Preprint Article Version 1 This version is not peer-reviewed

Mathematical Symphonies in Copper Oxide: A Graph Entropy Approach to Topological Analysis and Applications

Version 1 : Received: 17 July 2024 / Approved: 18 July 2024 / Online: 18 July 2024 (12:26:14 CEST)

How to cite: Ali, N.; Zakir, M. S.; Arshad, M.; Naseer, M. K. Mathematical Symphonies in Copper Oxide: A Graph Entropy Approach to Topological Analysis and Applications. Preprints 2024, 2024071499. https://doi.org/10.20944/preprints202407.1499.v1 Ali, N.; Zakir, M. S.; Arshad, M.; Naseer, M. K. Mathematical Symphonies in Copper Oxide: A Graph Entropy Approach to Topological Analysis and Applications. Preprints 2024, 2024071499. https://doi.org/10.20944/preprints202407.1499.v1

Abstract

In the realm of molecular science, intricate relationships between molecular structures and their biomedical and pharmacological characteristics have been revealed through empirical experiments. This exploration hinges on the application of numerical descriptors, known as Topological Indices, which illuminate the inherent properties of diverse molecular structures. With particular significance in the medical and pharmaceutical domains, these indices facilitate the prediction of biological features for new chemical compounds and drugs by quantifying weighted entropies. In the context of this paper, we delve into the concept of graph entropy, weaving it intricately with the topological properties of the crystalline framework of the copper oxide molecule, denoted as Cu\textsubscript{2}O$[i,j,t]$. Our primary objective is to unravel the mathematical symphony underlying the structural intricacies of Cu\textsubscript{2}O$[i,j,t]$ and to imbue it with the conceptual essence of entropy. We accomplish this through the computation of entropy, leveraging various topological indices, including weight. In addition to our analytical journey, we present a graphical comparison that juxtaposes the computed indices and entropies, shedding light on the interplay between mathematical analysis and the structural elegance of Cu\textsubscript{2}O$[i,j,t]$. This endeavor contributes to a deeper understanding of the material's multifaceted applications, spanning domains from chemical sensors to solar cells, photocatalysis, and batteries, where Cu\textsubscript{2}O's crystallographic structure plays a pivotal role.

Keywords

Entropy; Topological indices; entropy measure; Weighted entropies of Copper Oxide; Crystallographic structure; Entropy of Copper Oxide; Graph theory

Subject

Computer Science and Mathematics, Discrete Mathematics and Combinatorics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.