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Abstract: Castanopsis hystrix, a precious tree species in Southeast Asia, has the advantages of rapid 
growth and high-quality wood materials. However, there are problems such as long breeding cycle, 
time-consuming and low efficiency, which greatly restricts the industrial development of C. hystrix. 
To perform the genome selection (GS) for growth and wood traits and the early selection of superior 
progeny have great significance for the rapid breeding of new superior varieties of C. hystrix. The 
226 clones in the main distribution and 479 progenies within 23 half-sib families were used as 
experimental materials in this study. Genotyping datasets were obtained by high-throughput re-
sequencing technology, and GS studies were conducted on the growth (tree height (H), diameter at 
breast height (DBH)) and wood (wood density (WD), fiber length (FL), and fiber length-width ratio 
(LWR)) traits. The coefficient of variation (CV) of five phenotypic traits ranged from 10.1% to 
22.73%, the average CV of growth traits was 19.93%, and the average CV of wood traits was 9.72%. 
The Pearson correlation coefficients between the five traits were almost significantly positive. Based 
on the Genomic Best Linear Unbiased Prediction (GBLUP) model, the broad-sense heritabilities of 
growth traits were higher than those of wood quality traits, and the different number of SNPs had 
little effect on the heritability estimation. GS prediction accuracy first increased and then reached a 
plateau around 3K SNPs for all five traits. The broad-sense heritability of these five traits was 
significantly positively correlated with their GS predictive ability (r=0.564, P<0.001). Bayes models 
had better GS prediction accuracy than GBLUP model. The 15 excellent progeny individuals were 
selected, and their genetic gain ranged from 0.319% to 2.671%. These 15 superior offspring 
individuals were 4388, 4438, 4407, 4468, 4044, 4335, 4410, 4160, 4212, 4461, 4052, 4014, 4332, 4389, 
and 4007, mainly from three families F5, F6 and F11. Our research lays the technical and material 
foundation for the rapid breeding of new superior varieties of C. hystrix in southern China. 

Keywords: Castanopsis hystrix; genomic selection; growth trait; wood trait; early selection; SNP 
 

1. Introduction 

Genomic selection (GS) is a method of facilitating the rapid selection of superior genotypes using 
dense genomic markers, which has the advantages of no need to detect major genes, efficient capture 
of genomic genetic variation, and greatly shortened breeding cycle, especially for low-level 
heritability traits and difficult-to-measure complex traits [1]. The basic assumption of GS theory is 
that at least one SNP among the dense genomic markers is in direct linkage with the quantitative trait 
locus, which affects the target trait. GS mainly consists of two steps [2]: first, the GS prediction model 
is constructed based on the genotypic data and phenotypic data of the reference population; second, 
the model is used to estimate the genomic-estimated breeding value (GEBV) of the candidate 
population and early selection is performed. 

GS was first applied to livestock breeding [3]. Subsequently, this tool was introduced into crops, 
such as maize [4] and rice [5], improving the predictive ability of complex phenotypic traits. 
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Compared with livestock and crops, the GS research on forest trees is still in the initial stage due to 
factors such as long breeding cycle, complex genetic structure of traits, and weak research foundation. 
At present, GS researches in forest trees are mostly on commercial timber species, such as eucalyptus, 
pine, and spruce, such as Eucalyptus grandis × E. urophylla [6], E. grandis [7], E. robusta [8], E. nitens [9], 
Pinus taeda [10], P. pinaster [11], Picea glauca [12], Norway spruce [13], and Pseudotsuga menziesii [14], 
focusing on the growth and wood traits. There are relatively few GS studies on economic forest tree 
species, such as Elaeis guineensis [15], Hevea brasiliensis [16], and Macadamia integrifolia [17], mainly 
focusing on yield-related traits. Overall, the GS research on forest trees is only reported in a few 
traditional commercial timber tree species, and most of them are concentrated in theoretical research 
[18]. There are still few cases of GS breeding practices on forest trees, especially precious tree species. 

