Preprint
Article

Confirming the Possible Occurrence of Cold Nuclear Fusion with Improved Strong and Electroweak Nuclear Binding Energy Formula

Altmetrics

Downloads

85

Views

45

Comments

0

This version is not peer-reviewed

Submitted:

21 July 2024

Posted:

22 July 2024

You are already at the latest version

Alerts
Abstract
In our recent publications pertaining to 4G model of final unification and based on strong and electroweak interactions, we have developed a completely new formula for estimating nuclear binding energy. With reference to currently believed Semi Empirical Mass Formula (SEMF), we call our formula as ‘Strong and Electroweak Mass Formula’ (SEWMF). Our formula constitutes 4 simple terms and only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. Considering this kind of approach, nuclear structure can be understood in terms of strong and weak interactions and cold nuclear fusion like complicated concepts can be understood in a theoretical approach positively. In this paper, by considering the accountability of we are making an attempt to improve the applicability and effectiveness of SEWMF. Number 0.00125 being a workable electroweak coefficient for Z=6 to 132 and A=2Z to 3.5Z, number of free nucleons assumed to be associated with electroweak interaction can be expressed as Improved asymmetry term can be expressed as, where represents the light house like stable mass number. With reference to old version, our improved binding energy formula can be expressed as, We are working on its possible modification for mass numbers less than the stable mass numbers. Following this approach, it is possible to show that nuclear binding energy scheme is associated with strong and weak interactions and is practically independent of Coulombic repulsions. Proceeding further, currently believed cold nuclear fusion assumed be associated with hydrated metals can be understood and can be confirmed with strong and weak interactions independent of coulombic repulsions. We are very confident to say that our approach will certainly motivate modern science community in this new direction.
Keywords: 
Subject: Physical Sciences  -   Nuclear and High Energy Physics

1. Introduction

With reference to our 4G model of final unification, in our recent publications [1,2,3,4,5,6,7,8,9,10,11,12], we have developed a new formula for estimating nuclear binding energy [13,14,15,16,17,18,19,20,21,22,23,24] in terms of strong and electroweak interactions [25]. Our formula constitutes 4 simple terms and only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. Considering this kind of approach, nuclear structure can be understood in terms of strong and weak interactions and cold nuclear fusion like complicated concepts [26,27,28,29,30,31,32,33] can be understood in a theoretical approach positively.
In this paper, we make an attempt to develop another workable formula for the electroweak term based on β 1 N Z / A 2 . Proceeding further, asymmetry term seems to be effective with an expression of the form A a s y m β A s A / A s 2 where A s represents light house like stable mass number. Following the success of our formulae, we are working on developing new formulae for estimating free nucleons by implementing the basic concepts of Liquid drop model [13,14,15,16,17].

2. Three assumptions of 4G model of final Unification

Following our 4G model of final unification [1,2,3,4,5,6,7,8,9,10,11,12]
(1)
There exists a characteristic electroweak fermion of rest energy, M w f c 2 584.725   GeV . It can be considered as the zygote of all elementary particles.
(2)
There exists a nuclear elementary charge in such a way that, e e n 2 α s 0.1152 = Strong coupling constant and e n 2.9463 e .
(3)
Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are,
G e Electromgnetic   gravitational   constant 2.374335 × 10 37   m 3 kg - 1 sec - 2 G n Nuclear   gravitational   constant 3.329561 × 10 28 m 3 kg - 1 sec - 2 G w Electroweak   gravitational   constant 2.909745 × 10 22   m 3 kg - 1 sec - 2
It may be noted that,
(1)
Weak interaction point of view, following our assumptions, Fermi’s weak coupling constant can be fitted with the following relations.
G F m e m p 2 c R 0 2 G w M w f 2 R w 2   1.44021 × 10 62   J . m 3 where ,   R 0 2 G n m p c 2 1 . 24   × 10 15   m   R w 2 G w M w f c 2 6.75 × 10 19   m
(2)
In a unified approach, most important point to be noted is that [10],
  c G w M w f 2
Clearly speaking, based on the electroweak interaction, the well believed quantum constant c seems to have a deep inner meaning. Following this kind of relation, there is a possibility to understand the integral nature of quantum mechanics with a relation of the form,   n 2 G w n M w f 2 c   where   n = 1 , 2 , 3 , .. It needs further study with reference to EPR argument [34,35,36,37] and [1,38].

3. Understanding the Mechanism of Cold Nuclear Fusion Associated with Iron-56 and Hydrogen

In our recent publications [26,27], we have clearly explained the origin of the mystery of hidden energy liberation mechanism of cold nuclear fusion associated with hydrated metals. Proceeding further, we have shown the possibility of considering Iron-56 as a cold nuclear fuel. In this paper, we try to show that, cold nuclear fusion is associated with strong and weak interactions and is practically independent of coulombic repulsions. In this section, we briefly outline the mechanism of cold nuclear fusion assumed to be associated with Iron-56 and Hydrogen.
(1)
By virtue of electroweak interaction, on absorbing Hydrogen atom in the form of a neutron, (super fine powder of semi liquid) Iron-56 becomes Iron-57 and liberates thermal energy.
(2)
During the neutron absorption process, Iron-56 gains an energy of 8.8 MeV (theoretical maximum binding energy per nucleon).
(3)
Within a short time interval, Iron-56 of binding energy 492.26 MeV transforms to Iron-57 of binding energy 499.91 MeV.
(4)
Thus, with no net increase in internal kinetic energy of Iron-57 nucleons, a maximum possible thermal energy of [8.8 – (499.91 - 492.26)] MeV = 8.8 - 7.65 = 1.15 MeV can be expected.
(5)
As Iron-56 and Iron-57 are naturally available and stable against nuclear radiations, there exists no chance for emission of hazardous radiation in Iron-56 to Iron-57 transformation.
(6)
To confirm our ideology, we appeal the nuclear scientists to see the possibility of bombarding liquid or semi liquid form of super fine Iron-56 powder with direct neutrons coming from neutron generators.
Thinking in this way, it seems possible to consider Magnesim-24 as a cold nuclear fuel. If so, as melting point of Magnesium is less than the melting point of Iron, working temperature of cold nuclear fusion process can be reduced further. It may help in minimizing energy losses and needs further study.

4. Understanding the Electroweak Term and Number of Free Nucleons

Our basic idea is that, all the nucleons are not participating in the nuclear binding energy scheme and non-participating nucleons can be called as ‘Free nucleons’. These free nucleons revolve round the nuclear core. Each free nucleon reduces the nuclear binding energy by 10.1 MeV. Protons and neutrons jointly play a crucial role in fixing the number of free nucleons. Electroweak interaction is having a key role in understanding free nucleons and nuclear stability against beta decay. In this context, we noticed that,
m p M w f m π c 2 0 m π c 2 ± m z c 2 0 m w c 2 ± 134.98 × 139.57   MeV 80379.0 × 91187.6   MeV 0.0016032
Here ratio of rest mass of proton to the assumed electroweak fermion is equal to the ratio of mean mass of pions to the mean mass of electroweak bosons. Based on this unique and concrete observation, we are very confident to say that, strong and weak interactions play a vital role exploring the secrets of nuclear structure. In our previous research articles [1,2,3,4,5,6,7,8,9,10,11,12], we have proposed the following first three formulae for the electroweak term.
Formula-1
A f r e e 2 N Z + 0.0016 Z 2 + A 2 2 2 N Z + 0.0008 Z 2 + A 2
Problem with this relation is that, as Z is increasing, at lower mass numbers of any Z, estimated binding energy seems to be on higher side compared to actual binding energies.
Formula-2
A f r e e 2 N Z + 0.0016 Z 2 + N 2 + Z 2 N 2 A 2 Z 2 2 2 N Z + 0.0016 3 4 N 2 + 3 4 + Z 2 N 2 Z 2 + N Z 2
Problem with this relation is that [2], number of terms are increasing and becoming complicated.
Formula-3
A f r e e 2 N Z + 0.0016 Z 2 + N 2 + Z 2 N 2 Z N N Z A 2
Even though it is complicated, advantage of this relation is that, Z N N Z A 2 Z N N Z N + Z 2 seems to have an interesting role with respect to isospin concept. With further study, it can be modified as Z 2 N Z N + Z 2 and N 2 N Z N + Z 2 . This relation can be given a good priority in developing other possible formulae. Its early preprint version associated with Z 2 N Z N + Z 2 can be available at https://ssrn.com/abstract=4617769. We are working on publishing this relation (6) with a ground work on estimating the electroweak term based on the liquid drop model dependent volume and surface area concepts applicable to nucleons as well as protons and neutrons independently.
Formula-4
In this paper, we propose another simple relation having only 3 terms in the following way.
A f r e e 1 2 + 0.00125 A 2 Z N + Z A Z 2 N 2
In this relation, the proposed coefficient Υ 0.00125 is based on trial-error with an approximation. It can be understood with the mass ratio of nucleon mass difference to the electron mass. See section (7). Interesting point is that, for Z=6 to 132, the coefficient 0.00125 seems to be a constant. It needs further study. To extend its applicability and validity of relation (7), we consider β 1 N Z A 2 as an extrapolating factor for A=2Z to 3.5Z.
A f r e e 1 2 + 0.00125 β A 2 Z N + Z A Z 2 N 2

5. Understanding nuclear stability against beta decay

Based on the proposed electroweak coefficient 0.0016, approximate stable mass number of any proton number against beta decay can be estimated with a simple relation of the form,
A s 2 Z + 0.0016 2 Z 2 2 Z + 0.0064 Z 2 A s 2 Z 4 Z 2 0.0016
One can find a similar relation in the literature [16]. This relation can be well tested for Z=21 to 92. For example,
45 2 × 21 4 21 2 0.00170 ; 63 2 × 29 4 29 2 0.00149 ;   89 2 × 39 4 39 2 0.00181 ; 109 2 × 47 4 47 2 0.0017 ; 169 2 × 69 4 69 2 0.00163 ; 238 2 × 92 4 92 2 0.001595 ;  
This is one best practical and quantitative application of our proposed electroweak fermion and bosons. Following this relation and based on various semi empirical mass formulae [13,14,15,16,17,18,19], by knowing any stable mass number, its corresponding proton number can be estimated with,
Z A s 1 + 1 + 0.0064 A s A s 2 + 0.0153 A s 2 / 3
where   a c 2 a a s y 0.71   MeV 2 × 23.21   MeV 0.6615   MeV 2 × 21.6091   MeV 0.0153
For super heavy atomic nuclides [39], estimated A s seems to be on higher side compared to modern estimates. Hence, we have developed another simple formula.

6. An Alternative Formula for Stable Mass Numbers

Independent of electroweak interaction, the ratio of proposed nuclear charge to electromagnetic charge seems to play a crucial role in understanding and estimating the approximate stable mass number of any atomic nuclide having a proton number Z. Our estimated mass number close to stability can be called as ‘light house (like) mass number’ where one can find the beginning of relatively long living isotopes of Z compared to its lower mass numbers. Keeping light and heavy atomic nuclides in view, we suggest a common and simple relation of the form [6],
A s RoundOff Z + e n e 1.2 e n e RoundOff Z + 2.9463 1.2 1.7165   where   e n e 1 6 1 α s 1 12 1.19733 1.2
Here one can see the direct role of the proposed nuclear elementary charge and strong coupling constant in understanding nuclear stability.
It may be noted that, right selection of stable mass number greatly helps in minimizing the error in estimating nuclear binding energy. Especially, for light atomic nuclides, whose stable mass number is very close to 2Z, estimated binding energy seems to be on lower side compared to actual binding energy. Hence, it seems better to select stable mass number of Z based on their relative time of living. Considering even-odd corrections, above relation can be refined for a better understanding in the following way. It can be reviewed in a better way with further study.
1 )   If   Z   is   even   and   obtained   A s   is   odd ,   then ,   A s A s + 1. 2 )   If   Z   is   even   and   obtained   A s   is   even ,   then ,   A s A s . 3 )   If   Z   is   odd   and   obtained   A s   is   odd ,   then ,   A s A s . 4 )   If   Z   is   odd   and   obtained   A s   is   even ,   then ,   A s A s + 1.
A s RoundOff Z + 2.9463 1.2 1.7165 + E O   correction 0 , 1
Following this relation, for odd elements including super heavy atoms, their best possible three mass numbers can be expressed as,
A s RoundOff Z + 2.9463 1.2 1.7165 + 0 , 1 + 2 n   where   n = 0 , 1 , 2
Based on the concept of ‘binding energy per nucleon=BE/A’, we noticed that,
(1)
For light and medium atomic numbers, when the increasing excess neutron number approaches the estimated number of free nucleons – mass number approaches the estimated light house like estimated stable mass number and (BE/A) reaches a maximum value.
(2)
For heavy and super heavy atomic numbers, when the increasing excess neutron number approaches the estimated number of free nucleons – mass number crosses the estimated light house like stable mass number and (BE/A) starts to decrease from the maximum BE/A.
(3)
Thus, in case of isotopes of light and medium proton numbers, estimated light house like stable mass number seems to be an index of beginning range of maximum BE/A and in case of isotopes of heavy and super heavy proton numbers, estimated light house like stable mass number seems be an index of ending range of maximum BE/A.
(4)
Thus, above points seems to be in-line with currently believed nuclear binding energy scheme.
Hence, for heavy and super heavy atoms, range of possible mass numbers can be understood with a relation of the form,
A s RoundOff Z + 2.9463 1.2 1.7165 + 0 , 1 2 n   where   n = 0 , 1 , 2
Thus, a range of heavy and super mass numbers can be understood with
A s RoundOff Z + 2.9463 1.2 1.7165 + 0 , 1 2 n where   n = 0 , 1 , 2
Based on the semi empirical mass formulae [13,14,15,16,17,18,19,20,21], for these estimated range of mass numbers, we noticed that,
Z A s 2 + 0.0153 A s 2 / 3
It may be noted that,
(a)
By adding 0, 2 and 4 to the even-odd corrected mass number, odd proton’s 2 expected stable mass numbers above the estimated light house like stable mass number can be estimated.
(b)
By subtracting 0, 2 and 4 from the even-odd corrected mass number, odd proton’s 2 expected stable mass numbers below the estimated light house like stable mass number can be estimated.
(c)
Following the same procedure, super heavy even proton numbers’ best possible range of mass numbers can be estimated.
(d)
With further study and replacing the power factor of Z + 2.9463 with its best experimental value associated with strong coupling constant or customized values like 1.195, 1.196, 1.197… etc, possible heavy and super heavy lower mass numbers can be estimated.
(e)
In Table 1, we have presented the estimated light house like mass numbers of Z = 6 to 118. Following the above points, super heavy atomic nuclides’ possible mass number range can be understood. Here we would like to highlight the point that compared to other mass numbers, these mass numbers can have relatively long living time. It needs further study, experimental design, set up and observations. For example,
1) Mass numbers of Z=100: 254 to 262
2) Mass numbers of Z=101: 257 to 265
3) Mass numbers of Z=102: 260 to 268
4) Mass numbers of Z=103: 265 to 273
5) Mass numbers of Z=104: 268 to 276
6) Mass numbers of Z=105: 271 to 279
7) Mass numbers of Z=106: 274 to 282
8) Mass numbers of Z=107: 277 to 285
9) Mass numbers of Z=108: 280 to 288
10) Mass numbers of Z=109: 283 to 291
11) Mass numbers of Z=110: 286 to 294
12) Mass numbers of Z=111: 289 to 297
13) Mass numbers of Z=112: 292 to 300
14) Mass numbers of Z=113: 295 to 303
15) Mass numbers of Z=114: 298 to 306
For the case of currently believed heavy magic proton number, Z=114, its estimated mass number range is 298 to 306. Here it is quite interesting to note that, lower mass number is 298 and its corresponding neutron number is 298-114=184 and is nicely matching with the currently believed heavy magic neutron number at 184. Thus, Z=114 and A=298 can be given a strong priority for its experimental identification as a doubly magic super heavy atomic nuclide [40].

7. Improved Electroweak Term and the Modified Strong and Electroweak Mass Formula

For Z=6 to 132, improved binding energy relation can be expressed as,
B E A A f r e e A r a d i a l A a s y m B 0 10.1   MeV A 1 2 + 0.00125 β A 2 Z N + Z A Z 2 N 2 ¯ ¯ A 1 / 3 β A s A 2 A s 10.1   MeV   where   β 1 N Z A 2
where, A × 10.1   MeV represents the volume term
A f r e e × 10.1   MeV represents the modified electroweak term
A r a d i a l × 10.1   MeV represents the radial term
A a s y m × 10.1   MeV represents the modified asymmetry term
B 0 1 α s e 2 8 π ε 0 / m p c e n 2 8 π ε 0 G n m p / c 2 10.1   MeV where α s = Strong   coupling   constant 0 . 115   to   0 . 12   / m p c   =   Reduced   Comption   wavelength   of   proton G n m p / c 2 0.62 × 10 15 m
With reference to old version, our improved binding energy formula can be expressed as, B E A β A f r e e A r a d i a l β A a s y m 10.1   MeV .
For evaluating the effectiveness of relation (17), we consider the following advanced relation (18) as a reference [19].
B E 1 + 4 k v A 2 T z T z + 1 a v * A + 1 + 4 k s A 2 T z T z + 1 a s * A 2 3 + a c * Z 2 A 1 / 3 + f p * Z 2 A + E p
where, T z 3 rd   component   of   isospin   = 1 2 Z N
a v = 15.4963   MeV ,   a s = 17.7937   MeV k v = 1.8232 ,   k s = 2.2593 a c = 0.7093   MeV ,   f p = 1.2739   MeV d n = 4.6919   MeV ,   d p = 4.7230   MeV d n p = 6.4920   MeV   and   for   Z ,   N     Odd ,   E p d n N 1 / 3 + d p Z 1 / 3 + d n p A 2 / 3 for   Odd   Z ,   Even   N   ,   E p d p Z 1 / 3 for   Even   Z ,   Odd   N   ,   E p d n N 1 / 3 for   Even   Z ,   Even   N   ,   E p 0
Close to the stable mass numbers, our formula can be expressed as,
B E A A f r e e A r a d i a l B 0 10.1   MeV A 1 2 + 0.00125 β A 2 Z N + Z A Z 2 N 2 ¯ ¯ A 1 / 3 10.1   MeV   where   β 1 N Z A 2   and   A a s y m β A s A 2 A s 0
In a comparative approach, close to the estimated light house like stable mass numbers and considering relations (8), (12), (17) and (18), we present Table 1 for clarity and understanding. See Table 2 for the estimated binding energy of isotopes of Z=6, 20, 34, 48, 62, 76, 90, 104,118,132.

