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Abstract: Physics-informed neural networks can be trained to serve as surrogate models by learning how spatial
physical fields develop with change of parameters. This is an advantage over traditional numerical methods
that can only be used to calculate a single solution field for a single discrete setting of a parameter. While many
studies report accurate results of physics-informed deep learning of laminar flows, evaluations of surrogate
modeling of high Reynolds number flows remain sparse. To contribute to this question, we here explore the
capabilities and limits of physics-informed deep learning to solve the Reynolds-averaged Navier-Stokes equations
for the flow around two airfoils under variable angles of attack. No labeled training data were provided and a
single network was trained to simultaneously learn several solution fields in a single training run. The network
captured essential flow features such as boundary layers and high and low pressure regions. Moreover, the
qualitative correlations of lift and drag with the angle of attack and the higher drag of the thicker airfoil were
captured. However, comparisons with reference simulations revealed an underestimation of the shear layer
gradients as well as deviations of the fields” extrema. Thus, we also debate potential future improvements to
increase the accuracy of the predicted flow. This work offers a prospect on the capabilities and current limitations
of physics-informed neural networks for surrogate modeling of high Reynolds number flows. We argue that the
method is promising and this work is aimed to encourage further research and development of the method when

applied to Reynolds-averaged flows at high Reynolds numbers.

Keywords: physics-informed deep learning; unsupervised learning; Reynolds-averaged Navier-Stokes equations;

high Reynolds-number flow; variable geometry; parameterized surrogate modeling

1. Introduction

Lagaris et al. [18] and Raissi et al. [24-26] were among the first to demonstrate the capability
of deep learning to solve partial differential equations by training physics-informed neural networks
(PINNSs). In general, a PINN is trained using a composed loss function that corresponds with the
disagreement of the predicted solution field with the governing equations. Hence, the network
is trained to yield predictions that are in agreement with the underlying equations and boundary
conditions and, thereby, to solve these equations. In the field of fluid dynamics, physics-informed
deep learning was applied to solve the Navier-Stokes equations for laminar problems [1,3,13,19,21,
27,28], to solve the Reynolds-averaged Navier-Stokes equations for elevated Reynolds number flows
[8,10], or to reconstruct partial Reynolds-averaged flow fields [5,35] or turbulent structures from
sparse experimental data [31], among others. Due to the complexity associated with high Reynolds
number flows, many studies relied on labeled data for training [5,7,11,15,22,23,34,35]. These promising
studies suggest that PINNs could be used to reduce or replace traditional numerical simulations or
measurements in the process of surrogate modeling.

A surrogate model is a function that is shaped to capture the response of a system to the condition
of affecting parameters. One example is the power output of a wind turbine depending on parameters
such as wind speed and direction. Another example is the spatial flow field around a section of
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the blade of a wind turbine depending on the angle of attack or the velocity of the impinging fluid.
Traditionally, several simulations or measurements would be carried out to obtain the response of the
system at a number of discrete parameter settings. In a second step, a regression would be conducted
to fit a surrogate model to the reference data points. Various methods could be used to obtain a
surrogate model [6], with neural networks being a popular choice.

Motivated by the capability of PINNs to calculate solution fields, several studies were conducted
to explore the application of PINNSs as surrogate models of flow fields depending on different Reynolds
numbers [9,28] or variable geometries such as boxes or cylinders [30], a heat sink [10], tubes [2], vessels
[28], and airfoils [12,29]. These promising studies demonstrate that PINNs can model flow fields
depending on additional parameters. However, successful application of PINN-based surrogate
methods to flows at high Reynolds numbers without labeled training data is to the best knowledge of
the authors an open question.