 Castanopsis hystrix, an evergreen tree mainly distributed in southern China, is one of the 
important native broad-leaved tree species and precious timber afforestation tree species, as well as 
an important tree species for long-term large-diameter timber forests in the 14th Five-Year Plan [19]. 
Due to the advantages of straight trunk, strong corrosion resistance and excellent beautiful 
heartwood, it is widely used in wooden furniture, interior decoration, and other industrial 
productions [20]. So far, C. hystrix mainly focused on the conventional genetic variation analysis of 
growth and wood traits [20–23] and genetic diversity analysis [24,25]. Although these studies are 
helpful to the mining and utilization of the germplasm resources of C. hystrix, there are still some 
problems such as long breeding cycle, time consuming and low efficiency. Compared with traditional 
commercial tree species, GS studies on precious tree species, including C. hystrix, are still not 
reported. Therefore, it is of great significance to carry out genome selection for the rapid breeding of 
new varieties in C. hystrix. 

In this study, 226 clones in the whole distribution area of C. hystrix were used as the GS reference 
population and 479 offspring covering 23 half-sib families were used as the candidate population. 
Genotyping datasets were obtained by high-throughput re-sequencing technology, and GS studies 
were conducted on the growth (tree height (H), diameter at breast (DBH)) and wood (wood density 
(WD), fiber length (FL), and fiber length-width ratio (LWR)) traits. The effects of 13 different numbers 
of SNPs and 5 different GS models on heritability estimation and GS prediction accuracy were 
assessed using 5-fold cross-validation. Then, the candidates’ genomic estimated breeding values 
(GEBVs) were predicted based on the GS model, and early selection of superior progeny individuals 
was implemented by Brekin’s multi-trait evaluation method. 

2. Materials and Methods 

2.1. Experimental Materials 

A total of 226 clones were selected as the reference population in the C. hystrix gene bank [25] 
located at the Longyandong Forest Farm in Guangdong Province. The gene bank material was 
collected in 2001 from six provinces in southern China. The branches of the excellent trees were 
planted in the gene bank in January 2003 after grafting, using a completely random design with 5 
plots per clone. In January 2020, the seeds of the above gene bank were collected for seedling culture, 
and planted in the Yangjiang Forest Farm, Yunyong Forest Farm and Yunfu Forest Farm in 
Guangdong Province in April 2021. A total of 479 2-year-old disease-free offspring from 23 families 
were selected as the candidate population from April to May 2022. 

2.2. Phenotypic Trait Determination and Descriptive Statistics 

At the end of 2018, 226 clones of the reference population were measured for tree height (H) and 
diameter at breast height (DBH), and each clone measured 3 sample trees. Wood density was 
measured from the reference population using two increment cores extracted at breast height. One 
core was used for wood density determination and the other one was used for fiber trait 
determination. Wood density was determined using the conventional water replacement method 
[26]. The other core wood sample was segregated with 1:1 hydrogen peroxide:glacial acetic acid, 
heated until the wood core turned white and soft, and washed with water more than 5 times until 
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the samples had no obvious smell. After the specimen has been broken up with a fiber decomposition 
breaker, the average fiber length (mm) and average fiber width (μm) are automatically measured 
using a Valmet fiber image analyzer (Valmet FS5). The fiber length-width ratio (LWR) was obtained 
using the ratio between fiber length and fiber width. All five phenotypic traits were analyzed by R 
package psych. 

2.3. Genotyping and Quality Control 

Leaf DNA samples from 226 clones and 479 progenies of the candidate population were 
extracted, and used for genotyping through resequencing at Novogene (China). A total of 86 031 588 
SNPs were obtained for genotyping in each sample, and VCFTools software [27] was used for quality 
control. The quality control criteria were: 1) SNP missing rate less than 20%; 2) minor allele frequency 
greater than 0.01); and 3) Hardy-Weinberg equilibrium P value less than 0.0001. The missing 
genotypes were then imputated using Beagle 5.0 software [28], and 790,877 SNPs per individual were 
finally obtained for subsequent GS analysis. 

2.4. Statistical Models for Genomic Prediction 

Statistical models are one of the key factors affecting the accuracy of genomic selection. Herein, 
five statistical models, including the GBLUP model and four Bayes models, were used to analyze the 
effect of the GS model on the accuracy of genomic prediction. 

2.4.1. GBLUP Model 

GBLUP method [3] was carried out by the following model: 𝑦 =  𝑋𝑏 +  𝑍𝑢 + 𝑒 (1)

where y is the vector of phenotypic values, b is the fixed effect vector, u is the random genetic effect 
vector, X and Z are the incidence matrices of b and u, respectively, and e is the random residual effect. 
GBLUP method directly estimated the individual GEBVs through the genomic relationship matrix G 
constructed from the SNP markers. The GBLUP model was analyzed using the R package AFEchidna 
1.68 [29]. 