8. Brief Discussion on the Electroweak Term and Its Coefficient with Respect to Beta Decay Mechanism

Above proposed electroweak term can be understood in the following way.
Since A 2 Z N Z 2 + N 2 + Z N , ignoring the factor 1 2 , close to the line of stability, relation (8) can be expressed as.
A f r e e 0.00125 β Z 2 + N 2 + Z N + Z A Z 2 N 2 0.00125 2 β 2 Z 2 + N 2 + 2 Z N + 2 Z A Z 2 N 2 0.00125 2 β Z 2 + N 2 + A 2 + 2 Z A Z 2 N 2 0.000625 β Z 2 + N 2 + A 2 + 2 Z A Z 2 N 2
We have noticed that, the coefficient 0.000625 seems to be connected with the assumed electroweak coefficient 0.0016 in the following way.
With reference to Beta decay, one can define a mass ratio as,
r β m n c 2 m p c 2 m e c 2 1.2933   MeV 0.511   MeV 2.531
where m n , m p , m e represent neutron, proton and electron rest masses respectively.
Based on this ratio, we noticed that,
0.0016 r β 0.0016 2.531 0.0006322
Thus, with reference to beta stability line, close to stable mass numbers, free nucleon number can be expressed as,
A f r e e 0.0006322 β Z 2 + N 2 + A 2 + 2 Z A Z 2 N 2
Based on this relation (23), relation (8) can be expressed as,
A f r e e 1 2 + 0.000625 β Z 2 + N 2 + A 2 + 2 Z A Z 2 N 2
By considering this kind of approach, it seems logical to consider the coefficient 0.0016 r β 0.0016 2.531 0.0006322 as a characteristic coefficient associated with the beta decay mechanism. With reference to nuclear volume, surface area and radius, minimum number of free nucleons seem to have some interconnection with electroweak interaction and beta decay and its approximate relation can be expressed as,
A f r e e min 0.0006322 A + A 2 / 3 + A 1 / 3 2
Thus, corresponding maximum binding energy assumed to be associated with A can be approximated with,
B E A max A 0.0006322 A + A 2 / 3 + A 1 / 3 2 A 1 / 3 where   A s A 2 A s 0   sin ce   A s A Z A s + 1.7 1 1.2 3   sin ce   2 . 9463 3   and   2 . 9463 1 . 7 and   ignoring   even - odd   corrections
With a systematic research and applicable corrections, this kind of relation can be applied for the whole range of atomic nuclides for understanding and testing. See the following Table 3. for the estimated binding energy of A=4 to 405. It may be noted that, except for A=4, our estimation is marginally is good for all mass numbers.
Considering relation (26), in terms of Z, N and A, nuclear binding energy can be approximated with,
B E A 1 2 + Υ Z β A + N 2 / 3 + Z 2 / 3 2 A 1 / 3 β A s A 2 A s 10.1   MeV   where   Υ Z 0.000625 1 + 0.000625 Z
We are working in this direction also.

9. Discussion and Results

Interesting points to be noted are,
(1)
Nuclear binding energy can be understood with one unique energy coefficient and four simple terms.
(2)
Selecting multiple energy coefficients and arbitrariness in selecting various energy coefficients can be minimized.
(3)
Without considering the famous coulombic term, nuclear binding energy can be understood with (95 to 100)%.
(4)
Estimated light house like stable mass number plays a vital role in understanding the binding energy of isotopes.
(5)
Strong interaction plays a vital role in understanding the increasing nature of nuclear binding energy.
(6)
Electroweak interaction plays a vital role in understanding the decreasing nature of nuclear binding energy.
(7)
Nuclear radius associated with nucleon number plays a direct role in reducing the nuclear binding energy. It is very significant in case of light atomic nuclides.
(8)
Considering isotopes, asymmetry about the mean mass number or light house like stable mass number plays a vital role in reducing the (isotopic) nuclear binding energy of mass numbers below and above the mean mass number.
(9)
For increasing Z and A, some of the nucleons are free and not involved in nuclear binding energy scheme.
(10)
For light atomic stable nuclides, free nucleon number is on lower side and most of the nucleons are within the core and tightly bound to each other.
(11)
Increased number of free nucleons will reduce the binding energy in a significant manner.
(12)
There is a scope for the free nucleons to revolve round the nuclear core.
(13)
For semi stable or unstable atomic nuclides, there is a probability for one or two free nucleons to go-in and come-out of the nuclear core.
(14)
Process of in going and out coming of free nucleons around the nuclear core, may result in increasing or decreasing the total binding energy with an order of (5 to 10) MeV.
(15)
Considering isotopes, as (Z and A) are increasing, close to the estimated light house like stable mass number, excess neutron number seems to approach the corresponding free nucleon number and binding energy per nucleon seems to approach the beginning point or seems to leave the ending point of very narrow range of maximum BE/A of the isotopes.
(16)
We are sincerely working on convincing mainstream scientists in this new direction. In this context, we appeal for their self interest and encouragement in considering our three assumptions applicable for low energy nuclear physics. In particular, existence of electroweak fermion of rest energy 585 GeV seems to be a fundamental concept and its identification seems to bring a big change in modern thinking on Higgs boson physics [4,25,41,42].
(17)
As cold nuclear fusion is assumed be associated with stable metals, our proposed relation (19) can be given some consideration in understanding and estimating the nuclear binding energy of stable metals independent of coulombic repulsions.
(18)
Most important point of concern, close to stable mass numbers, as per relations (19) and (20), coulombic part that is trying to reduce the nuclear binding energy is 0.000625 β Z 2 1 + 2 Z 3 A N 2 10.1   MeV .   With reference to the assumed volume energy of A × 10.1   MeV , ratio of coulombic part to volume part can be expressed as 0.000625 β Z 2 A 1 + 2 Z 3 A N 2 .   For the case of Iron having Z=26,N=30 and A=56, 0.000625 β Z 2 A 1 + 2 Z 3 A N 2   0 . 0127 = 1 . 274 % . This kind of analysis may help in understanding actual impact of currently believed coulombic repulsion scheme.
(19)
Following the background physics as explained in the above sections, we are confident to say that, Cold nuclear fusion can be considered as an attractive phenomenon between medium size atomic nuclides and hydrogen atom under strong and weak interaction schemes.
(20)
It may be noted that, developed countries like USA, many European countries, Russia and Japan directly and indirectly spending million dollars in exploring the possible occurrence of cold nuclear fusion. If our proposed cold nuclear concept is found to be true on theoretical background, it may not be difficult to design, set up and execute repeatable experiments on hydrated metals in view of the possible occurrence of cold nuclear fusion with liberation of green thermal energy [26,27,28,29,30,31,32,33]. Just it needs to build positive thoughts among mainstream scientists on cold nuclear fusion. We are very confident to say that, our approach will certainly motivate the modern science community in this direction.

10. Conclusion

Considering our improved Strong and Electroweak Mass Formula, proposed electroweak and asymmetry terms seem to be simple and workable and needs a fine tuning based on applicable microscopic corrections. We are working on its possible minor modification for mass numbers less than the stable mass numbers. Our proposal is very much connected with unification of low energy and high energy branches of nuclear physics. With mainstream scientists’ involvement, further research can be carried out in a fruitful manner. Proceeding further, cold nuclear fusion concepts can be understood in a theoretical approach positively. It may help in solving the major issues connected with increasing energy demand, increasing scarcity of fossil fuels, increasing environmental pollution and global warming.

Acknowledgements

Author Seshavatharam is indebted to professors Shri M. Nagaphani Sarma, Chairman, Shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject.

