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Abstract: Reliable models of pavement performance play a crucial role in effective decision‐making 

for  maintaining  and  rehabilitating  this  class  of  infrastructure  assets.  Probabilistic  modeling 

approaches have gained popularity in pavement performance modeling because they account not 

only for the stochastic nature of pavement behavior and deterioration factor variations but also for 

the  imperfections and  inadequacy of pavement condition data in certain situations. One of these 

approaches, Markov chains, has been used extensively to model the probabilistic performance of 

pavements through an interesting variety of methodological tweaks in the Markov model structure. 

Unfortunately, the current literature lacks a synthesis of Markov chain models and their associated 

methodologies, as used  in  this manner.  It  is anticipated  that a comprehensive synthesis of  these 

models and their various forms can provide some insight into the variations of Markov model forms 

and methodologies, and the appropriate Markov model type to use for pavement deterioration and 

performance modeling under given conditions of data types and availability. To address this issue, 

this paper reviews Markov chain models used in the literature to model pavement deterioration and 

the methodologies used to estimate the transition probabilities matrix which is the key feature of 

Markov chain models. The paper presents a critical analysis of various aspects of Markov chain 

models as they were applied in the literature, reveals gaps in knowledge, and offers suggestions to 

address these gaps. The paper also develops a decision tree to select the appropriate Markov model 

type and TPM estimation methodology to model pavement deterioration under given conditions of 

data availability. This paper therefore provide guidance and decision support for researchers and 

highway agencies in selecting an appropriate probabilistic technique for modeling their pavement 

infrastructure performance in a robust manner. 

Keywords: pavement infrastructure asset; probabilistic modeling; pavement performance; Markov 

chains 

 

Introduction 

Pavement  condition  is  evaluated  with  respect  to  its  structural  and  functional  capacities. 

Pavement structural capacity refers to its load‐carrying strength, while pavement functional capacity 

refers to its level of service provided to roadway users. These structural and functional capacities are 

represented by condition indices/indicators such as international roughness index (IRI) and present 

serviceability  rating  (PSR). A  closely  related  concept  is  pavement  performance which  refers  to, 

according to [1], the trend of pavement serviceability over a period of time, where the serviceability 

indicates the ability of pavements to serve the traffic demand in the existing condition. Pavement 

performance models that are essential for effective decision‐making of pavement maintenance and 
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rehabilitation (M&R) need reliable and accurate predictions of pavement condition. The reliability 

and accuracy of condition predictions hinge on the quality and availability of pavement condition 

data and the modeling methodology. 

Pavement  performance  models  can  be  deterministic  or  probabilistic.  Unlike  deterministic 

models  [2,3],  the  probabilistic models  account  for  the  variability  and  uncertainty  in  pavement 

condition data. These variability and uncertainty stem from: (a) measurement errors; (b) randomness 

of pavement deterioration;  (c)  inability  to model  the  true deterioration process;  (d) difficulties  in 

quantifying the effect of all significant relevant variables; and (e) potential bias associated with the 

models  built  by  using  subjective  expert  judgment  [4,5].  Probabilistic models  are  categorized  as 

follows: econometric, Markov chain, and reliability analysis models  [4,6]. Another way  to classify 

probabilistic models is the criterion for change: state‐based vs. time‐based. State‐based models, e.g., 

Markov  processes,  estimate  the  probability  that  pavement  condition  changes  from  one  state  to 

another in a given time period. Time‐based models, e.g., duration models, estimate the probability of 

the time taken by pavement to change its condition state [7]. 

Although Markov models  are  the most  commonly used probabilistic method  for pavement 

performance modeling,  the current relevant  literature  lacks a synthesis of Markovian models and 

their associated methodologies. Such a comprehensive synthesis of these models and their various 

forms can provide insights into the variations of Markov model forms and methodologies, and the 

appropriate Markov model type to use for pavement deterioration modeling under given conditions 

of  data  types  and  availability.  As  such,  section  2.3  presents  a  state‐of‐the‐art  review  for  the 

probabilistic modeling of pavement performance using Markov chains. It discusses the properties 

and assumptions of Markov chain models, the categories of Markov chain models and the methods 

of  estimating  pavement  transition  probabilities.  In  addition,  section  2.3  introduces  a  critical 

assessment  for  prior Markovian  pavement  performance models.  Based  on  the  insights  from  the 

literature, a decision tree is proposed to help future researchers and highway agencies select their 

appropriate Markov models for their pavements. Finally, this section highlights the existing gaps in 

the pertinent knowledge and suggests future research solutions and methodologies to bridge these 

gaps. This article is based on Chapter 2 of the first author’s doctoral dissertation [8] 

Markov Chain Models: Properties and Assumptions 

Markov chain models consist of three main components: condition state vector (𝑆), duty cycle or 
transition period, and transition probability matrix (TPM). Figure 1 depicts a graphical representation 

example of general Markov  transition probabilities with  condition  states  in nodes and  transition 

probabilities on arrows. 

 

Figure 1. Transition probabilities diagram. 

The  state  space  in  this  example  is  𝑋 ൌ  ሼ1,  2 , 3ሽ ,  and  the  transition  probability matrix  is  as 

follows: 

TPM ൌ  ℙ ൌ  ൥
𝑃ଵଵ 𝑃ଵଶ 𝑃ଵଷ
𝑃ଶଵ 𝑃ଶଶ 𝑃ଶଷ
𝑃ଷଵ 𝑃ଷଶ 𝑃ଷଷ

൩                        ሺ1ሻ 

In  pavement  performance models,  the  state  space  represents  different  pavement  conditions 

measured  by  composite  condition  indices  (e.g.,  pavement  condition  index  (PCI)),  individual 

distresses  (e.g.,  cracking),  or  remaining  service  lives  [6].    The  condition  state  vector  is  a  list  of 
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probability distributions  corresponding  to  the pertinent  state  space;  𝑆௜  = ሼ𝑆௜ଵ,  𝑆௜ଶ, 𝑆௜ଷ, … ሽ; where 

𝑆௜  is the condition state vector at time  𝑖, any  𝑆௜௑  ൑ 1,  and ∑ 𝑆௜௑௑ ൌ 1. Markov models estimate the 

future pavement condition  ሺ𝑆௜ାଵሻ  based on  the current pavement condition ሺ𝑆௜) according  to  the 
memoryless property of Markov process and the transition probabilities of pavement deterioration 

and improvement ሺTPM ሻ;  𝑆௜ାଵ = 𝑆௜  ൈ  TPM . 

