2

2 z2
2
) .

Again, the zeroes of the denominator are the solutions of quadratic equations and can be computed
explicitly; also, it is not difficult to show that they lie outside the unit disks in the z1-plane and the
z2-plane; their exact expressions are omitted, as they are of no particular importance at this stage.
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7. Inverting the Joint pgf U(z1, z2)

In this section, we focus on the derivation of the steady-state joint probability mass function (pmf)
u(m, n) of the system contents in queues 1 and 2, which is defined as

u(m, n) ≜ lim
k→∞

Prob[u1,k = m, u2,k = n] ,

and is related to the joint pgf U(z1, z2) by the equation

U(z1, z2) =
∞

∑
m=0

∞

∑
n=0

u(m, n)zm
1 zn

2 .

In an earlier paper [11], we proved (with slightly different notations) the following useful theorem to
determine u(m, n) from U(z1, z2) for “interior states” (m, n) in the state space.

Theorem 3
If the joint pgf U(z1, z2) is a rational function of z1 and z2 of the form

U(z1, z2) =
B(z1, z2)

r1(z1)r2(z2)
=

B(z1, z2)

∏L1
i=1(z1 − κi)∏L2

j=1(z2 − τj)
, (121)

where the numerator B(z1, z2) is a bivariate polynomial of degree K1 in z1 and K2 in z2, and the denominator
is a product of two univariate functions r1(z1) and r2(z2), having only zeroes of multiplicity 1, and the
numerator and the denominator are mutually prime, then threshold values m0 and n0 can be defined as
m0 ≜ max(0, K1 − L1 + 1), n0 ≜ max(0, K2 − L2 + 1), such that for m ≥ m0, n ≥ n0, the pmf u(m, n) is
given by a finite linear combination of bivariate geometric terms, i.e.,

u(m, n) =
L1

∑
i=1

L2

∑
j=1

µi,j
( 1

κi

)m( 1
τj

)n , m ≥ m0, n ≥ n0 , (122)

where

µi,j ≜
B(κi, τj)

κiτjr′1(κi)r′2(τj)
. (123)

7.1. Some Comments

In all the examples that we have considered in this paper, we have chosen rational functions for
the constituting one-dimensional pgfs f1(z1), f2(z2), g1(z1), g2(z2), h1(z1), h2(z2) of the joint arrival
pgf A(z1, z2), defined in (21). This implies that the pgf U(z1, z2), given in (23) by

U(z1, z2) =
U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)n(z1, z2)

k1(z1)k2(z2)
, (124)

is a rational bivariate function whose denominator is a product of two univariate functions, and can
therefore be expressed in the form required to apply Theorem 3.

By definition, the quantities κi and τj, occurring in (122), are the zeroes of r1(z1) (or k1(z1)) and
r2(z2) (or k2(z2)). According to (122), the geometric decay rates of the system-content distribution are
the inverse values of these zeroes, i.e., the ith decay rate for queue 1 is equal to 1/κi, and the jth decay
rate for queue 2 is given by 1/τj. Each bivariate geometric term in u(m, n) thus corresponds to a couple
(κi, τj) of zeroes of r1(z1) and r2(z2), but the opposite is not necessarily true, since, for some i and j, it
may happen that the coefficient µi,j in Equation (122) is zero. According to (123), this situation occurs
if B(κi, τj) = 0. If this is the case for one or more couples (κi, τj), the number of nonzero bivariate
geometric terms in u(m, n) is lower than the product L1 × L2.
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7.2. Specific Examples

In this subsection, we apply Theorem 3 in a number of examples of arrival pgfs A(z1, z2) belonging
to subclasses A, B and C, as defined before.

7.2.1. An Example within Subclass A

In this example, we revisit the model of subsection 6.1.3. The system-content pgf U(z1, z2)

is given in (102). The parameters and functions, appearing in the formulation of Theorem 3 are
K1 = K2 = 2, L1 = L2 = 1, and

B(z1, z2) = (1 − σ1)(1 − σ2)F(z1, z2) , r1(z1) = 1 − σ1z1 , r2(z2) = 1 − σ2z2 ,

with
F(z1, z2) ≜ m22 + m12z1(1 + σ1 − σ1z1) + m21z2(1 + σ2 − σ2z2)

+ m11z1z2(1 + σ1 − σ1z1)(1 + σ2 − σ2z2) .

The zeroes of r1(z1) and r2(z2) are

κ1 =
1
σ1

> 1 , τ1 =
1
σ2

> 1 .

The coefficient µ1,1 can be computed from (123) as

µ1,1 = (1 − σ1)(1 − σ2) .