References

  1. Seshavatharam U.V.S and Lakshminarayana S. Understanding the Origins of Quark Charges, Quantum of Magnetic Flux, Planck’s Radiation Constant and Celestial Magnetic Moments with the 4G Model of Nuclear Charge. Current Physics. 1, 1-26, 2024. (In press).
  2. Seshavatharam U.V.S and Lakshminarayana S. Exploring condensed matter physics with refined electroweak term of the strong and electroweak mass formula. World Scientific News.193(2) 105-13, 2024.
  3. Seshavatharam U.V.S and Lakshminarayana S. Inferring and confirming the rest mass of electron neutrino with neutron life time and strong coupling constant via 4G model of final unification. World Scientific News 191, 127-156, 2024.
  4. Seshavatharam U. V. S., Gunavardhana Naidu T and Lakshminarayana S. 2022. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451 p 020003.
  5. Seshavatharam U V S and Lakshminarayana S. 4G model of final unification – A brief report Journal of Physics: Conference Series 2197 p 012029, 2022.
  6. Seshavatharam U.V.S and Lakshminarayana. Understanding nuclear stability range with 4G model of nuclear charge. World Scientific News. 177, 118-136, 2023.
  7. Seshavatharam U. V. S and Lakshminarayana S., H. K. Cherop and K. M. Khanna, Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022.
  8. Seshavatharam U.V.S and Lakshminarayana, S., On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Binding Energy Scheme. Mapana Journal of Sciences, 20(1), 1-18, 2021. [CrossRef]
  9. Seshavatharam U.V.S and Lakshminarayana S., Strong and Weak Interactions in Ghahramany’s Integrated Nuclear Binding Energy Formula. World Scientific News, 161, 111-129, 2021.
  10. Seshavatharam U.V.S and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 19,1,1, 2020.
  11. Seshavatharam U.V.S and Lakshminarayana S.A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. Proceedings of the DAE Symp. on Nucl. Phys. 67,1173, 2023.
  12. Seshavatharam U.V.S and Lakshminarayana S. Understanding Super Heavy Mass Numbers and Maximum Binding Energy of Any Mass Number with Revised Strong and Electroweak Mass Formula. Preprints 2024, 2024051928.
  13. Bethe H. A. Thomas-Fermi Theory of Nuclei. Phys. Rev., 167(4), 879-907, 1968. [CrossRef]
  14. Myers W. D. and Swiatecki W. J. Nuclear Properties According to the Thomas-Fermi Model.LBL-36557 Rev. UC-413, 1995. [CrossRef]
  15. Myers W. D. and Swiatecki W. J. Table of nuclear masses according to the 1994 Thomas-Fermi model. United States: N. p., 1994. Web.
  16. P.R. Chowdhury, C. Samanta, D.N. Basu, Modified Bethe– Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A 20, 1605–1618, 2005. [CrossRef]
  17. G. Royer, On the coefficients of the liquid drop model mass formulae and nuclear radii. Nuclear Physics A, 807, 3–4, 105-118, 2008. [CrossRef]
  18. Djelloul Benzaid, Salaheddine Bentridi, Abdelkader Kerraci, Naima Amrani. Bethe–Weizsa¨cker semiempirical mass formula coefficients 2019 update based on AME2016.NUCL. SCI. TECH. 31:9, 2020. [CrossRef]
  19. Gao, Z.P., Wang, YJ., Lü, HL. et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 32, 109, 2021.
  20. Peng Guo, et. al. (DRHBc Mass Table Collaboration), Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, II: Even-Z nuclei. Atomic Data and Nuclear Data Tables 158 (2024) 101661.
  21. Cht. Mavrodiev S, Deliyergiyev M.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. Int. J. Mod. Phys. E 27: 1850015, 2018.
  22. Ghahramany N, Gharaati, S., & Ghanaatian, M. New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics, 6(1), 3, 2012. [CrossRef]
  23. Ghahramany N, Sh Gharaati, Ghanaatian M, Hora H. New scheme of nuclide and nuclear binding energy from quark-like model. Iranian Journal of Science & Technology A3, 201-208, 2011.
  24. N. Ghahramany M. Ghanaatian and M. Hooshmand. Quark-Gluon Plasma Model and Origin of Magic Numbers. Iranian Physical Journal, 1-2, 35-38, 2007.
  25. Workman R.L. et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01, 2022.
  26. Seshavatharam U.V.S., Lakshminarayana S. To Develop an Eco-Friendly Cold Nuclear Thermal Power Plant by Considering Iron-56 as a Fuel. In: Zhao, J., Kadam, S., Yu, Z., Li, X. (eds) IGEC Transactions, Volume 1: Energy Conversion and Management. IAGE 2023. Springer Proceedings in Energy. Springer, Cham. 2024. [CrossRef]
  27. Seshavatharam U.V.S, Lakshminarayana S. On the Role of Nuclear Binding Energy in Understanding Cold Nuclear Fusion. Mapana Journal of Sciences, 20(3), 29-42, 2021.
  28. L.O. Freire, D.A. Andrade, Preliminary survey on cold fusion: it’s not pathological science and may require revision of nuclear theory. J. Electroanal. Chem. 903, 115871, 2021.
  29. V. Pines et al., Nuclear fusion reactions in deuterated metals. Phys. Rev. C 101(4), 044609 (12 pages), 2020. [CrossRef]
  30. M. Steinetz Bruce, et al., Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals. Phys. Rev. C. 101(4), 044610 (13 pages), 2020.
  31. Y. Iwamura, T. Itoh, J. Kasagi, S. Murakami, M. Saito, Excess energy generation using a nano-sized multilayer metal composite and hydrogen gas. J. Condensed Matter Nucl. Sci. 33, 1–13, 2020.
  32. T. Mizuno, J. Rothwell, Excess heat from palladium deposited on nickel. J. Condensed Matter Nucl. Sci. 29, 1–12, 2019.
  33. A.G. Parkhomov, K.A. Alabin, S.N. Andreev et al., Nickel-hydrogen reactors: heat release, isotopic and elemental composition of fuel. RENSIT 9(1), 74–93, 2017. [CrossRef]
  34. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777, 1935. [CrossRef]
  35. N. Bohr. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 480, 696, 1935,.
  36. J.S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1, 195, 1964.
  37. J. Bell, On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics. 38, 3, 447, 1966.
  38. Seshavatharam U.V.S, Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries. 36(4), 801-822, 2020.
  39. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 45 (3): 030001, 2021.
  40. Xin, YQ., Ma, NN., Deng, JG. et al. Properties of 114 super-heavy nuclei. NUCL SCI TECH 32, 55, 2021. [CrossRef]
  41. C. Grojean. Higgs Physics. Proceedings of the 2015 CERN–Latin-American School of High-Energy Physics, 143-157, 2016, CERN-2016-005 (CERN, Geneva, 2016).
  42. Ahmed Abokhalil. The Higgs Mechanism and Higgs Boson: Unveiling the Symmetry of the Universe. arXiv:2306.01019v2 [hep-ph].
Table 1. Estimated binding energy of light house like stable mass numbers of Z=6 to 132.
Table 1. Estimated binding energy of light house like stable mass numbers of Z=6 to 132.
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
6 12 6 0 12 0.00125 1.000000 0.66 91.44 85.36 -6.08
7 15 8 1 15 0.00125 0.995556 0.73 119.20 109.43 -9.77
8 16 8 0 16 0.00125 1.000000 0.78 128.27 122.04 -6.23
9 19 10 1 19 0.00125 0.997230 0.88 156.10 147.28 -8.82
10 20 10 0 20 0.00125 1.000000 0.94 165.12 159.06 -6.06
11 23 12 1 23 0.00125 0.998110 1.06 192.91 185.06 -7.85
12 24 12 0 24 0.00125 1.000000 1.13 201.85 196.09 -5.76
13 27 14 1 27 0.00125 0.998628 1.27 229.57 222.61 -6.96
14 28 14 0 28 0.00125 1.000000 1.36 238.42 232.96 -5.46
15 31 16 1 31 0.00125 0.998959 1.52 266.02 259.82 -6.20
16 32 16 0 32 0.00125 1.000000 1.62 274.77 269.53 -5.25
17 35 18 1 35 0.00125 0.999184 1.80 302.24 296.63 -5.62
18 38 20 2 38 0.00125 0.997230 2.01 329.58 326.81 -2.77
19 39 20 1 39 0.00125 0.999343 2.12 338.20 332.97 -5.23
20 42 22 2 42 0.00125 0.997732 2.35 365.38 363.18 -2.20
21 43 22 1 43 0.00125 0.999459 2.48 373.89 368.84 -5.05
22 46 24 2 46 0.00125 0.998110 2.72 400.90 399.02 -1.88
23 49 26 3 49 0.00125 0.996252 2.99 427.77 425.32 -2.45
24 50 26 2 50 0.00125 0.998400 3.14 436.13 434.32 -1.81
25 53 28 3 53 0.00125 0.996796 3.42 462.81 460.66 -2.15
26 56 30 4 56 0.00125 0.994898 3.72 489.36 489.78 0.43
27 57 30 3 57 0.00125 0.997230 3.89 497.55 495.42 -2.13
28 60 32 4 60 0.00125 0.995556 4.21 523.90 524.47 0.57
29 63 34 5 63 0.00125 0.993701 4.56 550.11 550.01 -0.10
30 66 36 6 66 0.00125 0.991736 4.91 576.16 578.25 2.09
31 67 36 5 67 0.00125 0.994431 5.10 584.14 584.07 -0.07
32 70 38 6 70 0.00125 0.992653 5.48 610.00 612.22 2.23
33 73 40 7 73 0.00125 0.990805 5.88 635.70 637.06 1.36
34 74 40 6 74 0.00125 0.993426 6.09 643.51 645.57 2.06
35 77 42 7 77 0.00125 0.991736 6.51 669.01 670.36 1.35
36 80 44 8 80 0.00125 0.990000 6.94 694.36 697.71 3.35
37 83 46 9 83 0.00125 0.988242 7.40 719.55 721.90 2.34
38 84 46 8 84 0.00125 0.990930 7.63 727.13 730.26 3.13
39 87 48 9 87 0.00125 0.989298 8.10 752.12 754.39 2.27
40 90 50 10 90 0.00125 0.987654 8.59 776.95 781.01 4.06
41 93 52 11 93 0.00125 0.986010 9.10 801.63 804.59 2.96
42 94 52 10 94 0.00125 0.988683 9.36 808.98 812.73 3.75
43 97 54 11 97 0.00125 0.987140 9.89 833.44 836.23 2.79
44 100 56 12 100 0.00125 0.985600 10.43 857.75 862.17 4.42
45 103 58 13 103 0.00125 0.984070 10.99 881.91 885.18 3.27
46 106 60 14 106 0.00125 0.982556 11.57 905.91 910.61 4.69
47 107 60 13 107 0.00125 0.985239 11.86 912.96 915.95 2.99
48 110 62 14 110 0.00125 0.983802 12.46 936.75 941.25 4.50
49 113 64 15 113 0.00125 0.982379 13.08 960.38 963.70 3.33
50 116 66 16 116 0.00125 0.980975 13.71 983.85 988.52 4.67
51 119 68 17 119 0.00125 0.979592 14.36 1007.17 1010.55 3.38
52 122 70 18 122 0.00125 0.978232 15.03 1030.34 1034.92 4.58
53 123 70 17 123 0.00125 0.980898 15.35 1037.02 1040.19 3.17
54 126 72 18 126 0.00125 0.979592 16.04 1059.96 1064.42 4.46
55 129 74 19 129 0.00125 0.978307 16.74 1082.75 1085.94 3.19
56 132 76 20 132 0.00125 0.977043 17.46 1105.38 1109.75 4.36
57 135 78 21 135 0.00125 0.975802 18.20 1127.86 1130.89 3.03
58 138 80 22 138 0.00125 0.974585 18.95 1150.18 1154.29 4.11
59 141 82 23 141 0.00125 0.973392 19.72 1172.35 1175.07 2.72
60 142 82 22 142 0.00125 0.975997 20.09 1178.59 1182.61 4.02
61 145 84 23 145 0.00125 0.974839 20.88 1200.53 1203.26 2.73
62 148 86 24 148 0.00125 0.973703 21.69 1222.32 1226.14 3.82
63 151 88 25 151 0.00125 0.972589 22.51 1243.95 1246.44 2.50
64 154 90 26 154 0.00125 0.971496 23.35 1265.42 1268.95 3.53
65 157 92 27 157 0.00125 0.970425 24.21 1286.74 1288.93 2.18
66 160 94 28 160 0.00125 0.969375 25.08 1307.90 1311.08 3.18
67 163 96 29 163 0.00125 0.968347 25.96 1328.91 1330.73 1.82
68 166 98 30 166 0.00125 0.967339 26.86 1349.76 1352.55 2.79
69 167 98 29 167 0.00125 0.969845 27.29 1355.41 1357.41 2.00
70 170 100 30 170 0.00125 0.968858 28.22 1376.03 1379.07 3.04
71 173 102 31 173 0.00125 0.967891 29.16 1396.50 1398.27 1.77
72 176 104 32 176 0.00125 0.966942 30.12 1416.81 1419.60 2.79
73 179 106 33 179 0.00125 0.966012 31.09 1436.96 1438.50 1.54
74 182 108 34 182 0.00125 0.965101 32.08 1456.96 1459.50 2.55
75 185 110 35 185 0.00125 0.964207 33.08 1476.80 1478.11 1.31
76 188 112 36 188 0.00125 0.963332 34.10 1496.48 1498.81 2.32
77 191 114 37 191 0.00125 0.962474 35.14 1516.01 1517.12 1.11
78 194 116 38 194 0.00125 0.961632 36.19 1535.38 1537.52 2.14
79 197 118 39 197 0.00125 0.960808 37.26 1554.59 1555.55 0.96
80 200 120 40 200 0.00125 0.960000 38.35 1573.65 1575.65 2.00
81 203 122 41 203 0.00125 0.959208 39.45 1592.55 1593.42 0.87
82 206 124 42 206 0.00125 0.958432 40.56 1611.29 1613.22 1.94
83 209 126 43 209 0.00125 0.957670 41.69 1629.87 1630.72 0.85
84 212 128 44 212 0.00125 0.956924 42.84 1648.30 1650.25 1.94
85 215 130 45 215 0.00125 0.956193 44.00 1666.57 1667.48 0.91
86 218 132 46 218 0.00125 0.955475 45.18 1684.69 1686.73 2.04
87 219 132 45 219 0.00125 0.957778 45.73 1689.10 1691.03 1.93
88 222 134 46 222 0.00125 0.957065 46.94 1706.98 1710.11 3.12
89 225 136 47 225 0.00125 0.956365 48.15 1724.71 1726.93 2.22
90 228 138 48 228 0.00125 0.955679 49.39 1742.28 1745.74 3.45
91 231 140 49 231 0.00125 0.955005 50.64 1759.70 1762.30 2.61
92 234 142 50 234 0.00125 0.954343 51.90 1776.95 1780.84 3.89
93 237 144 51 237 0.00125 0.953693 53.18 1794.05 1797.16 3.10
94 240 146 52 240 0.00125 0.953056 54.48 1810.99 1815.43 4.44
95 243 148 53 243 0.00125 0.952429 55.79 1827.78 1831.50 3.72
96 246 150 54 246 0.00125 0.951814 57.12 1844.40 1849.51 5.11
97 249 152 55 249 0.00125 0.951210 58.46 1860.87 1865.34 4.47
98 252 154 56 252 0.00125 0.950617 59.82 1877.18 1883.10 5.91
99 255 156 57 255 0.00125 0.950035 61.20 1893.34 1898.68 5.34
100 258 158 58 258 0.00125 0.949462 62.59 1909.34 1916.19 6.85
101 261 160 59 261 0.00125 0.948900 64.00 1925.17 1931.54 6.36
102 264 162 60 264 0.00125 0.948347 65.42 1940.86 1948.79 7.94
103 269 166 63 269 0.00125 0.945150 67.64 1968.56 1975.25 6.69
104 272 168 64 272 0.00125 0.944637 69.10 1983.85 1992.19 8.35
105 275 170 65 275 0.00125 0.944132 70.58 1998.97 2007.01 8.04
106 278 172 66 278 0.00125 0.943636 72.07 2013.94 2023.72 9.78
107 281 174 67 281 0.00125 0.943149 73.58 2028.75 2038.31 9.57
108 284 176 68 284 0.00125 0.942670 75.11 2043.40 2054.78 11.38
109 287 178 69 287 0.00125 0.942199 76.65 2057.89 2069.15 11.26
110 290 180 70 290 0.00125 0.941736 78.21 2072.23 2085.39 13.16
111 293 182 71 293 0.00125 0.941281 79.78 2086.41 2099.53 13.13
112 296 184 72 296 0.00125 0.940833 81.37 2100.43 2115.54 15.11
113 299 186 73 299 0.00125 0.940392 82.98 2114.29 2129.47 15.17
114 302 188 74 302 0.00125 0.939959 84.60 2128.00 2145.24 17.24
115 305 190 75 305 0.00125 0.939532 86.23 2141.55 2158.95 17.40
116 308 192 76 308 0.00125 0.939113 87.89 2154.94 2174.49 19.55
117 311 194 77 311 0.00125 0.938700 89.55 2168.17 2187.99 19.82
118 314 196 78 314 0.00125 0.938294 91.24 2181.24 2203.30 22.06
119 317 198 79 317 0.00125 0.937894 92.94 2194.16 2216.59 22.43
120 320 200 80 320 0.00125 0.937500 94.65 2206.92 2231.68 24.76
121 323 202 81 323 0.00125 0.937112 96.38 2219.52 2244.75 25.23
122 326 204 82 326 0.00125 0.936731 98.13 2231.97 2259.62 27.65
123 331 208 85 331 0.00125 0.934055 100.84 2254.71 2282.43 27.72
124 334 210 86 334 0.00125 0.933701 102.63 2266.75 2297.04 30.29
125 337 212 87 337 0.00125 0.933353 104.43 2278.64 2309.65 31.01
126 340 214 88 340 0.00125 0.933010 106.25 2290.37 2324.04 33.68
127 343 216 89 343 0.00125 0.932673 108.09 2301.94 2336.45 34.51
128 346 218 90 346 0.00125 0.932340 109.94 2313.35 2350.63 37.28
129 349 220 91 349 0.00125 0.932012 111.80 2324.60 2362.83 38.23
130 352 222 92 352 0.00125 0.931689 113.68 2335.70 2376.79 41.09
131 355 224 93 355 0.00125 0.931371 115.58 2346.64 2388.79 42.15
132 358 226 94 358 0.00125 0.931057 117.49 2357.42 2402.54 45.12
Table 2. Estimated binding energy of isotopes of Z= Z=6, 20, 34, 48, 62, 76, 90, 104,118,132.
Table 2. Estimated binding energy of isotopes of Z= Z=6, 20, 34, 48, 62, 76, 90, 104,118,132.
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
6 8 2 -4 12 0.00125 0.750000 0.78 42.66 37.61 -5.05
6 9 3 -3 12 0.00125 0.888889 0.68 56.32 49.07 -7.25
6 10 4 -2 12 0.00125 0.960000 0.65 69.45 65.11 -4.34
6 11 5 -1 12 0.00125 0.991736 0.65 81.26 73.32 -7.94
6 12 6 0 12 0.00125 1.000000 0.66 91.44 85.36 -6.08
6 13 7 1 12 0.00125 0.994083 0.67 99.92 90.71 -9.20
6 14 8 2 12 0.00125 0.979592 0.69 106.77 99.66 -7.12
6 15 9 3 12 0.00125 0.960000 0.71 112.12 102.72 -9.40
6 16 10 4 12 0.00125 0.937500 0.74 116.10 109.24 -6.86
6 17 11 5 12 0.00125 0.913495 0.76 118.84 110.47 -8.37
6 18 12 6 12 0.00125 0.888889 0.78 120.49 115.09 -5.40
6 19 13 7 12 0.00125 0.864266 0.81 121.14 114.85 -6.29