With our work, we contribute to this question by exploring a surrogate modeling technique for
the flow field around two airfoils under variable angles of attack based on physics-informed deep
learning. Recently, Sun et. al [29] investigated unsupervised PINN-based surrogate modeling for
airfoils that showed accurate results for very low Reynolds numbers. Here, we aim to extend the
unsupervised PINN method to airfoils at high Reynolds numbers and explore its predictive capabil-
ities and limitations. Therefor, we applied a mixed-variable network that has shown a superiority
over traditional PINNSs [3,8] to solve the Reynolds-averaged Navier-Stokes (RANS) equations using
Prandtl’s mixing length turbulence model. The model was trained in an unsupervised manner to
predict the velocity and pressure fields depending on the spatial coordinates as well as the angle of
attack. Hence, no simulated or measured training data were provided. Using this technique, the model
was trained to solve the RANS equations for multiple angles of attack simultaneously in a single
training run. Consequently, the trained network contained an estimation of the family of solution
fields for arbitrary angles of attack between 5° and 15°. The scope of this study was to evaluate the
capability of mixed-variable PINNs to represent the Reynolds-averaged flow field and to explore the
capability to distinguish between the different airfoil geometries and angles of attack. Furthermore,
this work is aimed to outline the potential of unsupervised physics-informed surrogate modeling for
real world applications and to motivate further development and exploration of the method when
applied to Reynolds-averaged flows at high Reynolds numbers.

In the following, the PINN-based surrogate method is explained, the predictions are compared
to computational fluid dynamics (CFD) calculations, and potential applications as well as future
improvements of the prediction accuracy are discussed.

2. Method

2.1. Variable Geometry Problem Definition

In the present work, we trained PINNS to predict the flow fields around the DU 99-W-350 and the
DU 91-W2-250 airfoils of the NREL 5 MW wind turbine [14] under variable angles of attack (AoA)
between 5° and 15°. The airfoils were selected to showcase potential applications of PINN-based
surrogate modeling to aerodynamic engineering. As a numerical test case, the airfoils were positioned
inside a channel with slip walls and an inlet velocity of 1 m/s was defined. For the fluid, a density of
1 kg/m?and a dynamic viscosity of 1 x 10~¢ was defined, resulting in a Reynolds number of 1 x 10°.
The airfoil had a chord length c of 1 m and a span s of 2 m, resulting in a three-dimensional geometry
and a 2.5-dimensional flow. Figure 1 exhibits a sketch of the DU 99-W-350 airfoil inside the channel.
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Figure 1. Geometry of the DU 99-W-350 airfoil featuring variable angles of attack inside the channel.

2.2. Governing euations

The temporal mean values of the corresponding incompressible flow fields are governed by
the Reynolds-averaged continuity equation (1) as well as the three-dimensional Reynolds-averaged
Navier-Stokes (RANS) equations (2):
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where %;, 1, and p are the Reynolds-averaged velocities and pressure, p is the constant density, and v
is the constant kinematic viscosity of the fluid. The RANS equations contain the second order moments
of the turbulent velocity fluctuations u/, and u;. that are equivalent to the Reynolds stresses Ti/j:
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As no closed transport equation can be derived to govern the Reynolds stresses, they are traditionally
modeled by using the Boussinesq hypothesis:
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In equation (4), the turbulent viscosity v; is deployed to model the effect of turbulence on the mean
flow and, hence, a turbulence model is required to estimate v;. In the present work, we used Prandtl’s
mixing-length model as also applied in [8,10] to estimate the turbulent viscosity:

Vv = l%z 251']'51']' (5)
Here, I, is the mixing length, and Sijis the strain tensor. [,;; is defined as follows:
Iy = min(xd, 0.09d 0x) (6)

with ¥ =~ 0.4 as the von Kdrméan constant, d as the distance from the wall, and d,,,,, as a characteristic
maximal length scale, here calculated as dyqx = V /2cs with V as the volume of the channel. The stress

tensor reads: 3 o
L Loup | ou;
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Consequently, a resulting viscosity ves = v + 14 can be calculated that replaces v in equation (2) to
remove the Reynolds stress term.