Pavement condition bounces across  three phases: (1) stays at  its current state 𝑖,  (2)  transits  to 
lower states 𝑖 ൅ 1, 𝑖 ൅ 2, … etc., or (3) transits to upper states 𝑖 െ 1, 𝑖 െ 2, … etc., when maintenance or 

rehabilitation  treatment  is  implemented. The  condition  state vector  is  comprised of  a number of 

condition states defined by their probability distributions. The number of condition states depends 

on  data  availability    [9],  and  it  needs  to  be  chosen  prudently  to  capture  the  entire  pavement 

condition over its lifespan [6]. In pavement performance models, typically 10 condition states (from 

1 to 10) are assumed; where state 1 represents the best condition, and state 10 represents the worst 

condition. However, past research assumed different numbers of pavement condition states such as 

20 states [10] and four states [6]. The probability distribution of each condition state is calculated as 

the percentage of the number of pavement sections or the number of pavement lane‐miles that lies 

within each state to the total size of pavement network. 

The duty cycle is the duration during which pavement section transits from a condition state 

ሺ𝑖ሻ to another state  ሺ𝑗ሻ with a corresponding probability (𝑃௜௝). The duty cycle can be a continuous 
time as in continuous‐time Markov chain or a discrete time as in discrete‐time Markov chain.   Most 

prior  studies  assume  discrete  transition  times  for  pavement  performance  models  [11–14].  The 

selection of  the duty cycle  length depends on  the analysis  level, pavement deterioration  rate and 

pavement inspection intervals. Prior research [11,15–19] reported that a duty cycle of one‐year length 

for  the  entire  pavement  lifespan  is  reasonable  since most  agencies monitor  their  infrastructure 

annually. The length of the duty cycle can be of fixed value other than one‐year [14] or of varying 

values corresponding to different pavement deterioration rates. 

The common assumptions of Markov chain models for pavement condition prediction include 

pavement deterioration is a discrete process, whereas it is continuous in nature. The duty cycle is one 

year because most highway agencies inspect their pavements annually. Pavement condition states 

can only move to one state  lower every duty cycle. In other words, in the square TPM matrix, 𝑃௜,௜ 
and 𝑃௜,௜ାଵ are the only existent probabilities in each row of the matrix; where  𝑖 is the state number, 

and 𝑃௜,௜ ൅  𝑃௜,௜ାଵ ൌ 1. The effect of the maintenance and rehabilitation treatments is not considered in 

estimating pavement transition probabilities, i.e.  𝑃௜,௜ିଵ ൌ  0. The last state  ሺ𝑛ሻ is an absorbing state, 
i.e. 𝑃௡,௡ ൌ 1, because it is the worst condition state pavements can occupy.   

Types of Markov Chain Models 

Based on the assumptions of the transition probability matrix and the dependent variable (i.e. 

pavement condition), Markov chain models can be categorized as follows: homogeneous Markov, 

staged‐homogeneous  Markov,  non‐homogeneous  Markov,  semi‐Markov,  and  hidden  Markov 

models. Figure 2 shows the types of Markov chain models and the corresponding TPM estimation 

methods for pavement performance. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2024                   doi:10.20944/preprints202407.1863.v1

https://doi.org/10.20944/preprints202407.1863.v1


  4 

 

 

Figure 2. Markov Chain models and TPM estimation methods for pavement performance. 

Homogeneous Markov Models 

These models are  time‐independent, do not require  large amounts of historical data, and are 

computationally simpler for pavement condition prediction. The data needed for these models is the 

pavement condition observations of two successive transitions. The future pavement condition after 

a period of time  𝑡  is calculated by multiplying the current probability distributions (𝑆଴) by the TPM 
(ℙ) raised to the power 𝑡; 𝑆௧ ൌ 𝑆଴  ൈ  ℙ௧. 

The TPM of homogeneous Markov models is estimated using the expected‐value or percentage 

transition methods. The expected‐value method estimates 𝑃௜௝ by minimizing the difference between 

the predicted pavement condition using Markov models and predetermined control points. These 

control points  could be:  (1)  the actual pavement  condition,  (2)  the predicted pavement  condition 

using  simple  linear  regression  analysis,  or  (3)  the  actual  probability  distributions  of  pavement 

condition.  The  percentage  transition  method  estimates  𝑃௜௝  as  the  percentage  of  the  amount  of 

pavements  (number  of  pavement  sections,  total  length  of  pavement  sections,  or  total  remaining 

service lives of pavement sections) that have moved from state  𝑖  to state 𝑗  during the time  𝑡  to the 
amount of pavements that was originally in state  𝑖. 

[20]  used  the  expected‐value method  to  derive  TPMs  for  homogeneous Markov models  to 

predict pavement cracking, raveling, roughness, and rutting. To estimate the TPM, they minimized 

the difference between the models’ predictions and each control point. Ten condition states and 1‐

year duty cycle were assumed for the Markovian model structure. Different pavement performance 

patterns were assumed, and  then pavement condition data was generated for 20 years. Pavement 

condition was predicted using the minimization with respect to each type of control points and then 

compared with  the  actual  observations.  For  the  control  points  1  and  2,  the  predicted  pavement 

conditions were found to be different from the actual observations, but for the third type of control 

points,  the  predicted  and  actual  probability  distributions were  found  to  be  similar. Hence,  the 

excepted‐value method is considered of high reliability in estimating pavement TPM when the third 

type of control points  is used.  [21] derived TPMs  for homogeneous Markovian models using  the 

percentage  transition method  to predict pavement cracking and  roughness  in Arizona. Pavement 

sections were  categorized  into various groups based on  traffic volume and weather  condition  to 

account for the variation in the data of pavement sections. [21] found that the developed pavement 

performance curves using the percentage transition method match the actual performance curves. 