6 20 14 8 12 0.00125 0.840000 0.83 120.91 117.94 -2.98
6 21 15 9 12 0.00125 0.816327 0.86 119.90 116.51 -3.39
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
20 36 16 -4 42 0.00125 0.987654 2.13 300.15 288.52 -11.63
20 37 17 -3 42 0.00125 0.993426 2.15 312.36 301.28 -11.09
20 38 18 -2 42 0.00125 0.997230 2.18 324.04 316.76 -7.28
20 39 19 -1 42 0.00125 0.999343 2.21 335.17 327.78 -7.39
20 40 20 0 42 0.00125 1.000000 2.25 345.77 341.51 -4.26
20 41 21 1 42 0.00125 0.999405 2.30 355.84 351.01 -4.83
20 42 22 2 42 0.00125 0.997732 2.35 365.38 363.18 -2.20
20 43 23 3 42 0.00125 0.995133 2.40 374.41 371.31 -3.10
20 44 24 4 42 0.00125 0.991736 2.46 382.93 382.08 -0.85
20 45 25 5 42 0.00125 0.987654 2.52 390.95 388.98 -1.97
20 46 26 6 42 0.00125 0.982987 2.59 398.50 398.51 0.01
20 47 27 7 42 0.00125 0.977818 2.65 405.57 404.31 -1.26
20 48 28 8 42 0.00125 0.972222 2.72 412.18 412.70 0.52
20 49 29 9 42 0.00125 0.966264 2.79 418.34 417.50 -0.84
20 50 30 10 42 0.00125 0.960000 2.87 424.08 424.88 0.80
20 51 31 11 42 0.00125 0.953479 2.94 429.39 428.77 -0.62
20 52 32 12 42 0.00125 0.946746 3.01 434.30 435.21 0.92
20 53 33 13 42 0.00125 0.939836 3.09 438.81 438.29 -0.52
20 54 34 14 42 0.00125 0.932785 3.17 442.94 443.88 0.94
20 55 35 15 42 0.00125 0.925620 3.25 446.70 446.20 -0.50
20 56 36 16 42 0.00125 0.918367 3.32 450.10 451.02 0.92
20 57 37 17 42 0.00125 0.911050 3.40 453.16 452.65 -0.51
20 58 38 18 42 0.00125 0.903686 3.48 455.88 456.76 0.88
20 59 39 19 42 0.00125 0.896294 3.57 458.27 457.75 -0.52
20 60 40 20 42 0.00125 0.888889 3.65 460.36 461.20 0.85
20 61 41 21 42 0.00125 0.881483 3.73 462.14 461.61 -0.52
20 62 42 22 42 0.00125 0.874089 3.81 463.62 464.46 0.84
20 63 43 23 42 0.00125 0.866717 3.90 464.83 464.33 -0.49
20 64 44 24 42 0.00125 0.859375 3.98 465.75 466.62 0.86
20 65 45 25 42 0.00125 0.852071 4.07 466.42 465.99 -0.43
20 66 46 26 42 0.00125 0.844812 4.15 466.82 467.76 0.93
20 67 47 27 42 0.00125 0.837603 4.24 466.98 466.67 -0.31
20 68 48 28 42 0.00125 0.830450 4.32 466.90 467.95 1.05
20 69 49 29 42 0.00125 0.823356 4.41 466.58 466.43 -0.15
20 70 50 30 42 0.00125 0.816327 4.50 466.04 467.26 1.22
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
34 64 30 -4 74 0.00125 0.996094 5.31 538.75 522.81 -15.95
34 65 31 -3 74 0.00125 0.997870 5.36 550.70 535.99 -14.71
34 66 32 -2 74 0.00125 0.999082 5.42 562.31 551.57 -10.74
34 67 33 -1 74 0.00125 0.999777 5.49 573.58 563.63 -9.95
34 68 34 0 74 0.00125 1.000000 5.56 584.53 578.07 -6.46
34 69 35 1 74 0.00125 0.999790 5.63 595.15 589.09 -6.06
34 70 36 2 74 0.00125 0.999184 5.72 605.45 602.48 -2.97
34 71 37 3 74 0.00125 0.998215 5.80 615.44 612.53 -2.90
34 72 38 4 74 0.00125 0.996914 5.89 625.10 624.94 -0.17
34 73 39 5 74 0.00125 0.995309 5.99 634.46 634.09 -0.37
34 74 40 6 74 0.00125 0.993426 6.09 643.51 645.57 2.06
34 75 41 7 74 0.00125 0.991289 6.19 652.26 653.88 1.62
34 76 42 8 74 0.00125 0.988920 6.29 660.71 664.51 3.80
34 77 43 9 74 0.00125 0.986338 6.40 668.87 672.03 3.16
34 78 44 10 74 0.00125 0.983563 6.51 676.74 681.86 5.11
34 79 45 11 74 0.00125 0.980612 6.62 684.33 688.64 4.32
34 80 46 12 74 0.00125 0.977500 6.74 691.63 697.71 6.08
34 81 47 13 74 0.00125 0.974242 6.85 698.67 703.81 5.14
34 82 48 14 74 0.00125 0.970851 6.97 705.43 712.17 6.74
34 83 49 15 74 0.00125 0.967339 7.09 711.93 717.62 5.69
34 84 50 16 74 0.00125 0.963719 7.21 718.17 725.31 7.15
34 85 51 17 74 0.00125 0.960000 7.34 724.15 730.15 6.00
34 86 52 18 74 0.00125 0.956193 7.46 729.88 737.21 7.34
34 87 53 19 74 0.00125 0.952305 7.59 735.36 741.48 6.12
34 88 54 20 74 0.00125 0.948347 7.71 740.60 747.95 7.35
34 89 55 21 74 0.00125 0.944325 7.84 745.60 751.67 6.06
34 90 56 22 74 0.00125 0.940247 7.97 750.37 757.59 7.21
34 91 57 23 74 0.00125 0.936119 8.10 754.92 760.79 5.87
34 92 58 24 74 0.00125 0.931947 8.23 759.23 766.18 6.95
34 93 59 25 74 0.00125 0.927737 8.37 763.33 768.90 5.57
34 94 60 26 74 0.00125 0.923495 8.50 767.21 773.78 6.58
34 95 61 27 74 0.00125 0.919224 8.63 770.88 776.04 5.16
34 96 62 28 74 0.00125 0.914931 8.77 774.34 780.46 6.12
34 97 63 29 74 0.00125 0.910617 8.91 777.59 782.28 4.68
34 98 64 30 74 0.00125 0.906289 9.04 780.65 786.24 5.59
34 99 65 31 74 0.00125 0.901949 9.18 783.51 787.65 4.14
34 100 66 32 74 0.00125 0.897600 9.32 786.18 791.19 5.01
34 101 67 33 74 0.00125 0.893246 9.46 788.66 792.20 3.54
34 102 68 34 74 0.00125 0.888889 9.60 790.95 795.33 4.38
34 103 69 35 74 0.00125 0.884532 9.74 793.07 795.97 2.91
34 104 70 36 74 0.00125 0.880178 9.88 795.00 798.72 3.72
34 105 71 37 74 0.00125 0.875828 10.02 796.76 799.00 2.24
34 106 72 38 74 0.00125 0.871485 10.16 798.35 801.38 3.02
34 107 73 39 74 0.00125 0.867150 10.31 799.77 801.32 1.55
34 108 74 40 74 0.00125 0.862826 10.45 801.03 803.34 2.31
34 109 75 41 74 0.00125 0.858514 10.59 802.12 802.97 0.84
34 110 76 42 74 0.00125 0.854215 10.74 803.06 804.65 1.59
34 111 77 43 74 0.00125 0.849931 10.88 803.84 803.97 0.12
34 112 78 44 74 0.00125 0.845663 11.03 804.47 805.33 0.86
34 113 79 45 74 0.00125 0.841413 11.17 804.95 804.35 -0.60
34 114 80 46 74 0.00125 0.837181 11.32 805.29 805.41 0.13
34 115 81 47 74 0.00125 0.832968 11.47 805.48 804.15 -1.33
34 116 82 48 74 0.00125 0.828775 11.61 805.52 804.91 -0.61
34 117 83 49 74 0.00125 0.824604 11.76 805.43 803.38 -2.05
34 118 84 50 74 0.00125 0.820454 11.91 805.21 803.87 -1.34
34 119 85 51 74 0.00125 0.816327 12.05 804.85 802.08 -2.77
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
48 92 44 -4 110 0.00125 0.998110 10.21 750.79 731.24 -19.55
48 93 45 -3 110 0.00125 0.998959 10.29 763.08 744.81 -18.27
48 94 46 -2 110 0.00125 0.999547 10.38 775.13 760.59 -14.54
48 95 47 -1 110 0.00125 0.999889 10.48 786.93 773.32 -13.61
48 96 48 0 110 0.00125 1.000000 10.58 798.50 788.24 -10.26
48 97 49 1 110 0.00125 0.999894 10.69 809.83 800.18 -9.65
48 98 50 2 110 0.00125 0.999584 10.80 820.93 814.30 -6.63
48 99 51 3 110 0.00125 0.999082 10.92 831.80 825.49 -6.31
48 100 52 4 110 0.00125 0.998400 11.04 842.44 838.84 -3.60
48 101 53 5 110 0.00125 0.997549 11.17 852.85 849.31 -3.54
48 102 54 6 110 0.00125 0.996540 11.30 863.04 861.93 -1.11
48 103 55 7 110 0.00125 0.995381 11.43 873.01 871.73 -1.28
48 104 56 8 110 0.00125 0.994083 11.57 882.75 883.65 0.90
48 105 57 9 110 0.00125 0.992653 11.71 892.28 892.80 0.52
48 106 58 10 110 0.00125 0.991100 11.86 901.60 904.07 2.48
48 107 59 11 110 0.00125 0.989431 12.00 910.70 912.61 1.91
48 108 60 12 110 0.00125 0.987654 12.15 919.59 923.25 3.66
48 109 61 13 110 0.00125 0.985776 12.31 928.27 931.20 2.93
48 110 62 14 110 0.00125 0.983802 12.46 936.75 941.25 4.50
48 111 63 15 110 0.00125 0.981738 12.62 945.02 948.64 3.62
48 112 64 16 110 0.00125 0.979592 12.78 953.09 958.11 5.02
48 113 65 17 110 0.00125 0.977367 12.94 960.97 964.97 4.00
48 114 66 18 110 0.00125 0.975069 13.10 968.64 973.90 5.25
48 115 67 19 110 0.00125 0.972703 13.27 976.13 980.25 4.12
48 116 68 20 110 0.00125 0.970273 13.44 983.42 988.65 5.24
48 117 69 21 110 0.00125 0.967784 13.61 990.52 994.52 4.00
48 118 70 22 110 0.00125 0.965240 13.78 997.43 1002.42 4.99
48 119 71 23 110 0.00125 0.962644 13.95 1004.16 1007.82 3.66
48 120 72 24 110 0.00125 0.960000 14.12 1010.71 1015.25 4.54
48 121 73 25 110 0.00125 0.957312 14.30 1017.08 1020.20 3.12
48 122 74 26 110 0.00125 0.954582 14.48 1023.27 1027.18 3.91
48 123 75 27 110 0.00125 0.951814 14.66 1029.29 1031.70 2.42
48 124 76 28 110 0.00125 0.949011 14.83 1035.13 1038.24 3.11
48 125 77 29 110 0.00125 0.946176 15.02 1040.80 1042.35 1.55
48 126 78 30 110 0.00125 0.943311 15.20 1046.30 1048.47 2.17
48 127 79 31 110 0.00125 0.940418 15.38 1051.64 1052.19 0.55
48 128 80 32 110 0.00125 0.937500 15.56 1056.81 1057.90 1.09
48 129 81 33 110 0.00125 0.934559 15.75 1061.82 1061.24 -0.57
48 130 82 34 110 0.00125 0.931598 15.94 1066.67 1066.57 -0.10
48 131 83 35 110 0.00125 0.928617 16.12 1071.36 1069.55 -1.81
48 132 84 36 110 0.00125 0.925620 16.31 1075.89 1074.50 -1.39
48 133 85 37 110 0.00125 0.922607 16.50 1080.28 1077.14 -3.14
48 134 86 38 110 0.00125 0.919581 16.69 1084.51 1081.73 -2.78
48 135 87 39 110 0.00125 0.916543 16.88 1088.59 1084.03 -4.56
48 136 88 40 110 0.00125 0.913495 17.07 1092.52 1088.28 -4.25
48 137 89 41 110 0.00125 0.910437 17.27 1096.31 1090.25 -6.06
48 138 90 42 110 0.00125 0.907372 17.46 1099.96 1094.17 -5.79
48 139 91 43 110 0.00125 0.904301 17.65 1103.46 1095.84 -7.62
48 140 92 44 110 0.00125 0.901224 17.85 1106.82 1099.43 -7.39
48 141 93 45 110 0.00125 0.898144 18.04 1110.05 1100.80 -9.25
48 142 94 46 110 0.00125 0.895061 18.24 1113.14 1104.09 -9.05
48 143 95 47 110 0.00125 0.891975 18.44 1116.09 1105.17 -10.93
48 144 96 48 110 0.00125 0.888889 18.63 1118.92 1108.16 -10.76
48 145 97 49 110 0.00125 0.885803 18.83 1121.61 1108.96 -12.65
48 146 98 50 110 0.00125 0.882717 19.03 1124.17 1111.66 -12.51
48 147 99 51 110 0.00125 0.879633 19.23 1126.61 1112.19 -14.42
48 148 100 52 110 0.00125 0.876552 19.43 1128.92 1114.62 -14.30
48 149 101 53 110 0.00125 0.873474 19.63 1131.11 1114.89 -16.21
48 150 102 54 110 0.00125 0.870400 19.83 1133.18 1117.05 -16.12
48 151 103 55 110 0.00125 0.867330 20.03 1135.12 1117.08 -18.04
48 152 104 56 110 0.00125 0.864266 20.23 1136.95 1118.98 -17.97
48 153 105 57 110 0.00125 0.861207 20.44 1138.66 1118.76 -19.90
48 154 106 58 110 0.00125 0.858155 20.64 1140.25 1120.41 -19.84
48 155 107 59 110 0.00125 0.855109 20.84 1141.73 1119.96 -21.77
48 156 108 60 110 0.00125 0.852071 21.05 1143.10 1121.37 -21.73
48 157 109 61 110 0.00125 0.849041 21.25 1144.36 1120.69 -23.67
48 158 110 62 110 0.00125 0.846018 21.46 1145.51 1121.87 -23.64
48 159 111 63 110 0.00125 0.843005 21.66 1146.55 1120.97 -25.57
48 160 112 64 110 0.00125 0.840000 21.87 1147.48 1121.92 -25.56
48 161 113 65 110 0.00125 0.837005 22.07 1148.31 1120.81 -27.49
48 162 114 66 110 0.00125 0.834019 22.28 1149.03 1121.54 -27.49
48 163 115 67 110 0.00125 0.831044 22.49 1149.65 1120.23 -29.42
48 164 116 68 110 0.00125 0.828079 22.70 1150.17 1120.75 -29.43
48 165 117 69 110 0.00125 0.825124 22.90 1150.60 1119.24 -31.36
48 166 118 70 110 0.00125 0.822180 23.11 1150.92 1119.55 -31.37
48 167 119 71 110 0.00125 0.819248 23.32 1151.14 1117.84 -33.30
48 168 120 72 110 0.00125 0.816327 23.53 1151.27 1117.95 -33.32
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
62 120 58 -4 148 0.00125 0.998889 16.82 938.82 913.34 -25.49
62 121 59 -3 148 0.00125 0.999385 16.94 951.36 927.26 -24.10
62 122 60 -2 148 0.00125 0.999731 17.06 963.70 943.24 -20.46
62 123 61 -1 148 0.00125 0.999934 17.18 975.86 956.49 -19.37
62 124 62 0 148 0.00125 1.000000 17.32 987.82 971.79 -16.03
62 125 63 1 148 0.00125 0.999936 17.46 999.60 984.39 -15.21
62 126 64 2 148 0.00125 0.999748 17.60 1011.19 999.03 -12.16
62 127 65 3 148 0.00125 0.999442 17.75 1022.60 1011.01 -11.58
62 128 66 4 148 0.00125 0.999023 17.90 1033.82 1025.03 -8.79
62 129 67 5 148 0.00125 0.998498 18.06 1044.86 1036.42 -8.45
62 130 68 6 148 0.00125 0.997870 18.22 1055.73 1049.82 -5.90
62 131 69 7 148 0.00125 0.997145 18.39 1066.41 1060.64 -5.77
62 132 70 8 148 0.00125 0.996327 18.56 1076.92 1073.47 -3.45
62 133 71 9 148 0.00125 0.995421 18.73 1087.26 1083.74 -3.52
62 134 72 10 148 0.00125 0.994431 18.91 1097.42 1096.01 -1.41
62 135 73 11 148 0.00125 0.993361 19.09 1107.41 1105.76 -1.65
62 136 74 12 148 0.00125 0.992215 19.28 1117.23 1117.49 0.26
62 137 75 13 148 0.00125 0.990996 19.46 1126.88 1126.73 -0.15
62 138 76 14 148 0.00125 0.989708 19.65 1136.36 1137.94 1.58
62 139 77 15 148 0.00125 0.988355 19.85 1145.68 1146.69 1.01
62 140 78 16 148 0.00125 0.986939 20.04 1154.83 1157.41 2.58
62 141 79 17 148 0.00125 0.985464 20.24 1163.82 1165.69 1.87
62 142 80 18 148 0.00125 0.983932 20.44 1172.65 1175.93 3.28
62 143 81 19 148 0.00125 0.982346 20.64 1181.32 1183.76 2.44
62 144 82 20 148 0.00125 0.980710 20.85 1189.83 1193.54 3.71
62 145 83 21 148 0.00125 0.979025 21.05 1198.18 1200.93 2.75
62 146 84 22 148 0.00125 0.977294 21.26 1206.38 1210.26 3.88
62 147 85 23 148 0.00125 0.975519 21.48 1214.43 1217.24 2.81
62 148 86 24 148 0.00125 0.973703 21.69 1222.32 1226.14 3.82
62 149 87 25 148 0.00125 0.971848 21.90 1230.06 1232.71 2.65
62 150 88 26 148 0.00125 0.969956 22.12 1237.65 1241.19 3.54
62 151 89 27 148 0.00125 0.968028 22.34 1245.09 1247.37 2.28
62 152 90 28 148 0.00125 0.966066 22.56 1252.39 1255.45 3.07
62 153 91 29 148 0.00125 0.964074 22.78 1259.53 1261.25 1.72
62 154 92 30 148 0.00125 0.962051 23.01 1266.54 1268.95 2.41
62 155 93 31 148 0.00125 0.960000 23.23 1273.40 1274.38 0.98
62 156 94 32 148 0.00125 0.957922 23.46 1280.13 1281.71 1.58
62 157 95 33 148 0.00125 0.955820 23.69 1286.71 1286.79 0.08
62 158 96 34 148 0.00125 0.953693 23.91 1293.15 1293.75 0.60
62 159 97 35 148 0.00125 0.951545 24.15 1299.46 1298.49 -0.97
62 160 98 36 148 0.00125 0.949375 24.38 1305.63 1305.10 -0.53
62 161 99 37 148 0.00125 0.947186 24.61 1311.67 1309.51 -2.16
62 162 100 38 148 0.00125 0.944978 24.84 1317.57 1315.78 -1.79
62 163 101 39 148 0.00125 0.942753 25.08 1323.35 1319.87 -3.47
62 164 102 40 148 0.00125 0.940512 25.32 1328.99 1325.82 -3.17
62 165 103 41 148 0.00125 0.938255 25.55 1334.50 1329.60 -4.91
62 166 104 42 148 0.00125 0.935985 25.79 1339.89 1335.22 -4.66
62 167 105 43 148 0.00125 0.933701 26.03 1345.15 1338.70 -6.44
62 168 106 44 148 0.00125 0.931406 26.27 1350.28 1344.02 -6.26
62 169 107 45 148 0.00125 0.929099 26.52 1355.29 1347.21 -8.08
62 170 108 46 148 0.00125 0.926782 26.76 1360.18 1352.23 -7.95
62 171 109 47 148 0.00125 0.924455 27.00 1364.95 1355.14 -9.81
62 172 110 48 148 0.00125 0.922120 27.25 1369.60 1359.87 -9.73
62 173 111 49 148 0.00125 0.919777 27.49 1374.13 1362.50 -11.62
62 174 112 50 148 0.00125 0.917426 27.74 1378.54 1366.95 -11.58
62 175 113 51 148 0.00125 0.915069 27.99 1382.83 1369.32 -13.51
62 176 114 52 148 0.00125 0.912707 28.23 1387.01 1373.50 -13.51
62 177 115 53 148 0.00125 0.910339 28.48 1391.08 1375.61 -15.47
62 178 116 54 148 0.00125 0.907966 28.73 1395.03 1379.53 -15.51
62 179 117 55 148 0.00125 0.905590 28.98 1398.87 1381.39 -17.49
62 180 118 56 148 0.00125 0.903210 29.23 1402.60 1385.04 -17.56
62 181 119 57 148 0.00125 0.900827 29.48 1406.23 1386.66 -19.56
62 182 120 58 148 0.00125 0.898442 29.74 1409.74 1390.07 -19.67
62 183 121 59 148 0.00125 0.896055 29.99 1413.15 1391.45 -21.69
62 184 122 60 148 0.00125 0.893667 30.24 1416.45 1394.62 -21.83
62 185 123 61 148 0.00125 0.891278 30.50 1419.65 1395.77 -23.87
62 186 124 62 148 0.00125 0.888889 30.75 1422.74 1398.70 -24.04
62 187 125 63 148 0.00125 0.886499 31.01 1425.73 1399.63 -26.10
62 188 126 64 148 0.00125 0.884110 31.27 1428.62 1402.33 -26.29
62 189 127 65 148 0.00125 0.881722 31.52 1431.41 1403.05 -28.36
62 190 128 66 148 0.00125 0.879335 31.78 1434.10 1405.53 -28.57
62 191 129 67 148 0.00125 0.876950 32.04 1436.69 1406.03 -30.66
62 192 130 68 148 0.00125 0.874566 32.30 1439.18 1408.29 -30.89
62 193 131 69 148 0.00125 0.872184 32.56 1441.58 1408.59 -32.99
62 194 132 70 148 0.00125 0.869806 32.82 1443.88 1410.64 -33.24
62 195 133 71 148 0.00125 0.867429 33.08 1446.09 1410.75 -35.34
62 196 134 72 148 0.00125 0.865056 33.34 1448.20 1412.59 -35.62
62 197 135 73 148 0.00125 0.862686 33.60 1450.23 1412.50 -37.73
62 198 136 74 148 0.00125 0.860320 33.86 1452.16 1414.14 -38.02
