Preprint Article Version 1 This version is not peer-reviewed

Influence of the processing conditions on the rheology and heat of decomposition of solution processed hybrid nanocomposites and implication to sustainable energy storage

Version 1 : Received: 11 July 2024 / Approved: 11 July 2024 / Online: 11 July 2024 (11:37:09 CEST)

How to cite: Andezai, A.; Iroh, J. O. Influence of the processing conditions on the rheology and heat of decomposition of solution processed hybrid nanocomposites and implication to sustainable energy storage. Preprints 2024, 2024070964. https://doi.org/10.20944/preprints202407.0964.v1 Andezai, A.; Iroh, J. O. Influence of the processing conditions on the rheology and heat of decomposition of solution processed hybrid nanocomposites and implication to sustainable energy storage. Preprints 2024, 2024070964. https://doi.org/10.20944/preprints202407.0964.v1

Abstract

This study investigates the properties of solution processed hybrid pol-yimide, PI nanocomposites containing a variety of nanofillers, including polyaniline copolymer modified clay, PNEA, nanographene sheets, NGS, and carbon nanotube sheet, CNT-PVDF, respectively. Through a series of experiments, the flow behavior of poly(amic acid), PAA solution and PAA suspension containing polyaniline copolymer modified clay, PNEA was determined as a function of the shear rate, processing temperature and polymerization time. It is shown that the neat PAA solution exhibited a complex rheological behavior ranging from shear thickening to New-tonian behavior with increasing shear rate and testing temperature. The presence of modified clay in PAA solution significantly reduced the viscosity of PAA. Differential Scanning Calorimetry (DSC) analysis show that polyimide-nanographene sheets, PI NGS nanocomposites processed at high spindle speed (100 rpm) had lower total heat of decomposition which is indicative of improved fire retardancy. The effect of processing temperature on the specific capacitance of polyimide-CNT-PVDF composites containing electrodeposited polypyrrole fillers was determined by using cyclic voltammetry, CV. It was shown that the hybrid composite working electrode material processed at 90˚C produced a remarkably higher overall stored charge when compared to the composite electrode material processed at 250˚C. Consequently, the specific capacitance ob-tained at a scan rate of 5 mV/s for the hybrid nanocomposite processed at 90°C was about 858 F/g after 1 cycle, which is about 6.3 times higher than the specific capacitance of 136 F/g produced by the hybrid nanocomposite processed at 250°C. These findings show that the properties of the hybrid nanocomposites are remarkably influenced by the processing conditions and highlights the need for process optimization.

Keywords

polyimide nanocomposites; Nanographene sheets; Carbon nanotube sheets; Intrinsic viscosity; Shear thickening; Total heat of decomposition; Cyclic voltammetry; Specific capacitance; Processing temperature

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.