[19] developed homogeneous Markov models to predict pavement distress ratings and PCR in the 

state  of Ohio.  Ten  condition  states  and  1‐year  duty  cycle were  assumed  for  the Markov model 
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structure. The transition probabilities were estimated using the percentage transition method and the 

methodology introduced by [21]. Pavements were grouped based on their respective traffic volume, 

weather condition, and treatment type. The estimated TPM was found to be overestimated during 

the latter ages of pavement, and so the researchers used the statistical imputation to overcome this 

overestimation. 

[16] and  [22] estimated  the TPM  for homogeneous Markovian models  to optimize pavement 

rehabilitation treatments and predict pavement distress rating (DR) in Palestine. Ten condition states 

and 1‐year duty cycle were assumed for the Markovian models’ structure. The TPM was estimated 

as the percentage of the number of remaining pavement sections in each state at the end of the duty 

cycle to the total number of sections at  the beginning of  the duty cycle. [17] found that pavement 

deterioration rates do not change significantly during a period of 5 or 6 years, and thus [16] assumed 

an analysis period of 5 years for their model. [22] investigated the sensitivity of the TPM to pavement 

section lengths 10, 30, 50 and 100m, and he concluded that the transition probabilities become more 

unstable when  pavement  section  length  increases.  As  a  result,  he  recommended  using  shorter 

pavement sections to avoid instability in TPM values. 

[23] developed homogeneous Markov models to predict pavement present serviceability index 

(PSI). He estimated the TPM as the ratio between the actual transition time that each state takes to 

move to the next state and the duty cycle. He assumed five condition states and one and two years 

for the duty cycle. The transition time was interpolated from a deterministic pavement performance 

curve that represents the relation between pavement PSI and respective equivalent single axle loads 

(ESALs) using the AASHTOʹs design methodology [1]. The estimated transition probabilities were 

found to be consistent with the engineering intuition. Table 1 shows the key studies that used the 

expected‐value and the percentage transition methods to estimate TPMs for homogenous Markov 

models for pavements. 

Table 1. Prior homogenous Markov models and associated TPM estimation methods. 

Expected‐value  Percentage Transition 

Control Points  Key 

Studies 

Percentage Calculation  Key Studies 

Actual pavement condition  [24]  Percentage of pavement length 

that transits to different states 

[25–27], [28], [29], 

[30,31] 

Predicted pavement 

condition using linear 

regression 

[32]  Percentage of the number of 

pavement sections that transit to 

different states 

[10,22,33], [34], Abaza 

and Murad (2010), [14]   

Actual probability 

distributions of pavement 

condition 

[35], [6], 

[36] 

Percentage of the duty cycle to 

the transition time 

[37] 

Although the homogenous Markov models are computationally easy, they suffer from several 

drawbacks.  The  results  of  homogeneous Markov models  can  be  questionable  because  of  their 

stationary assumption [4]. This assumption ignores the change in pavement deterioration rate due to 

the increase in traffic loading and the degradation of pavement structural capacity [15]. Additionally, 

the homogeneous Markovian models do not account for the impact of the exogenous variables such 

as traffic loads and environmental conditions. To overcome this limitation, pavement sections can be 

segmented based on pavement attributes such as pavement age, traffic loading, and climate severity. 

However,  the pavement section segmentation decreases  the sample size which  in  turn  lowers  the 

accuracy of Markovian models. Homogeneous Markov models  could yield  an overestimation of 
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pavement  condition  over  the  entire  lifetime  of  pavement  [38]  or  its  latter  ages  [19].  This 

overestimation could lead to insufficient M&R actions during pavement life. Statistical imputation 

techniques were recommended by [19] to avoid this expected overestimation. 

The expected‐value and  transition percentage methods are  typically used  to derive  constant 

TPMs  for  the  homogeneous Markov models  of  pavement  condition  prediction.  These methods 

require  two  consecutive  transitions  of  pavement  conditions, which  is  insufficient  to  capture  the 

historical behavior of pavements. To overcome this limitation, [20] suggested calculating the average 

transition probabilities for more than one duty cycle. [32] concluded that the expected‐value method 

is more accurate than the percentage transition in estimating the TPM for modeling timber bridges’ 

elements. In the expected‐value method, the methodology of minimizing the difference between the 

estimated pavement condition using simple linear regression and using Markov models is unreliable 

since the relationship between pavement condition and pavement age is non‐linear, and pavement 

age is not the only variable influences pavement condition.   

Staged‐Homogeneous Markov Models 

[17]  introduced  this  type  of models  to  overcome  the  limitation  of data unavailability when 

developing  a  non‐homogeneous Markov  model.  Staged‐homogeneous Markov  models  involve 

dividing  the analysis period  into zones, each of 5 or 6 years at maximum. Pavement sections are 

sorted and grouped based on  their ages. Homogeneous TPMs are established for every zone. The 

future  condition  of  pavement  section  at  any  time  𝑡  is  calculated  by  multiplying  the  current 

probability  distributions  of  this  section  by  the  TPM  of  every  zone  until  the  time  𝑡 ,  i.e.  𝑆௧ ൌ
𝑆଴ ൈ  ℙଵ

௭ ൈ  ℙଶ
௭  ൈ …ൈ  ℙ௧

௧ି௡௭; where ℙଵ
௭ is the TPM of the first zone raised to power  𝑧, and  𝑧 is the 

zone size  in years; ℙ௧
௧ି௡௭ is  the TPM of  the zone  that  includes  the  time  𝑡, and  𝑛 is  the number of 

zones  until  the  zone  that  includes  𝑡 .  In  the  staged‐homogeneous Markov models  the  TPM  is 

estimated using the expected‐value or percentage transition methods.   