2.3. PINN-Based Surrogate Method

A mixed-variable network as presented by Rao et al. [3] and applied in [8] was used here to model
the flow fields. Using this approach, the governing RANS equations (2) were rearranged to read as:

7 _ 19 ®)
Tox; — p ox;
by deploying the stress tensor 0;;:
om; | 9Juj
0’1']' = _Péij + OVres (Tx; + aﬁ)(i) (9)

As described above, a PINN was trained to predict the spatial flow fields for variable angles of attack.
Hence, the PINN took the three spatial coordinates as input as well as the corresponding wall distance
that was required for the turbulence model. Furthermore, the AoA was passed as an input. The model
reads:

NNy(x,y,z,ds, AoAs) = (1,0, W, 0xx, Oyy, Ozz, Oxy, Oxz, Oyz) (10)

where NN is the neural network, 0 are the trainable weights and biases of the network, and d; and
AoA; are the scaled wall distance and scaled AoA, respectively. The scaled wall distance was calculated

as:
1

~ d+1000
while the angle of attack was scaled to range between -1 and +1. In the training procedure of the PINN,
a composed loss function £(6) was minimized:

ds ~ 0.001 (11)

L(0) = Ly(6) + Le(0) (12)

with £ as the loss on the boundary conditions, and L. as the loss for the RANS equations. £, and £,
were computed as the mean squared error over all training points:

N,
£b=i):bIUZ—~b|2 (13)
Nb n=1
R 09
e = N, k
€ k=1n=1

Here, Nj and N, are the total number of training points on that the boundary conditions and RANS
equations were trained, U} = [u}, v}}| represent the prescribed velocity and pressure values on the
individual training point 7 positioned on the boundaries, U} and U”! are the predicted output variables
of the PINN, and ¢}/ is the residual of the k-th equation at point 7.

For the PINN, a fully connected feed-forward network with tanh activation functions was utilized.
The model featured 40 neurons per layer on 24 hidden layers and was trained in two steps. Firstly,
the Adam optimizer was deployed for 100,000 iterations with a learning rate that started at 0.001 and
decreased by a factor of 0.9 every 2,000 iterations. Secondly, the L-BFGS optimizer was deployed. The
training was executed using the tensorflow-based library DeepXDE [20]. No simulated or measured
labeled data were provided during the training, rendering it an unsupervised learning approach. The
residuals were trained at 5°, 10°, and 15°. On each boundary, 2,000 points were randomly distributed
for each of the three AoA. On the channel walls, a slip wall condition was defined and at the outlet, a
pressure of zero was prescribed. Additionally, 30,000 points were randomly distributed inside the flow

d0i:10.20944/preprints202407.0959.v1
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domain for each of the three AoA to train the governing equations (1),(8), and (9). The total number of
training points represents the maximal problem size that could be processed on the 16 GB NVIDIA
Quadro RTX 5000 that was used for the training.

2.4. Reference Data

The predictions of the trained PINN were compared to the results of incompressible steady RANS
CFD calculations. For this purpose, the finite volume solver STAR-CCM+ was deployed. The low
Reynolds k-e model was selected and a second order upwind discretization scheme applied. The
domain had a span s = 0.2¢ with periodic lateral boundary conditions and was meshed using the
trimmed cell mesher. The mesh featured 15 prism layers on the airfoil and y* values below unity. To
assure the grid size independence of the solution, a sensitivity analysis was carried out using a grid
refinement factor of 1.3.

