Submitted:
16 July 2024
Posted:
18 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Subsection
- ▪
- Accuracy (P): Calculated as P=VP/(VP+FP), where VP are true positives and FP are false positives. Precision indicates the proportion of routes correctly identified as optimised or non-optimised.
- ▪
- CPU Consumption: Measured as a percentage of CPU usage during the execution of the algorithm. This data is crucial to evaluate the computational load imposed by the system.
- ▪
- Memory Consumption: Measured in megabytes (MB) or gigabytes (GB) used during the execution of the algorithm. Memory efficiency is vital to the scalability of the system.
- ▪
- Execution Time (TE): Calculated as TE=TF-TI, where TF is the final execution time and TI is the initial time. This value measures the total time it takes for the algorithm to optimise the routes, which is important for real-time applications.
- ▪
- Recall: Recall=VP/VP+FN, donde VP es el total de verdaderos positivos y FN son el total de falsos negativos, por lo que nos indica la cantidad que el metodo de autenticacion es capaz de reconocer correctamente.
3.2. Figures, Tables and Schemes
- ▪
- Método de Detección de Madurez
- ▪
- Precisión del Método:
- ▪
- Poco maduro:
- ▪
- Rompiendo maduro:
- ▪
- Maduro 01 Fase:
- ▪
- Maduro 02 Fase:
- ▪
- Demasiado maduro:

| Accuracy | Recall | F1-Score | Support | |
| Slightly mature | 0.95 | 1 | 0.94 | 10 |
| Breaking mature | 1 | 0.85 | 0.95 | 15 |
| Mature 01 Phase | 0.95 | 0.85 | 0.96 | 28 |
| Mature 02 Phase | 0.95 | 0.97 | 0.93 | 25 |
| Overripe | 0.85 | 0.97 | 0.95 | 30 |
| Accuracy | 0.96 | 24 | ||
| Macro Average | 0.97 | 0.94 | 0.95 | 24 |
| Weighted Average | 0.96 | 0.96 | 0.96 | 24 |
3.3. Formatting of Mathematical Components
4. Discussion
5. Conclusions
6. Recomendaciones
References
- K. H. y. S. K. B.-H. Cho, «Determination of “Hass” avocado ripeness during storage by a smartphone camera using artificial neural network and support vector regression,,» Journal of Food Measurement and Characterization, vol. 15, 2021. [CrossRef]
- R. -S. J. M. y. R. D.-R. S. A, «Impact of avocado ripening prediction accuracy on yield, quality, and consumer satisfaction,» Journal of Food Sciencie, vol. 1, nº 87, pp. 106-115, 2022.
- M. C. M. y. P. F. F. L. A. R, «Avocado ripening prediction: a review,» Postharvest Biolog and Technology, nº 200, pp. 105-314, 2021.
- M. P. J. G. y. M. H. L. M. R, «Machine learning for the prediction of avocado ripeness using a novel image-based approach,» Food Chemistry, 2023.
- M. R. L. y. G. B. H. J. J L, «Machine learning for the prediction of vocado ripeness based on physical, chemical, and biochemical characteristics,» Postharvest Biology and Technology, 2021.
- R. L. M. y. M. H. M. P. J G, «Machine learning for the prediction of vocado ripeness using a novel image-based approach,,» Food Chemistry, 2023.
- R. L. M. y. G. B. H. J L, «Maxhine learning for the prediction of avocado ripeness based on a combination of physical, chemical, and biochcemical characteristics,» Postharvest Biology and Technology, 2022.
- J. G. B. y. G. C. M. R. M L, «Machine learning for the prediction of avocado ripeness using a multi-sensor approach,» Sensors, 2022.
- K. M. R. P. y. G. C. P. S. L. D. Valiente, «Non-destructive Image Processing Analysis for Defect Identification and Maturity Detection on Avocado Fruit,» IEEE:10.1109/ICCIS53528.2021.9645970, pp. 175-179, 2021. [CrossRef]
- C. D. D. Y. y. J. F. Villaverde, «Avocado Ripeness Classification Using Graph Neural Network,» EEE - DOI:10.1109/ICCAE55086.2022.9762435, pp. 74-79, 2022. [CrossRef]
- M. L.-A. M. &. G.-C. M. González-Martínez, «Comparison of manual and machine learning methods for avocado ripening prediction,» Postharvest Biology and Technology, nº 105-365, p. 205, 2022.
- P. K. N. V. y. T. G. G. Surekha, «Hybrid Image Classification Model usando ResNet101 y VGG16,» Segunda Conferencia Internacional sobre Computación e Inteligencia Artificial Aplicadas (ICAAIC) IEEE, pp. 729-734, 2023.
- J. Yang, «Real Time Object Tracking Using OpenCV,» IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA),, pp. 1472-1475, 2023.
- S. C. y. G. V. S. van der Walt, «The NumPy Array: A Structure for Efficient Numerical Computation,,» Computing in Science & Engineering,IEEE, vol. 13, nº 2, pp. 22-30, 2020. [CrossRef]
- P. R. y. C. S. P. Xavier, «Hass’ Avocado Ripening Photographic Dataset,» Mendeley Data, 2024. [CrossRef]
- R. A. Velasquez, «Avocado visual selection with convolutional neural networks based on Peruvian Standards,» International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1-4, 2022.
- J. Agudelo, « PROPOSAL FOR A CLASSIFIER OF THE DEGREE OF MATURITY OF AVOCADO,” UNIVERSIDAD TECNOLOGICA DE PEREIRA, 2020.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).