2.4.2. Bayesian Models 

Four Bayesian methods [2] were analyzed with the following model: 𝑦 = 𝑋𝑏 + 𝑊𝑎௠ + 𝑒 (2)

where y is the vector of phenotypic values, b is the fixed effect vector, X is the incidence matrix of b, 
W is the matrix of numeric genotypes for each SNP marker, 𝑎௠ is the random marker effect, and e is 
the residual effect. 

Bayes A model assumes that each SNP marker (j) has an effect with a normal distribution 𝑝൫𝑗ห𝜎௝ଶ൯ = 𝑁൫0, 𝜎௝ଶ൯, and the variance of each effect 𝜎௝ଶ is different with a scaled inverted chi-square 
distribution 𝑝൫𝜎௝ଶ൯ = 𝜒ିଶ(𝑣, 𝑆) with two hyperpriors: degrees of freedom (v) and scale (S). Based on 
the Bayes A model, Bayes B assumes that only a few SNPs are effective and that the proportion of 
effective SNPs 𝜎௝ଶis 1-π (π usually takes a value of 0.95). Bayes C model assumes that all the effective 
markers have a common variance, and solves the π as an unknown parameter through the model. 
The BRR model assumes the same random effects across markers, similar to the GBLUP model. The 
above Bayes model analyses were performed using the R-package BGLR [30]. 

2.5. The Effect of Different SNP Numbers on Genomic Prediction Accuracy 

In order to explore the effect of different numbers of SNP markers on genomic prediction 
accuracy, different SNPs were randomly selected according to the 50Kb window on each 
chromosome, and a total of 13 marker numbers were set as follows: all available markers were 791K 
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(100%), 633K (80%), 475K (60%), 316K (40%), 158K (20%), 79K (10%), 40K (5%), 16K (2%), 5K, 3K, 2K, 
1K and 0.5K SNPs, K is 1000. The Bayes C model was implemented, and the 5-fold cross-validation 
method was used to evaluate the accuracy of genome prediction. 

2.6. Genomic Prediction Accuracy Assessment 

Genomic prediction accuracy (PA) was assessed using a 5-fold cross-validation method, in 
which the reference population was randomly divided into five subsets, four of which were used as 
the training population and the remaining one as the validation population were used to evaluate 
the prediction accuracy [2]. Model prediction accuracy (PA) is defined as the Pearson correlation 
coefficient between the GEBV and its true phenotypic value (y) in a validation population divided by 
the square root of heritability [31], as follows: 𝑃𝐴 = 𝑐𝑜𝑟(𝐺𝐸𝐵𝑉, 𝑦)√𝐻ଶ   (3)

where PA is the prediction accuracy of GS, cor(GEBV,y) is the Pearson correlation coefficient between 
the GEBV and the phenotypic value (y) of the validation population, and 𝐻ଶ is the trait heritability. 

The 5-fold cross-validation was repeated 20 times, averaging a total of 100 values as prediction 
accuracy. 

2.7. Heritability Estimate 

The GBLUP model was used to estimate the broad-sense heritability as follows: 𝐻ଶ = 𝜎௚ଶ൫𝜎௚ଶ + 𝜎௘ଶ൯ (4)

where 𝐻ଶ is the broad-sense heritability, 𝜎௚ଶ is the genetic variance and 𝜎௘ଶ is the residual variance. 
The generalized heritability of traits was estimated by the GBLUP model using the R package 
AFEchidna 1.68 [29] 

2.8. Early Selection of Superior Progeny Individuals in the Candidate Population 

Based on the genomic prediction model of the reference population of 226 clones, the individual 
GEBVs of 479 progenies in the candidate population were predicted with genotypic data. The Brekin’s 
multi-trait assessment method [32] was used to comprehensively evaluate the GEBV of the candidate 
population with the following formula: 

𝑄௜ = ඩ෍ 𝑋௜௝𝑋௝௠௔௫
௡
௝   (5)

where 𝑄௜ is the comprehensive evaluation value of individual i, j is the trait j, n is the number of 
traits, 𝑋௜௝ is the GEBV value of trait j of individual i, and 𝑋௝௠௔௫ is the maximum GEBV value of trait 
j. 