[17] developed a staged‐homogeneous Markov model to predict pavement PCI using data from 

the PAVER database.    They  assumed  10  condition  states with 1‐year duty  cycle  for  the Markov 

model  structure.  The  zone  size was  assumed  to  be  6  years.  The  TPM was  estimated  using  the 

expected‐value method by minimizing  the difference between the actual and predicted pavement 

condition.  The  developed  model  was  validated  by  comparing  its  predictions  with  the  actual 

observations  and with  the  predictions  from  a  previous  homogeneous Markov model  that was 

developed by Keane and Wu (1985) in collaboration with the U.S. Army Construction Engineering 

Research Laboratory (USA‐CERL). The results showed that the staged‐homogeneous Markov model 

of [17] outperforms  its homogeneous counterpart of Keane and Wu  (1985).  [15] presented staged‐

homogeneous Markov models to predict pavement deterioration rate (DR) using data spanning from 

1998 to 2015 for a major urban arterial road in Palestine. Two models were built: three‐year and five‐

year staged‐homogeneous Markov models. The TPMs were estimated using the percentage transition 

method with the transition probability equals the proportion of the number of pavement sections that 

transits from one state to another. The TPM was assumed to change by a constant C every stage/zone 

(3 or 5 years) in both models. The constant C was assumed to take on values greater than 1, and its 

value  was  exactly  determined  by minimizing  the  difference  between  the  actual  and  predicted 

transition probabilities/DRs.    Both models of [15] were found to be statistically reliable in predicting 

pavement condition. However, the three‐year staged‐homogeneous Markov model was found to be 

superior  to  the other model with respect  to  the sum square errors  (SSE). Table 2 summarizes  the 

methods of estimating  the TPM  in  the expected‐value and percentage  transition methods  for  the 

staged‐homogeneous Markov  models,  and  key  studies  that  used  these  methods  for  pavement 

performance modeling. 
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Table 2. Prior staged‐homogenous Markov models and associated TPM estimation methods. 

Expected‐value  Percentage Transition 

Control Points  Key Studies  Percentage Calculation  Key 

Studies 

Actual pavement condition  ‐  Percentage of pavement length that 

transits to different states 

‐ 

Predicted pavement condition 

using linear regression 

Butt et al. 

(1987) 

Percentage of the number of pavement 

sections that transit to different states 

Abaza 

(2016a) 

Actual probability distributions 

of pavement condition 

‐  Percentage of the duty cycle to the 

transition time 

‐ 

The staged‐homogeneous Markov models have  two advantages. First,  they are more reliable 

than the homogeneous Markov models in pavement condition prediction because they account for 

the  non‐stationary  process  of  pavement  deterioration.  Second,  they  require  relatively  limited 

amounts of data. However, since the staged‐homogeneous Markov models use the expected‐value 

and percentage transition methods to estimate TPMs, they suffer from the limitations of these TPMs’ 

estimation methods (discussed earlier). Unlike the staged‐homogeneous Markov models found in the 

literature and because pavement deterioration rate varies over time, the analysis period should be 

divided  into  unequal  zones  based  on  pavement  performance  curve  and  its  respective  rate  of 

deterioration, not into constant zones. 

Non‐Homogeneous Markov Models 

These  models  are  time‐dependent  and  consider  the  non‐stationary  property  of  pavement 

deterioration process. These models account for the uncertainty inherently attributed to explanatory 

variables  such  as  traffic  loads  and weather  conditions  [4,13,15,39]. Although  non‐homogeneous 

Markov models fit realistically the random behavior of pavement condition over time, they have not 

been  adopted  widely  in  pavement  performance  modeling  because  they  require  extensive 

computation and large amounts of data. The future condition of pavement at any time  𝑡 is calculated 
by multiplying the current probability distributions of this pavement by the TPM of every duty cycle 

until the time 𝑡, i.e., 𝑆௧ ൌ 𝑆଴  ൈ  ℙଵ  ൈ  ℙଶ  ൈ …ൈ  ℙ௧. In non‐homogeneous Markov models, the TPM is 

estimated using one of the following methods: percentage transition, simulation‐based, econometric 

models or duration models. 

[40] developed a non‐homogeneous Markov model to predict pavement DR in Palestine. Ten 

condition states and 1‐year duty cycle were assumed for the Markovian model structure. He used the 

percentage transition method to estimate the TPM of the first duty cycle. The remaining TPMs were 

calculated  by multiplying  the  TPM  of  the  first  duty  cycle  by  the  two  factors:  traffic  loads  and 

pavement structure number. The developed models yielded transition probabilities comparable with 

the actual data, which ascertains that the change in pavement deterioration rate due to traffic loading 

should  be  considered  when  modeling  pavement  performance.  Furthermore,  the  TPM  can  be 

estimated using the simulation‐based method in which transition probabilities are expressed in terms 

of  the percentiles  of pavement  condition  states.  [39]  and  [41] used  this method  to develop non‐

homogeneous Markov models to predict pavement condition. The pavement deterioration formula 

developed in the model of Ontario Pavement Analysis of Cost (2000) was employed, and the impact 

of the ensuing explanatory variables was included: material modulus and thickness of each pavement 

layer, subgrade modulus, annual average daily traffic (AADT), traffic growth rate, truck percentage, 

number of traffic lanes in each direction, and ESALs. Using Monte Carlo simulation, the transition 

probabilities of pavement condition were estimated assuming that the studied variables follow the 
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standard  normal  distribution.  The  researchers  further  checked  the  sensitivity  of  the  transition 

probabilities to the independent variables considered in their study, and they found that pavement 

transition  probabilities  are  significantly  sensitive  to  traffic  growth  rate,  subgrade  strength  and 

pavement layer thickness. 

The econometric models are recommended for TPM estimation to reflect the historical behavior 

of pavement condition based on large amounts of historical data. These models associate pavement 

deterioration  with  the  influential  pertinent  explanatory  variables.  Also,  they  yield  pavement 

condition predictions that are more accurate than that obtained from the abovementioned methods, 

percentage  transition and simulation‐based  [42–44]. The key econometric models  that are used  in 

Markovian  pavement performance models  include Probit, Logit  and Ordered‐Probit.  Probit  and 

Logit models are employed  to statistically model pavement condition states as discrete variables. 

They are grouped  into binary and multinomial models based on  the number of outcomes of  the 

model. These models assume a latent continuous dependent variable (𝑈) that takes values from െ∞ 
to ∞, and correlates with an explanatory variables vector (𝑋). The probability of selecting a specific 
choice or for the outcome to be a specific value depends on the estimated 𝑈 for all choices or for all 
expected values. Equation 2 shows the estimation of the Probit or Logit models; where  𝑃ሺ𝑖ሻ  is the 
probability of choice 𝑖,  𝐼  is  the  total number of choices,  𝑛  is  the number of observations,  𝛽  is the 
model parameter, and  𝜀  is the error term. 

𝑃௡ሺ𝑖ሻ ൌ 𝑃ሺ𝛽௜𝑋௜௡െ 𝛽ூ𝑋ூ௡  ൒ 𝜀ூ௡ െ  𝜀௜௡ሻ      ∀ 𝐼 ് 𝑖                               ሺ2ሻ   

In Probit models, the error term follows the standard normal distribution (Φ), whereas, in Logit 

models,  it  follows  the  logistic distribution. The maximum  likelihood estimation  (MLE) method  is 

used to estimate models’ parameters (𝛽ሻ by maximizing the log‐likelihood function that is illustrated 

in Equations 3 and 4 for Probit and Logit models, respectively. 

𝐿𝑜𝑔_𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ൌ 𝐿𝐿 ൌ ln𝑃ሺ𝑖ሻ

ൌ ෍𝛿௜ 𝑙𝑛 𝛷ሺ

ே

௡ୀଵ

𝛽ଵ𝑋ଵ௡െ 𝛽ଶ𝑋ଶ௡ሻ ൅ ሺ𝛿௜ െ 1ሻ 𝑙𝑛 𝛷ሺ𝛽ଵ𝑋ଵ௡െ 𝛽ଶ𝑋ଶ௡ሻ            ሺ3ሻ 

 

𝐿𝐿 ൌ  ෍෍𝛿௜௡

ூ

௜ୀଵ

൤ሺ𝛽௜𝑋௜௡ሻ െ 𝑙𝑛෍ 𝐸𝑋𝑃ሺ𝛽ூ𝑋ூ௡ሻ
∀ூ

൨

ே

௡ୀଵ

                                ሺ4ሻ 

 
where 𝛿௜   is  the value of  the  choice  𝑖.  [44] developed  a non‐homogeneous Markov model  to 

predict pavement cracking rate using Logit models to estimate the TPM. Pavement condition data 

were retrieved  from  the state of Florida during  the period  from 1986  to 2003. The pavement age, 

ESALs, crack index (CI) and a number of rehabilitation cycles were found to be statistically significant 

in  estimating  pavement  TPMs.  The  researchers  set  the  pavement  data  of  2003  aside  to  build  a 

homogeneous Markov model,  and  then  compare  its  results with  that  of  the  non‐homogeneous 

Markov model. The values of  the validation measures:  average absolute  error  (AAE),  root mean 

square error (𝑅𝑀𝑆𝐸) and coefficient of determination (𝑅ଶ), demonstrated that the superiority of the 

non‐homogeneous Markov model to the homogeneous Markov model. The study conducted by [44] 

assures that pavement condition propagates due to exogenous variables that    should be taken into 

account when developing Markovian prediction models for pavements. [45] developed an artificial 

neural networks (ANNs) model to predict pavement CI. The research team compared the results of 

the ANNs model with that of their non‐homogeneous Markov model of [44]. Based on the values of 

the same validation measures they used in 2005 with respect to both models, they found that both 

models have a similar performance for a single‐year prediction, but the non‐homogeneous Markov 

model was found to be more accurate than the ANNs for multiple‐year predictions. 
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Ordered‐Probit models  estimate  discrete  and  ordered  dependent  variables when  the  order 

matters. Equations 5 shows the estimation of Ordered‐Probit models. 

𝑃ሺ𝐶௡ ൌ 𝑘ሻ ൌ  ΦሺΨ௞ െ  𝛽𝑋௡ሻ െ  ΦሺΨ௞ିଵ െ  𝛽𝑋௡ሻ                     ሺ5ሻ 

where  𝐶௡  is the choice of  𝑛  observations,  𝑘  is the choice value (0, 1 , … ,𝐾), Φ  is the cumulative 

distribution function, and Ψ௞  is the order of the choice  𝑘. The MLE method is used to estimate the 

model’s parameters (𝛽,Ψሻ. [4] developed ordered‐Probit and sequential Logit models to estimate the 

TPM for pavement PSI prediction. The sequential Logit model is a series of independent binary Logit 

models. Unlike ordered‐Probit models, sequential Logit models account for the dependency between 

condition states. Pavement structure and environment relevant variables and  traffic  loading were 

considered in these models. Data from the AASHO Road Test was employed for models’ validation. 

These  models  were  compared  with  prior  three  models  namely,  the  non‐homogeneous  and 

homogenous Markov models of  [17,21],  respectively,  and  the duration model  [46]. The ordered‐

Probit and sequential Logit models were found to be reliable in the prediction of pavement PSI, and 

more accurate than the prior three models.   

Duration models assume that the transition probability of pavement condition is the probability 

distribution of the  time elapsed until pavement changes  its condition state.   Duration models are 

effective  in estimating  the TPMs  if  relevant data are available  for more  than 10 years. Also,  they 

account for censored data that is inherently associated with infrastructure data collection [7]. In the 

duration models, the data  is considered either left‐censored, right‐censored or interval censored if 

the duration of leaving a given state is less than a certain value, greater than a certain value or on an 

interval between two values, respectively. The estimation of pavement transition probabilities using 

duration models is presented in Equations 6 and 7 based on the study of [47]. 

𝑅ሺ𝑡,∆𝑡ሻ ൌ  𝑝ሺ𝑡 ൏ 𝑇 ൏ 𝑡 ൅ ∆𝑡 |𝑇 ൐ 𝑡ሻ                             ሺ6ሻ 

 

𝑅ሺ𝑡,∆𝑡ሻ ൌ  
𝑝ሺ𝑡 ൏ 𝑇 ൏ 𝑡 ൅ ∆𝑡 ሻ

𝑝ሺ𝑇 ൐ 𝑡ሻ
ൌ  

𝐹ሺ𝑡 ൅ ∆𝑡ሻ െ 𝐹ሺ𝑡ሻ
1 െ 𝐹ሺ𝑡ሻ

ൌ  
𝐹ሺ𝑡 ൅ ∆𝑡ሻ െ 𝐹ሺ𝑡ሻ

𝑆ሺ𝑡ሻ
          ሺ7ሻ 

where  𝑅ሺ𝑡,∆𝑡ሻ  is the transition probability from state 1 to state 0 during the time  ∆𝑡  conditional 
on  the  observed  state  1  at  time  𝑡 ,    𝐹ሺ𝑡ሻ  is  the  cumulative distribution  function  of  the duration 

random  variable  𝑇 ,  𝑆ሺ𝑡ሻ   is  the  survivor  probability. When  ∆𝑡   approaches  Zero  the  transition 
probability is called hazard rate. The hazard rate is estimated using parametric, semi‐parametric or 

nonparametric models.  In parametric models,  the hazard  rate  follows a pre‐specified distribution 

such  as  the  normal  or  exponential  distribution,  which  is  a  limitation  of  these  models  [47]. 

Semiparametric models relax the limitation of the parametric models and determine the distribution 

of the hazard rate based on the actual data. Unlike parametric models, Semiparametric models relate 

the  hazard  rate  to  its  pertinent  exogenous  variables.  Nonparametric  models  neither  assume 

distribution  function  nor  derive  a  specific  relation  between  the  hazard  rate  and  its  exogenous 

variables  [7], but  it mainly depends on  the  training dataset.  [13] developed  condition prediction 

models  for  pavement  IRI,  rutting  and  cracking.  For  the  estimation  of  pavement  TPMs,  they 

implemented the duration models to account for the irregularities in pavement inspection periods. 

Pavement  condition was  discretized  to  five  condition  states.  Four  hazard models  following  the 

exponential distribution were developed to calculate the transition probabilities of states 1, 2, 3 and 

4. The ESALs and the structural number (SN) variables were included in the hazard models. Data 

from a national highway  in Korea was used  for models’ validation. The  results  showed  that  the 

predicted transition probabilities fit the actual observations. Table 3 shows a summary of the TPM 

estimation methods for non‐homogeneous Markovian models along with the key studies that used 

these methods for pavement condition predictions. 
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Table 3. Prior non‐homogenous Markov models and associated TPM estimation methods. 

Percentage Transition  Simulation‐

based 

Econometric Models  Duration Models 

Percentage 

Calculation 

Key 

Studies 

Key Studies  Models  Key 

Studies 

Hazard Rate 

Technique 

Key Studies 

Percentage of 

pavement 

length that 

transits to 

different states 

‐  Li et al. 

(1996), 

Li (1997) 

Probit  ‐  Parametric  Mishalani 

and 

Madanat, 

(2002) 

Percentage of 

the number of 

pavement 

sections that 

transits to 

different states 

Abaza 

(2017) 

Ordered‐

Probit 

[48], Li 

(2005)      

Semi‐

parametric 

Mauch and 

Madanat 

(2001)   

Percentage of 

duty cycle to the 

transition time 

‐  Random‐

effect 

Probit 

Madanat 

et al. 

(1997)   

Non‐

parametric 

Madanat et 

al. (2005), 

Kobayashi et 

al. (2010)   
Logit  Yang et 

al. (2005, 

[45]   

Sequential 

Logit 

Li (2005)    Combined 

parametric 

and semi‐

parametric 

[49] 

[4] stated that the simulation‐based method is less expensive with respect to the computation 

process  and data  collection  than  the  transition percentage method when  they  are used  for  non‐

homogeneous  Markovian  models.  Prior  researchers  such  as  [39,41]  used  the  simulation‐based 

method  to  estimate  pavement  TPMs;  however,  they  were  limited  to  the  assumption  that  the 

explanatory variables follow the standard normal distribution. The econometric models link relevant 

explanatory variables  to a  latent  continuous variable  that  is  further used  to estimate  the discrete 

dependent variable (condition states). A methodology which simulates the latent nature of pavement 

deterioration process. Since these models consider the effect of pertinent  independent variables in 

the estimation of pavement TPMs, the segmentation of pavement sections that is recommended to 

capture  the  impact  of  exogenous  variables  in other models,  is not necessary. These  econometric 

models utilize the MLE method to estimate models’ parameters, thus they need an extensive amount 

of data. The MLE method assumes the standard normal distribution or logistic distribution and the 

homoscedasticity. If these assumptions are violated, the computation process becomes complex, and 

the accuracy of the models becomes questionable. Also, the interpretation of parameters estimated 

by the MLE is difficult compared with that by the Ordinary Least Squares (OLS). The econometric 

models assume  that condition states are  independent and  identically distributed; however,  future 
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condition  states  of  pavements  hinge  on  the  current  and  previous  historical  condition  states. 

Additionally, these models do not account for data censoring that results from the infrequent or lack 

of  pavement  condition  inspections  [47]. Madanat  et  al.  (1997) developed  a  random‐effect  Probit 

model to predict the condition of bridge decks. They found that when Probit models were associated 

with random‐effect models, they were able to capture the heterogeneity attributed to infrastructure 

data and yield more accurate predictions  than when using Probit models only. Future research  is 

encouraged  to  explore  the  association  of  random‐effect  with  the  Probit  models  developed  for 

pavement  condition  prediction  to  account  for  the  heterogeneity  that  is  attributed  to  pavement 

condition data. 

Duration models are recommended for pavement performance estimation because the initiation 

time of pavement distresses is highly variable [50], and they account for the irregularity inherently 

attributed  to pavement condition  inspections  [13]. Duration models are appropriate  in estimating 

pavement transition probabilities if frequent and continuous observations over a long time (i.e. 20 

years)  are  available  [7].  The  common  assumption  of  hazard  and  survivor models  is  that  each 

condition  state  lowers  down  by  only  one  state  during  a  duty  cycle  [51], which  disregards  the 

condition states that deteriorate by more than one state. Data collected for a short window (i.e. less 

than 10 years) is usually left‐censored [7]. As such, if the duration models are to be used to estimate 

pavement transition probabilities, data should be collected for a long time (i.e. 20 years) to reduce the 

potential data censoring. Based on the guidance from prior research, survival models are preferable 

for  pavement  condition models  because  they  relax  the  assumption  of  the  econometric models 

(condition states are  independent and  identically distributed).   Also,  to avoid data  left‐censoring, 

condition states can be assumed to transit midway between two consecutive inspection times [47]. 

[52]  used  the  Bayesian  estimation  approach  to  estimate  the  parameters  of  the  econometric  and 

duration models and found it to be more accurate than the MLE method. 

Semi‐Markov Models 

Unlike  staged‐homogeneous  Markov  models,  semi‐Markov  models  estimate  the  TPMs  of 

pavement condition by dividing pavement lifetime into uneven intervals (holding times: the times 

that  pavements  take  to  completely  leave  their  current  states)  corresponding  to  pavement 

performance curve (Figure 3). To estimate a TPM for each interval, the holding time is assumed to 

follow  a  specific probability distribution.  Semi‐Markov models  assume  that holding  times  could 

follow  any  continuous‐time  distribution,  so  they  are more  flexible  than  the  traditional Markov 

models that assume that holding times follow exponential distribution [53]. 

 

Figure 3. Pavement condition states against its age. 
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[53] developed semi‐Markov and homogeneous Markov models to predict pavement CI in the 

state of Florida. Data were obtained from the Florida Department of Transportation (FDOT) for more 

than  20  years.  Fifty  percent  of  the  data was  retained  for  validation  and  assessment  of models’ 

performance. Due to data limitation, seven condition states were created (from state 10 to state 4). 

The holding times were assumed to follow the Weibull distribution. The parameters of the Weibull 

distribution  were  estimated  by  minimizing  the  difference  between  the  estimated  and  actual 

probability distributions. Wang et al.’s methodology  [21] was used  to estimate  the homogeneous 

Markov  model.  Monte  Carlo  simulation  was  used  to  generate  the  TPMs  and  the  probability 

distributions for both models. Both models were found to be statistically significant in terms of the 

Chi‐square test statistic; however, the semi‐Markov model was found to outperform its counterpart. 

Additionally, the semi‐Markov model was found to over‐predict pavement condition during the 7–

11 years period due to data limitation during this period. 

Semi‐Markov  models  outperform  homogeneous  and  staged‐homogeneous Markov  models 

because they relax the assumption of stationary transition probabilities; however, they require more 

extensive data to estimate the distribution of the holding times. With the continuous increase in the 

collected pavement condition data, semi‐Markov models could be computationally  less expensive 

than  non‐homogeneous Markov models  [54].  It  is difficult  to  apply  semi‐Markov models  at  the 

pavement network level because one holding time may follow different distributions for different 

pavement sections [55]. 

Hidden Markov Models 

Hidden  Markov  models  (HMMs)  assume  pavements  have  two  types  of  condition  states: 

observed states and hidden states. All pavement distresses such as cracking and potholes that can be 

inspected and measured are observable, whereas pavement condition indices such as PCI and PSR 

are unobservable or hidden states. Figure 4 shows the structural and temporal representation of the 

HMMs. The transition probabilities of the hidden states (i.e., 𝐻ଵ,𝐻ଶ,𝐻ଷ) are estimated using the data 

of the observed states (i.e., 𝑂ଵ,𝑂ଶ,𝑂ଷ) and the emission probabilities. 

 

Figure 4. Hidden Markov Model diagram. 

[52] developed an HMM  to predict pavement composite condition  index  (CCI) when data  is 

incomplete.  They  assumed  that  pavement  CCI  represents  roughness  and  cracking  indicators. 

Pavement  roughness data was  assumed  to  be  complete while  cracking data was  assumed  to  be 

incomplete.  The  hidden  states  were  expressed  by  the  CCI,  whereas  the  observed  states  were 

expressed by  the  roughness and  cracking  indicators. The  transition probabilities of  the observed 

states were estimated using the multi‐stage hazard methodology of [56]. The probability distribution 
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of the hidden states was assumed to follow the exponential distribution. The probability distribution, 

transition  probabilities,  and  exponential  rate  were  estimated  using  the  MLE  method  and  the 

expectation‐maximum  algorithm.  Data  were  acquired  from  Vietnam  for  Years  2001  and  2004. 

Pavement sections were grouped  into five condition states based on the CCI. The variables traffic 

volume and pavement thickness were found to be statistically significant in estimating the transition 

probabilities  of  pavements  in  state  2, whereas  the pavement  thickness was  the  only  statistically 

significant  variable  in  estimating  the  transition  probabilities  of  pavements  in  states  3  or  4.  The 

estimated deterioration rates for pavements in states from 1 to 5 were found to be higher than the 

typical deterioration rates for typical pavements in Vietnam. To test the capability of the developed 

model  for  an  incomplete  data  scenario,  only  pavement  roughness  data  was  used  to  estimate 

pavement deterioration  rates. The  estimated deterioration  rates were  found  to be  approximately 

similar to that when the entire data was used. 

[57] extended their prior work to [52]to examine the accuracy of predicting pavement condition 

against the amount of available data. They assumed that the pavement CCI involves the roughness 

and texture depth of pavement. The transition probabilities of pavement roughness and texture depth 

were  assumed  to  follow  the  exponential distribution.  [57] used  the data of  their  2012  [52]. Four 

scenarios of incomplete data were created. The entire roughness data was used in all scenarios, but 

100%, 50%, 25% and 10% of the texture depth data was used in scenarios 1, 2, 3 and 4, respectively. 

The results showed that the total duration taken by newly constructed pavements to move to state 5 

is 14 years, which was consistent with pavement deterioration trends in Vietnam. Also, the predicted 

deterioration rates for pavements in states 1 and 2 were found to be similar across all scenarios. The 

predicted deterioration rates for pavements in states 3 and 4 for scenarios 2, 3 and 4 were found to be 

higher  than  that  for  scenario  1.  These  results  indicate  that  the  accuracy  of  pavement  condition 

prediction improves if greater amounts of data are used for the HMM. Additionally, with 50% of the 

texture depth data the model was capable to predict pavement condition with 3% deviation from the 

predictions when  the entire  texture depth data was used. These results  indicate  that  the required 

amount of data  for modeling pavement performance can be reduced  if the HMM methodology  is 

used. 

[58] presented an HMM model  to estimate pavement  cracking  rates and potholes  for heavy 

traffic urban  roadways  in  Japan  from  2007  to  2011. The  cracking  rates were modeled  using  the 

Markov model  developed  by  [59]), while  the  potholes  number was modeled  using  the  Poisson 

process.  Markov  Chain  Monte  Carlo  simulation  and  Gippʹs  sampler  algorithm  (i.e.  Bayesian 

estimation  approach)  were  used  to  estimate  the  models’  parameters.  Pavement  sections  were 

categorized into five condition states based on the cracking rates; where state 1 represents the lowest 

cracking rates and state 5 represents the highest cracking rates.    The estimated deterioration rates 

associated with pavements  in  state 1 were  found  to be high with a holding  time of 7 years. The 

probability of potholes occurrence is negligible during the first condition state but it goes up during 

the latter condition states.   

Prior  research  [52,57,58]  developed  HMMs  to  predict  pavement  condition  when  data  is 

incomplete. Lethanh et al. (2014) did not test the validity of their model with actual data, while [52,57] 

used data for only 2 years which may not be sufficient to capture the historical behavior pavements. 

Additionally,  the  estimated  transition  probabilities  were  assumed  to  follow  the  exponential 

distribution, which means that pavement deterioration rates were assumed constants. Hence, further 

research is required to investigate the results of the HMMs when more extensive pavement condition 

data is employed, and other distribution functions are assumed. 

Decision Tree 

Based on the guidance and insights gained form the literature, a decision tree was developed to 

assist pavement asset managers in the selection of appropriate Markovian methodologies and TPM 

estimation  methods.  The  criteria  for  selecting  Markovian  methodologies  and  TPM  estimation 

methods are data availability and model assumption. Figure 5 shows the developed decision tree that 

will  help  highway  agencies  and  future  researchers  choose  the Markov methodologies  that  are 
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appropriate for their data availability and desired level of accuracy and reliability.    It can be noticed 

that  if only  two consecutive  transitions of pavement condition are available,  then  the appropriate 

Markov methodology is the homogeneous one. On the other hand, if an extensive historical pavement 

condition data is available, including observations of the potentially influential variables, then the 

non‐homogeneous Markov models are recommended in order to obtain highly accurate and reliable 

pavement condition prediction models. In addition, the developed decision tree recommends TPM 

estimation methods for use in Markov models. If the historical pavement condition data are available 

but there  is no information on explanatory variables exists, then the percentage transition method 

can used with non‐homogeneous Markov models, which may lead to less reliable models because of 

the lake of consideration of the explanatory variables.   
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Figure 5. Decision tree for selection of Markov methodologies and TPM methods. 

Summary and Concluding Remarks 

The current paper presents  the state‐of‐the‐art review of probabilistic modeling of pavement 

performance  using  Markov  chains.  Markov  models  are  categorized  as  follows:  homogeneous 

Markov,  non‐homogeneous  Markov,  staged‐homogeneous  Markov,  semi‐Markov  and  hidden 
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Markov models.  Several methods  are  employed  to  estimate  the  TPMs  of  pavements  in Markov 

models.  These  TPM  estimation methods  include  the  expected‐value,  percentage  transition,  and 

simulation‐based methods, and econometric and duration models. The various types of Markovian 

models and the relevant TPM estimation methods are discussed. A decision tree has been developed 

to  help  future  researchers  and  practitioners  select  the  appropriate Markov  chain model  and  its 

optimal corresponding TPM estimation method based on multiple criteria to model the performance 

of pavement infrastructure. 

The  accuracy  and  reliability  of  pavement  condition  prediction  depends  on  the  employed 

Markov model  type,  the  TPM  estimation method,  the  correlated  explanatory  variables,  and  the 

quality and available amount of data. Markov chain models and TPM estimation techniques need 

varying  amounts  of  data.  Some  models  such  as  non‐homogenous Markov  models  need  large 

amounts of data to yield accurate predictions, but that is at the expense of data collection, storage, 

and management. On  the other hand, other models  such  as homogeneous Markov models need 

smaller amounts of data and they are computationally more economical, but that is at the expense of 

prediction accuracy. From prior research, the significant variables that affect pavement performance 

in Markov models  include  pavement  age,  thickness  and material modulus  of  pavement  layers, 

subgrade modulus, structure number, traffic load, number of rehabilitation cycles, and crack index. 

Other  independent  variables  that  can  be  studied  in  future  research  include weather  condition 

(average annual precipitation, average annual temperature, and average annual freezing index), and 

maintenance and rehabilitation effect. 

Although  the  literature  is  rich  in  the discussion  of Markov pavement performance models, 

several limitations were found. Previous studies assumed that the impact of pavement maintenance 

and rehabilitation can be captured in Markov chain models by updating the condition state vector 

every period of time when pavement condition observations are available. This assumption is valid 

only  for  short‐term predictions  and necessitates  frequent monitoring of pavement  condition. For 

long‐term  (during  rehabilitation  lifecycle)  predictions,  the  effect  of  pavement  preventive 

maintenance should be considered when estimating pavement transition probabilities. Additionally, 

prior research focused on estimating the TPM for Markov models, but exhibited gaps in estimating 

the number of condition states, the length of duty cycle, and the probability distributions. Further 

research is needed to estimate the impact of the number of condition states and the length of duty 

cycle on Markov model prediction accuracy and on the decision‐making regarding the programming 

of pavement maintenance and rehabilitation treatments. In non‐homogeneous Markov models, the 

econometric and duration models are  the most  frequently used method to estimate the TPM. The 

econometric and duration models depend mainly on the MLE method in finding the global optimal 

solution. Bayesian estimation approach is more accurate than the MLE method in determining the 

globally optimal solution for the parameters of econometric and duration models. Therefore, future 

research is needed to further investigate the accuracy of the estimated parameters in econometric and 

duration models when using the MLE versus Bayesian estimation approaches. 
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