3. Results

The mixed-variable network successfully qualitatively captured all essential features of the
velocity field around the DU 99-W-350 airfoil. As displayed in Figure 2, the low velocities at the
stagnation region, the high velocities on the suction and pressure sides as well as a wake developing
on the trailing half of the airfoil were predicted. Moreover, the network recognized the increasing
size of the wake for increasing AoA. Additionally, a progressing flow blockage below the airfoil and
the consequently increasing velocity was captured. However, in comparison with the reference CFD
simulations, the thicknesses of the shear layers were overestimated. This is especially visible for the
shear layers of the wake. Consequently, the width of the wake was overestimated and region of
increased velocity below the airfoil was superseded upstream. Furthermore, the velocity on the suction
side was systematically underestimated by the PINN. This deviation was more pronounced for the
larger AoA.


https://doi.org/10.20944/preprints202407.0959.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2024 d0i:10.20944/preprints202407.0959.v1

60f13
PINN 5° CFD 5°
1.00 1.00
0.75 0.75
0.50 0.50
0.25 s 0.25 r—
0.00 ( > 0.00 ( ~
-0.25 ~ -0.25 ~
-0.50 -0.50
0.75 -0.75
-1.00 -1.00
L0 -05 00 05 10 15 20 25 3.0 -0 -05 00 05 10 15 20 25 3.0
uinm/s
PINN 10° CFD 10° 8
1.00 1.00 .
0.75 0.75 y
0.50 0.50 :
0.25 P 0.25 -~ :
0.00 't ) 0.00 " ~ 82
-0.25 ~- -0.25 - &8
-0.50 -0.50 -
0.75 -0.75 0.
-1.00 -1.00 o3
-0 05 00 05 1.0 15 20 25 30 -0 -05 00 05 1.0 15 20 25 30 49
-0.2
PINN 15° CFD 15°
1.00 1.00
0.75 0.75
0.50 0.50 P
0.25 a 0.25 .
0.00 0.00
-0.25 o \) -0.25 . S
-0.50 -0.50
-0.75 0.75
-1.00 -1.00
-0 05 00 05 1.0 15 20 25 30 -0 05 00 05 10 15 20 25 30

Figure 2. Velocity fields around the DU 99-W-350 airfoil for different angles of attack as predicted by
the PINN in comparison with the reference simulations.

The boundary layer on the suction side of the DU 99-W-350 airfoil was qualitatively captured
by the PINN, as visible in Figure 3. The PINN predicted the high gradient as well as the velocity
overshoot of the developing boundary layer and converged to the same velocity at the channel walls as
the reference CFD simulations. However, the magnitude of the velocity overshoot was underestimated.
While the PINN recognized a velocity maximum slightly increasing with the AoA, the underestimation
was more pronounced for an AoA of 15° than for 5°.
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Figure 3. Boundary layer on the suction surface of the DU 99-W-350 airfoil as predicted by the PINN
in comparison with the reference simulation. Left: Boundary layer at an angle of attack of 5° at 0.25c.
Right: Boundary layer at an angle of attack of 15° at 0.15c.
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The PINN trained to predict the flow field around the DU 91-W2-250 airfoil featured similar
predictions as the PINN trained on the DU 99-W-350 airfoil. The results are exhibited in Figure 4. As
for the other airfoil, the stagnation region, the high velocities on the upper and lower surface as well as
a wake were captured by the PINN. The PINN correctly predicted a less pronounced blockage effect
of the thinner airfoil and also captured the lower velocity on the pressure side of the less thick DU
91-W2-250 airfoil. Additionally, a wake progressing with the AoA was predicted. However, for the DU
91-W2-250 airfoil, the shear layers were overestimated and the velocity maxima were underestimated

as well.
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Figure 4. Velocity fields around the DU 91-W2-250 airfoil for different angles of attack as predicted by
the PINN in comparison with the reference simulations.

On the suction side of the DU 91-W2-250 airfoil, the high gradient as well as the velocity overshoot
of the boundary layer were qualitatively captured by the PINN, as visible in Figure 5. As for the other
airfoil, the magnitude of the velocity peak was underestimated by the neural network.
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Figure 5. Boundary layer on the suction surface of the DU 91-W2-250 airfoil as predicted by the PINN
in comparison with the reference simulation. Left: Boundary layer at an angle of attack of 5° at 0.25c.

Right: Boundary layer at an angle of attack of 15° at 0.15c.

