Preprint Article Version 1 This version is not peer-reviewed

A Techno-Economic Assessment of DC Fast Charging Stations with Storage, Renewable Resources and Low-Power Grid Connection

Version 1 : Received: 16 July 2024 / Approved: 17 July 2024 / Online: 17 July 2024 (08:11:42 CEST)

How to cite: Singh, G.; D'Arpino, M.; Goveas, T. A Techno-Economic Assessment of DC Fast Charging Stations with Storage, Renewable Resources and Low-Power Grid Connection. Preprints 2024, 2024071374. https://doi.org/10.20944/preprints202407.1374.v1 Singh, G.; D'Arpino, M.; Goveas, T. A Techno-Economic Assessment of DC Fast Charging Stations with Storage, Renewable Resources and Low-Power Grid Connection. Preprints 2024, 2024071374. https://doi.org/10.20944/preprints202407.1374.v1

Abstract

The growing demand for high-power DC Fast Charging (DCFC) stations for Electric Vehicles (EVs) is expected to lead to increased peak power demand and reduction of grid power quality. To maximize the economic benefits and station utilization under practical constraints set by regulatory authorities and DCFC station operators, this study explores and provides methods for connecting DCFC stations to the grid employing low power interconnection rules and Distributed Energy Resources (DERs). The system uses automotive Second Life Batteries (SLBs) and Photovoltaic (PV) systems as energy buffers and local energy resource to support EV charging and improve the station techno-economic feasibility through load shifting and charge sustaining. The optimal sizing of the DERs and the selection of the grid interconnection topology is achieved by means of a Design Space Exploration (DSE) by means of exhaustive search approach to maximize the economic benefits of the charging station and to mitigate high-power demand to the grid. Without loosing of generality, this study considers a range of DER sizes, grid interconnection specifications, and related electricity tariffs of American Electric Power (AEP) Ohio and the Public Utility Commission of Ohio (PUCO). Various scenarios and strategies have been defined to account for the interconnection requirements of the grid to the DCFC with DERs. The system’s techno-economic performance of different scenarios has been analyzed and compared using a multitude of metrics.

Keywords

DC Fast Charging; Electric Vehicles; Second Life Automotive Batteries; Renewable Resources; Microgrid

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.