
Article Not peer-reviewed version

Developing a Secure Service Ecosystem

to Implement the Intelligent Edge

Environment for Smart Cities

Gayathri Karthick * and Glenford Mapp Ezra

Posted Date: 24 July 2024

doi: 10.20944/preprints202407.1821.v1

Keywords: Intelligent Edge Environment; Secure Service Ecosystem; Capabilities; FUSE; Docker; SMART

Ciities

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3712466
https://sciprofiles.com/profile/1533187


Article

Developing a Secure Service Ecosystem to Implement
the Intelligent Edge Environment for Smart Cities

Gayathri Karthick 1,*,†,‡ and Glenford Mapp 2,‡

1 Middlesex University 1; gayuinfy@gmail.com
2 Middlesex University 2; g.mapp@mdx.ac.uk
* Correspondence: g.mapp@mdx.ac.uk;
† Current address: The Burroughs, London NW4 4BT Middlesex University London, UK
‡ These authors contributed equally to this work.

Abstract: In the future, smart cities will provide key services including seamless communication, intelligent

transport systems, advanced healthcare platforms, urban and infrastructure management, and digital services

for local and regional government. Therefore, a new service and networking paradigm, called the Intelligent

Edge Environment, has been specified. and is known as the Intelligent Edge Environment. As a key part of

this system, a new secure service ecosystem must be developed to provide the secure realtime movement of

services on different High-Performance Edge Cloud Systems. This paper explores these issues by introducing the

following mechanisms: the Resource Allocation Algorithm, the Resource Allocation Secure Protocol and finally

the Secure Service Protocols. These systems were integrated into the Basic Capabilities System Library and a

multithreaded FUSE client connected to the Service Management Framework. Docker was used as a migration

mechanism. A prototype was developed and implemented using a FUSE-Network Memory System in which the

Network Memory Server was migrated as users move around. The result shows that this approach was safe and

could be used to develop new applications and services for smart cities.

Keywords: intelligent edge environment; secure service ecosystem; capabilities; FUSE; docker

1. Introduction

Smart cities leverage advanced technologies such as Mobile Edge Computing (MEC), Internet
of Things (IoT), AI, and data analytics, fast communication networks, for example 5G/6G, to deliver
efficient, sustainable, high-quality services, improving the overall quality of life for its citizens. These
technologies can be combined to produce a new computing and service paradigm, called the Intelligent
Edge Environment (IEE), in which services are run and managed from the edge of the network
by default. The IEE Figure 1 is composed of following with these 7 layers, Heterogeneous layer,
Data Management Layer, The High-Performance Edge Cloud System (HPSCS), Service Management
Framework, Micro services Layer, Application Framework layer, Application Layer. The details of the
IEE has been explored in [1].

Figure 1. Intelligent Edge Environment

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-1228-7099
https://orcid.org/0000-0002-0539-5852
https://doi.org/10.20944/preprints202407.1821.v1
http://creativecommons.org/licenses/by/4.0/


2 of 22

1.1. Intelligent Edge Environment Layers

The functions of each layer of the IEE are detailed in Figure 2 :

• Layer 1: Heterogeneous Networking Layer (HNL): It integrates different types of wireless
networks or technologies, providing connections using various technologies such as 4G, 5G,
WIFI, and Cellular.

• Layer 2: Data Management Layer (DML): The layer has a crucial role in handling vast amounts
of data generated by edge devices such Connected and Autonomous Vehicles (CAVs) and uses
many structures such as blocks, files, databases, and Machine Learning (ML) to manage data.

• Layer 3: High-Performance Edge Cloud Systems (HPECS): This layer supports various cloud
architectures and cloud types, including private, public, hybrid, and community clouds (AWS,
Hadoop, etc.) using Virtual Machine (VMs) including VMware and Citrix ecosystems and Video
Streaming, Augmented and Virtual Reality and Autonomous systems. Therefore, Resource
Allocation Servers (RAS) are needed to manage various HPECS systems.

• Layer 4: Service Management Framework: This layer manages services and servers within the
system. It offers mobile service support by migrating and replicating services using various
migration techniques like Docker (containerization), KVM (virtualization), and Unikernels
(specialized single-purpose virtual machines) to migrate services, using AI techniques to ensure
that the service meets performance requirements.

• Layer 5: Microservices Layer (MSL): This layer supports for micro services and is the responsible
for independently deployable services. These services should be fast and small in order to be
easily migrated.

• Layer 6: Application Framework Layer (APL): This layer uses the microservices layer below to
provide applications frameworks in order build applications for different environments such as
Mobile Communications, Vehicular Networking, and IoT Smart Grids.

• Layer 7: Application Layer: This layer allows applications that have been built using the
Application Framework Layer to be installed on the system and made available to users. Through
this layer, users get applications that use all the resources of the IEE.

Figure 2. Intelligent Edge Environment Layers

A key part of IEE is the development of a Secure Service Ecosystem (SSE) in which services can
be dynamically moved securely between different commercial cloud systems. As shown in Figure 2,
the SSE, therefore, encompasses the three core layers of the IEE which are the HPECS, SMF, and MSL
layers. This paper explores how to build an SSE and the contributions of the work are detailed below.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


3 of 22

• A new simple Resource Allocation Algorithm (RAA) is developed to run on a Resource Allocation
Server (RAS). To enable mobile service, this algorithm has to be simple and fast.

• A new secure transfer protocol called the Resource Allocation Secure Protocol (RASP) is detailed.
This will involve the use of cryptographic protocols such as ProVerif to show that the transfer
protocol is safe.

• A secure access control system using capabilities, this is necessary to provide the Authentication,
Authorization, Accounting (AAA).

• A new Secure Service Protocol is devolved using these mechanisms.
• The development of a new Service Management Framework (SMF) which can be used to manage

applications and services in the IEE.
• The design of a capability-based Secure Service Protocol (SSP) to provide a complete framework

for the IEE. The SSP is shown to be safe using Proverif.
• The implementation of a prototype SSP system using a Network Memory Server (NMS) to

provide backing storage for a FUSE file system in a vehicular network.

The rest of the paper is organized as follows: Section 2 reviews the Related Work. Section 3 details
the Simple Resource Allocation Algorithm, while Section 4 explores the RASP Protocol using ProVerif.
In Section 5, a capability system discusses the structure in IEE, and in Section 6, the SSP Protocol is
proposed and tested using ProVerif. Section 7 covers the prototype implementation. Finally, Section 8
concludes the paper.