Figures 6 and 7 display the predicted pressure fields corresponding to the predictions shown in
Figures 2 and 4, respectively. For both airfoils, the PINN predicted the high pressure of the stagnation
region at the leading edge and the low pressure regions on the suction and pressure sides of the airfoils.
The PINN also correctly predicted a decrease of the low pressure region on the lower suface of the
airfoil as well as a decrease of the pressure on the suction surface, progressing with AoA. However,
when compared to the reference simulations, the pressure magnitudes where underestimated.
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Figure 6. Pressure fields around the DU 99-W-350 airfoil for different angles of attack as predicted by

the PINN in comparison with the reference simulations.

The prediction biases as well as the effects of the AoA where also visible for the lift and drag
results. Figure 8 exhibits the lift and drag results of the PINNs in comparison with the reference data.
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As seen, the networks correctly captured an increase of lift and drag with the AoA. Moreover, the
PINNSs succesfully captured a higher drag induced by the thicker DU 99-W-350 airfoil. However, the
lift was underestimated and the drag was systematically overestimated. The underestimation of the
lift is in agreement with the underestimated pressure peaks on the suction surface of both airfoils,
visible in Figures 6 and 7.
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Figure 7. Pressure fields around the DU 91-W2-250 airfoil for different angles of attack as predicted by
the PINN in comparison with the reference simulations.
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Figure 8. Lift and drag results for both airfoils as predicted by the PINNs in comparison with the
reference data. Left: Lift. Right: Drag.

4. Discussion

The results of this study showed that the mixed-variable networks were capable to serve as
qualitative surrogate models to predict the Reynolds-averaged flow fields developing with the AoA.
The networks captured the essential flow features, lift and drag values increasing with the AoA,
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and recognized a higher drag of the thicker airfoil. However, there were significant quantitative
deviations from the reference CFD simulations as the extremes of the velocity and pressure fields were
underestimated and the shear layer thicknesses were overestimated. At this precision, the results could
not compete with traditional CFD calculations.

Sun et al. [29] conducted a similar study of a surrogate model also trained in an unsupervised
manner on the flow around an airfoil under variable AoA and reported very good agreements with
the reference solution. However, the Reynolds number of the problem was on the order of 10! and,
hence, very low. In our study, we investigated flows at a Reynolds number on the order of 10°. This
results in a more complicated optimization problem as the shear layers become much thinner and,
consequently, the gradients of the solution field become much steeper, the nonlinear convection terms
begin to dominate the RANS equations, and a turbulence model needs to be included that also adds to
the complexity of the system of equations. As reported by Harmening et al. [12], a surrogate model
of the DU 99 W-350 airfoil featuring very good agreement with the reference data could be obtained
when incorporating labeled data into the training routine. In fact, a majority of studies concerning
elevated Reynolds numbers applied PINNs while incorporating labeled data [5,7,11,12,15,22,23,34,35].

Rao et al. [3] reported a superior performance of a mixed-variable network trained in an unsuper-
vised manner on a laminar flow when compared with a traditional PINN. This finding was confirmed
by Harmening et al. [8], who reported a significantly increased performance for Reynolds-averaged
flows around cylinders. However, as evident by the findings of the present study as well as of [8], there
are further methodological improvements necessary when applying physics-informed deep learning
to flows at high Reynolds numbers without training data.

The deviations between the predictions and the reference solutions were due to turbulence
modeling deviations, training or optimization errors, and approximation errors. While the turbulence
modeling differences could be eliminated by applying two equation turbulence models such as the
k-e model, these were reported to be subject to stability issues during the training when applied with
or without labeled training data [8,12]. In fact, to the best knowledge of the authors, the only so far
reported successful applications of turbulence models to unsupervised physics-informed deep learning
were using the mixing length model [8,10]. Hence, development of a method to successfully apply
two equation turbulence models to physics-informed deep learning is a question for future research.
To reduce the training error, more sophisticated deep learning methods are required. Krishnapriyan
et al. [17] investigated failure modes of PINNs and reported improved results by using curriculum
learning. Other studies that focused improvements of PINN methods to tackle complex problems also
applied adaptive loss weighting and Fourier feature networks [33]. Besides, convolutional or U-Net
PINNSs [16,21,30,32,36], and distributed PINNs [4], among others, could potentially yield improved
predictions.