Genetic gain (∆G) of selected superior progenies for each trait was calculated with the following 
formula: ∆G = 𝐻ଶ × (𝜇௦ − 𝜇௣)𝜇௣ × 100% (6)

where ∆G  is the Genetic gain, 𝐻ଶ  is the broad-sense heritability, 𝜇௦  is the mean GEBVs of the 
selected superior progeny individuals, 𝜇௣ is the mean phenotypic values of the reference population. 

3. Results 
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3.1. Descriptive Statistics of Growth and Wood Traits of C. hystrix 

The descriptive statistical results of growth and wood traits of 226 clones in the reference 
population are shown in Figure 1, the diagonal histogram plots indicated that all five traits nearly 
obeyed a normal distribution. The coefficients of variation of growth traits were higher than those of 
wood traits, among them, the coefficient of variation of DBH was highest (26.59%), and the coefficient 
of variation of FW was lowest (10.10%). Moreover, the Pearson correlation coefficients between the 
five traits were almost significantly positive, among them, the highest one was between FL and LWR 
( r=0.68, P<0.001). Interestingly, there is significantly positive correlated between WD and growth 
traits, indicating that we may improve WD and growth traits simultaneously. 

 

Figure 1. Descriptive statistics of growth and wood traits of C. hystrix. A is the diagonal histogram 
of height, CV is coefficient of variance. B is the diagonal histogram of DBH. C is a scatter plot of H 
and DBH. D is the Pearson correlation values of H and DBH, and *** indicates a very significant 
correlation (P<0.001).  

3.2. Statistics of Genotyping Data 

After quality control, the distribution of SNPs on the C. hystrix genome was relatively uniform 
(Figure 2), and two regions in both Chr3 and Chr9 and one region in Chr6, had a large marker density, 
greater than 3500 SNP•Mb-1. As shown in Table 1, Chr1 was the longest with a length of about 110 
Mb and had a marker density of 760 SNP•Mb-1, while Chr12 was the shortest with a length of about 
51 Mb and a marker density was 904 SNP•Mb-1. The marker density of all chromosomes ranged from 
760 to 954 SNP•Mb-1, the highest was Chr9 (954.18 SNP•Mb-1), the lowest was Chr1 (760.13 SNP•Mb-

1), and the average marker density was about 870 SNP•Mb-1. 

Table 1. The distribution of SNPs in C. hystrix genome. 

Chromosome NO Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12 
Chromosome size (Mb) 109.75 106.04 103.31 87.42 77.66 68.54 66.29 64.51 63.76 61.94 56.79 50.54 

SNP number 83426 89409 97191 72637 65273 52119 59774 56819 60835 53556 54151 45687 
Density(per Mb) 760.13 843.17 940.81 830.86 840.45 760.41 901.77 880.78 954.18 864.57 953.56 903.95 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2024                   doi:10.20944/preprints202407.0713.v1

https://doi.org/10.20944/preprints202407.0713.v1


 6 

 

 

Figure 2. The distribution of SNPs after quality control in C. hystrix genome. The ordinate is 12 
chromosomes, and the abscissa is the length of the chromosome. The legend presents the marker 
density. 

3.3. Effect of Varying the Number of SNPs on the Estimates of Heritability 

To evaluate the impact of varying the number of SNPs on the estimates of heritability, we used 
the GBLUP model, the results showed that the 13 different numbers of SNPs had little effect on broad-
sense heritability (Figure 3). Heritabilities increased slightly and reached a plateau around 5K SNPs 
for all traits. The highest heritability was H (around 0.5), followed by DBH (around 0.48), and the 
lowest one was WD (around 0.25). The broad-sense heritabilities of growth traits were higher than 
those of wood quality traits. 

 

Figure 3. Effect of different SNP number on trait heritability in C. hystrix. 
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3.4. Effect of Varying Number of SNPs on the GS Prediction Accuracy 

The effect of different SNP numbers on GS prediction accuracy was studied with the Bayes C 
model, the results showed that PA first increased and then reached a plateau around 3K SNPs for all 
traits (Figure 4). Further comparison of prediction accuracy showed that the PA of H was higher than 
those of the other four traits and that the other four traits had similar GS prediction accuracy. The 
results of Pearson correlation analysis (Figure 5) showed that there was a significant positive 
correlation (r=0.564, P<0.001) between the broad-sense heritability of these five traits and their GS 
predictive ability. 