Finally, the pmf u(m, n) for interior states (m, n) follows from (122) as

u(m, n) = (1 − σ1)(1 − σ2)
( 1

σ1

)m( 1
σ2

)n , m ≥ 2, n ≥ 2 .

7.2.2. An Example within Subclass B

Here, we consider a symmetric instance of the model of subsection 6.2.2, with the following
specific parameter choices:

n12 = n21 = n0, d1 = d2 = d, γ1 = γ2 = γ .

The joint system-content pgf U(z1, z2) can be obtained from (115):

U(z1, z2) =
(1 − 3γ)2(n11z1z2 + n0z1 + n0z2 + n22[1 − γ + γz3

1][1 − γ + γz3
2]
)(

1 − γ − γz1(1 + z1)
)(

1 − γ − γz2(1 + z2)
) .

We can apply Theorem 3 with K1 = K2 = 3, L1 = L2 = 2,

B(z1, z2) ≜ (1 − 3γ)2(n11z1z2 + n0z1 + n0z2 + n22[1 − γ + γz3
1][1 − γ + γz3

2]
)

,

and
r1(z1) ≜ 1 − γ − γz1(1 + z1) , r2(z2) ≜ 1 − γ − γz2(1 + z2) .

The zeroes of r1(z1) and r2(z2) lie outside the unit disks {z1 : |z1| ≤ 1} and {z2 : |z2| ≤ 1} in the
complex z1-plane and z2-plane, respectively, and are given by

κ1 = τ1 =

√
γ(4 − 3γ)− γ

2γ
> 1 , κ2 = τ2 = −

√
γ(4 − 3γ) + γ

2γ
< −1 .
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The coefficients µi,j can be computed from (123):

µ1,1 = µ
1 − γ + (1 − 4n0)(1 +

√
γ(4 − 3γ))

2 − γ −
√

γ(4 − 3γ)
, µ2,2 = µ

1 − γ + (1 − 4n0)(1 −
√

γ(4 − 3γ))

2 − γ +
√

γ(4 − 3γ)

µ1,2 = µ2,1 = µ
1 − γ − n0(2 − 3γ)

1 − γ
, where µ ≜

(1 − 3γ)2

γ(4 − 3γ)
.

(125)

In general, all these coefficients are nonzero, and the linear combination in (122) contains four terms:

u(m, n) = µ1,1
( 1

κ1

)m+n
+ µ12

(( 1
κ1

)m( 1
κ2

)n
+

( 1
κ2

)m( 1
κ1

)n
)
+ µ2,2

( 1
κ2

)m+n , m ≥ 2, n ≥ 2 .

Careful study shows that it is impossible to choose the parameter n0, appearing in (125), in such
a way that the coefficients µ1,1, µ1,2 or µ2,1 are zero, but there does exist a value of n0 such that µ2,2

vanishes; the required n0-value is

n0 =
2 − γ +

√
γ(4 − 3γ)

4
(
1 +

√
γ(4 − 3γ)

) > 0 . (126)

This is an acceptable value since it implies that

n11 + n22 = 1 − n12 − n21 = 1 − 2n0 =
γ +

√
γ(4 − 3γ)

2
(
1 +

√
γ(4 − 3γ)

) > 0

So, in case n0 is chosen in accordance with (126), the linear combination in (122) contains only three
bivariate geometric terms:

u(m, n) = µ1,1
( 1

κ1

)m+n
+ µ12

(( 1
κ1

)m( 1
κ2

)n
+

( 1
κ2

)m( 1
κ1

)n
)

, m ≥ 2, n ≥ 2 ,

and does not contain a term with two negative decay rates.

7.2.3. An Example within Subclass C

We now go back to the model in subsection 6.3.1. Here, the system-content pgf U(z1, z2) is given
by (118). We can apply Theorem 3 provided we choose K1 = K2 = 3, L1 = L2 = 2,

B(z1, z2) = (1 − 2σ1)(1 − 2σ2)n(z1, z2) , r1(z1) = (3 − 2z1 − 2σ1z2
1) , r2(z2) = (3 − 2z2 − 2σ1z2

2) ,

where, owing to (117), n(z1, z2) is given by

n(z1, z2) =
d
4

(
z1
(
3 + z2

2(1 − σ2 + σ2z2)
)
+ z2

(
3 + z2

1(1 − σ1 + σ1z1)
))

+
1 − 2d

25
(
3 + z2

1(1 − σ1 + σ1z1)
)(

3 + z2
2(1 − σ2 + σ2z2)

)
.