2. Related Work

The convergence of the automotive industry with cognitive computing, forming the Industrial
Cognitive Internet of Vehicles (CIoV), is a rapidly evolving field with significant implications for
the QoS and security in vehicular networks. This convergence is driven by the increasing impact of
social media on automotive services and the need for advanced edge computing solutions to reduce
latency and enhance reliability. As explored by the author in [2], offloading cognitive computing
tasks to the network edge using methods like CQP, which employs Canopy and K-medoids clustering
along with a nondominated sorting genetic algorithm III, can optimize edge server (ES) quantification
and placement, thereby improving QoS. In parallel, ensuring secure communications in IoT systems
remains a critical challenge, particularly due to resource limitations that hinder the deployment of
asymmetric cryptographic systems. The author in [3] proposes a lightweight key synchronization
update algorithm for symmetric encryption schemes with pre-shared keys, which forms the basis of a
new secure communication protocol. This protocol is resistant to common attacks and is verified using
Tamarin, highlighting its practical viability in IoT environments. Resource contention in highly mobile
environments, such as vehicular networks, further complicates QoS maintenance. As discussed by the
authors in [4] and [5], traditional reactive handover techniques are inadequate, necessitating proactive
approaches like Time Before Handover (TBH) and Network Dwell Time (NDT) to manage resources
effectively through probabilistic mechanisms. The transformative impact of the Internet of Things (IoT)
on global healthcare systems also underscores the necessity for secure and efficient data management
at the edge of the Internet. The author in [6] highlights the integration of eHealth and mHealth
mechanisms into national healthcare systems, proposing a new security framework that leverages
blockchain technology to enhance healthcare security. This framework incorporates mechanisms
such as Capabilities, Secure Remote Procedure Calls, and a Service Management Framework. Finally,
the emergence of network storage as an alternative to large local storage systems in highly mobile
environments presents unique challenges. The authors in [7] and [8], investigates the communication
dynamics necessary for seamless connectivity and service migration, utilizing techniques like Docker,
KVM, LXD, and Unikernels in vehicular edge environments. The authors [9] attempted to address the
development of a secure commercial advertising scheme for Vehicular networks. They proposed a
scheme name called “Business discovery (BUY)” that presents the concept of the beaconing market
using a Vehicular network. The autors [10] have explored the use of high-performance computing and
cloud resources for medical imaging, particularly focusing on microwave imaging for breast and brain

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


4 of 22

scans. Space-time algorithms, while effective, face challenges due to their computational intensity. The
authors [11] have observed, that among various vehicular applications, the most promising strategies
involve the dissemination of commercial advertisements via car to RSU and car to car communication.
The findings suggest that a proactive approach to service migration is essential for supporting network
storage in these settings. Together, these studies illustrate the demand for innovative solutions to
optimize QoS and ensure secure communications in the Intelligent edge environment for Smart cities.

3. The Simple Resource Algorithm

Resource management [12] is to the process of distributing available resources, such as CPU,
Memory, Network and Storage, among various tasks in an efficient manner as it helps for delivering
high performance in Cloud infrastructure to achieve high Quality of services (QoS) to deliver. Cloud
systems use virtualization to replicate and share resources. Several algorithms are used to manage
this allocation effectively. There are two types of resource algorithms, Static and Dynamic algorithms.
However, when services are moved between Clouds, we must use dynamic algorithms which must be
simple and fast because it is highly mobile environment. This algorithm is shown in Figure 3. The
roles in the RAA are specified as follows:

1. Advertising Cloud (CA, CB, CC...etc): Each Cloud Service Provider (CSP) has a finite set of
resources available for servers and services. The cloud system broadcasts its available resources
(CPU, memory, network, and storage) to the Receiving Servers.

2. Receiving Servers (SA, SB, SC...etc): These servers can choose to migrate their services to the
Advertising Clouds based on their hosting requirements.

3. Resource Allocation Server (RAS): A trusted party responsible for verifying the resources of
Advertising Clouds and the hosting requirements of Receiving Servers.

Figure 3. Simple Resource Allocation Design

Table 1. RAS Table

Resource Allocation
Server

Adverting Cloud
(CA)

Adverting Cloud (CB) Adverting Cloud (N)

Receiving Server (SA) CPU, Memory,
Network and storage

CPU, Memory,
Network and Storage

CPU, Memory,
Network and Storage

Receiving Server (SB) CPU, Memory,
Network and Storage

CPU, Memory,
Network and Storage

CPU, Memory,
Network and Storage

Receiving Server (N)1 CPU, Memory,
Network and Storage

CPU, Memory,
Network and Storage

CPU, Memory,
Network and Storage

1 N-Number of Cloud servers.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


5 of 22

The first stage of the RASP protocol uses the Resource Allocation Algorithm (RAA) for cloud
advertisements. Each cloud system actively advertises its free resources in each round and uses
mathematical formulations to determine if a service can be securely migrated to an advertising cloud
(AC). The formulation below demonstrates how cloud CB advertises its resources and receiving server
SA receives the requested resources.

3.1. Advertising Cloud Formulation

The variables indicate the number of CPUs, Memory, Storage, and Network resources respectively.
These values help in determining the resource availability and allocation for secure service migration.
At each round, each provider will use the mathematical formulation below: Step 1 of the RASP protocol
and general notations is as follows:

• Stage 1 1. CB→ SA : Advc (CB, ResCB) ) [CB → SA: Advertising Cloud (CB) sends an advertise-
ment (Advc) to the Receiving Servers (SA), detailing the free resources (Res freeCB)].

– Maximum Resource of Cloud (MAX_Cm) = [CPU (Cmc), Memory (Cmm), Storage (Cms),
Network (Cmn)],

– Allocated Resource of Cloud (ALLOC_Ca) = [CPU (Cac), Memory (Cam), Storage (Cas),
Network (Can)]and

– Free Resource of Cloud (FREE_C f ) = [CPU (Cfc), Memory (Cfm), Storage (Cfs), Network
(Cfn)]

Algorithm 1 Cloud CB Formation

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: MAX_Cm (Cmr) = {Cmc, Cmm, Cms, Cmn }
3: ALLOC_Ca (Car) = { Cac, Cam, Cas, Can } &
4: FREE_C f (C f r) = {C f c, C f m, C f s, C f n}
5: C f r←− C f r ∪ Resources(r)
6: If C f r← (Cmr− Car) > 0 then
7: Send Advc of C f r and wait for response;
8: else C f r ≤ ϕ then
9: wait for C f r > 0 ;

10: End if

Cloud CB Formation in detail,

• Step 1: The resources in consideration are categorized as CPU, Network, Memory, and Storage:
Resources (r) include: CPU (c), Network (n), Memory (m), and Storage (s).

• Step 2-4: These steps define the maximum capacity for each type of resource (Cmr), current
allocation of resources (Car) and the available (unallocated) resources (C f r) in the AC.