62 199 137 75 148 0.00125 0.857958 34.12 1454.00 1413.86 -40.14
62 200 138 76 148 0.00125 0.855600 34.39 1455.75 1415.31 -40.44
62 201 139 77 148 0.00125 0.853246 34.65 1457.41 1414.84 -42.56
62 202 140 78 148 0.00125 0.850897 34.91 1458.98 1416.10 -42.88
62 203 141 79 148 0.00125 0.848553 35.18 1460.47 1415.46 -45.01
62 204 142 80 148 0.00125 0.846213 35.44 1461.87 1416.53 -45.34
62 205 143 81 148 0.00125 0.843879 35.71 1463.19 1415.72 -47.47
62 206 144 82 148 0.00125 0.841550 35.97 1464.42 1416.61 -47.81
62 207 145 83 148 0.00125 0.839226 36.24 1465.57 1415.62 -49.95
62 208 146 84 148 0.00125 0.836908 36.51 1466.63 1416.34 -50.30
62 209 147 85 148 0.00125 0.834596 36.77 1467.62 1415.19 -52.43
62 210 148 86 148 0.00125 0.832290 37.04 1468.52 1415.73 -52.79
62 211 149 87 148 0.00125 0.829990 37.31 1469.35 1414.42 -54.93
62 212 150 88 148 0.00125 0.827697 37.58 1470.09 1414.79 -55.30
62 213 151 89 148 0.00125 0.825409 37.85 1470.76 1413.32 -57.44
62 214 152 90 148 0.00125 0.823129 38.11 1471.34 1413.53 -57.81
62 215 153 91 148 0.00125 0.820855 38.38 1471.86 1411.91 -59.95
62 216 154 92 148 0.00125 0.818587 38.65 1472.29 1411.96 -60.33
62 217 155 93 148 0.00125 0.816327 38.92 1472.65 1410.19 -62.47
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
76 148 72 -4 188 0.00125 0.999270 25.15 1101.44 1069.66 -31.78
76 149 73 -3 188 0.00125 0.999595 25.30 1114.17 1083.89 -30.28
76 150 74 -2 188 0.00125 0.999822 25.45 1126.74 1100.08 -26.65
76 151 75 -1 188 0.00125 0.999956 25.61 1139.15 1113.76 -25.39
76 152 76 0 188 0.00125 1.000000 25.77 1151.40 1129.37 -22.02
76 153 77 1 188 0.00125 0.999957 25.94 1163.49 1142.50 -20.99
76 154 78 2 188 0.00125 0.999831 26.11 1175.42 1157.56 -17.86
76 155 79 3 188 0.00125 0.999625 26.29 1187.20 1170.16 -17.04
76 156 80 4 188 0.00125 0.999343 26.48 1198.83 1184.68 -14.15
76 157 81 5 188 0.00125 0.998986 26.67 1210.31 1196.77 -13.53
76 158 82 6 188 0.00125 0.998558 26.86 1221.63 1210.78 -10.85
76 159 83 7 188 0.00125 0.998062 27.06 1232.80 1222.38 -10.42
76 160 84 8 188 0.00125 0.997500 27.26 1243.83 1235.88 -7.94
76 161 85 9 188 0.00125 0.996875 27.47 1254.70 1247.00 -7.70
76 162 86 10 188 0.00125 0.996190 27.68 1265.43 1260.02 -5.41
76 163 87 11 188 0.00125 0.995446 27.89 1276.02 1270.68 -5.33
76 164 88 12 188 0.00125 0.994646 28.11 1286.46 1283.23 -3.22
76 165 89 13 188 0.00125 0.993792 28.33 1296.75 1293.45 -3.31
76 166 90 14 188 0.00125 0.992887 28.55 1306.91 1305.54 -1.37
76 167 91 15 188 0.00125 0.991932 28.78 1316.92 1315.33 -1.60
76 168 92 16 188 0.00125 0.990930 29.01 1326.79 1326.98 0.18
76 169 93 17 188 0.00125 0.989881 29.24 1336.53 1336.34 -0.19
76 170 94 18 188 0.00125 0.988789 29.48 1346.13 1347.57 1.44
76 171 95 19 188 0.00125 0.987654 29.71 1355.59 1356.53 0.94
76 172 96 20 188 0.00125 0.986479 29.96 1364.91 1367.34 2.43
76 173 97 21 188 0.00125 0.985265 30.20 1374.10 1375.91 1.81
76 174 98 22 188 0.00125 0.984014 30.45 1383.16 1386.32 3.16
76 175 99 23 188 0.00125 0.982727 30.69 1392.08 1394.50 2.42
76 176 100 24 188 0.00125 0.981405 30.94 1400.87 1404.53 3.65
76 177 101 25 188 0.00125 0.980050 31.20 1409.53 1412.34 2.81
76 178 102 26 188 0.00125 0.978664 31.45 1418.07 1421.99 3.92
76 179 103 27 188 0.00125 0.977248 31.71 1426.47 1429.44 2.97
76 180 104 28 188 0.00125 0.975802 31.97 1434.75 1438.72 3.97
76 181 105 29 188 0.00125 0.974329 32.23 1442.89 1445.83 2.93
76 182 106 30 188 0.00125 0.972829 32.49 1450.92 1454.75 3.83
76 183 107 31 188 0.00125 0.971304 32.76 1458.82 1461.52 2.70
76 184 108 32 188 0.00125 0.969754 33.02 1466.59 1470.09 3.50
76 185 109 33 188 0.00125 0.968181 33.29 1474.25 1476.53 2.28
76 186 110 34 188 0.00125 0.966586 33.56 1481.78 1484.77 2.99
76 187 111 35 188 0.00125 0.964969 33.83 1489.19 1490.89 1.70
76 188 112 36 188 0.00125 0.963332 34.10 1496.48 1498.81 2.32
76 189 113 37 188 0.00125 0.961675 34.38 1503.65 1504.61 0.96
76 190 114 38 188 0.00125 0.960000 34.66 1510.71 1512.21 1.50
76 191 115 39 188 0.00125 0.958307 34.93 1517.65 1517.72 0.07
76 192 116 40 188 0.00125 0.956597 35.21 1524.47 1525.01 0.53
76 193 117 41 188 0.00125 0.954871 35.49 1531.18 1530.22 -0.96
76 194 118 42 188 0.00125 0.953130 35.77 1537.77 1537.21 -0.57
76 195 119 43 188 0.00125 0.951374 36.06 1544.25 1542.13 -2.12
76 196 120 44 188 0.00125 0.949604 36.34 1550.62 1548.83 -1.80
76 197 121 45 188 0.00125 0.947821 36.63 1556.88 1553.48 -3.40
76 198 122 46 188 0.00125 0.946026 36.91 1563.03 1559.89 -3.14
76 199 123 47 188 0.00125 0.944219 37.20 1569.07 1564.27 -4.80
76 200 124 48 188 0.00125 0.942400 37.49 1575.00 1570.40 -4.60
76 201 125 49 188 0.00125 0.940571 37.78 1580.82 1574.51 -6.30
76 202 126 50 188 0.00125 0.938731 38.07 1586.54 1580.38 -6.16
76 203 127 51 188 0.00125 0.936883 38.36 1592.15 1584.24 -7.91
76 204 128 52 188 0.00125 0.935025 38.66 1597.65 1589.84 -7.82
76 205 129 53 188 0.00125 0.933159 38.95 1603.05 1593.45 -9.61
76 206 130 54 188 0.00125 0.931285 39.25 1608.35 1598.79 -9.56
76 207 131 55 188 0.00125 0.929403 39.54 1613.55 1602.15 -11.39
76 208 132 56 188 0.00125 0.927515 39.84 1618.64 1607.25 -11.40
76 209 133 57 188 0.00125 0.925620 40.14 1623.64 1610.38 -13.26
76 210 134 58 188 0.00125 0.923719 40.44 1628.53 1615.22 -13.31
76 211 135 59 188 0.00125 0.921812 40.74 1633.32 1618.12 -15.20
76 212 136 60 188 0.00125 0.919900 41.04 1638.02 1622.73 -15.29
76 213 137 61 188 0.00125 0.917984 41.34 1642.62 1625.40 -17.22
76 214 138 62 188 0.00125 0.916063 41.64 1647.13 1629.78 -17.34
76 215 139 63 188 0.00125 0.914137 41.95 1651.53 1632.24 -19.30
76 216 140 64 188 0.00125 0.912209 42.25 1655.85 1636.39 -19.46
76 217 141 65 188 0.00125 0.910276 42.56 1660.07 1638.63 -21.44
76 218 142 66 188 0.00125 0.908341 42.86 1664.19 1642.56 -21.64
76 219 143 67 188 0.00125 0.906403 43.17 1668.23 1644.59 -23.64
76 220 144 68 188 0.00125 0.904463 43.48 1672.17 1648.30 -23.87
76 221 145 69 188 0.00125 0.902520 43.78 1676.02 1650.13 -25.90
76 222 146 70 188 0.00125 0.900576 44.09 1679.78 1653.63 -26.15
76 223 147 71 188 0.00125 0.898631 44.40 1683.46 1655.26 -28.20
76 224 148 72 188 0.00125 0.896684 44.71 1687.04 1658.56 -28.48
76 225 149 73 188 0.00125 0.894736 45.02 1690.54 1659.99 -30.55
76 226 150 74 188 0.00125 0.892787 45.33 1693.94 1663.09 -30.86
76 227 151 75 188 0.00125 0.890838 45.65 1697.27 1664.33 -32.94
76 228 152 76 188 0.00125 0.888889 45.96 1700.50 1667.23 -33.27
76 229 153 77 188 0.00125 0.886940 46.27 1703.65 1668.28 -35.37
76 230 154 78 188 0.00125 0.884991 46.59 1706.72 1671.00 -35.73
76 231 155 79 188 0.00125 0.883042 46.90 1709.71 1671.87 -37.84
76 232 156 80 188 0.00125 0.881094 47.22 1712.61 1674.39 -38.22
76 233 157 81 188 0.00125 0.879147 47.53 1715.43 1675.09 -40.34
76 234 158 82 188 0.00125 0.877201 47.85 1718.17 1677.43 -40.74
76 235 159 83 188 0.00125 0.875256 48.17 1720.82 1677.95 -42.88
76 236 160 84 188 0.00125 0.873312 48.48 1723.40 1680.11 -43.29
76 237 161 85 188 0.00125 0.871370 48.80 1725.90 1680.46 -45.44
76 238 162 86 188 0.00125 0.869430 49.12 1728.32 1682.45 -45.87
76 239 163 87 188 0.00125 0.867492 49.44 1730.66 1682.63 -48.03
76 240 164 88 188 0.00125 0.865556 49.76 1732.92 1684.45 -48.47
76 241 165 89 188 0.00125 0.863621 50.08 1735.11 1684.47 -50.64
76 242 166 90 188 0.00125 0.861690 50.40 1737.22 1686.12 -51.10
76 243 167 91 188 0.00125 0.859761 50.72 1739.26 1685.99 -53.27
76 244 168 92 188 0.00125 0.857834 51.04 1741.22 1687.47 -53.75
76 245 169 93 188 0.00125 0.855910 51.37 1743.11 1687.18 -55.93
76 246 170 94 188 0.00125 0.853989 51.69 1744.92 1688.51 -56.41
76 247 171 95 188 0.00125 0.852071 52.01 1746.66 1688.06 -58.60
76 248 172 96 188 0.00125 0.850156 52.34 1748.33 1689.23 -59.10
76 249 173 97 188 0.00125 0.848244 52.66 1749.93 1688.64 -61.29
76 250 174 98 188 0.00125 0.846336 52.98 1751.45 1689.65 -61.80
76 251 175 99 188 0.00125 0.844431 53.31 1752.91 1688.92 -63.99
76 252 176 100 188 0.00125 0.842530 53.64 1754.29 1689.78 -64.51
76 253 177 101 188 0.00125 0.840632 53.96 1755.61 1688.90 -66.71
76 254 178 102 188 0.00125 0.838738 54.29 1756.85 1689.62 -67.24
76 255 179 103 188 0.00125 0.836847 54.61 1758.03 1688.59 -69.44
76 256 180 104 188 0.00125 0.834961 54.94 1759.14 1689.17 -69.98
76 257 181 105 188 0.00125 0.833078 55.27 1760.19 1688.01 -72.18
76 258 182 106 188 0.00125 0.831200 55.60 1761.17 1688.44 -72.72
76 259 183 107 188 0.00125 0.829326 55.93 1762.08 1687.15 -74.93
76 260 184 108 188 0.00125 0.827456 56.25 1762.92 1687.44 -75.48
76 261 185 109 188 0.00125 0.825590 56.58 1763.70 1686.02 -77.68
76 262 186 110 188 0.00125 0.823728 56.91 1764.42 1686.18 -78.24
76 263 187 111 188 0.00125 0.821871 57.24 1765.07 1684.63 -80.45
76 264 188 112 188 0.00125 0.820018 57.57 1765.66 1684.65 -81.01
76 265 189 113 188 0.00125 0.818170 57.90 1766.19 1682.97 -83.22
76 266 190 114 188 0.00125 0.816327 58.23 1766.65 1682.87 -83.79
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
90 176 86 -4 228 0.00125 0.999483 35.20 1245.78 1200.98 -44.81
90 177 87 -3 228 0.00125 0.999713 35.37 1258.54 1215.51 -43.03
90 178 88 -2 228 0.00125 0.999874 35.56 1271.15 1231.90 -39.25
90 179 89 -1 228 0.00125 0.999969 35.74 1283.61 1245.94 -37.68
90 180 90 0 228 0.00125 1.000000 35.94 1295.94 1261.84 -34.11
90 181 91 1 228 0.00125 0.999969 36.14 1308.13 1275.40 -32.73
90 182 92 2 228 0.00125 0.999879 36.34 1320.18 1290.81 -29.37
90 183 93 3 228 0.00125 0.999731 36.55 1332.10 1303.92 -28.18
90 184 94 4 228 0.00125 0.999527 36.77 1343.88 1318.87 -25.01
90 185 95 5 228 0.00125 0.999270 36.99 1355.52 1331.52 -24.00
90 186 96 6 228 0.00125 0.998959 37.21 1367.04 1346.01 -21.02
90 187 97 7 228 0.00125 0.998599 37.44 1378.42 1358.24 -20.18
90 188 98 8 228 0.00125 0.998189 37.68 1389.67 1372.29 -17.38
90 189 99 9 228 0.00125 0.997732 37.91 1400.79 1384.09 -16.70
90 190 100 10 228 0.00125 0.997230 38.16 1411.78 1397.71 -14.07
90 191 101 11 228 0.00125 0.996683 38.40 1422.64 1409.10 -13.54
90 192 102 12 228 0.00125 0.996094 38.65 1433.38 1422.30 -11.08
90 193 103 13 228 0.00125 0.995463 38.90 1443.99 1433.29 -10.69
90 194 104 14 228 0.00125 0.994792 39.16 1454.47 1446.09 -8.38
90 195 105 15 228 0.00125 0.994083 39.42 1464.83 1456.69 -8.14
90 196 106 16 228 0.00125 0.993336 39.68 1475.07 1469.09 -5.97
90 197 107 17 228 0.00125 0.992553 39.95 1485.18 1479.32 -5.86
90 198 108 18 228 0.00125 0.991736 40.22 1495.17 1491.33 -3.84
90 199 109 19 228 0.00125 0.990884 40.49 1505.04 1501.19 -3.85
90 200 110 20 228 0.00125 0.990000 40.77 1514.79 1512.83 -1.96
90 201 111 21 228 0.00125 0.989084 41.05 1524.42 1522.34 -2.09
90 202 112 22 228 0.00125 0.988138 41.33 1533.94 1533.61 -0.33
90 203 113 23 228 0.00125 0.987163 41.61 1543.33 1542.77 -0.57
90 204 114 24 228 0.00125 0.986159 41.90 1552.61 1553.69 1.08
90 205 115 25 228 0.00125 0.985128 42.19 1561.77 1562.50 0.73
90 206 116 26 228 0.00125 0.984070 42.48 1570.82 1573.07 2.25
90 207 117 27 228 0.00125 0.982987 42.77 1579.75 1581.56 1.80
90 208 118 28 228 0.00125 0.981879 43.07 1588.57 1591.80 3.22
90 209 119 29 228 0.00125 0.980747 43.37 1597.28 1599.96 2.68
90 210 120 30 228 0.00125 0.979592 43.67 1605.87 1609.87 3.99
90 211 121 31 228 0.00125 0.978415 43.97 1614.36 1617.71 3.35
90 212 122 32 228 0.00125 0.977216 44.27 1622.73 1627.30 4.57
90 213 123 33 228 0.00125 0.975997 44.58 1630.99 1634.84 3.85
90 214 124 34 228 0.00125 0.974758 44.89 1639.15 1644.12 4.97
90 215 125 35 228 0.00125 0.973499 45.20 1647.19 1651.36 4.17
90 216 126 36 228 0.00125 0.972222 45.51 1655.13 1660.33 5.20
90 217 127 37 228 0.00125 0.970927 45.83 1662.97 1667.28 4.32
90 218 128 38 228 0.00125 0.969615 46.14 1670.69 1675.96 5.27
90 219 129 39 228 0.00125 0.968287 46.46 1678.31 1682.62 4.31
90 220 130 40 228 0.00125 0.966942 46.78 1685.83 1691.01 5.18
90 221 131 41 228 0.00125 0.965582 47.10 1693.24 1697.40 4.16
90 222 132 42 228 0.00125 0.964207 47.42 1700.55 1705.50 4.95
90 223 133 43 228 0.00125 0.962818 47.75 1707.76 1711.62 3.86
90 224 134 44 228 0.00125 0.961416 48.07 1714.86 1719.44 4.58
90 225 135 45 228 0.00125 0.960000 48.40 1721.87 1725.30 3.43
90 226 136 46 228 0.00125 0.958572 48.73 1728.77 1732.85 4.08
90 227 137 47 228 0.00125 0.957131 49.06 1735.58 1738.45 2.87
90 228 138 48 228 0.00125 0.955679 49.39 1742.28 1745.74 3.45
90 229 139 49 228 0.00125 0.954215 49.72 1748.89 1751.08 2.19
90 230 140 50 228 0.00125 0.952741 50.05 1755.40 1758.11 2.71
90 231 141 51 228 0.00125 0.951257 50.39 1761.81 1763.21 1.40
90 232 142 52 228 0.00125 0.949762 50.73 1768.13 1769.99 1.86
90 233 143 53 228 0.00125 0.948258 51.06 1774.35 1774.85 0.50
90 234 144 54 228 0.00125 0.946746 51.40 1780.48 1781.38 0.90
90 235 145 55 228 0.00125 0.945224 51.74 1786.52 1786.01 -0.51
90 236 146 56 228 0.00125 0.943694 52.08 1792.46 1792.30 -0.16
90 237 147 57 228 0.00125 0.942157 52.43 1798.30 1796.70 -1.61
90 238 148 58 228 0.00125 0.940612 52.77 1804.06 1802.75 -1.31
90 239 149 59 228 0.00125 0.939059 53.12 1809.72 1806.92 -2.80
90 240 150 60 228 0.00125 0.937500 53.46 1815.30 1812.75 -2.55
90 241 151 61 228 0.00125 0.935934 53.81 1820.78 1816.70 -4.08
90 242 152 62 228 0.00125 0.934362 54.16 1826.17 1822.30 -3.87
90 243 153 63 228 0.00125 0.932785 54.50 1831.48 1826.04 -5.44
90 244 154 64 228 0.00125 0.931201 54.85 1836.69 1831.42 -5.28
90 245 155 65 228 0.00125 0.929613 55.21 1841.82 1834.94 -6.88
90 246 156 66 228 0.00125 0.928019 55.56 1846.87 1840.11 -6.75
90 247 157 67 228 0.00125 0.926421 55.91 1851.82 1843.43 -8.39
90 248 158 68 228 0.00125 0.924818 56.26 1856.69 1848.39 -8.31
90 249 159 69 228 0.00125 0.923211 56.62 1861.48 1851.50 -9.97
90 250 160 70 228 0.00125 0.921600 56.97 1866.18 1856.25 -9.92
90 251 161 71 228 0.00125 0.919985 57.33 1870.79 1859.18 -11.62
90 252 162 72 228 0.00125 0.918367 57.69 1875.33 1863.72 -11.60
90 253 163 73 228 0.00125 0.916746 58.05 1879.78 1866.45 -13.33
90 254 164 74 228 0.00125 0.915122 58.40 1884.14 1870.80 -13.34
90 255 165 75 228 0.00125 0.913495 58.76 1888.43 1873.34 -15.09
90 256 166 76 228 0.00125 0.911865 59.13 1892.64 1877.50 -15.14
90 257 167 77 228 0.00125 0.910233 59.49 1896.76 1879.85 -16.91
90 258 168 78 228 0.00125 0.908599 59.85 1900.81 1883.82 -16.99
90 259 169 79 228 0.00125 0.906963 60.21 1904.78 1885.99 -18.78
90 260 170 80 228 0.00125 0.905325 60.58 1908.66 1889.77 -18.89
90 261 171 81 228 0.00125 0.903686 60.94 1912.47 1891.77 -20.70
90 262 172 82 228 0.00125 0.902045 61.30 1916.20 1895.37 -20.84
90 263 173 83 228 0.00125 0.900403 61.67 1919.86 1897.19 -22.67
90 264 174 84 228 0.00125 0.898760 62.04 1923.44 1900.61 -22.83
90 265 175 85 228 0.00125 0.897116 62.40 1926.94 1902.26 -24.68
90 266 176 86 228 0.00125 0.895472 62.77 1930.37 1905.51 -24.86
90 267 177 87 228 0.00125 0.893827 63.14 1933.72 1906.99 -26.73
90 268 178 88 228 0.00125 0.892181 63.51 1937.00 1910.07 -26.93
90 269 179 89 228 0.00125 0.890535 63.88 1940.20 1911.39 -28.81
90 270 180 90 228 0.00125 0.888889 64.25 1943.34 1914.30 -29.04
90 271 181 91 228 0.00125 0.887243 64.62 1946.39 1915.46 -30.94
90 272 182 92 228 0.00125 0.885597 64.99 1949.38 1918.20 -31.18
90 273 183 93 228 0.00125 0.883951 65.37 1952.30 1919.20 -33.09
90 274 184 94 228 0.00125 0.882306 65.74 1955.14 1921.78 -33.36
90 275 185 95 228 0.00125 0.880661 66.11 1957.91 1922.63 -35.28
90 276 186 96 228 0.00125 0.879017 66.49 1960.62 1925.05 -35.56