 

Figure 4. Comparison of GS prediction accuracy under different SNP numbers in C. hystrix. 

 

Figure 5. Effect of trait heritability on GS prediction ability in C. hystrix. 
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3.5. Effect of Varying Statistics Models on the GS Prediction Accuracy 

As shown in Figure 6, the prediction accuracy of four Bayesian models was better than that of 
GBLUP. However, there was little difference between the Bayesian models, and the Bayes C model 
was the highest and relatively robust. GS of H had the highest PA, followed by wood quality traits, 
and their PA was close. 

 
Figure 6. Comparison of GS prediction accuracy under different models in C. hystrix. 

3.6. Early Selection of Superior Progeny Individuals in the Candidate Population 

Based on the above comparison results of the different SNP numbers on the broad-sense 
heritability estimation and the prediction accuracy of GS, 5K SNPs were selected for the 
comprehensive selection of superior offspring. The top 15 superior progeny individuals were selected 
with a 3% selection rate. As shown in Table 2, the Qi value of these 15 selected progeny individuals 
ranged from 2.195 to 2.213, belonging to 7 families, of which F5 was the most, accounting for 26.7%, 
followed by F6 and F11, accounting for 20%, respectively. The mean GEBVs of the selected 
individuals almost exceeded the mean phenotypic values of the reference population, and their 
genetic gain ranged from 0.319% to 2.671%. 

Table 2. The GEBV and the comprehensive evaluation value of growth trait of the selected 15 
candidates. 

ID GEBV H GEBV DBH GEBV WD GEBV FL GEBV LWR Qi Qi Rank 
Family 

NO 
4388 10.320 16.096 0.532 1141.030 59.876 2.213 1 F8 
4438 9.863 17.014 0.530 1122.925 58.798 2.207 2 F5 
4407 10.105 16.480 0.545 1099.743 58.360 2.205 3 F5 
4468 10.055 16.618 0.528 1108.143 59.491 2.205 4 F5 
4044 9.930 16.331 0.536 1139.370 58.493 2.204 5 F4 
4335 9.625 16.599 0.530 1139.671 59.802 2.203 6 F11 
4410 10.032 16.349 0.534 1102.054 58.874 2.200 7 F5 
4160 9.567 16.727 0.520 1157.510 58.784 2.199 8 F11 
4212 9.629 16.454 0.521 1134.130 60.471 2.199 9 F6 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 July 2024                   doi:10.20944/preprints202407.0713.v1

https://doi.org/10.20944/preprints202407.0713.v1


 9 

 

4461 10.129 16.352 0.530 1107.883 57.795 2.197 10 F29 
4052 9.736 17.009 0.516 1119.941 58.657 2.197 11 F12 
4014 9.653 16.191 0.525 1134.845 60.074 2.196 12 F6 
4332 9.617 16.262 0.526 1118.131 60.458 2.195 13 F11 
4389 9.946 16.592 0.526 1120.556 57.268 2.195 14 F8 
4007 9.699 16.221 0.523 1134.877 59.434 2.195 15 F6 

Mean.s 9.860 16.486 0.528 1125.387 59.109 - - - 
Mean.p 9.375 15.633 0.520 1115.206 57.006 - - - 
∆G(%) 2.671 2.625 0.375 0.319 1.217 - - - 

Mean.s is the mean GEBV of each trait of the selected individual. Mean.p is the mean phenotypic value of each 
trait in the reference population. 

4. Discussion  

4.1. Effect of Trait Heritability on GS Prediction Ability 

Some studies have shown a positive correlation between trait heritability and GS predictive 
ability [10,15,33]. For example, Estopa et al. declared that the heritability of carbohydrate content was 
the highest and its GS predictive ability was also the highest in E. benthamii, while the heritability of 
volume was relatively tiny and its predictive ability of GS was also weak [33]. In this study, there was 
a significant positive correlation between the generalized heritability of tree height and DBH traits 
and their GS predictive ability (r=0.859, P<0.001). However, Cao et al. reported that there was no 
significant correlation between the heritability of traits and their GS predictive ability in peach [34]. 
Therefore, the effect of trait heritability on its GS predictive ability may be related to species and trait 
types. In addition, the number of SNP markers in the range of 3K~791K had little effect on the broad-
sense heritability of the five traits, similar to the results of E. benthamii [33], indicating that when the 
number of SNPs reached a certain number, the number of SNPs had little effect on the heritability 
estimation. 