• Step 5-10: Condition Check and Advertisement: The condition checks if there are any free
resources (C f r). If there are free resources, the AC sends an advertisement of these resources
and waits for a response. If there are no free resources, the system waits until resources become
available when (C f r) is greater than 0.

3.2. Receiving Servers Formulation

Receiving Servers (RS) receives an advertisement request from Advertising Cloud and its free
resources. A server that needs to use a cloud has variables that detail its requirements. If the free
resources of AC, Cfc,Cfm,Cfs,Cfn are larger than Receiving Server requirements, it can forward the
request to the Resource Allocation Server (RAS) also refereed as the Registry (R). The requested
resources of the server is given by (Req_Res of SA (SAreqr)). If we assume that, requested resources
are of lesser capacity than free resources of AC and all requested resources must be true, then only it
sends the request to RAS. Step 2 of the RASP protocol is as follows:

• Stage 2 2.SA→ R : (SA, CB, ResCB)pkR [SA → R: Receiving or Requested Servers (SA) sends an
advertisement (Advc) to the Registry to verify the free resources (Res freeCB) and adding their
identities].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


6 of 22

– Requested Resource of Server (Req_Res of SA (SAreqr)) = {Src, Srm, Sms, Srn} CPU (Src),
Memory (Srm), Storage (Sms), Network (Srn)]

Algorithm 2 Server SA Formation
[H]

1: Resources(r) ∈ {Cpu(c), Network(n), Memory(m), and Storage(s)}
2: Req_Res (SAreqr) = {Src, Srm, Sms, Srn}
3: SAreqr←− SAreqr ∪ Req_Resources
4: If SAreqr > 0 then
5: Search for Resource Migration;
6: If SAreqr← (C f − SAreqr) > 0 then
7: Accept Cf and sends to RAS;
8: Else ignore the request;
9: End if

Server SA Formation in detail,

• Step 1: The resources CPU, Networks, Memory, Storage are members of resources(r).
• Step 2-3: Server SA′s Requested resources are declared. Inclusion of an element Req_Res to a set

of SAreqr resources.
• Step 4-5: If Requested resources are greater than 0, the cloud services needs to find the next best

fit server.
• Step 6-9 Condition check before resource Migration: It checks if the AC has sufficient free

resources to meet the Receiving Server’s request. If sufficient resources are available and greater
than 0, the request is accepted, and the details are sent to the RAS for verification and processing.
Else ignore the advertisement.

3.3. Resource Allocation Server

The Resource Allocation Server (RAS) plays a crucial role in the resource allocation process. It is a
trusted Party responsible for confirming the registration of cloud providers and certifying the capacity
of their resources. The RAS ensures that only valid and adequately resourced clouds participate in
service migrations. Function of RAS in the Algorithm:

• Registration and Certification: The RAS confirms the registration of cloud providers and certifies
the capacity of resources available with the registered cloud providers.

• Request Verification: When a request for resources is received from a Receiving Server (SA), the
RAS verifies the resources based on specific criteria before approving the migration.

Stage 2 of the RASP protocol therefore provides verification and certification. Once it receives
the request from SA requested resources(SAreqr), the RAS verifies the resources based on the below
Algorithm.

• Stage 2 3. R→ SA: sign((CB, pkC, ResCB), pkS) [R → SA: The Registry approves the advertise-
ment (Advc) and sends to the Receiving Servers (SA), detailing the free resources (Res freeCB)
with its signature].

If the Registry receives the request from requested servers,

Algorithm 3 RAS_CB

1: If C f = Valid Cloud and RAS← (C f > SAreqr) ̸= 0 then
2: Accept and sends an authenticated message;
3: Else
4: Reject the request;
5: End if

Server RAS Formation in detail,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


7 of 22

• Step 1-2 Verify Validity: The RAS server verifies whether it is a valid cloud and if Cloud
resources are greater than the requested resources. If either condition false, then it rejects the
request and updates CB that its an invalid server.

• Step 2-5 Pass Conditions: If the above conditions pass, then it sends an authenticated message
to CB. This message confirms the approval of the resource migration.

Algorithm 4 RAS_SA

1: If SAreqr = valid server and RAS← (Cf>SAreqr ) ̸= 0 then
2: Accept and sends an authenticated message;
3: Else
4: Reject the request;
5: End if

Server RAS Formation in detail,

• Step 1-2: RAS server verifies whether it is a valid server and if Cloud resources are greater than
the requested resources which is not equalt 0 or not. If either conditions are false, then it rejects
the request and updates SA that its an invalid Cloud.

• Step 2-5: If the above conditions pass, then it sends an authenticated message to SA.

The RAS is essential for ensuring the integrity and efficiency of resource allocation in cloud envi-
ronments. It validates cloud providers, certifies their resources, and manages requests from Receiving
Servers, ensuring only valid and adequately resourced clouds participate in service migrations. This
multi-step verification process helps maintain a secure and reliable resource allocation framework.

4. RASP Protocol—An Overview

This abstract protocol has three roles: Server SA on Cloud CA, Cloud CB, and Registry. The
Resource Allocation Security protocol (RASP) is broken into four stages. In the first stage, it uses
the Resource Allocation Algorithm to manage cloud advertisements [13]. In addition, the proposed
protocol was tested by ProVerif. The protocol has shown in Figure 4 as follows: Stage 1 corresponds to
step 1 of the protocol; Stage 2 corresponds to steps 2-7; Stage 3 corresponds to 8-11, and finally, Stage 4
corresponds to step 12. The RASP protocol is followed in exactly the same way an outlined below and
shows the steps for Cloud-to-Cloud migration of services.

4.1. General Notations

Table 2 shows the parameters used in the RASP protocol.

Table 2. RASP Table

Notation Explanation

CA, CB, SA and SB Cloud and Server Identities
pkC/skC, pkS/skS, pkR/skR public and private key pairs of Cloud CB, server

SA & Registry
M_Reqc, M_Trfs, M_Ackc Request for migration, trannsfers and

acknowledgement
sign Signature/signed by the Registry
aenc Asymmetric Encryption
enc Symmetric Encryption
Ksc Symmetric session key

Ns, Nc Nonce of SA and CB
ResSA Requested Resources of SA & CB

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


8 of 22

Figure 4. Migration between SA to CB

1. Stage1: Advertisement:
Cloud CB actively advertises its resources Server SA receives advertisements from Cloud CB
advertising Cloud B′s resources with its identity CB.
1. CB→ SA : Advc (CB, ResCB)