90 277 187 97 228 0.00125 0.877374 66.86 1963.25 1925.75 -37.50
90 278 188 98 228 0.00125 0.875731 67.24 1965.81 1928.02 -37.80
90 279 189 99 228 0.00125 0.874089 67.61 1968.31 1928.57 -39.74
90 280 190 100 228 0.00125 0.872449 67.99 1970.74 1930.68 -40.06
90 281 191 101 228 0.00125 0.870810 68.37 1973.10 1931.09 -42.01
90 282 192 102 228 0.00125 0.869172 68.74 1975.39 1933.05 -42.34
90 283 193 103 228 0.00125 0.867535 69.12 1977.61 1933.31 -44.30
90 284 194 104 228 0.00125 0.865900 69.50 1979.77 1935.13 -44.65
90 285 195 105 228 0.00125 0.864266 69.88 1981.87 1935.25 -46.62
90 286 196 106 228 0.00125 0.862634 70.26 1983.90 1936.92 -46.97
90 287 197 107 228 0.00125 0.861004 70.64 1985.86 1936.91 -48.95
90 288 198 108 228 0.00125 0.859375 71.02 1987.76 1938.44 -49.32
90 289 199 109 228 0.00125 0.857748 71.40 1989.59 1938.29 -51.31
90 290 200 110 228 0.00125 0.856124 71.78 1991.37 1939.68 -51.69
90 291 201 111 228 0.00125 0.854501 72.16 1993.08 1939.40 -53.68
90 292 202 112 228 0.00125 0.852880 72.55 1994.72 1940.65 -54.07
90 293 203 113 228 0.00125 0.851262 72.93 1996.31 1940.24 -56.07
90 294 204 114 228 0.00125 0.849646 73.31 1997.83 1941.36 -56.47
90 295 205 115 228 0.00125 0.848032 73.70 1999.29 1940.82 -58.47
90 296 206 116 228 0.00125 0.846421 74.08 2000.69 1941.81 -58.88
90 297 207 117 228 0.00125 0.844812 74.47 2002.03 1941.14 -60.88
90 298 208 118 228 0.00125 0.843205 74.85 2003.31 1942.00 -61.31
90 299 209 119 228 0.00125 0.841601 75.24 2004.53 1941.21 -63.31
90 300 210 120 228 0.00125 0.840000 75.62 2005.69 1941.95 -63.74
90 301 211 121 228 0.00125 0.838401 76.01 2006.79 1941.04 -65.75
90 302 212 122 228 0.00125 0.836805 76.40 2007.84 1941.64 -66.19
90 303 213 123 228 0.00125 0.835212 76.78 2008.82 1940.62 -68.20
90 304 214 124 228 0.00125 0.833622 77.17 2009.75 1941.10 -68.65
90 305 215 125 228 0.00125 0.832034 77.56 2010.62 1939.96 -70.66
90 306 216 126 228 0.00125 0.830450 77.95 2011.44 1940.32 -71.12
90 307 217 127 228 0.00125 0.828868 78.34 2012.19 1939.06 -73.13
90 308 218 128 228 0.00125 0.827290 78.73 2012.90 1939.31 -73.59
90 309 219 129 228 0.00125 0.825714 79.12 2013.54 1937.94 -75.61
90 310 220 130 228 0.00125 0.824142 79.51 2014.13 1938.06 -76.07
90 311 221 131 228 0.00125 0.822572 79.90 2014.67 1936.58 -78.09
90 312 222 132 228 0.00125 0.821006 80.29 2015.15 1936.60 -78.56
90 313 223 133 228 0.00125 0.819443 80.68 2015.58 1935.00 -80.58
90 314 224 134 228 0.00125 0.817883 81.07 2015.96 1934.90 -81.05
90 315 225 135 228 0.00125 0.816327 81.46 2016.28 1933.21 -83.07
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
104 204 100 -4 272 0.00125 0.999616 46.96 1355.04 1308.08 -46.96
104 205 101 -3 272 0.00125 0.999786 47.16 1367.94 1322.88 -45.06
104 206 102 -2 272 0.00125 0.999906 47.38 1380.71 1339.47 -41.25
104 207 103 -1 272 0.00125 0.999977 47.60 1393.36 1353.83 -39.53
104 208 104 0 272 0.00125 1.000000 47.82 1405.88 1369.98 -35.90
104 209 105 1 272 0.00125 0.999977 48.05 1418.28 1383.93 -34.35
104 210 106 2 272 0.00125 0.999909 48.29 1430.55 1399.65 -30.90
104 211 107 3 272 0.00125 0.999798 48.53 1442.71 1413.19 -29.52
104 212 108 4 272 0.00125 0.999644 48.77 1454.74 1428.50 -26.24
104 213 109 5 272 0.00125 0.999449 49.02 1466.65 1441.63 -25.02
104 214 110 6 272 0.00125 0.999214 49.28 1478.45 1456.54 -21.91
104 215 111 7 272 0.00125 0.998940 49.54 1490.12 1469.28 -20.84
104 216 112 8 272 0.00125 0.998628 49.81 1501.68 1483.79 -17.89
104 217 113 9 272 0.00125 0.998280 50.07 1513.12 1496.16 -16.97
104 218 114 10 272 0.00125 0.997896 50.35 1524.45 1510.28 -14.17
104 219 115 11 272 0.00125 0.997477 50.63 1535.66 1522.28 -13.39
104 220 116 12 272 0.00125 0.997025 50.91 1546.76 1536.02 -10.74
104 221 117 13 272 0.00125 0.996540 51.19 1557.75 1547.66 -10.09
104 222 118 14 272 0.00125 0.996023 51.48 1568.62 1561.03 -7.59
104 223 119 15 272 0.00125 0.995475 51.77 1579.38 1572.32 -7.06
104 224 120 16 272 0.00125 0.994898 52.07 1590.03 1585.34 -4.70
104 225 121 17 272 0.00125 0.994291 52.37 1600.58 1596.28 -4.30
104 226 122 18 272 0.00125 0.993657 52.67 1611.01 1608.94 -2.06
104 227 123 19 272 0.00125 0.992994 52.98 1621.33 1619.55 -1.78
104 228 124 20 272 0.00125 0.992305 53.29 1631.55 1631.87 0.33
104 229 125 21 272 0.00125 0.991591 53.60 1641.66 1642.15 0.49
104 230 126 22 272 0.00125 0.990851 53.92 1651.66 1654.14 2.48
104 231 127 23 272 0.00125 0.990086 54.24 1661.55 1664.10 2.54
104 232 128 24 272 0.00125 0.989298 54.56 1671.35 1675.76 4.42
104 233 129 25 272 0.00125 0.988488 54.88 1681.03 1685.40 4.37
104 234 130 26 272 0.00125 0.987654 55.21 1690.62 1696.75 6.13
104 235 131 27 272 0.00125 0.986799 55.54 1700.10 1706.09 5.99
104 236 132 28 272 0.00125 0.985924 55.87 1709.47 1717.12 7.65
104 237 133 29 272 0.00125 0.985027 56.20 1718.75 1726.16 7.41
104 238 134 30 272 0.00125 0.984111 56.54 1727.92 1736.89 8.96
104 239 135 31 272 0.00125 0.983176 56.88 1737.00 1745.63 8.64
104 240 136 32 272 0.00125 0.982222 57.22 1745.97 1756.06 10.09
104 241 137 33 272 0.00125 0.981250 57.56 1754.84 1764.53 9.68
104 242 138 34 272 0.00125 0.980261 57.91 1763.62 1774.66 11.04
104 243 139 35 272 0.00125 0.979255 58.26 1772.30 1782.85 10.55
104 244 140 36 272 0.00125 0.978232 58.61 1780.88 1792.70 11.82
104 245 141 37 272 0.00125 0.977193 58.96 1789.36 1800.61 11.25
104 246 142 38 272 0.00125 0.976139 59.31 1797.75 1810.18 12.43
104 247 143 39 272 0.00125 0.975069 59.67 1806.04 1817.82 11.78
104 248 144 40 272 0.00125 0.973985 60.03 1814.24 1827.12 12.89
104 249 145 41 272 0.00125 0.972888 60.39 1822.34 1834.50 12.17
104 250 146 42 272 0.00125 0.971776 60.75 1830.34 1843.54 13.19
104 251 147 43 272 0.00125 0.970651 61.11 1838.26 1850.66 12.40
104 252 148 44 272 0.00125 0.969514 61.48 1846.08 1859.43 13.36
104 253 149 45 272 0.00125 0.968364 61.84 1853.81 1866.31 12.50
104 254 150 46 272 0.00125 0.967202 62.21 1861.45 1874.82 13.38
104 255 151 47 272 0.00125 0.966028 62.58 1868.99 1881.45 12.46
104 256 152 48 272 0.00125 0.964844 62.96 1876.45 1889.72 13.27
104 257 153 49 272 0.00125 0.963648 63.33 1883.81 1896.11 12.29
104 258 154 50 272 0.00125 0.962442 63.70 1891.09 1904.13 13.04
104 259 155 51 272 0.00125 0.961226 64.08 1898.27 1910.28 12.00
104 260 156 52 272 0.00125 0.960000 64.46 1905.37 1918.06 12.69
104 261 157 53 272 0.00125 0.958765 64.84 1912.38 1923.98 11.60
104 262 158 54 272 0.00125 0.957520 65.22 1919.30 1931.53 12.22
104 263 159 55 272 0.00125 0.956267 65.60 1926.14 1937.22 11.08
104 264 160 56 272 0.00125 0.955005 65.98 1932.89 1944.54 11.65
104 265 161 57 272 0.00125 0.953734 66.37 1939.55 1950.01 10.46
104 266 162 58 272 0.00125 0.952456 66.76 1946.13 1957.10 10.97
104 267 163 59 272 0.00125 0.951171 67.14 1952.63 1962.36 9.73
104 268 164 60 272 0.00125 0.949877 67.53 1959.04 1969.22 10.19
104 269 165 61 272 0.00125 0.948577 67.92 1965.36 1974.27 8.91
104 270 166 62 272 0.00125 0.947270 68.31 1971.61 1980.92 9.31
104 271 167 63 272 0.00125 0.945957 68.71 1977.77 1985.76 7.99
104 272 168 64 272 0.00125 0.944637 69.10 1983.85 1992.19 8.35
104 273 169 65 272 0.00125 0.943311 69.50 1989.84 1996.83 6.99
104 274 170 66 272 0.00125 0.941979 69.89 1995.76 2003.06 7.30
104 275 171 67 272 0.00125 0.940641 70.29 2001.59 2007.49 5.90
104 276 172 68 272 0.00125 0.939298 70.69 2007.35 2013.51 6.17
104 277 173 69 272 0.00125 0.937950 71.09 2013.02 2017.75 4.73
104 278 174 70 272 0.00125 0.936597 71.49 2018.62 2023.57 4.96
104 279 175 71 272 0.00125 0.935240 71.89 2024.13 2027.62 3.48
104 280 176 72 272 0.00125 0.933878 72.29 2029.57 2033.24 3.67
104 281 177 73 272 0.00125 0.932511 72.69 2034.93 2037.10 2.16
104 282 178 74 272 0.00125 0.931140 73.10 2040.22 2042.53 2.31
104 283 179 75 272 0.00125 0.929766 73.50 2045.42 2046.20 0.78
104 284 180 76 272 0.00125 0.928387 73.91 2050.55 2051.44 0.89
104 285 181 77 272 0.00125 0.927005 74.32 2055.61 2054.93 -0.68
104 286 182 78 272 0.00125 0.925620 74.73 2060.59 2059.99 -0.60
104 287 183 79 272 0.00125 0.924231 75.14 2065.49 2063.30 -2.19
104 288 184 80 272 0.00125 0.922840 75.55 2070.32 2068.17 -2.15
104 289 185 81 272 0.00125 0.921445 75.96 2075.08 2071.31 -3.77
104 290 186 82 272 0.00125 0.920048 76.37 2079.76 2076.00 -3.76
104 291 187 83 272 0.00125 0.918648 76.78 2084.37 2078.97 -5.41
104 292 188 84 272 0.00125 0.917245 77.19 2088.91 2083.49 -5.42
104 293 189 85 272 0.00125 0.915841 77.61 2093.37 2086.28 -7.09
104 294 190 86 272 0.00125 0.914434 78.02 2097.77 2090.63 -7.14
104 295 191 87 272 0.00125 0.913025 78.44 2102.09 2093.26 -8.83
104 296 192 88 272 0.00125 0.911614 78.86 2106.34 2097.43 -8.91
104 297 193 89 272 0.00125 0.910202 79.27 2110.52 2099.90 -10.62
104 298 194 90 272 0.00125 0.908788 79.69 2114.63 2103.91 -10.72
104 299 195 91 272 0.00125 0.907372 80.11 2118.67 2106.21 -12.46
104 300 196 92 272 0.00125 0.905956 80.53 2122.64 2110.06 -12.58
104 301 197 93 272 0.00125 0.904537 80.95 2126.55 2112.21 -14.34
104 302 198 94 272 0.00125 0.903118 81.37 2130.38 2115.90 -14.49
104 303 199 95 272 0.00125 0.901698 81.80 2134.15 2117.89 -16.26
104 304 200 96 272 0.00125 0.900277 82.22 2137.85 2121.42 -16.43
104 305 201 97 272 0.00125 0.898855 82.64 2141.48 2123.26 -18.22
104 306 202 98 272 0.00125 0.897433 83.07 2145.05 2126.63 -18.41
104 307 203 99 272 0.00125 0.896010 83.49 2148.55 2128.33 -20.21
104 308 204 100 272 0.00125 0.894586 83.92 2151.98 2131.55 -20.43
104 309 205 101 272 0.00125 0.893162 84.34 2155.35 2133.10 -22.25
104 310 206 102 272 0.00125 0.891738 84.77 2158.65 2136.17 -22.48
104 311 207 103 272 0.00125 0.890313 85.20 2161.89 2137.57 -24.32
104 312 208 104 272 0.00125 0.888889 85.63 2165.07 2140.50 -24.57
104 313 209 105 272 0.00125 0.887464 86.05 2168.18 2141.76 -26.41
104 314 210 106 272 0.00125 0.886040 86.48 2171.22 2144.54 -26.69
104 315 211 107 272 0.00125 0.884616 86.91 2174.21 2145.66 -28.54
104 316 212 108 272 0.00125 0.883192 87.35 2177.13 2148.30 -28.83
104 317 213 109 272 0.00125 0.881768 87.78 2179.99 2149.29 -30.70
104 318 214 110 272 0.00125 0.880345 88.21 2182.79 2151.78 -31.01
104 319 215 111 272 0.00125 0.878922 88.64 2185.53 2152.64 -32.89
104 320 216 112 272 0.00125 0.877500 89.07 2188.20 2154.99 -33.21
104 321 217 113 272 0.00125 0.876078 89.51 2190.82 2155.72 -35.10
104 322 218 114 272 0.00125 0.874658 89.94 2193.37 2157.94 -35.43
104 323 219 115 272 0.00125 0.873238 90.38 2195.86 2158.53 -37.33
104 324 220 116 272 0.00125 0.871818 90.81 2198.30 2160.62 -37.68
104 325 221 117 272 0.00125 0.870400 91.25 2200.67 2161.09 -39.59
104 326 222 118 272 0.00125 0.868983 91.68 2202.99 2163.04 -39.95
104 327 223 119 272 0.00125 0.867566 92.12 2205.25 2163.39 -41.86
104 328 224 120 272 0.00125 0.866151 92.56 2207.45 2165.21 -42.24
104 329 225 121 272 0.00125 0.864737 93.00 2209.59 2165.43 -44.16
104 330 226 122 272 0.00125 0.863324 93.43 2211.68 2167.13 -44.54
104 331 227 123 272 0.00125 0.861913 93.87 2213.70 2167.23 -46.47
104 332 228 124 272 0.00125 0.860502 94.31 2215.67 2168.80 -46.87
104 333 229 125 272 0.00125 0.859093 94.75 2217.59 2168.78 -48.81
104 334 230 126 272 0.00125 0.857686 95.19 2219.45 2170.23 -49.21
104 335 231 127 272 0.00125 0.856280 95.63 2221.25 2170.09 -51.16
104 336 232 128 272 0.00125 0.854875 96.08 2223.00 2171.42 -51.57
104 337 233 129 272 0.00125 0.853472 96.52 2224.69 2171.17 -53.52
104 338 234 130 272 0.00125 0.852071 96.96 2226.33 2172.38 -53.95
104 339 235 131 272 0.00125 0.850671 97.40 2227.91 2172.01 -55.90
104 340 236 132 272 0.00125 0.849273 97.85 2229.44 2173.11 -56.33
104 341 237 133 272 0.00125 0.847877 98.29 2230.91 2172.63 -58.29
104 342 238 134 272 0.00125 0.846483 98.73 2232.34 2173.60 -58.73
104 343 239 135 272 0.00125 0.845090 99.18 2233.70 2173.01 -60.69
104 344 240 136 272 0.00125 0.843699 99.62 2235.02 2173.88 -61.14
104 345 241 137 272 0.00125 0.842310 100.07 2236.28 2173.18 -63.11
104 346 242 138 272 0.00125 0.840924 100.52 2237.50 2173.93 -63.56
104 347 243 139 272 0.00125 0.839539 100.96 2238.66 2173.13 -65.53
104 348 244 140 272 0.00125 0.838156 101.41 2239.76 2173.77 -65.99
104 349 245 141 272 0.00125 0.836775 101.86 2240.82 2172.86 -67.96
104 350 246 142 272 0.00125 0.835396 102.30 2241.83 2173.39 -68.43
104 351 247 143 272 0.00125 0.834019 102.75 2242.78 2172.38 -70.41
104 352 248 144 272 0.00125 0.832645 103.20 2243.69 2172.80 -70.88
104 353 249 145 272 0.00125 0.831272 103.65 2244.54 2171.69 -72.86
104 354 250 146 272 0.00125 0.829902 104.10 2245.35 2172.01 -73.34
104 355 251 147 272 0.00125 0.828534 104.55 2246.10 2170.79 -75.31
104 356 252 148 272 0.00125 0.827168 105.00 2246.81 2171.01 -75.80
104 357 253 149 272 0.00125 0.825805 105.45 2247.47 2169.69 -77.78
104 358 254 150 272 0.00125 0.824444 105.90 2248.08 2169.81 -78.27
104 359 255 151 272 0.00125 0.823085 106.35 2248.64 2168.40 -80.25
104 360 256 152 272 0.00125 0.821728 106.80 2249.15 2168.41 -80.74
104 361 257 153 272 0.00125 0.820374 107.26 2249.62 2166.90 -82.72
104 362 258 154 272 0.00125 0.819023 107.71 2250.04 2166.82 -83.22
104 363 259 155 272 0.00125 0.817673 108.16 2250.41 2165.21 -85.20
104 364 260 156 272 0.00125 0.816327 108.61 2250.74 2165.03 -85.70
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
118 232 114 -4 314 0.00125 0.999703 60.43 1454.56 1391.70 -62.86
118 233 115 -3 314 0.00125 0.999834 60.67 1467.39 1406.75 -60.64
118 234 116 -2 314 0.00125 0.999927 60.91 1480.10 1423.53 -56.57
118 235 117 -1 314 0.00125 0.999982 61.16 1492.69 1438.19 -54.51
118 236 118 0 314 0.00125 1.000000 61.42 1505.17 1454.57 -50.60
118 237 119 1 314 0.00125 0.999982 61.68 1517.54 1468.85 -48.68
118 238 120 2 314 0.00125 0.999929 61.94 1529.79 1484.86 -44.93
118 239 121 3 314 0.00125 0.999842 62.22 1541.93 1498.77 -43.16
118 240 122 4 314 0.00125 0.999722 62.49 1553.96 1514.40 -39.56
118 241 123 5 314 0.00125 0.999570 62.78 1565.88 1527.95 -37.93
118 242 124 6 314 0.00125 0.999385 63.06 1577.69 1543.21 -34.48
118 243 125 7 314 0.00125 0.999170 63.35 1589.39 1556.41 -32.98
118 244 126 8 314 0.00125 0.998925 63.65 1600.99 1571.31 -29.67
118 245 127 9 314 0.00125 0.998651 63.95 1612.47 1584.17 -28.30
118 246 128 10 314 0.00125 0.998348 64.25 1623.86 1598.72 -25.13
118 247 129 11 314 0.00125 0.998017 64.56 1635.13 1611.24 -23.89
118 248 130 12 314 0.00125 0.997659 64.88 1646.30 1625.45 -20.85
118 249 131 13 314 0.00125 0.997274 65.19 1657.37 1637.63 -19.73
118 250 132 14 314 0.00125 0.996864 65.52 1668.33 1651.51 -16.82
118 251 133 15 314 0.00125 0.996429 65.84 1679.19 1663.37 -15.82
118 252 134 16 314 0.00125 0.995969 66.17 1689.95 1676.91 -13.04
118 253 135 17 314 0.00125 0.995485 66.50 1700.61 1688.46 -12.14
118 254 136 18 314 0.00125 0.994978 66.84 1711.17 1701.69 -9.48
118 255 137 19 314 0.00125 0.994448 67.18 1721.62 1712.93 -8.70
118 256 138 20 314 0.00125 0.993896 67.52 1731.98 1725.83 -6.15
118 257 139 21 314 0.00125 0.993323 67.87 1742.24 1736.77 -5.47
118 258 140 22 314 0.00125 0.992729 68.21 1752.40 1749.37 -3.03
118 259 141 23 314 0.00125 0.992114 68.57 1762.47 1760.01 -2.46
118 260 142 24 314 0.00125 0.991479 68.92 1772.43 1772.30 -0.13
118 261 143 25 314 0.00125 0.990825 69.28 1782.30 1782.65 0.35
118 262 144 26 314 0.00125 0.990152 69.64 1792.08 1794.65 2.57
118 263 145 27 314 0.00125 0.989461 70.01 1801.76 1804.72 2.96