The investigated unsupervised physics-informed deep learning method showed to be capable to
qualitatively capture the flow fields and the underlying physics. Hence, the remaining improvements
are of quantitative nature. It is not clear if any of the above suggested enhanced methods or any other
method would bridge the remaining gap. However, as only quantitative and no more fundamental
changes to the predictions are required, to our eyes, further methodological work is worthwhile. Many
PINN studies focused on laminar flows at low Reynolds numbers. In contrast, the present work is
aimed to motivate methodological studies focused on Reynolds-averaged flows at elevated Reynolds
numbers due to the technical significance of such flows and the usefulness of corresponding surrogate
models which could make great use in the investigation and design of aerodynamic systems.

In fact, surrogate models based on physics-informed deep learning would feature several traits
that make them favorable when compared to traditional simulations. Firstly, no computational grid
needs to be constructed to train a PINN as the training points can be sampled randomly within the
domain. Secondly, the solution field is not subject to errors caused by a discretization scheme as the
deviations of the RANS equations can be obtained directly via backpropagation. Most importantly, as
shown by [2,10,28,28-30] and also visible from the results of the present work, PINNs could be used
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to solve several solution fields, corresponding to several settings of a parameter, simultaneously in
a single training instance. Furthermore, the trained PINNs can later be used to give a prediction for
arbitrary settings of said parameter. This is a fundamental advantage over traditional simulations that
can only be used to solve a single solution field in a single computational process. To obtain a solution
for a parameter setting not solved yet, a model would need to be fitted in a second step to several
independent solutions. However, as discussed above, further improvements of the physics-informed
deep learning method are necessary to obtain high fidelity PINN-based surrogate models.

5. Summary and Conclusions

In the present work, we explored the capabilities and limitations of mixed-variable networks to
serve as surrogate models of 2.5-dimensional flow fields around two airfoils under variable angles of
attack. The models were trained to solve the Reynolds-averaged Navier-Stokes equations incorporating
Prandtl’s mixing length model depending on the angle of attack. The main findings are summarized
as follows:

¢ Using the investigated method, it was possible to train a single network to learn the family of
flow fields corresponding to variable angles of attack between 5° and 15° without generation of
a computational grid. This is a substantial advantage over traditional solvers that could only
by used to calculate a single solution field for a single angle of attack at a time. After successful
improvement of the method, this trait would make physics-informed deep learning a powerful
tool for surrogate modeling.

® The models captured qualitative features of the high Reynolds number flow fields such as high
gradient boundary layers, stagnation regions, and wakes. Furthermore, the models recognized
lift and drag values increasing with the angle of attack and the higher drag of the thicker airfoil.
It is remarkable that all of these features were predicted without incorporating labeled reference data into
the training routine.

e However, compared to the reference simulations, the extremes of the velocity and pressure fields
were underestimated and the thicknesses of the shear layers were overestimated by the PINNS.
Consequently, the lift was underestimated and the drag was overestimated for both airfoils. With
the observed performance, PINNs can not currently compete with traditional computations in
terms of accuracy. The difficulty of the deep learning problem and the resulting limited accuracy
of the predictions is a consequence of the elevated Reynolds number of the problem. More work
is necessary to further develop the PINN-based surrogate method.

¢ Future studies should focus on successfully implementing two equation turbulence models and
reducing the training error by applying more advanced training methods. The present study is
aimed to outline the potential capabilities of simultaneous unsupervised physics-informed deep
learning and to encourage further research and methodological developments of the technique
under application to high Reynolds number flows.
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