2. Stage2: Authentication of SA and CB as well as migration request and response:
Server SA first requests the RAS/Registry to authenticate Cloud CB and its resources. In Step
3, the Registry (R) authenticates Server SA. In Step 4, Server SA sends a migration request to
Cloud CB. In Step 5, Cloud CB sends a request to the Registry to verify that Server SA’s request
for resources is valid. In Step 6, the Registry replies to Cloud CB. In Step 7, Cloud CB sends the
migration response back to Server SA.
2. SA→ R : (SA, CB, ResCB)pkR
3. R→ SA : sign((CB, pkC, ResCB), pkS)
4. SA→ CB : aenc ((Ns, SA , ResSA), pkC)
5. CB→ R : (CB, SA , ResSA)pkR
6. R→ CB : sign((SA, pkS , ResSA), pkC)
7. CB→ SA : aenc((Ns, Nc, CB), pkS)

3. Stage3: Migration transfer:
In Step 8, Server SA generates the session key (Ksc) to start the migration request. In Step 9,
Cloud CB sends the migration initialization request. In Step 10, Server SA performs the migration
transfer. In Step 11, Cloud CB sends an acknowledgment to Server SA. In Step 12, the service on
Cloud CB (SB) updates the Registry on its new location.
8. SA→ CB : aenc((Nc, Ksc), pkC)
9. CB→ SA : enc ((M_Reqc, SA), Ksc)
10. SA→ CB : enc ((M_Trfs, ResSA), Ksc)
11. CB→ SA : enc ((M_Ackc), Ksc)

4. Stage4: Update of New service location to the Registry:
The new service SB is now running on Cloud CB and informs the Registry that it has been
successfully migrated.
12. SB→ R : aenc((SB, CB), pkR)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


9 of 22

4.2. ProVerif an Overview

ProVerif [14] is a formal verification and highly automated tool used for analyzing the security
properties of cryptographic protocols. It employs applied calculus to model concurrent systems and
their interactions. The tool comprehends the protocol’s abstraction, including how messages are
exchanged between parties and the use of cryptographic primitives such as encryption, decryption,
and signatures. ProVerif verifies the service migration mechanism’s secrecy, authentication, and key
exchange. Another strength of this tool is that it performs symbolic analysis instead of concrete
analysis, aiding in understanding attack scenarios. ProVerif provides attack traces [15] if it finds any
violations of a security property.

The output of the Query attacker() query function results as "True", indicating that the security
property cannot be accessed by the attacker. This validates the attacker’s lack of knowledge and
ensures the secrecy of data authentication between parties or multiple roles for securely transferring
data and authenticated communications across an unlimited number of sessions using unbounded
data. If the outcome of the attacker() function is "False", the security property value is accessible to the
attacker. Finally, the result displays any attack trace and indicates whether the attacker() query returns
TRUE or FALSE.

4.2.1. ProVerif Results

The results show that RASP can preserve the secrecy, authentication and key exchange of the
service migration mechanism.

• Nonces are secured and not derived by the attacker: specific nonces (SNs, SNc, CNs, CNc) used
in the protocol are not derivable by an attacker, ensuring their confidentiality. Each line indicates
that the respective nonce cannot be compromised (is true).

• session key Results confirms that the session key (Ksc) and associated bitstrings (SNk, CNk) are
secure from the attacker. The line "RESULT not attacker_bitstring (SNk []) is true." with Ksc also
specifies the conditions under which this key is secure.

• Private keys Results confirms that the session key (Ksc) and associated bitstrings (SNk, CNk) are
secure from the attacker. The line "RESULT not attacker_bitstring (SNk []) is true." with Ksc also
specifies the conditions under which this key is secure.

• AuthenticationIt validates the mutual authentication between SA and CB. The use of inj-event
indicates that the protocol verifies injective correspondence, meaning each event endSparam
(or endCparam) has a matching beginSparam (or beginCparam), ensuring that both parties
authenticate each other correctly.

Table 3. Query attacker ()

Security properties Server SA event Cloud CB event

Session key True True
Private keys True True

Nonces True True
Event begin True True

Requested resources True -
Advc Resources - False

1 Query attacker of results

By using symmetric session key (Ksc), the requested service is transferred to the new location
CB. This research explored the development of a new resource allocation and secure service migration
framework that encompasses the computing resources to migrate in cloud environments.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


10 of 22

5. Capabilities

Capabilities are critical for system security, providing a robust mechanism for access control
through unforgeable tokens. It plays a crucial role in identifying objects and their properties within
a system. It is essential to manage and protect these capabilities diligently to prevent unauthorized
generation or alteration. Proper management is vital to maintaining system integrity and security,
ensuring that only authorized users can access specific objects and perform actions according to their
assigned capabilities. This careful oversight helps safeguard the system against potential security
breaches and misuse. Data structure: it contains two pieces of data and functionality.

• Unique Object Identification and Access Rights
• Functionality: Capabilities can provide Role-Based Access Control (RBAC) access for users.

Some capabilities are not directly assigned to users; instead, they are assigned to roles, and roles
are then assigned to users. These are known as role-based capabilities.

• Role Assignment: Capabilities can be assigned to roles. Roles are then assigned to users.
This structure supports RBAC, ensuring that users have access based on their roles within an
organization.

• IPv6 Address Space and Capability ID System: Utilizes a modified Location/ID split based on
the work of [16]. Enables the creation of a capability ID-based system for people, applications,
and cloud infrastructure.

5.1. Capabilities in IEE

Intelligent Edge Environment (IEE) capabilities are crucial for secure and efficient access control.
By utilizing role-based capabilities and advanced addressing systems like IPv6, IEE can ensure robust
access management and resource allocation while maintaining high levels of security and integrity.
IEE is a dynamic environment where security challenges are significantly higher than those in tradi-
tional computing environments. Traditional AAA (Authentication, Authorization, and Accounting)
mechanisms, such as using RADIUS servers, are no longer effective solutions in this context. Given
the scalability requirements of large systems, it was decided that AAA should be based on the subject
or user rather than the object. This approach is more scalable and suitable for modern, complex
environments. Consequently, capabilities are used to provide AAA for the IEE, ensuring that security
and access control mechanisms are effective and adaptable to the unique demands of edge computing
[17].

5.1.1. Capabilities Structure

In Intelligent Edge Environment (IEE), every object and its properties are identified using capabil-
ities. These capabilities must be carefully managed and protected to prevent unauthorized creation or
modification, and they should be easily revocable. The format of the capability-based system is shown
in Figure 5, and its structure is explained below.

Figure 5. Capability Structure

• Type Field (8 bits): This field specifies the type of object capability being used, such as users,
digital assets, facilities, etc.

• SYS Field (4 bits): This field helps manage capabilities. The four bits within the SYS field are
explained below.

• Property Field (12 bits): This field defines the properties of the object associated with the
capability. It relates to the properties or functions of the object that the capability refers to.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


11 of 22

• Object ID (72 bits): This field uniquely identifies the object in the system. It includes a EUI-64
identification field to identify the object and an 8-bit netadmin field to manage the object on a
network.