118 264 146 28 314 0.00125 0.988751 70.37 1811.34 1816.43 5.08
118 265 147 29 314 0.00125 0.988024 70.74 1820.83 1826.21 5.38
118 266 148 30 314 0.00125 0.987280 71.11 1830.23 1837.64 7.41
118 267 149 31 314 0.00125 0.986520 71.49 1839.54 1847.15 7.62
118 268 150 32 314 0.00125 0.985743 71.87 1848.75 1858.30 9.55
118 269 151 33 314 0.00125 0.984950 72.25 1857.87 1867.55 9.68
118 270 152 34 314 0.00125 0.984143 72.63 1866.90 1878.42 11.52
118 271 153 35 314 0.00125 0.983320 73.01 1875.84 1887.41 11.56
118 272 154 36 314 0.00125 0.982483 73.40 1884.69 1898.01 13.32
118 273 155 37 314 0.00125 0.981631 73.79 1893.45 1906.74 13.29
118 274 156 38 314 0.00125 0.980766 74.18 1902.12 1917.08 14.96
118 275 157 39 314 0.00125 0.979888 74.57 1910.70 1925.56 14.86
118 276 158 40 314 0.00125 0.978996 74.97 1919.19 1935.65 16.45
118 277 159 41 314 0.00125 0.978092 75.37 1927.60 1943.87 16.27
118 278 160 42 314 0.00125 0.977175 75.77 1935.92 1953.71 17.79
118 279 161 43 314 0.00125 0.976246 76.17 1944.15 1961.69 17.54
118 280 162 44 314 0.00125 0.975306 76.57 1952.30 1971.28 18.99
118 281 163 45 314 0.00125 0.974354 76.98 1960.36 1979.03 18.67
118 282 164 46 314 0.00125 0.973392 77.38 1968.33 1988.38 20.04
118 283 165 47 314 0.00125 0.972418 77.79 1976.22 1995.89 19.67
118 284 166 48 314 0.00125 0.971434 78.20 1984.03 2005.00 20.97
118 285 167 49 314 0.00125 0.970440 78.62 1991.75 2012.28 20.53
118 286 168 50 314 0.00125 0.969436 79.03 1999.39 2021.16 21.77
118 287 169 51 314 0.00125 0.968423 79.45 2006.94 2028.22 21.27
118 288 170 52 314 0.00125 0.967400 79.87 2014.42 2036.86 22.45
118 289 171 53 314 0.00125 0.966368 80.29 2021.81 2043.70 21.89
118 290 172 54 314 0.00125 0.965327 80.71 2029.12 2052.12 23.00
118 291 173 55 314 0.00125 0.964278 81.13 2036.35 2058.75 22.40
118 292 174 56 314 0.00125 0.963220 81.55 2043.50 2066.95 23.45
118 293 175 57 314 0.00125 0.962154 81.98 2050.56 2073.36 22.79
118 294 176 58 314 0.00125 0.961081 82.41 2057.55 2081.34 23.79
118 295 177 59 314 0.00125 0.960000 82.84 2064.46 2087.54 23.08
118 296 178 60 314 0.00125 0.958912 83.27 2071.29 2095.31 24.02
118 297 179 61 314 0.00125 0.957816 83.70 2078.04 2101.31 23.27
118 298 180 62 314 0.00125 0.956714 84.13 2084.72 2108.87 24.15
118 299 181 63 314 0.00125 0.955605 84.57 2091.31 2114.67 23.35
118 300 182 64 314 0.00125 0.954489 85.00 2097.83 2122.02 24.19
118 301 183 65 314 0.00125 0.953367 85.44 2104.28 2127.62 23.35
118 302 184 66 314 0.00125 0.952239 85.88 2110.64 2134.78 24.13
118 303 185 67 314 0.00125 0.951105 86.32 2116.93 2140.18 23.25
118 304 186 68 314 0.00125 0.949965 86.76 2123.15 2147.14 23.99
118 305 187 69 314 0.00125 0.948820 87.20 2129.29 2152.35 23.07
118 306 188 70 314 0.00125 0.947670 87.65 2135.36 2159.12 23.76
118 307 189 71 314 0.00125 0.946514 88.09 2141.35 2164.14 22.80
118 308 190 72 314 0.00125 0.945353 88.54 2147.26 2170.71 23.45
118 309 191 73 314 0.00125 0.944188 88.99 2153.11 2175.56 22.45
118 310 192 74 314 0.00125 0.943018 89.43 2158.88 2181.94 23.06
118 311 193 75 314 0.00125 0.941843 89.88 2164.58 2186.61 22.03
118 312 194 76 314 0.00125 0.940664 90.33 2170.21 2192.80 22.60
118 313 195 77 314 0.00125 0.939481 90.79 2175.76 2197.29 21.53
118 314 196 78 314 0.00125 0.938294 91.24 2181.24 2203.30 22.06
118 315 197 79 314 0.00125 0.937103 91.69 2186.66 2207.62 20.96
118 316 198 80 314 0.00125 0.935908 92.15 2192.00 2213.45 21.46
118 317 199 81 314 0.00125 0.934709 92.60 2197.27 2217.59 20.32
118 318 200 82 314 0.00125 0.933507 93.06 2202.47 2223.26 20.78
118 319 201 83 314 0.00125 0.932302 93.52 2207.61 2227.23 19.62
118 320 202 84 314 0.00125 0.931094 93.98 2212.67 2232.72 20.05
118 321 203 85 314 0.00125 0.929882 94.44 2217.66 2236.52 18.86
118 322 204 86 314 0.00125 0.928668 94.90 2222.59 2241.84 19.25
118 323 205 87 314 0.00125 0.927451 95.36 2227.45 2245.49 18.04
118 324 206 88 314 0.00125 0.926231 95.82 2232.24 2250.64 18.40
118 325 207 89 314 0.00125 0.925008 96.29 2236.96 2254.12 17.16
118 326 208 90 314 0.00125 0.923783 96.75 2241.62 2259.11 17.49
118 327 209 91 314 0.00125 0.922556 97.22 2246.21 2262.44 16.22
118 328 210 92 314 0.00125 0.921327 97.68 2250.74 2267.26 16.53
118 329 211 93 314 0.00125 0.920095 98.15 2255.19 2270.43 15.24
118 330 212 94 314 0.00125 0.918861 98.62 2259.59 2275.10 15.51
118 331 213 95 314 0.00125 0.917626 99.09 2263.92 2278.12 14.20
118 332 214 96 314 0.00125 0.916388 99.56 2268.18 2282.63 14.45
118 333 215 97 314 0.00125 0.915149 100.03 2272.38 2285.50 13.12
118 334 216 98 314 0.00125 0.913909 100.50 2276.52 2289.86 13.34
118 335 217 99 314 0.00125 0.912667 100.97 2280.59 2292.58 11.99
118 336 218 100 314 0.00125 0.911423 101.45 2284.60 2296.78 12.19
118 337 219 101 314 0.00125 0.910178 101.92 2288.54 2299.36 10.82
118 338 220 102 314 0.00125 0.908932 102.39 2292.43 2303.42 10.99
118 339 221 103 314 0.00125 0.907684 102.87 2296.25 2305.85 9.60
118 340 222 104 314 0.00125 0.906436 103.35 2300.01 2309.76 9.75
118 341 223 105 314 0.00125 0.905187 103.82 2303.70 2312.05 8.34
118 342 224 106 314 0.00125 0.903936 104.30 2307.34 2315.82 8.48
118 343 225 107 314 0.00125 0.902685 104.78 2310.92 2317.97 7.05
118 344 226 108 314 0.00125 0.901433 105.26 2314.43 2321.59 7.16
118 345 227 109 314 0.00125 0.900181 105.74 2317.89 2323.61 5.72
118 346 228 110 314 0.00125 0.898927 106.22 2321.28 2327.09 5.81
118 347 229 111 314 0.00125 0.897674 106.70 2324.62 2328.98 4.36
118 348 230 112 314 0.00125 0.896420 107.18 2327.89 2332.32 4.43
118 349 231 113 314 0.00125 0.895165 107.66 2331.11 2334.07 2.96
118 350 232 114 314 0.00125 0.893910 108.15 2334.27 2337.28 3.01
118 351 233 115 314 0.00125 0.892655 108.63 2337.37 2338.90 1.53
118 352 234 116 314 0.00125 0.891400 109.12 2340.41 2341.98 1.57
118 353 235 117 314 0.00125 0.890144 109.60 2343.40 2343.47 0.07
118 354 236 118 314 0.00125 0.888889 110.09 2346.33 2346.42 0.09
118 355 237 119 314 0.00125 0.887633 110.57 2349.20 2347.78 -1.41
118 356 238 120 314 0.00125 0.886378 111.06 2352.01 2350.60 -1.41
118 357 239 121 314 0.00125 0.885123 111.55 2354.77 2351.84 -2.93
118 358 240 122 314 0.00125 0.883868 112.04 2357.47 2354.53 -2.94
118 359 241 123 314 0.00125 0.882613 112.53 2360.12 2355.65 -4.47
118 360 242 124 314 0.00125 0.881358 113.02 2362.71 2358.21 -4.50
118 361 243 125 314 0.00125 0.880104 113.51 2365.24 2359.21 -6.03
118 362 244 126 314 0.00125 0.878850 114.00 2367.72 2361.65 -6.07
118 363 245 127 314 0.00125 0.877596 114.49 2370.15 2362.53 -7.62
118 364 246 128 314 0.00125 0.876343 114.98 2372.52 2364.85 -7.68
118 365 247 129 314 0.00125 0.875091 115.47 2374.84 2365.61 -9.23
118 366 248 130 314 0.00125 0.873839 115.97 2377.10 2367.81 -9.30
118 367 249 131 314 0.00125 0.872588 116.46 2379.31 2368.45 -10.86
118 368 250 132 314 0.00125 0.871337 116.95 2381.47 2370.53 -10.94
118 369 251 133 314 0.00125 0.870088 117.45 2383.58 2371.06 -12.51
118 370 252 134 314 0.00125 0.868839 117.94 2385.63 2373.03 -12.60
118 371 253 135 314 0.00125 0.867590 118.44 2387.63 2373.45 -14.18
118 372 254 136 314 0.00125 0.866343 118.94 2389.58 2375.29 -14.28
118 373 255 137 314 0.00125 0.865096 119.43 2391.47 2375.60 -15.87
118 374 256 138 314 0.00125 0.863851 119.93 2393.32 2377.34 -15.98
118 375 257 139 314 0.00125 0.862606 120.43 2395.11 2377.54 -17.58
118 376 258 140 314 0.00125 0.861363 120.93 2396.86 2379.16 -17.70
118 377 259 141 314 0.00125 0.860120 121.42 2398.55 2379.25 -19.30
118 378 260 142 314 0.00125 0.858879 121.92 2400.19 2380.76 -19.43
118 379 261 143 314 0.00125 0.857638 122.42 2401.78 2380.75 -21.03
118 380 262 144 314 0.00125 0.856399 122.92 2403.33 2382.15 -21.17
118 381 263 145 314 0.00125 0.855161 123.42 2404.82 2382.04 -22.78
118 382 264 146 314 0.00125 0.853924 123.93 2406.26 2383.33 -22.93
118 383 265 147 314 0.00125 0.852688 124.43 2407.66 2383.11 -24.54
118 384 266 148 314 0.00125 0.851454 124.93 2409.00 2384.30 -24.70
118 385 267 149 314 0.00125 0.850221 125.43 2410.30 2383.98 -26.32
118 386 268 150 314 0.00125 0.848989 125.94 2411.55 2385.07 -26.48
118 387 269 151 314 0.00125 0.847759 126.44 2412.75 2384.65 -28.10
118 388 270 152 314 0.00125 0.846530 126.94 2413.91 2385.63 -28.27
118 389 271 153 314 0.00125 0.845302 127.45 2415.01 2385.11 -29.90
118 390 272 154 314 0.00125 0.844076 127.95 2416.07 2385.99 -30.08
118 391 273 155 314 0.00125 0.842852 128.46 2417.08 2385.38 -31.71
118 392 274 156 314 0.00125 0.841628 128.96 2418.05 2386.16 -31.89
118 393 275 157 314 0.00125 0.840407 129.47 2418.97 2385.45 -33.52
118 394 276 158 314 0.00125 0.839187 129.98 2419.84 2386.13 -33.71
118 395 277 159 314 0.00125 0.837968 130.48 2420.67 2385.32 -35.35
118 396 278 160 314 0.00125 0.836751 130.99 2421.45 2385.91 -35.54
118 397 279 161 314 0.00125 0.835536 131.50 2422.19 2385.01 -37.18
118 398 280 162 314 0.00125 0.834322 132.01 2422.88 2385.49 -37.38
118 399 281 163 314 0.00125 0.833110 132.52 2423.52 2384.50 -39.02
118 400 282 164 314 0.00125 0.831900 133.03 2424.12 2384.90 -39.23
118 401 283 165 314 0.00125 0.830691 133.54 2424.68 2383.81 -40.87
118 402 284 166 314 0.00125 0.829484 134.04 2425.19 2384.11 -41.08
118 403 285 167 314 0.00125 0.828279 134.56 2425.66 2382.94 -42.72
118 404 286 168 314 0.00125 0.827076 135.07 2426.09 2383.15 -42.94
118 405 287 169 314 0.00125 0.825874 135.58 2426.47 2381.89 -44.58
118 406 288 170 314 0.00125 0.824674 136.09 2426.80 2382.01 -44.80
118 407 289 171 314 0.00125 0.823476 136.60 2427.10 2380.66 -46.44
118 408 290 172 314 0.00125 0.822280 137.11 2427.35 2380.68 -46.67
118 409 291 173 314 0.00125 0.821085 137.63 2427.56 2379.25 -48.31
118 410 292 174 314 0.00125 0.819893 138.14 2427.73 2379.19 -48.54
118 411 293 175 314 0.00125 0.818702 138.65 2427.85 2377.67 -50.18
118 412 294 176 314 0.00125 0.817513 139.17 2427.93 2377.52 -50.41
118 413 295 177 314 0.00125 0.816327 139.68 2427.98 2375.92 -52.06
Proton number Mass number Neutron number Excess neutron number Est.stable mass number As Υ value Beta value Est.no of free nucleons Estimated BE (MeV) Reference BE (MeV) Difference of BE (MeV)
132 260 128 -4 358 0.00125 0.999763 75.62 1526.87 1452.50 -74.37
132 261 129 -3 358 0.00125 0.999868 75.89 1539.65 1467.79 -71.87
132 262 130 -2 358 0.00125 0.999942 76.16 1552.33 1484.75 -67.58
132 263 131 -1 358 0.00125 0.999986 76.44 1564.89 1499.68 -65.21
132 264 132 0 358 0.00125 1.000000 76.73 1577.35 1516.28 -61.07
132 265 133 1 358 0.00125 0.999986 77.02 1589.70 1530.87 -58.83
132 266 134 2 358 0.00125 0.999943 77.32 1601.95 1547.13 -54.82
132 267 135 3 358 0.00125 0.999874 77.62 1614.10 1561.38 -52.71
132 268 136 4 358 0.00125 0.999777 77.93 1626.14 1577.30 -48.84
132 269 137 5 358 0.00125 0.999655 78.24 1638.07 1591.22 -46.85
132 270 138 6 358 0.00125 0.999506 78.56 1649.91 1606.80 -43.11
132 271 139 7 358 0.00125 0.999333 78.88 1661.65 1620.40 -41.24
132 272 140 8 358 0.00125 0.999135 79.21 1673.28 1635.65 -37.63
132 273 141 9 358 0.00125 0.998913 79.54 1684.82 1648.94 -35.88
132 274 142 10 358 0.00125 0.998668 79.88 1696.25 1663.87 -32.39
132 275 143 11 358 0.00125 0.998400 80.22 1707.59 1676.84 -30.75
132 276 144 12 358 0.00125 0.998110 80.56 1718.83 1691.46 -27.38
132 277 145 13 358 0.00125 0.997797 80.91 1729.98 1704.13 -25.85
132 278 146 14 358 0.00125 0.997464 81.26 1741.03 1718.43 -22.60
132 279 147 15 358 0.00125 0.997109 81.62 1751.98 1730.80 -21.18
132 280 148 16 358 0.00125 0.996735 81.98 1762.84 1744.80 -18.03
132 281 149 17 358 0.00125 0.996340 82.35 1773.60 1756.88 -16.72
132 282 150 18 358 0.00125 0.995926 82.71 1784.27 1770.59 -13.68
132 283 151 19 358 0.00125 0.995493 83.09 1794.85 1782.38 -12.47
132 284 152 20 358 0.00125 0.995041 83.46 1805.33 1795.79 -9.54
132 285 153 21 358 0.00125 0.994571 83.84 1815.72 1807.30 -8.42
132 286 154 22 358 0.00125 0.994083 84.22 1826.03 1820.43 -5.60
132 287 155 23 358 0.00125 0.993578 84.61 1836.24 1831.66 -4.58
132 288 156 24 358 0.00125 0.993056 85.00 1846.36 1844.50 -1.85
132 289 157 25 358 0.00125 0.992517 85.39 1856.39 1855.47 -0.92
132 290 158 26 358 0.00125 0.991962 85.78 1866.33 1868.04 1.71
132 291 159 27 358 0.00125 0.991391 86.18 1876.18 1878.73 2.55
132 292 160 28 358 0.00125 0.990805 86.58 1885.95 1891.03 5.08
132 293 161 29 358 0.00125 0.990204 86.99 1895.63 1901.47 5.84
132 294 162 30 358 0.00125 0.989588 87.39 1905.22 1913.50 8.28
132 295 163 31 358 0.00125 0.988957 87.80 1914.72 1923.68 8.96
132 296 164 32 358 0.00125 0.988313 88.21 1924.14 1935.45 11.31
132 297 165 33 358 0.00125 0.987654 88.63 1933.47 1945.38 11.91
132 298 166 34 358 0.00125 0.986983 89.05 1942.72 1956.89 14.18
132 299 167 35 358 0.00125 0.986298 89.47 1951.88 1966.57 14.70
132 300 168 36 358 0.00125 0.985600 89.89 1960.96 1977.84 16.88
132 301 169 37 358 0.00125 0.984890 90.32 1969.95 1987.28 17.32
132 302 170 38 358 0.00125 0.984167 90.74 1978.86 1998.29 19.43
132 303 171 39 358 0.00125 0.983433 91.17 1987.69 2007.49 19.80
132 304 172 40 358 0.00125 0.982687 91.60 1996.44 2018.27 21.83
132 305 173 41 358 0.00125 0.981930 92.04 2005.10 2027.23 22.13
132 306 174 42 358 0.00125 0.981161 92.48 2013.68 2037.77 24.08
132 307 175 43 358 0.00125 0.980382 92.92 2022.18 2046.50 24.32
132 308 176 44 358 0.00125 0.979592 93.36 2030.60 2056.80 26.20
132 309 177 45 358 0.00125 0.978792 93.80 2038.94 2065.31 26.37
132 310 178 46 358 0.00125 0.977981 94.24 2047.21 2075.38 28.18
132 311 179 47 358 0.00125 0.977161 94.69 2055.39 2083.67 28.29
132 312 180 48 358 0.00125 0.976331 95.14 2063.49 2093.51 30.03
132 313 181 49 358 0.00125 0.975492 95.59 2071.51 2101.59 30.07
132 314 182 50 358 0.00125 0.974644 96.05 2079.46 2111.21 31.75
132 315 183 51 358 0.00125 0.973787 96.50 2087.33 2119.06 31.74
132 316 184 52 358 0.00125 0.972921 96.96 2095.12 2128.46 33.35
132 317 185 53 358 0.00125 0.972047 97.42 2102.83 2136.11 33.28
132 318 186 54 358 0.00125 0.971164 97.88 2110.47 2145.30 34.83
132 319 187 55 358 0.00125 0.970273 98.34 2118.03 2152.74 34.71
132 320 188 56 358 0.00125 0.969375 98.80 2125.51 2161.71 36.20
132 321 189 57 358 0.00125 0.968469 99.27 2132.92 2168.95 36.03
132 322 190 58 358 0.00125 0.967555 99.74 2140.26 2177.71 37.46
132 323 191 59 358 0.00125 0.966634 100.21 2147.52 2184.75 37.23
132 324 192 60 358 0.00125 0.965706 100.68 2154.70 2193.31 38.61
132 325 193 61 358 0.00125 0.964772 101.15 2161.81 2200.15 38.34
132 326 194 62 358 0.00125 0.963830 101.62 2168.85 2208.51 39.66
132 327 195 63 358 0.00125 0.962882 102.10 2175.82 2215.16 39.34
132 328 196 64 358 0.00125 0.961927 102.58 2182.71 2223.32 40.61
132 329 197 65 358 0.00125 0.960967 103.05 2189.53 2229.78 40.25
132 330 198 66 358 0.00125 0.960000 103.53 2196.28 2237.75 41.47
132 331 199 67 358 0.00125 0.959027 104.02 2202.96 2244.01 41.06
132 332 200 68 358 0.00125 0.958049 104.50 2209.56 2251.79 42.23
132 333 201 69 358 0.00125 0.957065 104.98 2216.10 2257.87 41.78
132 334 202 70 358 0.00125 0.956076 105.47 2222.56 2265.47 42.91
132 335 203 71 358 0.00125 0.955081 105.96 2228.95 2271.37 42.41
132 336 204 72 358 0.00125 0.954082 106.44 2235.28 2278.77 43.50
132 337 205 73 358 0.00125 0.953077 106.93 2241.53 2284.49 42.96
132 338 206 74 358 0.00125 0.952068 107.42 2247.72 2291.72 44.00
132 339 207 75 358 0.00125 0.951053 107.92 2253.83 2297.26 43.43