4.2. Effect of Varying Number of SNPs on the GS Prediction Accuracy 

Many studies have shown that the prediction accuracy of GS increases with the increase of the 
number of SNP markers, but when reaching a certain number, the prediction accuracy of GS tends to 
stabilize and reaches a plateau [13,33]. Nsibi et al. found that when the number of SNPs was less than 
6,103 (10% of the total markers), the prediction accuracy continued to increase, and then the increase 
in the number of SNPs had little effect on the prediction accuracy [35]. Estopa et al. reported that the 
GS predictive ability of all traits in E. benthamii reached a plateau after the number of SNPs reached 
3K [33]. Herein, the GS prediction accuracy was lowest when the number of SNPs was 0.5K, and the 
reason may be due to the lower SNP density reducing the degree of linkage between SNP markers 
and QTLs, thus resulting in decreasing the GS prediction accuracy. However, it has also been 
reported that increased SNP labeling density can sometimes cause some noise that affects the 
accuracy of GEBV estimation [36]. The reasons may be: (1) the increase in SNP marker density adds 
a large number of markers that are not related to the target trait, which interferes with the estimation 
of GEBV, and then affects the prediction accuracy of GEBV to some extent; (2) the number of markers 
is much larger than the sample size, which may lead to model overfitting. 

4.3. Effect of Varying Statistics Models on the GS Prediction Accuracy 

Different traits have different genetic structures, and different statistical models should be used 
to evaluate the prediction efficiency [37]. Isik et al. observed similar GS prediction abilities of GBLUP, 
BRR, and Bayes LASSO (BL) in growth and trunk straightness traits in maritime pine, while when 
using the BL model, the prediction ability was higher, but the prediction bias was also larger [11]. In 
another study of maritime pine, the prediction accuracy of ABLUP was higher than that of GBLUP 
or BL [28]. In E. benthamii, the prediction ability of the six GS models for all target traits was similar, 
but all of them were better than the ABLUP model [33]. Our results show that the prediction accuracy 
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of the Bayesian models for the same trait is very close, but it is higher than that of the GBLUP model, 
indicating that the assumptions of the Bayes models have little effect on the GS prediction. 
Nevertheless, when more complex external environmental factors are considered, such as the 
statistics model accounting for external spatial effects and competitive effects, GBLUP model may 
present its advantages for complex models [38]. 

4.4. The Efficiency of GS Early Selection 

One significant advantage of GS is that it can greatly shorten the breeding cycle [18]. For 
example, in dairy cows [39], GS shortened the breeding cycle from 7 years to 1 year and increased 
genetic gain by 35%, while in rice [40], GS increased rice yield by 16% compared to the traditional 
cross-breeding. In this study, the genetic gain of the five traits of the 15 selected individuals ranged 
from 0.319% to 2.671%, compared with the reference population, regardless of the selection period. 
Assuming that the selection period is shortened from 16 years to 2 years, the genetic gain will increase 
by 7 times. However, the prediction accuracy of GS in this study was still not high, which was lower 
than the average prediction accuracy (0.45) in the reported GS studies of forest trees [18]. The reasons 
may be as follows: (1) The reference population is tiny. Bartholome et al. suggested that the reference 
population should be greater than 2000 trees [28]. (2) The relationship between individuals in the 
reference population is weak. Isik reported that the GS prediction accuracy of full-sib family was 
significantly higher than that of half-sib family [18]. Our reference population in this study came from 
six provenances, and their genomic relationship matrix values were generally small. Therefore, in the 
future, half-sib and full-sib families should be added to the reference population and the GS 
prediction should be re-evaluated. 

5. Conclusions 

In this study, GS prediction model for growth and wood traits in C. hystrix was established, and 
the effects of different SNP numbers and statistical models on the prediction accuracy of GS were 
also analyzed. The Bayes models had better prediction accuracy than the GBLUP model, and the 
number of SNPs had a limited effect on the GS prediction accuracy, consistent with the results of GS 
studies in other forest trees. Meanwhile, the early selection of superior individuals was carried out 
according to the GEBVs of growth and wood traits of the candidate population, which laid a technical 
and material foundation for the rapid breeding of excellent new varieties of C. hystrix. In addition, 
the prediction accuracy of GS in our research was not high, therefore the reference population should 
be enlarged and re-evaluated in the future. 
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