• Random Bit Field (16 bits): Provides unforgeability and helps uniquely identify the object. This
field is generated after the type field, SYS field, property field, and Object ID field are created.
When proxy certificates are created, a new random field is generated. This field also allows
for easy revocation of capabilities by simply changing the random field and recomputing the
capability, hence revoking previous versions.

• Hash Field (16 bits): Detects tampering of capabilities. When a capability is created, the type
field, SYS field, property field, and Object ID field are first generated, followed by the random bit
field. These fields are then used to generate a SHA-1 hash, which is placed in the Hash Field of
the capability.

As shown in Figure 6, the SYS field consists of the following bits:

• Private or P bit: Restricts the list of people holding the capability. With a public capability, only
the capability for the object must be presented, allowing anyone to hold it without needing the
identification of the subject, the person holding the capability. With a private capability, both the
object’s capability and the subject or user’s capability must be presented to ensure the sender has
the right to invoke the object.

• System or S bit: Indicates whether the object involved was created by the system or by an
application or user. A system capability cannot be modified or deleted by users or applications.

• Master or M bit: Indicates that the capability was created by a Certificate Authority (CA). The
master capability is usually created when the object is created. If this bit is not set, it means this is
a proxy capability. Proxy capabilities are derived from master capabilities and cannot be derived
from other proxy capabilities.

• Change or C bit: Indicates whether this capability can be changed. If this bit is set, proxy
capabilities can be derived from the master capability. If this bit is not set, the capability cannot
be modified, and proxy capabilities cannot be generated.

Figure 6. Capability Structure - SYS FIELD

By adhering to these principles, Intelligent Edge Environments can maintain a high level of
security and efficiency, ensuring that resources are managed effectively and that unauthorized access
is prevented.

6. The Secure Service Protocol (SSP)

The advancement of highly mobile technologies such as Vehicular Adhoc Networks (VANETs),
MEC, AI, and the IoT requires multiple interfaces to seamlessly connect and provide optimal per-
formance for mobile users. As discussed in the Introduction, MEC facilitates moving services closer,
minimizing the need for data processing on remote servers, reducing delays, and increasing network
bandwidth. It is essential to enable service migration to support these networks, allowing services to
migrate as mobile users move around. Figure 7 for a visual representation of the new environment.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


12 of 22

Figure 7. Effect of Introducing SMF in the client-server environment

Due to the need for a robust service architecture, a new service management framework for
mobile clouds has been developed, as shown in Figure 8 and detailed in [18].

Figure 8. Service Migration Prototype

6.1. SMP Layers in Detail

• The Application Layer (AL) is the first layer of SMF. It runs on the mobile node and calls the
service through the Service Management Layer (SManL). AL provides the service name, Service
ID, and required QoS. When a service first comes to the SMF, it should have a unique ID for
identification. The service name indicates the type of service being provided, such as CPU,
Memory, or Storage. Lastly, the Application Layer must define QoS parameters for the required
service, such as delay time, latency, bandwidth, reliability, and security.

• The Service Management Layer (SManL) is responsible for administering the mobile service,
managing service subscriptions, and overseeing service delivery for the layers below it. Service
subscription includes managing Service-Level Agreements (SLAs) and billing. Service delivery
entails determining how services should move from one location to another. When this layer
determines that a service should be migrated, it forwards this information to the service migration
layer (SML).

• The Service Migration Layer (SML) manages migration requests from SManL and employs a
Resource Allocation Security Protocol (RASP) to securely execute the migration process. Upon

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


13 of 22

completion, SML informs SManL. The RASP, as described by [19], utilizes standard migration
mechanisms like Docker, KVM, LXD, and Unikernels for the actual migration.

• Service Connection Layer (SCL): This layer monitors how clients connect to the services between
the mobile node and the server. It reports to the SManL when the mobile node is no longer
available due to handover to another network.

6.2. SSP Protocol—An overview

Capabilities can be flexibly used to provide AAA in many environments. Furthermore, by
combining capabilities, SMF, and RASP techniques, it is possible to design a Secure Service Protocol
(SSP) that can protect any service. The SSP protocol has been developed to ensure that the proposed
service protocol is secure and can be applied to any service. It is broken down into five stages to clarify
the necessary operations in secure service migration. The interaction between an application, the
Service Management Framework (SMF), and services supported by the SMF are shown in Table 4 and
Figure 9. The SSP protocol is defined in the same way as the RASP protocol outlined.

Figure 9. Secure Service Protocol

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


14 of 22

Table 4. General Notations

Notations Explanation

CMS Cloud Management System

SMF Service Management Framework

APPL Applications

Chosen Server The SMF chooses a server of that service

PK(SMF)/PK(APPL)/PK(SERV) Public key of SMF/APPL/Server

SK(SMF)/SK(APPL)/SK(SERV)/ Private key of SMF/APPL/Server

SESS KEY Session key

NA and NB Nonce of NA and NB

Register Service CMS contacts to Register the Service

Service Details Servers, keys and running services.

Service Registered The SMF registers the Service

SERV ID Service ID

SERV CAP Service Capability

DEV CAP The Capability for the Device

Request service Request to an appropriate server

USER CAP User of the Application

CAP SESS User of the Application

Service Name Name of the services

Service Version Service Version

IP Client IP address of Client

SERV TIME CAP proxy capability

IP Server IP address of Server

Port Server TCP Port of Service

Usage request SMF contacts the server

Usage request accepted The Server accepts the request

Request service accepted SMF returns all the details

Session Start Request Time capability sends start request

Service request The application requests service

Service request done The application gets service

Request Details Details of APPL request.

Result Details Details of chose server result.

Session End Request The application terminates the session

Session End Req accepted Server terminates session

• Stage 1: Registration of the Service with the SMF: In Stage 1, the Cloud Management System
(CMS) registers the Service with the SMF. This involves providing a list of servers and their
public keys that will be running the Service. After this, in step 2, the SMF registers the Service
and returns the Service ID (SERV ID) and the Service Capability (SERV CAP). Following this, the
CMS initiates the servers to implement the Service on different machines and passes the Service
ID and the Service Capability.

1. CMS→ SMF: (Register Service (Service Details), (PK(SMF)))
2. SMF→ CMS: (Service Registered (Service Details, SERV ID, SERV CAP), (PK(CMS)))

• Stage 2: The Application interacts with the SMF to get a server that implements the Service:
In Stage 2, the Application interacts with the SMF to obtain a server that provides the Service. To

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


15 of 22

utilize a service, an application must request the SMF to locate a suitable server. In step 3, the
Application provides the Device Capability (DEV CAP), User Capability (USER CAP), Service
Name, Service Version, and the Application’s public key running on the machine. In step 4, the
SMF selects a server for that Service and contacts it using its public key, passing the Client’s DEV
CAP, USER CAP, and IP address. In the subsequent step, the Chosen Server accepts the request.
It generates a timed capability from the service capability, which expires in 60 seconds if the
Application does not connect to the server. This SERV TIME CAP is a private proxy capability
derived from the Service Capability and cannot be altered; only the USER CAP and DEV CAP
can utilize the capability. The Chosen Server also provides its IP address and the TCP port of
the Service using the public key of the SMF. In the final step of Stage 2, the SMF returns to the
Application with DEV CAP, USER CAP, timed capability, the Server’s IP address, Service Port
number, and public keys of the Chosen Server, enabling the Application to connect to the server.

3. APPL→ SMF: (Request service (Service Name, Service Version, DEV CAP, USER CAP,
PK(APPL)), (PK(SMF))

4. SMF Chosen ->Server: (Usage request (DEV CAP, USER CAP, IP Client),(PK(SERV))).
5. Chosen Server-> SMF : SMF (Usage request accepted (DEV CAP, USER CAP, SERV TIME

CAP, IP Server, Port Server), (PK(SMF)))
6. SMF→ APPL: (Request service accepted (DEV CAP, USER CAP, SERV TIME CAP, IP Server,

Port Server, PK(SERV)), (PK(APPL)))

• Stage 3: The Application sets up a secure session with the Server. During Stage 3, the Applica-
tion initiates a secure session with the Server by sending a session start request. This request
includes the DEV CAP (device capability), USER CAP (user capability), SERV ID (server ID), a
unique random number called Nonce of A (NA), the Server’s public key, and the SERV TIME
CAP (server time capability). Nonce (NA) ensures that the session is unique on the Application
side. In response, the Server sends back a session capability (CAP SESS), DEV CAP, USER CAP,
NA, NB (another unique random number for the Server side), and a session key (SESS KEY).
The SESS KEY is a symmetric key used only once to encrypt the details in one communication
session.

7. APPL → Chosen Server: (Session Start Request (DEV CAP, USER CAP, SERV ID, SERV
TIME CAP, NA)), (PK(SERV)).

8. Chosen Server→ APPL : (Session Start Request Accepted DEV CAP, USER CAP, CAP SESS,
SESS KEY, NA, NB), (PK(APPL)).

• Stage 4: The Application gets service by using the CAP SESS key and encrypts using the SESS
KEY In Stage 4 of the process, the application uses the CAP SESS key to access a service and
encrypts data using the SESS KEY. The application sends a service request to the chosen server
with the CAP SESS, Nonce (NB), and uses the SESS KEY. The server responds by sending CAP
SESS, NA, and detailed results using the SESS KEY. NA ensures that the session is unique on the
application side.

9. APPL→ Chosen Server : (Service Request (CAP SESS, NB, Request Details)(SESS KEY))
10. Chosen Server→ APPL: (Service Request Done (CAP SESS, NA, Result Details) (SESS KEY))

• Stage 5: The Application is finished and terminates the session In Stage 5, the application
terminates the session by sending end requests to the chosen server with CAP SESS, nonce (NB),
and session end using the session key. The server then terminates the session and revokes the
CAP SESS capability to prevent replay attacks.

11. APPL→ Chosen Server :(Session End Request Accepted (CAP SESS, Nonce (A), Session
End)(SESS KEY)).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


16 of 22

6.3. ProVerif results

The SSP protocol is designed using the ProVerif tool, and it results as "safe". In Stage 4, the
application gets service by using the capability session key and encrypts using the Session key to the
Chosen server. The query attacker of function to “Session key” (Ksappl) is TRUE.

The private keys of Cloud Management System (CMS), Service Management Framework (SMF),
Application (Appl), and Chosen Server(S) results as True. In Stage 3 and Stage 4, Nonces are used
between the chosen Server and the Application to prevent replay attacks. The output of Nonce is
“True” from Server sessions. The Cloud Management System (CMS), which supports a number of
services, contacts the SMF to register the Service. We applied the “event begin and end function” to
verify whether the sessions started before the SMF started or not, and it results as “True”. In the same
way, the and-begin and end functions are used to verify from Server Sessions.

The Figure 10 and Table 5 show that the SSP protocol is working fine. Hence, this is a more secure
mechanism for capability-based services.

Table 5. QUERY ATTACKER() Results using ProVerif

Security Properties CMF SMF ERVER APPL

Private Keys True True True True

Session Key - - True True

Nonces - - True -

Event Begin() True - - -

Event end() True - - -

inj-event begin() - - True -

inj-event-end() - - True -

Figure 10. SSP protocols Results

6.4. Queries for Private Keys

Queries for Private keys of Application, Cloud Management System, Service Management Frame-
work and Server : query attacker(sksmf); query attacker(skcms); query attacker(skappl); query attacker(skS);

• RESULT not attacker_skey(sksmf[]) is true.
• RESULT not attacker_skey(skcms[]) is true.
• RESULT not attacker_skey(skappl[]) is true.
• RESULT not attacker_skey(skS[]) is true.

6.4.1. Queries for Nonces

Queries for nonce between Server and application: query attacker(SERVERNA); attacker(SERVERNB);
attacker(APPLNB); attacker(APPLNA):

• RESULT not attacker_bitstring_(SERVERNA[]) is true.
• RESULT not attacker_bitstring_(SERVERNB[]) is true.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


17 of 22

6.4.2. Queries for Symmetric Key

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

• RESULT not attacker_key (Ksappl[m7 = v_10131,m4 = v_10132,!1 = v_10133]) is true.
• RESULT not attacker_bitstring (SERVERk[ []) is true.

6.4.3. Queries for authentication of Server event and CMS event

Queries for Symmetric key : query attacker(Ksappl); query attacker(SERVERk)

• RESULT inj-event(endSERVERparam(x_24696))→
inj-event(beginSERVERparam(x_24696)) is true.

• RESULT inj-event(endCMSparam(x_38772))→
inj-event(beginCMSparam(x_38772)) is true.

• RESULT event(endCMSparam(x_42655))→
event(beginCMSparam(x_42655)) is true.

7. Prototype Implementation

Using new mechanisms such as Capabilities, and a new Service Management Framework, this
research has proposed a new Secure Service Protocol, which can be used to protect any service. The
protocol has been verified using ProVerif. In this section, we explore the building of prototype system.

7.1. Basic capability System Library(BCSL)

We developed our prototype system using the Basic Capability System Library (BCSL) as our
foundation. This library, depicted in Figure 11, is part of the Base Layer of the Implementation
Framework. It supports users, devices, and services and allows servers to be added to the services. Each
component has its capability, which is used to access other objects, such as files. Services are created and
registered with the Service Management Layer (SML). The middle layer is responsible for enhancement,
tuning, mapping layers, and updates. The Basic Capability System Library, created by the ALERT
Team of Middlesex University London, is a primary system that makes users, devices, services, and
servers and implements them. These types are identified as CAP USER, CAP DEVICE, and CAP
SERVICE as their Capability types, respectively. The top layer focuses on system implementation.
In this layer, our primary goal is to improve the Service Management Framework (SMF) so that it
can securely replicate and migrate services. Our work primarily centres on securely migrating and
replicating registered services.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


18 of 22

Figure 11. Basic capability System Library (BCSL)

7.2. Make Fuxfs Multithreaded

The FUSE and NMS servers store and manage the system’s data. NMS provides networked block
storage. When a client moves to another network, the NMS is migrated to the new network to improve
performance. In this scenario, the client is referred to as "fuxfs," and the server is called "fuxfs server",
and they communicate using normal communication protocols.

7.3. Fuxfs Server

The NMS server is a simple program: so should be easy to migrate between networks. This
NMS server is working with the FUSE system. The header file for this program is named "fuxf.h" and
executable code is in "Fuxfs_server". To compile and run the Fuse server.

• Compile command: gcc -o Fuxfs_server Fuxfs_server.c
• Run command: ./Fuxfs_server 0.0.0.0

7.4. Fuxfs Client

This is the client side of the FUSE code.

• Compile command: gcc -Wall fuxfsmg.c ‘pkg-config fuse –cflags –libs‘ -o fuxfs -w -L./ libcapab.a
-lpthread

• Run command: ./Fuxfs /tmp/fuse 0.0.0.0

7.5. Make Fuxfs Multithreaded

In order to develop the prototype, it was decided to make the client (i.e the fuxfs) multithreaded.
One thread called SMF_THREAD managed the interaction with the SMF as shown in Figure 12.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


19 of 22

Figure 12. Fuxfs Multithread

7.6. Multithread - SMF Commands

The SMF was developed to manage services and migrate and replicate services in a secure
environment. To check the secure migration on Service Management Framework (SMF), we developed
C programs on the Ubuntu 20.04 platform. We used a private Docker [20] repository to migrate our
service and tested them in our local environment. The SMF provides the following functions.

• Register Service: The function allows the service to be registered with the SMF. It collects
information on the service, including the service name, the description of the service, the version
of the service (i.e., 0 is the latest version), the TCP/UDP port number, and the service capability.
Once the service has been successfully registered with the SMF, the SMF generates the global_id.
The local_id is generated by the client.

• Register User: This function helps the new user register with the SMF. It collects information
about the user, including the first name, surname, role, rank, and specialist, as well as the
capability of the user to register. Once the user has been successfully registered with the SMF, the
SMF will generate their global user ID. Each device will have a unique local device ID (generated
by the SMF_THREAD) and a global device ID (generated by the SMF).

• Register Device: This register device function allows the devices to register with SMF. To register
a device, the name of the device, the first name and surname of the device owner, and the device
capability are also collected once the device is registered. Each device will have a unique local
device ID and a global device ID.

• Add Server: This function helps the server be added to the required service. It also collects
details about the server, including the server global ID given by NMS, the server’s name, the
server location using the IPv4 address, and the server’s maximum load.

• Request Service : Once a service is registers with the SMF, the service can be requested by users
who want to use it. Servers should provide this service to the requested applications. This
function allows an application to request service. After the application sends a service request to
SManL, SManL will provide the necessary parameters for the application to contact the server
that runs the requested service.

• Migrate Service: This function allows the services to migrate to the required servers. It also
collects details about the global service ID, the global user_id, and the global device_id and will
set up the migration using Docker container technology. Once the migration is successful, a
successful result will be returned to the caller.

7.7. NMS Part of FUSE as a Service

We want to use the framework to implement microservices in vehicular environments. Microser-
vices are faster to migrate and hence can be used to maintain QoS in these networks. As our first use
case, we will consider a FUSE file system that is a user space file system commonly employed in Linux
OS. The setup which is shown in Figure 13, provides a storage platform for mobile users with then

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


20 of 22

NMS provide block network storage to FUSE clients which run on mobile phones. If a mobile user
moves to another network then the NMS is migrated in order to achieve better performance. In order
to test the Service Management Framework, NMS will be migrated from one cloud server to another.
In our paper, we have shown that by implementing a FUSE file system in Docker’s private repository
and using it at a new location. We installed Docker on a Linux Ubuntu 20.04 machine and set up a
private repository to store our services. This allows us to use computing resources for migrating to
cloud environments.

Figure 13. FUSE Architecture with NMS

7.8. SMF - NMS as a Service

We utilized the framework for implementing micro services in vehicular environments. It is quick
to migrate and can, therefore, help maintain QoS in these networks. For our initial use case, we focused
on a FUSE file system, which is a user-space file system commonly used in the Linux OS. To test the
Service Management Framework, the NMS service will be migrated from one cloud server to another.
In this paper, we demonstrate the implementation of a FUSE file system in Docker’s private repository
and its use in a new location’s location.

The prototype SMF supports the following functions: Register the service, register the user,
register the device, add a server, request and migrate the service. SMF was used successfully start
the framework. Then, the FUSE client was started and connected to the SMF. The Fuxfs_server was
compiled and connected to the SMF while the client was connected using the FUXFS SMF Multithread.
The "Migrate service" uses a Docker container from one location to another to migrate the NMS service.
Figure 14 shows the FUSE running container status from the Docker hub name and private repository
and the NMS service successfully.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


21 of 22

Figure 14. SMF (top left), FUSE Client (bottom left) and NMS (top right) and Docker Status (bottom
right): NMS running at a different location using the SMF

8. Conclusions and Future work

This research has focused on the development of the Secure Service Ecosystem (SSE) to imple-
ment the Intelligent Edge Environment for smart cities. This effort looked at three layers of the IEE
and develop key mechanisms to help implement the SSE including Resource Allocation Algorithm,
Resource Allocation Secure Protocol and finally Secure Service Protocol using these mechanism along
with capabilities. ProVerif was used to show that this system was safe. The SSE was then used to
support a FUSE-NMS system in which the NMS was migrated as the users move around. For future
work, we need to explore how we use this architecture to support a number of microserivces to enable
new applications and services for smart cities.

Author Contributions: Formal Analysis, Algorithms and software Implementation G.K.; Protocols, BCSL and
software Implementation G.M. writing, review and editing G.K. and G.M.;

References

1. Gayathri, K; Glenford, M; Jon, C, Building an Intelligent Edge Environment to Provide Essential Services for
Smart Cities. Proceedings of MobiArch ’23, Spain,02 October 2023; Pages 13 - 18,
https://doi.org/10.1145/3615587.3615987

2. Xiaolong X; Bowen S; Xiaochun Y; Mohammad R, Khosravi H, "Edge Server Quantification and Placement for
Offloading Social Media Services in Industrial Cognitive IoV," in IEEE Transactions on Industrial Informatics,
vol. 17, no. 4, pp. 2910-2918, April 2021, doi: 10.1109/TII.2020.2987994.

3. Ding. Z et al., "A Lightweight and Secure Communication Protocol for the IoT Environment," in IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 3, pp. 1050-1067, May-June 2024, doi:
10.1109/TDSC.2023.3267979.

4. Vishnu, V.P; Yonal, K; Glenford, M, Shah, M, P. and Nguyen,H. X., Exploiting Resource Contention in Highly
Mobile Environments and Its Application to Vehicular Ad-Hoc Networks, in IEEE Transactions on Vehicular
Technology, vol. 68, no. 4, pp. 3805-3819, April 2019, doi: 10.1109/TVT.2019.2902245.

5. Vishnu,V.P; Yonal, K; Glenford, M; Exploring analytical models to maintain quality-of-service for resource
management using a proactive approach in highly mobile environments, 2018 7th International Confer-
ence on Computers Communications and Control (ICCCC), Oradea, Romania, 2018, pp. 176-182, doi:
10.1109/ICCCC.2018.8390456.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1


22 of 22

6. Nattaruedee. V; Gayathri, K;; Glenford, M; Carolise. G; "Exploring a New Security Framework for Future
Healthcare Systems," 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 2021, pp. 1-6, doi:
10.1109/GCWkshps52748.2021.9681967.

7. Onyekachukwu A.E; Gayathri. K; G. Mapp; R. Trestian; Exploring the Provision of Reliable Network
Storage in Highly Mobile Environments, 2020 13th International Conference on Communications (COMM),
Bucharest, Romania, 2020, pp. 255-260, doi: 10.1109/COMM48946.2020.9142033.

8. Chen, S; and Zhou, M.; 2021. Evolving container to unikernel for edge computing and applications in process
industry. Processes, 9(2), p.351.

9. Kifayat. U;, Luz M.S; Joao. B. R; and Edson D.M.: A lightweight beaconing-based commercial services
advertisement protocol for vehicular ad hoc network. In International Conference on Ad-Hoc Networks and
Wireless, pages 279–293. Springer, 2016.

10. Ullah, R.; Arslan, T. PySpark-Based Optimization of Microwave Image Reconstruction Algorithm for Head
Imaging Big Data on High-Performance Computing and Google Cloud Platform. Appl. Sci. 2020, 10, 3382.
https://doi.org/10.3390/app10103382

11. Peipei Xiao, Yufeng Wang, Qun Jin, and Jianhua Ma. A privacy-preserving incentive scheme for advertise-
ment dissemination in vehicular social networks. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 1741–1746,
2016. doi: 10. 1109/TrustCom.2016.0267.

12. Jennings, B. and Stadler, R., 2015. Resource management in clouds: Survey and research challenges. Journal
of Network and Systems Management, 23, pp.567-619.

13. Gayathri, K; Glenford, M; Kammueller and M. Aiash; Formalization and Analysis of a Resource Allocation
Security Protocol for Secure Service Migration. EEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), Zurich, Switzerland, 2018, pp. 207-212, doi: 10.1109/UCC-
Companion.2018.00058.

14. ProVerif: Cryptographic protocol verifier in the formal model. Available online:
https://bblanche.gitlabpages.inria.fr/proverif/ (accessed on 18-July-2024).

15. Bruno Blanchet et al. Modeling and verifying security protocols with the applied pi calculus and proverif.
Foundations and Trends® in Privacy and Security, 1(1-2):1–135, 2016. Available online: chrome-extension://
efaidnbmnnnibpcajpcglclefindmkaj/https://web.archive.org/web/20170924002552id_/https://hal.inria.fr/hal-
01423760/document (accessed on 18-July-2024).

16. Glenford, M; M. Aiash; Guardia.H.C; Jon.C, "Exploring Multi-homing Issues in Heterogeneous Environ-
ments," 2011 IEEE Workshops of International Conference on Advanced Information Networking and
Applications, Biopolis, Singapore, 2011, pp. 690-695, doi: 10.1109/WAINA.2011.140.

17. Vithanwattana N; Karthick G; Mapp G; George C; Samuels A; Securing future healthcare environments in a
post-COVID-19 world: moving from frameworks to prototypes. J Reliab Intell Environ. 2022;8(3):299-315.
doi: 10.1007/s40860-022-00180-7. Epub 2022 Jul 9. PMID: 35967078; PMCID: PMC9362615.

18. Jose, R; Onyekachukwu, A.E; Gayathri, K; Ramona,T; and Glenford, M; "A New Service Management
Framework for Vehicular Networks," 2020 23rd Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN), Paris, France, 2020, pp. 162-164, doi: 10.1109/ICIN48450.2020.9059441.

19. Gayathri, K; Glenford, M; Kammueller and M. Aiash; Modeling and verifying a resource allocation algorithm
for secure service migration for commercial cloud systems. Computational Intelligence, n/a(n/a), 2021. doi:
https://doi.org/10.1111/coin.12421. URL https://onlinelibrary.wiley. com/doi/abs/10.1111/coin.12421.8

20. Docker: Containerize your applications. Available online: https://www.docker.com/ (accessed on 18-July-
2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1821.v1

https://doi.org/10.20944/preprints202407.1821.v1

	Introduction
	Intelligent Edge Environment Layers

	Related Work
	The Simple Resource Algorithm
	Advertising Cloud Formulation
	Receiving Servers Formulation
	Resource Allocation Server

	RASP Protocol—An Overview
	General Notations
	ProVerif an Overview
	ProVerif Results


	Capabilities
	Capabilities in IEE
	Capabilities Structure


	The Secure Service Protocol (SSP)
	SMP Layers in Detail
	SSP Protocol—An overview
	ProVerif results
	Queries for Private Keys
	Queries for Nonces
	 Queries for Symmetric Key
	 Queries for authentication of Server event and CMS event


	Prototype Implementation
	Basic capability System Library(BCSL) 
	Make Fuxfs Multithreaded
	Fuxfs Server
	Fuxfs Client
	Make Fuxfs Multithreaded
	Multithread - SMF Commands
	NMS Part of FUSE as a Service
	SMF - NMS as a Service

	Conclusions and Future work
	References