132 340 208 76 358 0.00125 0.950035 108.41 2259.88 2304.31 44.43
132 341 209 77 358 0.00125 0.949011 108.91 2265.86 2309.68 43.82
132 342 210 78 358 0.00125 0.947984 109.40 2271.77 2316.55 44.78
132 343 211 79 358 0.00125 0.946952 109.90 2277.62 2321.75 44.14
132 344 212 80 358 0.00125 0.945917 110.40 2283.39 2328.45 45.05
132 345 213 81 358 0.00125 0.944877 110.90 2289.11 2333.48 44.38
132 346 214 82 358 0.00125 0.943834 111.40 2294.75 2340.01 45.26
132 347 215 83 358 0.00125 0.942787 111.90 2300.33 2344.88 44.55
132 348 216 84 358 0.00125 0.941736 112.40 2305.84 2351.23 45.39
132 349 217 85 358 0.00125 0.940682 112.91 2311.29 2355.94 44.66
132 350 218 86 358 0.00125 0.939624 113.41 2316.67 2362.13 45.46
132 351 219 87 358 0.00125 0.938564 113.92 2321.99 2366.68 44.69
132 352 220 88 358 0.00125 0.937500 114.43 2327.24 2372.71 45.47
132 353 221 89 358 0.00125 0.936433 114.93 2332.43 2377.10 44.67
132 354 222 90 358 0.00125 0.935363 115.44 2337.55 2382.96 45.41
132 355 223 91 358 0.00125 0.934291 115.95 2342.61 2387.20 44.59
132 356 224 92 358 0.00125 0.933216 116.47 2347.61 2392.91 45.30
132 357 225 93 358 0.00125 0.932138 116.98 2352.55 2396.99 44.45
132 358 226 94 358 0.00125 0.931057 117.49 2357.42 2402.54 45.12
132 359 227 95 358 0.00125 0.929974 118.01 2362.23 2406.48 44.25
132 360 228 96 358 0.00125 0.928889 118.52 2366.98 2411.87 44.90
132 361 229 97 358 0.00125 0.927801 119.04 2371.66 2415.66 44.00
132 362 230 98 358 0.00125 0.926712 119.56 2376.29 2420.91 44.62
132 363 231 99 358 0.00125 0.925620 120.07 2380.85 2424.55 43.69
132 364 232 100 358 0.00125 0.924526 120.59 2385.36 2429.64 44.28
132 365 233 101 358 0.00125 0.923430 121.11 2389.80 2433.14 43.34
132 366 234 102 358 0.00125 0.922333 121.63 2394.18 2438.09 43.90
132 367 235 103 358 0.00125 0.921233 122.16 2398.51 2441.44 42.94
132 368 236 104 358 0.00125 0.920132 122.68 2402.77 2446.25 43.48
132 369 237 105 358 0.00125 0.919030 123.20 2406.97 2449.46 42.49
132 370 238 106 358 0.00125 0.917925 123.73 2411.12 2454.13 43.01
132 371 239 107 358 0.00125 0.916820 124.25 2415.21 2457.20 42.00
132 372 240 108 358 0.00125 0.915713 124.78 2419.23 2461.72 42.49
132 373 241 109 358 0.00125 0.914604 125.31 2423.20 2464.67 41.46
132 374 242 110 358 0.00125 0.913495 125.83 2427.12 2469.05 41.93
132 375 243 111 358 0.00125 0.912384 126.36 2430.97 2471.86 40.89
132 376 244 112 358 0.00125 0.911272 126.89 2434.77 2476.11 41.34
132 377 245 113 358 0.00125 0.910159 127.42 2438.51 2478.78 40.27
132 378 246 114 358 0.00125 0.909045 127.95 2442.19 2482.89 40.70
132 379 247 115 358 0.00125 0.907930 128.48 2445.82 2485.44 39.62
132 380 248 116 358 0.00125 0.906814 129.02 2449.39 2489.42 40.03
132 381 249 117 358 0.00125 0.905698 129.55 2452.91 2491.84 38.93
132 382 250 118 358 0.00125 0.904580 130.08 2456.37 2495.69 39.32
132 383 251 119 358 0.00125 0.903462 130.62 2459.77 2497.98 38.21
132 384 252 120 358 0.00125 0.902344 131.15 2463.12 2501.70 38.58
132 385 253 121 358 0.00125 0.901224 131.69 2466.42 2503.87 37.45
132 386 254 122 358 0.00125 0.900105 132.23 2469.66 2507.46 37.80
132 387 255 123 358 0.00125 0.898984 132.77 2472.84 2509.51 36.67
132 388 256 124 358 0.00125 0.897864 133.30 2475.98 2512.97 37.00
132 389 257 125 358 0.00125 0.896743 133.84 2479.05 2514.90 35.85
132 390 258 126 358 0.00125 0.895621 134.38 2482.08 2518.24 36.16
132 391 259 127 358 0.00125 0.894500 134.92 2485.05 2520.05 35.00
132 392 260 128 358 0.00125 0.893378 135.46 2487.97 2523.27 35.30
132 393 261 129 358 0.00125 0.892256 136.01 2490.84 2524.96 34.12
132 394 262 130 358 0.00125 0.891133 136.55 2493.65 2528.06 34.41
132 395 263 131 358 0.00125 0.890011 137.09 2496.41 2529.63 33.22
132 396 264 132 358 0.00125 0.888889 137.63 2499.12 2532.61 33.49
132 397 265 133 358 0.00125 0.887767 138.18 2501.78 2534.07 32.29
132 398 266 134 358 0.00125 0.886644 138.72 2504.39 2536.93 32.55
132 399 267 135 358 0.00125 0.885522 139.27 2506.94 2538.28 31.34
132 400 268 136 358 0.00125 0.884400 139.81 2509.45 2541.03 31.58
132 401 269 137 358 0.00125 0.883278 140.36 2511.90 2542.26 30.36
132 402 270 138 358 0.00125 0.882156 140.91 2514.31 2544.90 30.59
132 403 271 139 358 0.00125 0.881035 141.46 2516.66 2546.02 29.36
132 404 272 140 358 0.00125 0.879914 142.00 2518.97 2548.54 29.58
132 405 273 141 358 0.00125 0.878793 142.55 2521.22 2549.56 28.34
132 406 274 142 358 0.00125 0.877672 143.10 2523.42 2551.97 28.55
132 407 275 143 358 0.00125 0.876552 143.65 2525.58 2552.88 27.30
132 408 276 144 358 0.00125 0.875433 144.20 2527.69 2555.18 27.49
132 409 277 145 358 0.00125 0.874313 144.76 2529.74 2555.99 26.24
132 410 278 146 358 0.00125 0.873195 145.31 2531.75 2558.18 26.42
132 411 279 147 358 0.00125 0.872076 145.86 2533.72 2558.88 25.16
132 412 280 148 358 0.00125 0.870959 146.41 2535.63 2560.96 25.33
132 413 281 149 358 0.00125 0.869842 146.97 2537.49 2561.56 24.07
132 414 282 150 358 0.00125 0.868725 147.52 2539.31 2563.54 24.23
132 415 283 151 358 0.00125 0.867609 148.08 2541.08 2564.04 22.95
132 416 284 152 358 0.00125 0.866494 148.63 2542.81 2565.91 23.10
132 417 285 153 358 0.00125 0.865380 149.19 2544.48 2566.31 21.82
132 418 286 154 358 0.00125 0.864266 149.74 2546.11 2568.08 21.97
132 419 287 155 358 0.00125 0.863153 150.30 2547.70 2568.38 20.68
132 420 288 156 358 0.00125 0.862041 150.86 2549.24 2570.05 20.81
132 421 289 157 358 0.00125 0.860929 151.41 2550.73 2570.25 19.52
132 422 290 158 358 0.00125 0.859819 151.97 2552.17 2571.82 19.65
132 423 291 159 358 0.00125 0.858709 152.53 2553.57 2571.93 18.35
132 424 292 160 358 0.00125 0.857601 153.09 2554.93 2573.40 18.47
132 425 293 161 358 0.00125 0.856493 153.65 2556.24 2573.41 17.17
132 426 294 162 358 0.00125 0.855386 154.21 2557.51 2574.78 17.27
132 427 295 163 358 0.00125 0.854280 154.77 2558.73 2574.70 15.97
132 428 296 164 358 0.00125 0.853175 155.33 2559.90 2575.97 16.07
132 429 297 165 358 0.00125 0.852071 155.89 2561.03 2575.80 14.76
132 430 298 166 358 0.00125 0.850968 156.45 2562.12 2576.98 14.86
132 431 299 167 358 0.00125 0.849866 157.02 2563.17 2576.71 13.54
132 432 300 168 358 0.00125 0.848765 157.58 2564.17 2577.80 13.63
132 433 301 169 358 0.00125 0.847666 158.14 2565.13 2577.44 12.31
132 434 302 170 358 0.00125 0.846567 158.71 2566.04 2578.43 12.39
132 435 303 171 358 0.00125 0.845470 159.27 2566.91 2577.99 11.07
132 436 304 172 358 0.00125 0.844373 159.84 2567.74 2578.89 11.15
132 437 305 173 358 0.00125 0.843278 160.40 2568.53 2578.35 9.83
132 438 306 174 358 0.00125 0.842184 160.97 2569.27 2579.17 9.90
132 439 307 175 358 0.00125 0.841092 161.53 2569.97 2578.54 8.57
132 440 308 176 358 0.00125 0.840000 162.10 2570.63 2579.27 8.64
132 441 309 177 358 0.00125 0.838910 162.67 2571.25 2578.56 7.31
132 442 310 178 358 0.00125 0.837821 163.23 2571.82 2579.19 7.37
132 443 311 179 358 0.00125 0.836733 163.80 2572.36 2578.40 6.04
132 444 312 180 358 0.00125 0.835646 164.37 2572.85 2578.94 6.09
132 445 313 181 358 0.00125 0.834561 164.94 2573.31 2578.07 4.76
132 446 314 182 358 0.00125 0.833477 165.51 2573.72 2578.53 4.81
132 447 315 183 358 0.00125 0.832395 166.08 2574.09 2577.57 3.48
132 448 316 184 358 0.00125 0.831314 166.65 2574.42 2577.94 3.52
132 449 317 185 358 0.00125 0.830234 167.22 2574.71 2576.90 2.19
132 450 318 186 358 0.00125 0.829156 167.79 2574.96 2577.19 2.23
132 451 319 187 358 0.00125 0.828079 168.36 2575.17 2576.07 0.89
132 452 320 188 358 0.00125 0.827003 168.93 2575.34 2576.28 0.93
132 453 321 189 358 0.00125 0.825929 169.50 2575.48 2575.07 -0.40
132 454 322 190 358 0.00125 0.824856 170.07 2575.57 2575.20 -0.37
132 455 323 191 358 0.00125 0.823785 170.65 2575.62 2573.91 -1.71
132 456 324 192 358 0.00125 0.822715 171.22 2575.64 2573.96 -1.68
132 457 325 193 358 0.00125 0.821646 171.79 2575.61 2572.60 -3.02
132 458 326 194 358 0.00125 0.820579 172.37 2575.55 2572.56 -2.99
132 459 327 195 358 0.00125 0.819514 172.94 2575.45 2571.12 -4.33
132 460 328 196 358 0.00125 0.818450 173.51 2575.31 2571.01 -4.30
132 461 329 197 358 0.00125 0.817387 174.09 2575.13 2569.49 -5.64
132 462 330 198 358 0.00125 0.816327 174.66 2574.92 2569.30 -5.62
Table 3. Estimated maximum binding energy of A = 4 to 405.
Table 3. Estimated maximum binding energy of A = 4 to 405.
Mass number
A
Estimated maximum
Binding energy (MeV)
Estimated maximum
Binding energy per nucleon (MeV)
Mass number
A
Estimated maximum
Binding energy (MeV)
Estimated maximum
Binding energy per nucleon (MeV))
Mass number
A
Estimated maximum
Binding energy (MeV)
Estimated maximum
Binding energy per nucleon (MeV)
4 23.95 5.99 138 1157.35 8.39 272 2026.03 7.45
5 32.64 6.53 139 1164.84 8.38 273 2031.50 7.44
6 41.46 6.91 140 1172.32 8.37 274 2036.95 7.43
7 50.37 7.20 141 1179.78 8.37 275 2042.39 7.43
8 59.35 7.42 142 1187.22 8.36 276 2047.81 7.42
9 68.38 7.60 143 1194.65 8.35 277 2053.22 7.41
10 77.44 7.74 144 1202.06 8.35 278 2058.61 7.41
11 86.53 7.87 145 1209.46 8.34 279 2063.98 7.40
12 95.64 7.97 146 1216.85 8.33 280 2069.35 7.39
13 104.77 8.06 147 1224.21 8.33 281 2074.69 7.38
14 113.91 8.14 148 1231.57 8.32 282 2080.02 7.38
15 123.05 8.20 149 1238.90 8.31 283 2085.34 7.37
16 132.20 8.26 150 1246.23 8.31 284 2090.64 7.36
17 141.35 8.31 151 1253.53 8.30 285 2095.93 7.35
18 150.51 8.36 152 1260.83 8.29 286 2101.20 7.35
19 159.66 8.40 153 1268.10 8.29 287 2106.46 7.34
20 168.81 8.44 154 1275.37 8.28 288 2111.70 7.33
21 177.95 8.47 155 1282.61 8.27 289 2116.93 7.33
22 187.09 8.50 156 1289.84 8.27 290 2122.14 7.32
23 196.23 8.53 157 1297.06 8.26 291 2127.34 7.31
24 205.35 8.56 158 1304.26 8.25 292 2132.52 7.30
25 214.47 8.58 159 1311.45 8.25 293 2137.69 7.30
26 223.58 8.60 160 1318.62 8.24 294 2142.84 7.29
27 232.69 8.62 161 1325.77 8.23 295 2147.98 7.28
28 241.78 8.64 162 1332.91 8.23 296 2153.10 7.27
29 250.87 8.65 163 1340.04 8.22 297 2158.21 7.27
30 259.94 8.66 164 1347.15 8.21 298 2163.30 7.26
31 269.00 8.68 165 1354.24 8.21 299 2168.38 7.25
32 278.06 8.69 166 1361.32 8.20 300 2173.44 7.24
33 287.10 8.70 167 1368.39 8.19 301 2178.49 7.24
34 296.13 8.71 168 1375.43 8.19 302 2183.52 7.23
35 305.15 8.72 169 1382.47 8.18 303 2188.54 7.22
36 314.16 8.73 170 1389.49 8.17 304 2193.54 7.22
37 323.15 8.73 171 1396.49 8.17 305 2198.53 7.21
38 332.13 8.74 172 1403.48 8.16 306 2203.51 7.20
39 341.10 8.75 173 1410.45 8.15 307 2208.46 7.19
40 350.06 8.75 174 1417.41 8.15 308 2213.41 7.19
41 359.01 8.76 175 1424.35 8.14 309 2218.34 7.18
42 367.94 8.76 176 1431.28 8.13 310 2223.25 7.17
43 376.86 8.76 177 1438.19 8.13 311 2228.15 7.16
44 385.76 8.77 178 1445.09 8.12 312 2233.03 7.16
45 394.65 8.77 179 1451.97 8.11 313 2237.90 7.15
46 403.53 8.77 180 1458.84 8.10 314 2242.76 7.14
47 412.40 8.77 181 1465.69 8.10 315 2247.60 7.14
48 421.25 8.78 182 1472.53 8.09 316 2252.42 7.13
49 430.08 8.78 183 1479.35 8.08 317 2257.23 7.12
50 438.91 8.78 184 1486.16 8.08 318 2262.03 7.11
51 447.72 8.78 185 1492.95 8.07 319 2266.81 7.11
52 456.51 8.78 186 1499.72 8.06 320 2271.57 7.10
53 465.30 8.78 187 1506.49 8.06 321 2276.32 7.09
54 474.06 8.78 188 1513.23 8.05 322 2281.06 7.08
55 482.82 8.78 189 1519.96 8.04 323 2285.78 7.08
56 491.55 8.78 190 1526.68 8.04 324 2290.48 7.07
57 500.28 8.78 191 1533.38 8.03 325 2295.17 7.06
58 508.99 8.78 192 1540.06 8.02 326 2299.85 7.05
59 517.68 8.77 193 1546.73 8.01 327 2304.51 7.05
60 526.37 8.77 194 1553.39 8.01 328 2309.16 7.04
61 535.03 8.77 195 1560.03 8.00 329 2313.79 7.03
62 543.69 8.77 196 1566.65 7.99 330 2318.40 7.03
63 552.32 8.77 197 1573.26 7.99 331 2323.01 7.02
64 560.95 8.76 198 1579.86 7.98 332 2327.59 7.01
65 569.55 8.76 199 1586.44 7.97 333 2332.16 7.00
66 578.15 8.76 200 1593.00 7.97 334 2336.72 7.00
67 586.73 8.76 201 1599.55 7.96 335 2341.26 6.99
68 595.29 8.75 202 1606.08 7.95 336 2345.79 6.98
69 603.84 8.75 203 1612.60 7.94 337 2350.30 6.97
70 612.38 8.75 204 1619.11 7.94 338 2354.80 6.97
71 620.90 8.75 205 1625.60 7.93 339 2359.28 6.96
72 629.40 8.74 206 1632.07 7.92 340 2363.75 6.95
73 637.89 8.74 207 1638.53 7.92 341 2368.21 6.94
74 646.37 8.73 208 1644.97 7.91 342 2372.64 6.94
75 654.83 8.73 209 1651.40 7.90 343 2377.07 6.93
76 663.27 8.73 210 1657.81 7.89 344 2381.48 6.92
77 671.70 8.72 211 1664.21 7.89 345 2385.87 6.92
78 680.12 8.72 212 1670.59 7.88 346 2390.25 6.91
79 688.52 8.72 213 1676.96 7.87 347 2394.61 6.90
80 696.90 8.71 214 1683.31 7.87 348 2398.96 6.89
81 705.27 8.71 215 1689.65 7.86 349 2403.30 6.89
82 713.63 8.70 216 1695.97 7.85 350 2407.61 6.88
83 721.97 8.70 217 1702.28 7.84 351 2411.92 6.87
84 730.30 8.69 218 1708.57 7.84 352 2416.21 6.86
85 738.61 8.69 219 1714.85 7.83 353 2420.48 6.86
86 746.90 8.68 220 1721.11 7.82 354 2424.74 6.85
87 755.18 8.68 221 1727.36 7.82 355 2428.99 6.84
88 763.45 8.68 222 1733.59 7.81 356 2433.22 6.83
89 771.70 8.67 223 1739.81 7.80 357 2437.44 6.83
90 779.93 8.67 224 1746.01 7.79 358 2441.64 6.82
91 788.15 8.66 225 1752.20 7.79 359 2445.82 6.81
92 796.36 8.66 226 1758.37 7.78 360 2450.00 6.81
93 804.55 8.65 227 1764.53 7.77 361 2454.15 6.80
94 812.72 8.65 228 1770.67 7.77 362 2458.29 6.79
95 820.88 8.64 229 1776.80 7.76 363 2462.42 6.78
96 829.02 8.64 230 1782.91 7.75 364 2466.53 6.78
97 837.15 8.63 231 1789.01 7.74 365 2470.63 6.77
98 845.27 8.63 232 1795.09 7.74 366 2474.71 6.76
99 853.37 8.62 233 1801.15 7.73 367 2478.78 6.75
100 861.45 8.61 234 1807.21 7.72 368 2482.83 6.75
101 869.52 8.61 235 1813.24 7.72 369 2486.87 6.74
102 877.57 8.60 236 1819.26 7.71 370 2490.89 6.73
103 885.61 8.60 237 1825.27 7.70 371 2494.90 6.72
104 893.63 8.59 238 1831.26 7.69 372 2498.90 6.72
105 901.64 8.59 239 1837.24 7.69 373 2502.88 6.71
106 909.63 8.58 240 1843.20 7.68 374 2506.84 6.70
107 917.61 8.58 241 1849.14 7.67 375 2510.79 6.70
108 925.57 8.57 242 1855.08 7.67 376 2514.72 6.69
109 933.52 8.56 243 1860.99 7.66 377 2518.64 6.68
110 941.45 8.56 244 1866.89 7.65 378 2522.55 6.67
111 949.36 8.55 245 1872.78 7.64 379 2526.44 6.67
112 957.27 8.55 246 1878.65 7.64 380 2530.31 6.66
113 965.15 8.54 247 1884.51 7.63 381 2534.17 6.65
114 973.02 8.54 248 1890.35 7.62 382 2538.02 6.64
115 980.88 8.53 249 1896.17 7.62 383 2541.85 6.64
116 988.72 8.52 250 1901.98 7.61 384 2545.67 6.63
117 996.54 8.52 251 1907.78 7.60 385 2549.47 6.62
118 1004.35 8.51 252 1913.56 7.59 386 2553.26 6.61
119 1012.15 8.51 253 1919.33 7.59 387 2557.03 6.61
120 1019.93 8.50 254 1925.08 7.58 388 2560.79 6.60
121 1027.69 8.49 255 1930.81 7.57 389 2564.53 6.59
122 1035.44 8.49 256 1936.54 7.56 390 2568.26 6.59
123 1043.17 8.48 257 1942.24 7.56 391 2571.97 6.58
124 1050.89 8.47 258 1947.93 7.55 392 2575.67 6.57
125 1058.60 8.47 259 1953.61 7.54 393 2579.35 6.56
126 1066.28 8.46 260 1959.27 7.54 394 2583.02 6.56
127 1073.96 8.46 261 1964.92 7.53 395 2586.67 6.55
128 1081.61 8.45 262 1970.55 7.52 396 2590.31 6.54
129 1089.26 8.44 263 1976.16 7.51 397 2593.94 6.53
130 1096.88 8.44 264 1981.76 7.51 398 2597.55 6.53
131 1104.49 8.43 265 1987.35 7.50 399 2601.14 6.52
132 1112.09 8.42 266 1992.92 7.49 400 2604.72 6.51
133 1119.67 8.42 267 1998.48 7.48 401 2608.32 6.50
134 1127.24 8.41 268 2004.02 7.48 402 2611.92 6.50
135 1134.79 8.41 269 2009.55 7.47 403 2615.52 6.49
136 1142.33 8.40 270 2015.06 7.46 404 2619.12 6.48
137 1149.85 8.39 271 2020.55 7.46 405 2622.72 6.48
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated