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Abstract: Approximate entropy (ApEn) and sample entropy (SampEn) are statistical indices 

designed to quantify the regularity or predictability of time series data. Although ApEn has been a 

prominent choice for use in the analysis of non-linear data, it is currently unclear as to which method 

and parameter selection combination is optimal for its application in biomechanics. The goal of this 

research was to examine the differences between ApEn and SampEn related to center of pressure 

(COP) data during tandem standing balance tasks, while also changing the tolerance window, r. Six 

participants completed five, 30-second trials, feet-together and tandem standing with eyes-open and 

eyes-closed. COP data (fs = 60 Hz, downsampled from 1200 Hz) from ground reaction force 

platforms were collected. ApEn and SampEn were calculated using a constant vector length, i.e., m 

= 2, but differing values of r (tolerance window). For each of the participants, four separate one-way 

analysis of variance analyses (ANOVA) were conducted for ApEn and SampEn in the anterior-

posterior (AP) and medial-lateral (ML) directions. Dunnett's intervals were applied to the one-way 

ANOVA analyses to determine which tandem conditions differed significantly from the baseline 

condition. ApEn and SampEn provided comparable results in the predictability of patterns for 

different stability conditions, with increasing instability, i.e., tandem eyes closed postures, being 

associated with greater unpredictability. The selection of r had a relatively consistent effect on mean 

ApEn and SampEn values across r = 0.15 * SD to r = 0.25 * SD, where both entropy methods tended 

to decrease as r increased. Mean SampEn values were generally lower than ApEn values. The results 

suggest that both ApEn and SampEn indices demonstrated relative consistency and were equally 

effective in quantifying the level of the center of pressure signal regularity during quiet tandem 

standing postural balance tests.  

Keywords: approximate entropy; sample entropy; tandem standing balance; center of pressure; 

complexity; tolerance; nonlinear time series; downsampling 

 

1. Introduction 

Entropy is defined as the loss of information in a time series or signal, which quantifies the 

amount of uncertainty regarding the order of an output signal [1]. Within the past twenty years, the 

use of entropy methods to define periodicity or regularity in human physiological and biomechanical 

data has become prevalent [2]. Two commonly used methods for evaluating biological time-series 

data are approximate entropy (ApEn) and sample entropy (SampEn). Because entropy quantifies the 

likelihood of the next state of a system, based on what is known about the present state of a time 

series, it has been used to identify physiological changes with aging [3,4], cardiovascular status [5–

7], and respiratory pathology [1,8,9]. Entropy calculations can take more forms, but ApEn and 
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SampEn have been particularly useful for understanding more about the changes in postural control 

systems [10–15], human gait mechanics [16,17], and standing balance [2,10,13,18–21].  

In 1991, Pincus used ApEn to measure signal regularity and quantify levels of complexity within 

a time series; low values of ApEn tended to indicate a more regular and predictable signal and larger 

values suggested greater unpredictability [22]. With biological data sets, in general, but human 

movement in particular, quantifying levels of complexity has become important. For example, newer 

motor control theories, e.g., dynamical systems theory, do not consider variability in movement as 

an error [17]. Dynamical systems theory considers the complexity of movement patterns, i.e., 

variability, to be associated with system stability.  

ApEn and SampEn have been shown to demonstrate the state and changes in the complexity of 

various physiological signals related to seated postural control in individuals with chronic stroke 

[23],  electrocardiograms [24], electroencephalograms (EEG) [25], heart rate variability [26,27], and 

neural respiratory time series [8]. In complex systems, e.g., cardiac, respiratory, somatosensory, etc., 

lower ApEn values reflect systems that are persistent, repetitive, and predictive, with apparent 

patterns that repeat themselves throughout the series [6,28]. So, it is more appropriate to use terms 

like probability, predictability, and regularity, when describing the nature of a measurable complex 

system. In summary, the use of ApEn and SampEn was not meant to comprehensively analyze 

complex systems but to statistically quantify the dynamics of time series related to complex systems 

[29].  

Based on the work by Pincus [26,28] and Cavanaugh et al. [18,19], we can assume that the diverse 

and interconnected components, i.e., visual, vestibular, and somatosensory, of the complex healthy 

human postural control system are capable of adapting to a wide variety of task demands, i.e., 

internal and external perturbations. Thus, this postural control system, when allowed to operate with 

minimal constraints, i.e., at rest during quiet standing, demonstrates an output, e.g., the center of 

pressure excursion, that appears to fluctuate in a relatively random (nonlinear) fashion that reflects 

its readiness to respond to internal and external perturbations. However, it has been shown that the 

anterior-posterior (AP) and medial-lateral (ML) oscillations are relatively small and random and are 

not sensitive enough to detect subtle alterations in postural control related to cerebral concussion 

[10]. Based on Pincus’ groundbreaking work, the use of ApEn in the assessment of postural sway in 

healthy [10] and concussed young adults has provided insight into the control of static and dynamic 

balance [18,19]. Cavanaugh et al. [18] reported that ApEn values for the AP and ML COP time series 

generally declined immediately after injury (i.e., concussion) in both steady and unsteady injured 

athletes suggesting a postural control system that was more constrained after injury. Interestingly, 

depressed ApEn values were still evident 48 to 96 hours after injury although postural instability had 

resolved.  

Both ApEn and SampEn methods utilize three input parameters: N is the data length, m is the 

length of the window of the different vector comparisons (often referred to as the embedding 

dimension, vector length, pattern length, segment length, or pattern window), and r is the tolerance 

(sometimes referred to as radius or tolerance window), i.e., function criterion of similarity or type of 

signal filter. Both indices quantify complexity in the data by looking at the difference in m point vs. 

m+1 point patterns, over the N point data length.  

ApEn measures the logarithmic probability that nearby pattern runs remain close in the next 

incremental comparison [19]. Given the input parameters, ApEn (m, r, and N) [26] is denoted by the 

expression: 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −
1

𝑁−𝑚
∑ 𝑙𝑜𝑔

𝐴𝑖

𝐵𝑖

𝑁−𝑚
𝑖=1            (1) 

𝐵𝑖(r) is the probability that two sequences are similar for m points with self-counting and 𝐴𝑖(r) 

is the probability that two sequences are similar for m + 1 matches with self-counting. Self-counting 

suggests that given one template the segment in the sequence is compared to all the blocks in the 

sequence, including itself. For ApEn, self-counting is needed in the calculation of conditional 

probabilities to ensure the logarithms remain finite. Statistically, selecting m and r as input 

parameters would be the equivalent of dividing the space of states into cells of width r, to estimate 

the conditional probabilities of the m-th order [19]. Greater values of m and smaller values of r 
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describe details of sharper, more probabilistic parameters [19]. However, when dealing with 

stochastic processes, the analysis of conditional probabilities causes large values of m or minimal 

values of r to produce statistically low estimates. Ultimately, the value of the estimate depends on m 

and r. Pincus [28] suggested taking m as 2 and r as 0.2 * SDx, where SDx is the standard deviation of 

the original data <x(n)>, i.e., 

𝑆𝐷𝑥 = √ 1

𝑁−1
∑ [𝑥(𝑛) −

1

𝑁
∑ 𝑥(𝑛)𝑁

𝑛−1 ]
2

𝑁
𝑛−1                    (2) 

Pincus [28] has offered that one of the advantages of ApEn is that the algorithm was finite for 

stochastic, noisy deterministic, and composite processes, i.e., models for complex biological systems. 

ApEn can differentiate between different mixed methods of deterministic and random components 

occurring with a different probability and is robust to outliers because the pattern formed by wild 

points will rarely be repeated in the waveform [7]. It has been demonstrated that an increasing ApEn 

corresponds to intuitively increasing process complexity in a biological modeling platform. However, 

the limitations of ApEn include that relative consistency is not guaranteed, and depending on the 

value of r, the ApEn values will change [1]. Additionally, the value of ApEn depends on the length 

of the data series. Lastly, the self-counting aspect of the algorithm creates a statistical bias that 

particularly impacts situations with small data sets, that is when only a few or even no matches are 

present, the entropic result is biased toward zero [1].  

Richman and Moorman [6] introduced SampEn as an alternative to counteract the limitations of 

ApEn, claiming that SampEn, as a statistical alternative, solved the self-counting problem eliminating 

the bias associated with ApEn. Eliminating self-counting is justified given that entropy is conceived 

as a measure of the rate of information production. ApEn uses the whole series to determine its value, 

needing only a template vector to find a match of length m + 1 to be defined [19]. SampEn contrasts 

with ApEn, where each template vector must find a match to be determined [2]. SampEn (m, r, and 

N) is defined as the negative value of the logarithm of the conditional probability that two similar 

sequences of m points remain identical at the next point m + 1, counting each vector over all the other 

vectors except on itself [19]. 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −𝑙𝑜𝑔
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
  (3) 

𝐵𝑚(𝑟) is the probability that two sequences are similar for m points, 𝐴𝑚(𝑟) is the probability 

that two sequences are similar for m + 1 matches, where the ratio is a conditional probability. The use 

of SampEn appears to quantify regularity more effectively and eliminates many of the problems 

associated with ApEn [6]. SampEn maintains the relative consistency and is also mostly independent 

of the length of the time series [6]. SampEn was created to address the bias and inconsistencies of 

ApEn, yet both methods retain similarities [6]. There is no consensus on which method is preferable, 

but one’s choice should be dependent on the research question and time series being evaluated. 

When using ApEn and SampEn important consideration must be given to parameter selection, 

as these choices may have the greatest impact on the final entropy value even in the presence of noise 

[30]. Given a time series with N data points, the calculation of entropy requires a priori determination 

of two unknown parameters, embedding dimension, m, and threshold, r [31]. Multiple pairings of 

parameter selections allow one to examine relative consistency where a better discrimination capacity 

can be accomplished. Incorrect parameter choice, and lack of due diligence in selecting m, r, and N 

can undermine the interpretation and application of entropy results. 

According to Yentes et al. [17] when the sampling rate is too high, i.e., frequency collection rates 

greater than 1000 Hz, redundancy likely exists within the data, which tends to artificially reduce 

entropy values [21]. Redundancy, i.e., repetitiveness of, or repeating, values, results in smaller 

entropy values and more signal regularity secondary to the counting of repeated matches. The 

redundant data problem can be solved by downsampling overly redundant time series data sets. 

Although downsampling removes real data, sensitivity analyses have demonstrated that the loss of 

data does not impact the subsequent application of the revised data set [12,16]. Previous studies have 

demonstrated the link between entropy and sampling rate. Powell et al [32] simulated different 

sampling rates by resampling ankle joint angle time series and found that higher sampling rates 

significantly reduced ApEn values. Conversely, results from Rhea et al. [33] suggest that excessive 
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downsampling, e.g., to 25 Hz, artificially altered the standing center of pressure displacement and 

velocity SampEn values. 

Based on the literature, it is clear that the appropriate selections of N, m, and r are critical for 

computing ApEn and SampEn values that can enhance the interpretation of inherently non-linear 

biological time series. Further, there is a lack of agreement on best practices. Therefore, the purposes 

of this research were to: 1) examine and evaluate the effect of altering input tolerance, r, on ApEn and 

SampEn values related to the center of pressure time series during quiet standing postures, i.e., feet 

together and tandem standing, and under eyes-open and eyes-closed conditions, and 2) assess which 

entropy measure was less biased and most consistent. Specific center of pressure metrics were chosen 

because they represent a single measurement of the complex postural control mechanism used to 

maintain balance and incorporate essential somatosensory and neuromotor inputs that influence 

stability [21]. 

2. Materials and Methods 

2.1. Participants  

Eight individuals (age: 24.8 ± 3.3 years; height: 171 ± 10.5 cm; body mass: 71.0 ± 13.5 kg) 

participated after voluntarily providing their signed informed consent. Center of pressure force plate 

data were collected from eight participants but those whose COP data contained signal dropout were 

omitted. Therefore, six participants’ data from the original cohort were included in the analysis. All 

participants were in good health and with no history of neurological or muscular disorders or injuries 

[35]. Before data collection commenced, foot dominance for each subject was determined based on 

the leg with which they preferred to kick a ball. This study was approved by the Grand Valley State 

University Institutional Review Board (18-246-H), and data from a previous data collection were used 

in this study to extend a prior analysis.  

2.2. Instrumentation 

Vicon Nexus v2.8 motion capture software (Vicon Motion System Ltd., Oxford Metrics, UK) and 

Vicon 16 MX T40 cameras (120 Hz) were used to track the movement trajectories of a modified Full-

Body Plug-in-Gait model. Capturing motion was synchronized with the collection of ground reaction 

forces from floor-embedded AMTI (Advanced Mechanical Technology Inc., Watertown, MA) force 

plates (1200 Hz). Surface electrodes were used to collect the electromyographical (EMG) signals (1200 

Hz) from bilateral gastrocnemius, soleus, and tibialis anterior muscles using a 16-channel MA300-

XVI patient unit acquisition system (Motion Lab Systems Inc., Baton Rouge, LA). Only ground 

reaction force plate data were used for this study. The force plates were oriented with one directly in 

front of the other (Figure 1). Center of pressure data were extracted using Vicon NEXUS motion 

capture software v2.8 (Oxford Metrics, Oxford, UK) and exported to Excel for later analysis. 

2.3. Experimental Procedure 

Ground reaction force data were collected for 30 seconds until five successful trials were 

completed per stability condition (Table 1). Unsuccessful trials were defined by a major loss of 

balance, i.e., having to make significant changes in foot position, and/or if participants demonstrated 

large movements of their torso and changed their arm positions. Successful trials consisted of time 

series totaling 36,000 data points. The standing postural condition of eyes open feet together (EOFT) 

was defined as the most stable and hence was used as a baseline for all entropy comparisons. 

Participants were asked to hold a quiet standing position for thirty seconds without moving their 

bodies or stepping out of position. Balance tasks were performed barefoot with the arms positioned 

with the shoulders and elbows flexed, forearms supinated, and the fingers touching the anterior 

aspect of the shoulder; the hips and knees were extended with the ankles maintained in neutral (i.e., 

neither dorsiflexed nor plantarflexed). Participants progressed through increasingly unstable balance 

conditions by changing visual status, with 2-minute breaks between each trial. Conditions included 
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eyes open or closed, and changing foot position, i.e., feet together on force plate 5 or tandem stance 

using force plates 3 and 5 shown (Figure 1). The order of testing conditions was not randomized. 

 

Figure 1. Force plate foot placement for feet together and feet tandem standing balance conditions, 

where the x-axis (anterior-posterior (AP) direction) and y-axis (medial-lateral (ML) direction define 

the center of pressure orientation. Note: D = dominant foot; ND = nondominant foot; DF = dominant 

foot forward; and DB = dominant foot back [21,35]. 

Table 1. Quiet Standing Balance Test Conditions. 

Balance Condition  Description 

EOFT Eyes Open, Feet Together 

ECFT Eyes Closed, Feet Together 

EOTanDF Eyes Open, Feet Tandem, Dominant Foot Forward 

ECTanDF Eyes Closed, Feet Tandem, Dominant Foot Forward 

EOTanDB Eyes Open, Feet Tandem, Dominant Foot Back 

ECTanDB Eyes Closed, Feet Tandem, Dominant Foot Forward 

2.4. Data Reduction 

2.4.1. Determining Total Body Center of Pressure from Two Force Plates 

The extracted COP data files were analyzed using nonlinear analysis in the time and frequency 

domains. The tandem trial output data sets differed from the feet-together trials in that two separate 

COP signals for tandem balance conditions were produced (one for data from each of the force 

plates), while feet-together resulted in data from a single force plate. The two-column tandem trials 

were combined into one resultant COP using Equation 4 [36,37]:  

𝐶𝑂𝑃𝑛𝑒𝑡  =  𝐶𝑂𝑃𝐿
𝐹𝑧𝐿

𝐹𝑧𝐿+𝐹𝑧𝑅
+ 𝐶𝑂𝑃𝑅

𝐹𝑧𝑅

𝐹𝑧𝐿+𝐹𝑧𝑅
                    (4) 

where 𝐶𝑂𝑃L and 𝐶𝑂𝑃R are the values of the COP signal from the left and right foot, respectively, 

and 𝐹zL and 𝐹zR are the vertical forces exerted on the force plates under the left and right foot, 

respectively. Approximate entropy (ApEn) and sample Entropy (SampEn) were determined using 

the 𝐶𝑂𝑃𝑛𝑒𝑡 data in the anterior-posterior and medial-lateral directions. 
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2.4.2. Downsampling and Sensitivity Analysis 

The total number of data points to be used for this project needed to be examined based on 

previous work by Tipton [21]. The original COP datasets, recorded at 1200 Hz for 30 seconds, 

however, were likely too large since it has been demonstrated that sampling data beyond 1000 Hz 

leads to redundant information [21]. MATLAB’s built-in downsample function was used to decrease 

the 1200 Hz sample rate by a factor of 20 to 60 Hz. Simple sensitivity analyses as illustrated in Figures 

2–5 demonstrate the change in the time series before (Figures 2 and 4) and after (Figures 3 and 5) 

downsampling from a representative participant tested with eyes open feet together and eyes closed 

tandem standing postures, respectively. Observation evaluation of the figures suggested that the 

elimination of data points by downsampling did not impact the revised data set.  

 

Figure 2. Representative time series for raw center of pressure (COP) data of participant 1 eyes open, 

feet together (EOFT) Trial 4, where fs = 1200 Hz, in the anterior-posterior (AP) and medial-lateral (ML) 

directions, respectively. 

 

Figure 3. Representative time series for downsampled center of pressure (COP) data of participant 1 

eyes open, feet together (EOFT) Trial 4, where fs = 60 Hz, in the anterior-posterior (AP) and medial-

lateral (ML) directions, respectively. 
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Figure 4. Representative time series for raw center of pressure (COP) data of participant 1 eyes closed, 

feet tandem, dominant foot forward (ECTDF) Trial 29, where fs = 1200 Hz, in the anterior-posterior 

(AP) and medial-lateral (ML) directions, respectively. 

 

Figure 5. Representative time series for the downsampled center of pressure (COP) data of participant 

1 eyes closed, feet tandem, dominant foot forward (ECTDF) Trial 29, where fs = 60 Hz, in the anterior-

posterior (AP) and medial-lateral (ML) directions, respectively. 

2.4.3. Determination of Approximate and Sample Entropy 

Approximate and sample entropy were determined over a 30-second interval for all five trials 

under each condition using custom MATLAB® (The MathWorks, Natick, MA) code. Given each COP 

time series, where N = 60 datapoints, a sequence of m = 2 length vectors was formed. Comparisons 

were then made against each data segment that was two numbers long. Vectors were considered 

alike if vector components fell within a tolerance level (or window), ± 𝑟 ∗ 𝑆𝐷  [28]. The tolerance 

levels were evaluated over a range of r = 0.05 * SD to r = 0.3 * SD; i.e., with 0.05 step sizes. The total 

number of like vectors' logarithm sum was divided by 𝑁 − 𝑚 + 1 to get the total number of like 

vectors, including a template comparison to itself [17]. Looking one vector higher, m was raised by 1, 

i.e., (𝑚 + 1), the procedure was repeated. By deducting the conditional probabilities of 𝑚 + 1 from 

m, ApEn was calculated.  

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −
1

𝑁−𝑚
∑ 𝑙𝑜𝑔

𝐴𝑖

𝐵𝑖

𝑁−𝑚
𝑖=1            (5) 
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SampEn uses the whole series together, requiring only that a template vector find a match of 

length 𝑚 + 1 to be defined [6]. This contrasts with ApEn where each template vector (including 

itself) must find a match to be defined. So, the use of SampEn eliminates many of the problems 

associated with ApEn, in that it is useful to quantify regularity in a system more effectively [6]. The 

same input parameters as ApEn were used and vectors were deemed similar if both their tail and 

head fell under the predetermined tolerance level. The sum of the total number of like vectors for m 

points was divided by 𝑁 − 𝑚 + 1 and defined as 𝐵𝑚(𝑟). Further, SampEn defined 𝐴𝑚(𝑟) as the 

subset of 𝐵𝑚(𝑟)  that two sequences are similar for 𝑚 + 1  [17]. SampEn was calculated as the 

conditional probability:  

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −𝑙𝑜𝑔
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
           (6) 

2.5. Statistical Analysis 

Statistical analysis and graphics were performed with R Statistical Software (v4.4.0; R Core Team 

2024) [38] running in RStudio: Integrated Development Environment for R [39]. Descriptive graphics 

were generated to present an overall picture of entropy for the center of pressure excursions along 

the anterior-posterior (AP) and medial-lateral (ML) axes, overlaying the approximate and sample 

entropy values. The r values and Method, i.e., ApEn and SampEn, quantities were derived from a 

single set of raw data. The raw data that were collected consisted of five trials for each of the six 

participants at each of the five standing posture conditions, e.g., EOFT, etc, for a total of 5 × 6 × 5 (or 

150) data points. There are 30 cells in the graphics of condition by participant with each cell derived 

from five data points, i.e., 5 trials. There are 60 points in each cell from the 12 different calculations 

performed on each of the five data points. Lines are Loess curves that were used to provide a visual 

pattern for each Method within each cell. 

There were 144 one-way ANOVAs with Dunnett’s post-hoc tests, one for each data set collected. 

Tables and graphics were generated for Shapiro and Levene’s test p-values that were below 0.05, 

indicating potential normality and heteroscadicity issues. 

Nonparametric tests were considered but few of the 144 tests indicated a possible need for them. 

It is known that ANOVA is robust to failures of normality, especially for symmetric errors. All 

Shapiro test issues showed roughly symmetric errors in the Q-Q plots. ANOVA is also known to be 

robust to failures of equal variance in the case of equal group sizes. All group sizes were equal except 

for participant #5, for condition ECTDB, which did not fail either Shapiro or Levene’s tests. 

All of the ANOVA F-tests except six had p-values < 0.05. Given the exploratory nature of this 

study and for the completeness of the graphics, Dunnett’s intervals were included in the confidence 

interval graphics even though the F-test was not statistically significant. We graphed 95% confidence 

intervals in a format similar to the raw data graphics but plotted only the confidence intervals, not 

the raw data. Significant intervals do not contain zero (horizontal black line). The two entropy 

methods, i.e. ApEn and SampEn, are shown in separate rows. 

For a comparison of ApEn and SampEn methods for each value of r, we constructed histograms 

of their difference at each value of r. Values to the left of the vertical black line (zero) indicated that 

ApEn was larger, whereas values to the right of the vertical black line indicated that SampEn was 

larger. 

3. Results 

3.1. General Observations of Approximate and Sample Entropy 

Approximate and sample entropy were determined for all trials and conditions, so it was 

important to examine the ApEn and SampEn values over the 30-second time series for m = 2, r = 0.2 * 

SD to establish the fidelity of the data. Note we chose the values of m and r because they reflect the 

most commonly chosen parameters in previously published studies. Each second of COP data 

consisted of 60 points. Figures 6 and 7 illustrate these data for one trial of an eyes open, feet together 

(EOFT) condition and one trial of an eyes closed feet tandem condition (ECTDB) for one 

representative participant. Visual inspection of each plot suggests that the ApEn and SampEn 
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magnitudes were comparable and the spikes over the 30-second time series appeared similar. Having 

established this for a representative participant and trial it seemed appropriate to determine the mean 

ApEn and SampEn values for further statistical analysis. 

Figures 8 and 9 provide a perspective of ApEn and SampEn values for each tolerance window 

and all participants under each standing postural test condition, except with feet together and eyes 

closed. See the Appendix A for means and standard deviations of the approximate and sample 

entropy values for the anterior-posterior and medial-lateral COP excursion time series for each 

participant and three representative conditions, i.e., EOFT, EOTDB, and ECTDB. For the COP 

excursion in the anterior-posterior direction, (Figure 8) entropy values suggested that: 

• magnitudes were larger in the most stable standing condition, i.e., eyes open feet together, for r 

= .05 * SD and 0.1 * SD 

• ApEn (red) and SampEn (blue) Loess curves were similar 

• entropy values generally decreased as r increased, leveling off after; r = 0.2 * SD 

• entropy values were larger in magnitude with tandem standing postures compared to eyes open 

feet together, but there do not appear to be differences in entropy values between eyes open and 

eyes closed for the tandem standing postures, and 

• participant #4 demonstrated different entropy value patterns for the eyes open feet together and 

eyes open tandem dominant back conditions, compared to the other five participants.  

For the medial-lateral excursion of the COP (Figure 9) first note that the entropy scale (vertical 

axis) is different than in Figure 8, yet patterns of entropy values were similar in Figure 9. On the 

whole, we observed that:  

• entropy magnitudes were generally smaller in eyes open feet together condition but there do 

not appear to be differences in entropy values between eyes open and eyes closed for the tandem 

standing postures 

• ApEn (red) and SampEn (blue) Loess curves were similar 

• entropy values generally decreased as r increased, but the decreasing slope of the Loess curves 

as r increased appeared to be reduced for medial-lateral excursions, and  

• both participants #4 and #5 exhibited different entropy patterns, with more variability. 

 

Figure 6. Representative time series for ApEn and SampEn calculated every second for 30 seconds for 

participant 1 eyes open, feet together (EOFT), Trial 03 COP data; where N = 60 datapoints, m = 2, and 

r = 0.2 * SD; in the anterior-posterior (AP) and medial-lateral (ML) directions, respectively. 
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Figure 7. Representative time series for ApEn and SampEn calculated every second for 30 seconds of 

participant 1 eyes closed, feet tandem, dominant foot back (ECTDB), Trial 19 COP data; where N = 60 

datapoints, m = 2, and r = 0.2 * SD; in the anterior-posterior (AP) and medial-lateral (ML) directions, 

respectively. 

 

Figure 8. Anterior-posterior (AP) direction approximate (red) and sample (blue) entropy values 

(vertical axis) versus six different tolerance windows (horizontal axis), i.e., r, while standing in five 
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different postures, i.e., eyes open feet together (EOFT), etc., for each participant. Note that 12 r and 

Method, i.e., ApEn or SampEn, quantities were derived from each COP time series. There were five 

time series for each cell giving 60 graphed points in each cell. Loess curves are provided to help 

visualize the relationship between r and entropy values for each method in each cell. 

 

Figure 9. Medial-lateral (ML) direction approximate (red) and sample (blue) entropy values (vertical 

axis) versus six different tolerance windows (horizontal axis), i.e., r, while standing in five different 

postures, i.e., eyes open feet together (EOFT), etc., for each participant. Note that 12 r and Method, 

i.e., ApEn or SampEn, quantities were derived from each COP time series. There were five time series 

for each cell giving 60 graphed points in each cell. Loess curves are provided to help visualize the 

relationship between r and entropy values for each method in each cell. 

Because of the variability noted among participants #4 and #5 in Figures 8 and 9, we take a closer 

look at the variability across participants and trials for both ApEn and SampEn for the COP excursion 

in the medial-lateral direction (Figures 10 and 11, respectively). What we observed was that, overall, 

ApEn and SampEn values were quite similar. In particular, we noted that the lowest entropy values 

were generally less variable and associated with the eyes open feet together standing posture, and 

the largest values were associated with the eyes closed tandem conditions. As noted previously but 

more apparent in Figures 10 and 11, participants #4 and #5 were quite different, i.e., larger entropy 

values, than the other participants. Additionally, a greater variability of the entropy values was 

demonstrated across all participants and trials for the tandem standing postures (both eyes open and 

closed conditions).   
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Figure 10. Approximate entropy (vertical axis) (m = 2, r = 0.25 * SD) across six participants for all 

standing postural test conditions (horizontal axis). Data collected consisted of five trials for each 

participant at each stance condition. Each boxplot is derived from the five calculated entropy values 

for each condition for each participant (30 boxplots). 

 

Figure 11. Sample entropy (vertical axis) (m =2, r = 0.25 * SD) across six participants for all standing 

postural test conditions (horizontal axis). Data collected consisted of five trials for each participant at 

each stance condition. Each boxplot is derived from the five calculated entropy values for each 

condition for each participant (30 boxplots). 
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3.2. ApEn and SampEn: Comparing Entropy across Conditions 

We chose the eyes open feet together as the baseline assuming that this postural stance would 

result in less postural instability (i.e., more postural or balance control) than tandem standing tasks, 

especially the tandem tasks with eyes closed. We compared the ApEn (Figure 12) and SampEn 

(Figure 13) values for each of the tandem stances with the baseline postural stance across all trials by 

running 144 one-way ANOVAs with Dunnett’s post-hoc tests. Despite some outliers, both ApEn and 

SampEn significantly distinguished differences in standing postural control between the baseline 

posture, i.e., EOFT, and the eyes open and eyes closed tandem stances. 

  

Figure 12. Comparison of Approximate (red) and sample (blue) entropy values across standing 

postural conditions for the center of pressure data in the anterior-posterior (AP) direction for each 

participant. Note that all F-tests, except six, had p < 0.05. What is graphed are Dunnet’s 95% 

confidence intervals. Loess curves through the confidence interval centers are included to aid 

visualization. Significant intervals can be found above the black (zero) horizontal line. Comparison 

pairs along the vertical axis, with r values along the horizontal axis. 
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Figure 13. Comparison of Approximate (red) and sample (blue) entropy values across standing 

postural conditions for the center of pressure data in the medial-lateral (ML) direction for each 

participant. Note that all F-tests, except six, had p < 0.05. What is graphed are Dunnet’s 95% 

confidence intervals. Loess curves through the confidence interval centers are included to aid 

visualization Significant intervals can be found above the black (zero) horizontal line. Comparison 

pairs along the vertical axis, with r values along the horizontal axis. 

3.3. Comparing ApEn and SampEn Values Across Different Tolerance Windows 

To make direct comparisons between ApEn and SampEn values across different tolerance 

windows, i.e., r values, we created histograms of their difference at each r (Figure 14). It is notable 

that, although in Figures 8 and 9 similarities between ApEn and SampEn were observed, the 

significant differences between the alternative approach to calculating entropy show that ApEn 

values for COP excursion in the anterior-posterior and medial-lateral directions were larger than 

SampEn values. 
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Figure 14. Histograms, i.e., count (vertical axis) of the difference between SampEn and ApEn, i.e., 

Sample-Approximate (horizontal axis). Values to the left of the vertical black line indicate that ApEn 

was larger and values to the right of the vertical black line indicate that SampEn was larger. 

4. Discussion 

Understanding how individuals respond to different postural, both static and dynamic, 

conditions and utilizing the best method to measure those conditions is important when comparing 

how a healthy nervous system responds versus how a brain-injured individual responds to the same 

conditions. Previous research that has examined children and adults with mild traumatic brain 

injury, e.g., concussion, has suggested that the use of the center of pressure (COP) data can be useful 

in delineating a normal from an abnormal response to the perturbations of static and dynamic balance 

[10,13,14,18,40,41]. Since it has been shown that the COP time series is non-linear, traditional methods 

of assessing various COP parameters, e.g., statistical use of means and standard deviation, have not 

been effective [41]. Previous work using non-linear metrics, such as approximate and sample entropy, 

to study normal and pathological balance has been useful [3,18,19,44–46]. However, a consensus on 

the optimal input parameter, i.e., N, m, and r, selection for the calculation of ApEn and SampEn has 

not yet been established. Previous work by Yentes et al. [16,17,30] has examined this challenge and 

made recommendations relative to gait data [16,30] and short data sets [17], but there is a paucity of 

research on this matter in investigations involving standing postural control. In our laboratory, 

Tipton et al. [21] measured the center of pressure of healthy college-aged participants under various 

quiet standing postures and used ApEn to characterize the time series, but their method was limited 

by an overly redundant data set and included the determination of the tolerance window, r, that was 
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atypical. Based on the need described in the literature for more work investigating the diverse 

application of ApEn and SampEn analyses, and the methodological limitations of the previous 

research in our laboratory, the primary purpose of this study was to compare ApEn and SampEn 

under various stability conditions and examine the effects of different tolerance window values. The 

results revealed: 1) that even though SampEn tended to yield lower mean values than ApEn, both 

indices equally quantified the regularity of a COP time series in both the anterior-posterior and 

medial-lateral directions; 2) both ApEn and SampEn effectively differentiated a more stable quiet 

standing posture, i.e., eyes open feet together, from less stable standing postures, i.e., eyes open and 

eyes closed tandem standing postures; and 3), the selection of r had a relatively consistent effect with 

both entropic statistical analyses. 

It has been demonstrated that high sampling rates reduce entropy values, likely since higher 

rates are well above the frequency of the tested behavior creating an artificial increase in the number 

of matches [12,30]. We used Tipton et al.’s [21] raw COP time series but modified it because their 

decision not to reduce data redundancy may have resulted in ApEn values that were biased, i.e. 

greater predictability. Therefore, we chose to downsample the COP time series data which allowed 

us to use a more accepted method for determining tolerance windows. Others have demonstrated 

the importance of how data management is handled and interpreted. For example, Rhea et al. [33] 

noted that downsampling from 100 Hz to 50 Hz and 25 Hz produced a dataset that appeared to be 

linearly less regular, i.e., increasing SampEn. They cautioned that researchers must identify how 

much change is driven by the neuromotor system and how much is a function of the data processing 

technique. Lubetsky et al. [12] noted that since postural sway typically lies between 0.15 and 0.4 Hz 

(and as high as 3 Hz) a sampling rate of 25 Hz should be sufficient to detect time series patterns and 

better reflect the underlying postural sway pattern. Thus, they were interested in evaluating how 

sample entropy of COP time series data sampled at 100 Hz (N = 2000) from prolonged standing tasks 

on normal and compliant surfaces would be affected by downsampling by 2, 3, and 4. They found 

that although downsampling increased SampEn values, it had an insignificant effect on the 

comparisons to the original datasets. However, they concluded that if such procedures are performed 

by other researchers, they should be well justified. Yentes et al. [17] recommended, as best practice, 

that practitioners not exceed sampling data beyond 1000 Hz, but that a prior power spectral density 

analysis might be considered to assist in selecting an appropriate sampling rate. In the present study, 

our initial entropy estimates based on a 1200 Hz data collection rate yielded very low entropy values 

between 0.005 and 0.030. Therefore, we concluded that downsampling was necessary for the 

processing of our entropy results. We found that, when using 1,800-point arrays, the raw COP 

waveforms were observationally nearly identical when comparing unfiltered data to the 

downsampled data and that the entropy values that resulted, i.e., average ApEn and SampEn, ranged 

from 0.08 to 0.90; values consistent with other published works. 

Incorrect parameter selection, i.e., vector length, m, tolerance or threshold window, r, and data 

length, N), regardless of the biological time series being considered, can undermine the ApEn and 

SampEn discrimination capacity [47]. For this study, the embedding dimension, m = 2, and dataset 

length, N, were fixed input parameters. We wanted to focus our attention on assessing entropy 

outcomes relative to changes in the tolerance window since this parameter may have the greatest 

influence on the calculation of entropy [30] and is considered one of the most difficult to select [16]. 

Selecting a tolerance window too small limits the number of matches found and selecting too large a 

window could lead to too many matches found and increase the probability [30]. Many approaches 

to calculating r have been suggested, including utilizing the standard deviation (SD) of the whole 

time series [26,45], the standard error of the entropy values [48], predefined tolerance levels [49,50], 

and using a heuristic stochastic model [47]. Typically, the tolerance window is calculated as r times 

the standard deviation of the time series [26]. However, many researchers have reported determining, 

and using, r as 0.2 * SD, with the rationale that it was commonly used in previous research. Yentes et 

al. [30] recommended that researchers try multiple r values, and if using the default method, i.e., r * 

SD, test the relative consistency of r = 0.15, 0.25, and 0.30 * SD. For this study, we calculated ApEn 

and SampEn related to the anterior-posterior and medial-lateral COP excursions during a variety of 
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quiet standing postures and used r = 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 * SD (Figures 8 and 9). For 

COP anterior-posterior excursion we found that entropy magnitudes (ApEn and SampEn) in the 

EOFT condition were larger for r = 0.05 *SD and 0.10 * SD, and values decreased as r increased, 

leveling off after r = 0.20 * SD. Entropy magnitudes for COP medial-lateral excursion were generally 

reduced in the EOFT condition compared to the AP excursion data, but decreasing entropy with 

increasing r mirrored the pattern seen for the AP data. There are no comparable publications related 

to quiet standing, although Yentes et al. [16] reported a similar relationship between SampEn and 

changing r, but a more variable relationship between ApEn and changing r. On the other hand, our 

data demonstrated relative consistency for both ApEn and SampEn with changes in the tolerance 

window, particularly for r = 0.20, r = 0.25, and r = 0.30 * SD. Based on the good consistency of both 

ApEn and SampEn using a range of r’s equal to 0.20, 0.25, and 0.30 * SD we suggest that future 

research investigating postural sway based on COP time series consider the method we used. Despite 

the consistency of the ApEn and SampEn values we found, we caution the reader that our choice for 

determining the tolerance window is limited by any factor, such as data length, nonstationarity of 

the data, spikes, and outliers, that affect data variance.  

Outliers and spikes were identified in some of our data, particularly for participants #4 and #5 

(see Figures 8–11), in the ApEn and SampEn values for r = 0.05 and r = 0.1 * SD, likely due to the 

overly stringent conditions. Molina-Picó et al. [34] evaluated the impact of abnormal spikes on the 

interpretation of entropy results in the context of biosignal analysis and suggested removing these 

results, as they can misrepresent the signal regularity. We believe additional research is needed 

related to reproducing our findings relative to the entropy values using smaller r values. For this 

project, we presented the data using smaller r values, but are skeptical about their clinical 

interpretation and meaningfulness.  

Although we determined ApEn and SampEn for both EOFT and ECFT postures, we chose to use 

the EOFT posture as a relative baseline for postural stability. An additional purpose of this study was 

to ascertain whether these two entropies could differentiate signal predictability similarly when 

comparing a relatively stable quiet standing posture from postures that were more difficult to 

maintain over a 30-second time frame. Our data showed that ApEn and SampEn values were larger 

for tandem standing positions whether the eyes were open or closed, and whether the dominant foot 

(leg) was placed back or forward (Figures 12 and 13). Thus, we concluded that the tandem standing 

positions produced anterior-posterior and medial-lateral COP excursions associated with a system 

that produced a time series that was more random, less probable and predictable, and one with a 

greater amount of new information gained from the next data points in the time series [30]. In another 

study that assessed quiet standing balance and altering visual conditions, Ramdani et al. [13] used 

SampEn to analyze human postural sway. They reported that SampEn distinguished between the 

eyes open and eyes closed conditions of participants standing on a single force plate. Specifically, in 

the eyes closed condition, SampEn was lower. Other research results concur with Ramdani’s findings 

[49], whereas some reported contradictory results [52]. One limitation of the present study was that 

we did not examine whether ApEn and SampEn could distinguish the eyes open from the eyes closed 

tandem standing postures. Future research should address this. 

Since both ApEn and SampEn values were significantly larger with tandem standing postures, 

compared to the eyes open feet together posture, we wondered which entropic measure was “better”? 

We are not aware of any previous research that compared ApEn and SampEn from the COP time 

series for standing balance by altering only the tolerance window. Yentes et al. [16] investigated the 

step time series of walking trials and evaluated various combinations of N, m, and r. They concluded 

that SampEn demonstrated excellent relative consistency for long gait data sets when using two 

different modes of walking, i.e., overground versus treadmill. On the other hand, our results suggest 

that both ApEn and SampEn demonstrated similar relative consistency. 

In addition to reported differences in relative consistency for ApEn and SampEn between Yentes 

et al. [16] and our findings, there were also differences when comparing the two entropy value 

magnitudes. We found that, overall, ApEn magnitudes were larger than SampEn values, whereas 
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Yentes et al. reported that generally mean ApEn values were lower than mean SampEn values in the 

analysis of step time gait data. 

The results of this project may be limited by several methodological decisions. Our sample was 

limited by convenience and its small size. Additional research is suggested using a larger cross-

sectional sample. In addition, will be important to test our methods against different 

neuropathologies, like post-concussion individuals. As noted in the discussion, there are several 

suggested methods for determining the tolerance window. It may be useful to compare ApEn and 

SampEn values using the standard method we used and the other accepted methods, e.g., a fixed 

tolerance window [49,50] and the method suggested by Chon et al. [47]. Our results may have been 

influenced by the data resolution of the downsampling technique employed.  

5. Conclusions 

The primary purpose of this study was to investigate the impact of varying one of the input 

parameters, i.e., tolerance window, r, used to calculate ApEn and SampEn. Based on our results we 

cannot recommend an optimal r value. However, we can suggest that the algorithms r = 0.20, r = 2.5, 

or r = 0.30 * SD may be equally suitable for determining ApEn and SampEn values that provide insight 

into the anterior-posterior and medial-lateral excursions of COP time series for selected quiet 

standing postures. This recommendation is based on the good relative consistency of entropy values 

with changing tolerance windows, as well as the ability of both ApEn and SampEn to distinguish 

more from less stable quiet standing postures. Our results demonstrated that although, on average, 

ApEn values were larger than SampEn values, one estimation technique was not particularly “better” 

than the other; that is, if used in longitudinal measures of COP time series either entropy algorithm 

would be acceptable. One possible factor influencing the choice between ApEn and SampEn is 

algorithm complexity. Since SampEn includes an additional step removing “self-counting”, if 

computational speed becomes a consideration then ApEn may have a slight edge. 
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Appendix A 

Table A1. Approximate and sample entropy values for each participant for the anterior-posterior 

center of pressure time series for eyes open feet together. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.49(0.053) 0.3(0.054) 0.18(0.037) 0.13(0.025) 0.094(0.019) 0.075(0.015) 

Sample 0.43(0.058) 0.25(0.052) 0.16(0.037) 0.11(0.027) 0.087(0.021) 0.07(0.017) 

2 
Approximate 0.53(0.026) 0.39(0.059) 0.25(0.052) 0.18(0.036) 0.13(0.026) 0.1(0.02) 

Sample 0.48(0.039) 0.32(0.055) 0.21(0.045) 0.15(0.033) 0.12(0.025) 0.096(0.02) 

4 
Approximate 0.98(0.059) 0.59(0.064) 0.37(0.047) 0.26(0.036) 0.19(0.028) 0.15(0.021) 

Sample 1(0.09) 0.51(0.071) 0.32(0.052) 0.22(0.039) 0.17(0.03) 0.13(0.023) 

5 
Approximate 0.55(0.11) 0.37(0.076) 0.24(0.06) 0.16(0.041) 0.12(0.03) 0.097(0.023) 

Sample 0.49(0.13) 0.29(0.068) 0.19(0.048) 0.14(0.034) 0.11(0.026) 0.087(0.02) 

6 
Approximate 0.46(0.053) 0.28(0.064) 0.17(0.042) 0.12(0.028) 0.088(0.02) 0.071(0.017) 

Sample 0.37(0.049) 0.22(0.052) 0.14(0.036) 0.1(0.026) 0.08(0.02) 0.066(0.017) 

8 
Approximate 0.51(0.039) 0.33(0.084) 0.22(0.074) 0.15(0.053) 0.11(0.039) 0.09(0.029) 

Sample 0.44(0.062) 0.27(0.066) 0.18(0.056) 0.13(0.043) 0.1(0.034) 0.082(0.027) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 

Table A2. Approximate and sample entropy values for each participant for the anterior-posterior 

center of pressure time series for eyes open tandem dominant back. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.55(0.0092) 0.45(0.019) 0.33(0.013) 0.24(0.011) 0.18(0.0075) 0.14(0.0049) 

Sample 0.49(0.03) 0.37(0.035) 0.27(0.026) 0.2(0.019) 0.16(0.014) 0.13(0.01) 

2 
Approximate 0.6(0.017) 0.53(0.031) 0.42(0.047) 0.32(0.05) 0.25(0.046) 0.2(0.039) 

Sample 0.6(0.028) 0.46(0.031) 0.35(0.037) 0.27(0.036) 0.21(0.034) 0.17(0.03) 

4 
Approximate 0.88(0.097) 0.6(0.094) 0.45(0.091) 0.34(0.08) 0.26(0.064) 0.2(0.052) 

Sample 0.92(0.15) 0.55(0.11) 0.4(0.096) 0.3(0.081) 0.24(0.066) 0.19(0.054) 

5 
Approximate 0.59(0.048) 0.49(0.039) 0.37(0.039) 0.27(0.031) 0.21(0.024) 0.16(0.019) 

Sample 0.57(0.048) 0.41(0.057) 0.3(0.051) 0.23(0.04) 0.18(0.031) 0.14(0.024) 

6 
Approximate 0.56(0.02) 0.48(0.031) 0.34(0.036) 0.25(0.03) 0.18(0.024) 0.15(0.018) 

Sample 0.53(0.027) 0.41(0.031) 0.29(0.029) 0.22(0.025) 0.17(0.021) 0.13(0.016) 

8 
Approximate 0.59(0.0059) 0.52(0.02) 0.4(0.029) 0.3(0.026) 0.22(0.021) 0.18(0.017) 

Sample 0.57(0.011) 0.45(0.016) 0.34(0.022) 0.25(0.02) 0.2(0.016) 0.16(0.013) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 

Table A3. Approximate and sample entropy values for each participant for the anterior-posterior 

center of pressure time series for eyes closed tandem dominant back. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.58(0.0071) 0.53(0.015) 0.41(0.02) 0.31(0.025) 0.24(0.022) 0.19(0.02) 

Sample 0.57(0.021) 0.46(0.018) 0.35(0.019) 0.27(0.019) 0.21(0.017) 0.17(0.015) 

2 
Approximate 0.58(0.023) 0.49(0.039) 0.37(0.037) 0.27(0.031) 0.2(0.025) 0.16(0.02) 

Sample 0.55(0.04) 0.42(0.045) 0.31(0.039) 0.23(0.03) 0.18(0.023) 0.14(0.018) 

4 
Approximate 0.58(0.012) 0.5(0.033) 0.39(0.042) 0.29(0.041) 0.22(0.035) 0.17(0.029) 

Sample 0.57(0.023) 0.44(0.031) 0.34(0.041) 0.26(0.039) 0.2(0.033) 0.16(0.028) 

5 
Approximate 0.58(0.023) 0.54(0.025) 0.44(0.025) 0.35(0.021) 0.27(0.018) 0.22(0.016) 

Sample 0.58(0.053) 0.48(0.048) 0.37(0.042) 0.29(0.033) 0.23(0.025) 0.19(0.019) 

6 
Approximate 0.59(0.0099) 0.54(0.026) 0.42(0.033) 0.31(0.032) 0.24(0.026) 0.19(0.021) 

Sample 0.59(0.014) 0.47(0.018) 0.36(0.021) 0.27(0.021) 0.21(0.018) 0.17(0.016) 

8 
Approximate 0.6(0.0069) 0.56(0.02) 0.45(0.037) 0.34(0.039) 0.26(0.034) 0.21(0.027) 

Sample 0.61(0.017) 0.49(0.025) 0.38(0.034) 0.3(0.033) 0.23(0.029) 0.19(0.023) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 
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Table A4. Approximate and sample entropy values for each participant for the medial-lateral center 

of pressure time series for eyes open feet together. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.27(0.054) 0.11(0.025) 0.07(0.014) 0.05(0.0093) 0.039(0.0071) 0.032(0.0059) 

Sample 0.22(0.05) 0.1(0.022) 0.063(0.012) 0.046(0.0082) 0.036(0.0063) 0.029(0.0052) 

2 
Approximate 0.46(0.054) 0.25(0.059) 0.15(0.037) 0.11(0.024) 0.082(0.018) 0.066(0.015) 

Sample 0.38(0.064) 0.21(0.05) 0.13(0.03) 0.093(0.02) 0.073(0.015) 0.059(0.012) 

4 
Approximate 1(0.12) 0.63(0.13) 0.41(0.1) 0.28(0.077) 0.21(0.06) 0.17(0.048) 

Sample 1.1(0.16) 0.57(0.11) 0.36(0.073) 0.25(0.054) 0.19(0.041) 0.15(0.033) 

5 
Approximate 0.57(0.031) 0.39(0.055) 0.25(0.051) 0.17(0.037) 0.13(0.028) 0.1(0.021) 

Sample 0.52(0.034) 0.33(0.048) 0.21(0.04) 0.15(0.029) 0.12(0.022) 0.094(0.017) 

6 
Approximate 0.49(0.064) 0.32(0.12) 0.21(0.095) 0.15(0.068) 0.11(0.05) 0.088(0.038) 

Sample 0.42(0.075) 0.27(0.093) 0.18(0.075) 0.13(0.056) 0.1(0.043) 0.081(0.034) 

8 
Approximate 0.51(0.042) 0.32(0.067) 0.2(0.047) 0.14(0.031) 0.11(0.022) 0.084(0.017) 

Sample 0.45(0.045) 0.27(0.052) 0.17(0.037) 0.12(0.026) 0.096(0.02) 0.077(0.016) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 

Table A5. Approximate and sample entropy values for each participant for the medial-lateral center 

of pressure time series for eyes open tandem dominant back. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.52(0.042) 0.37(0.057) 0.26(0.051) 0.19(0.045) 0.14(0.036) 0.11(0.028) 

Sample 0.45(0.068) 0.29(0.065) 0.2(0.049) 0.14(0.036) 0.11(0.028) 0.091(0.022) 

2 
Approximate 0.66(0.058) 0.61(0.047) 0.54(0.071) 0.45(0.087) 0.37(0.092) 0.31(0.086) 

Sample 0.71(0.11) 0.55(0.078) 0.46(0.081) 0.38(0.08) 0.31(0.074) 0.26(0.067) 

4 
Approximate 1.3(0.046) 1.1(0.11) 0.86(0.097) 0.68(0.079) 0.55(0.068) 0.46(0.06) 

Sample 1.7(0.17) 1.1(0.14) 0.79(0.11) 0.61(0.086) 0.49(0.072) 0.4(0.06) 

5 
Approximate 0.81(0.22) 0.69(0.14) 0.57(0.13) 0.48(0.13) 0.4(0.13) 0.34(0.12) 

Sample 0.91(0.32) 0.64(0.17) 0.5(0.14) 0.4(0.13) 0.33(0.11) 0.28(0.1) 

6 
Approximate 0.58(0.032) 0.46(0.058) 0.33(0.072) 0.24(0.063) 0.18(0.051) 0.14(0.04) 

Sample 0.56(0.052) 0.4(0.062) 0.28(0.059) 0.21(0.05) 0.16(0.04) 0.13(0.033) 

8 
Approximate 0.66(0.058) 0.55(0.084) 0.44(0.11) 0.35(0.11) 0.27(0.091) 0.22(0.075) 

Sample 0.67(0.1) 0.48(0.094) 0.37(0.097) 0.28(0.087) 0.22(0.074) 0.18(0.063) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 

Table A6. Approximate and sample entropy values for each participant for the medial-lateral center 

of pressure time series for eyes closed tandem dominant back. 

Participants Method 0.05 0.1 0.15 0.2 0.25 0.3 

1 
Approximate 0.65(0.033) 0.57(0.056) 0.47(0.085) 0.37(0.09) 0.29(0.083) 0.23(0.07) 

Sample 0.67(0.061) 0.51(0.068) 0.4(0.083) 0.31(0.081) 0.25(0.073) 0.2(0.063) 

2 
Approximate 0.65(0.046) 0.59(0.068) 0.52(0.088) 0.44(0.089) 0.37(0.082) 0.31(0.071) 

Sample 0.69(0.085) 0.54(0.092) 0.44(0.099) 0.36(0.094) 0.29(0.083) 0.25(0.071) 

4 
Approximate 0.73(0.058) 0.65(0.035) 0.59(0.043) 0.52(0.059) 0.44(0.068) 0.38(0.071) 

Sample 0.82(0.092) 0.63(0.05) 0.52(0.052) 0.44(0.059) 0.37(0.062) 0.31(0.062) 

5 
Approximate 0.63(0.028) 0.59(0.056) 0.51(0.094) 0.43(0.11) 0.36(0.11) 0.3(0.1) 

Sample 0.68(0.064) 0.53(0.076) 0.42(0.1) 0.34(0.11) 0.28(0.1) 0.24(0.094) 

6 
Approximate 0.63(0.038) 0.56(0.051) 0.45(0.064) 0.35(0.063) 0.27(0.056) 0.21(0.047) 

Sample 0.63(0.07) 0.48(0.071) 0.37(0.069) 0.29(0.058) 0.23(0.049) 0.18(0.041) 

8 
Approximate 0.66(0.076) 0.56(0.13) 0.46(0.15) 0.38(0.14) 0.31(0.13) 0.25(0.11) 

Sample 0.7(0.13) 0.5(0.14) 0.39(0.14) 0.31(0.12) 0.25(0.11) 0.21(0.093) 

Note: Mean (standard deviation) entropy values for each participant across six different threshold windows (r). 
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