(127)

The zeroes of r1(z1) and r2(z2) lie outside the unit disks {z1 : |z1| ≤ 1} and {z2 : |z2| ≤ 1} in the
complex z1-plane and z2-plane, respectively, and are given by

κ1 =

√
1 + 6σ1 − 1

2σ1
> 1 , κ2 = −

√
1 + 6σ1 + 1

2σ1
< −1

τ1 =

√
1 + 6σ2 − 1

2σ2
> 1 , τ2 = −

√
1 + 6σ2 + 1

2σ2
< −1 .
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The coefficients µi,j can be computed from (123):

µ1,1 = µ
4 + d(σ1κ1 + σ2τ1 − 1)
(1 + 2σ1κ1)(1 + 2σ2τ1)

, µ1,2 = µ
4 + d(σ1κ1 + σ2τ2 − 1)
(1 + 2σ1κ1)(1 + 2σ2τ2)

,

µ2,1 = µ
4 + d(σ1κ2 + σ2τ1 − 1)
(1 + 2σ1κ2)(1 + 2σ2τ1)

, µ2,2 = µ
4 + d(σ1κ2 + σ2τ2 − 1)
(1 + 2σ1κ2)(1 + 2σ2τ2)

,

where we have defined µ as

µ ≜
(1 − 2σ1)(1 − 2σ2)

16
.

Again, in general, all these coefficients are nonzero, and the linear combination in (122) contains
four terms:

u(m, n) = µ1,1
( 1

κ1

)m( 1
τ1

)n
+ µ12

( 1
κ1

)m( 1
τ2

)n
+

( 1
κ2

)m( 1
τ1

)n
+ µ2,2

( 1
κ2

)m( 1
τ2

)n , m ≥ 2, n ≥ 2 .

(128)
Let dij denote the value of d that makes µi,j zero, then we can easily compute the following values:

d11 =
8

4 −
√

1 + 6σ1 −
√

1 + 6σ2
, d12 =

8
4 −

√
1 + 6σ1 +

√
1 + 6σ2

,

d21 =
8

4 +
√

1 + 6σ1 −
√

1 + 6σ2
, d22 =

8
4 +

√
1 + 6σ1 +

√
1 + 6σ2

.

Taking into account the stability conditions σ1 < 1/2, σ2 < 1/2, as we have shown in subsection
6.3.1, it is readily seen that all these d-values are positive, as required, but none of them is lower than
1/2, which is also necessary, because in this model, according to (116), n22 = 1 − 2d and needs to
be positive. We conclude that, in this particular case, the pmf u(m, n) always contains exactly four
bivariate geometric terms, as shown in (128).

8. Concluding REMARKS

This paper has considered the steady-state queueing analysis of a system of two parallel discrete-
time single-server queues with mutually interdependent arrivals, characterized by the joint arrival pgf
A(z1, z2). We have identified a very broad, multi-parameter, generic, class of arrival pgfs A(z1, z2) for
which we were able to determine explicit analytic solutions for the joint system-content pgf U(z1, z2).
We think this is the main virtue of the paper. It is also interesting to observe that our results encompass
most of the previously known results for this kind of system, which is known to be hard to analyze.

Although the class of arrival pgfs A(z1, z2) examined in this paper is very broad, it still has its
limitations, which are mainly due to the shape of the arrival pgf, i.e., Equation (14),

A(z1, z2) =
n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
,

and the requirement that the pgfs appearing in the above expression should be related as stated in
equations (24) or (33), which can be rewritten as

β1n21
(
z1 − f1(z1)

)
+ β1d1z1

(
1 − g1(z1)

)
+ n21

(
z1 − h1(z1)

)
= 0 ,

β2n12
(
z2 − f2(z2)

)
+ β2d2z2

(
1 − g2(z2)

)
+ n12

(
z2 − h2(z2)

)
= 0 .
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Since the parameters β1 and β2 need to be strictly positive – we need this in the proof of Lemma 1 – we
can thus not have a constant numerator for A(z1, z2) without the requirement that the denominator be
also constant. Hence, a seemingly simple arrival pgf like

A(z1, z2) =
1

1 + d1 + d2 − d1z1 − d2z2
(129)

is not a special case of our model. So far, we have never seen a solution for the “global geometric” arrival
pgf in (129), and the current paper also does not provide one.

Future work could go in several directions. We may try to further extend the class of arrival pgfs
which lead to explicit solutions for the parallel-queues system, dealt with in this paper, but we may also
consider other types of coupled queues, such as the (other) ones mentioned in the introduction section
of this paper.
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