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Abstract: Reliable models of pavement performance play a crucial role in effective decision-making
for maintaining and rehabilitating this class of infrastructure assets. Probabilistic modeling
approaches have gained popularity in pavement performance modeling because they account not
only for the stochastic nature of pavement behavior and deterioration factor variations but also for
the imperfections and inadequacy of pavement condition data in certain situations. One of these
approaches, Markov chains, has been used extensively to model the probabilistic performance of
pavements through an interesting variety of methodological tweaks in the Markov model structure.
Unfortunately, the current literature lacks a synthesis of Markov chain models and their associated
methodologies, as used in this manner. It is anticipated that a comprehensive synthesis of these
models and their various forms can provide some insight into the variations of Markov model forms
and methodologies, and the appropriate Markov model type to use for pavement deterioration and
performance modeling under given conditions of data types and availability. To address this issue,
this paper reviews Markov chain models used in the literature to model pavement deterioration and
the methodologies used to estimate the transition probabilities matrix which is the key feature of
Markov chain models. The paper presents a critical analysis of various aspects of Markov chain
models as they were applied in the literature, reveals gaps in knowledge, and offers suggestions to
address these gaps. The paper also develops a decision tree to select the appropriate Markov model
type and TPM estimation methodology to model pavement deterioration under given conditions of
data availability. This paper therefore provide guidance and decision support for researchers and
highway agencies in selecting an appropriate probabilistic technique for modeling their pavement
infrastructure performance in a robust manner.

Keywords: pavement infrastructure asset; probabilistic modeling; pavement performance; Markov
chains

Introduction

Pavement condition is evaluated with respect to its structural and functional capacities.
Pavement structural capacity refers to its load-carrying strength, while pavement functional capacity
refers to its level of service provided to roadway users. These structural and functional capacities are
represented by condition indices/indicators such as international roughness index (IRI) and present
serviceability rating (PSR). A closely related concept is pavement performance which refers to,
according to [1], the trend of pavement serviceability over a period of time, where the serviceability
indicates the ability of pavements to serve the traffic demand in the existing condition. Pavement
performance models that are essential for effective decision-making of pavement maintenance and
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rehabilitation (M&R) need reliable and accurate predictions of pavement condition. The reliability
and accuracy of condition predictions hinge on the quality and availability of pavement condition
data and the modeling methodology.

Pavement performance models can be deterministic or probabilistic. Unlike deterministic
models [2,3], the probabilistic models account for the variability and uncertainty in pavement
condition data. These variability and uncertainty stem from: (a) measurement errors; (b) randomness
of pavement deterioration; (c) inability to model the true deterioration process; (d) difficulties in
quantifying the effect of all significant relevant variables; and (e) potential bias associated with the
models built by using subjective expert judgment [4,5]. Probabilistic models are categorized as
follows: econometric, Markov chain, and reliability analysis models [4,6]. Another way to classify
probabilistic models is the criterion for change: state-based vs. time-based. State-based models, e.g.,
Markov processes, estimate the probability that pavement condition changes from one state to
another in a given time period. Time-based models, e.g., duration models, estimate the probability of
the time taken by pavement to change its condition state [7].

Although Markov models are the most commonly used probabilistic method for pavement
performance modeling, the current relevant literature lacks a synthesis of Markovian models and
their associated methodologies. Such a comprehensive synthesis of these models and their various
forms can provide insights into the variations of Markov model forms and methodologies, and the
appropriate Markov model type to use for pavement deterioration modeling under given conditions
of data types and availability. As such, section 2.3 presents a state-of-the-art review for the
probabilistic modeling of pavement performance using Markov chains. It discusses the properties
and assumptions of Markov chain models, the categories of Markov chain models and the methods
of estimating pavement transition probabilities. In addition, section 2.3 introduces a critical
assessment for prior Markovian pavement performance models. Based on the insights from the
literature, a decision tree is proposed to help future researchers and highway agencies select their
appropriate Markov models for their pavements. Finally, this section highlights the existing gaps in
the pertinent knowledge and suggests future research solutions and methodologies to bridge these
gaps. This article is based on Chapter 2 of the first author’s doctoral dissertation [8]

Markov Chain Models: Properties and Assumptions

Markov chain models consist of three main components: condition state vector (S), duty cycle or
transition period, and transition probability matrix (TPM). Figure 1 depicts a graphical representation
example of general Markov transition probabilities with condition states in nodes and transition
probabilities on arrows.

Py, Py3
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Figure 1. Transition probabilities diagram.

The state space in this example is X = {1, 2,3}, and the transition probability matrix is as

follows:
P11 P12 P13
TPM = P = |Py; P, Py3 (1)
P31 P32 P33

In pavement performance models, the state space represents different pavement conditions
measured by composite condition indices (e.g., pavement condition index (PCI)), individual
distresses (e.g., cracking), or remaining service lives [6]. The condition state vector is a list of
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probability distributions corresponding to the pertinent state space; S'={S%, S, $%,..}; where
Stis the condition state vector at time i, any S X <1, and Yy S¥ = 1. Markov models estimate the
future pavement condition (S'*!) based on the current pavement condition (§%) according to the
memoryless property of Markov process and the transition probabilities of pavement deterioration
and improvement (TPM ); Si*1=S! x TPM.

Pavement condition bounces across three phases: (1) stays at its current state i, (2) transits to
lower states i + 1,i + 2, ... etc,, or (3) transits to upper statesi — 1,i — 2, ... etc., when maintenance or
rehabilitation treatment is implemented. The condition state vector is comprised of a number of
condition states defined by their probability distributions. The number of condition states depends
on data availability [9], and it needs to be chosen prudently to capture the entire pavement
condition over its lifespan [6]. In pavement performance models, typically 10 condition states (from
1 to 10) are assumed; where state 1 represents the best condition, and state 10 represents the worst
condition. However, past research assumed different numbers of pavement condition states such as
20 states [10] and four states [6]. The probability distribution of each condition state is calculated as
the percentage of the number of pavement sections or the number of pavement lane-miles that lies
within each state to the total size of pavement network.

The duty cycle is the duration during which pavement section transits from a condition state
(i) to another state (j) with a corresponding probability (P;;). The duty cycle can be a continuous
time as in continuous-time Markov chain or a discrete time as in discrete-time Markov chain. Most
prior studies assume discrete transition times for pavement performance models [11-14]. The
selection of the duty cycle length depends on the analysis level, pavement deterioration rate and
pavement inspection intervals. Prior research [11,15-19] reported that a duty cycle of one-year length
for the entire pavement lifespan is reasonable since most agencies monitor their infrastructure
annually. The length of the duty cycle can be of fixed value other than one-year [14] or of varying
values corresponding to different pavement deterioration rates.

The common assumptions of Markov chain models for pavement condition prediction include
pavement deterioration is a discrete process, whereas it is continuous in nature. The duty cycle is one
year because most highway agencies inspect their pavements annually. Pavement condition states
can only move to one state lower every duty cycle. In other words, in the square TPM matrix, P;;
and P; ;. are the only existent probabilities in each row of the matrix; where i is the state number,
and P;; + P;;11 = 1. The effect of the maintenance and rehabilitation treatments is not considered in
estimating pavement transition probabilities, i.e. P;;_; = 0. The last state (n) is an absorbing state,
i.e. B, = 1, because it is the worst condition state pavements can occupy.

Types of Markov Chain Models

Based on the assumptions of the transition probability matrix and the dependent variable (i.e.
pavement condition), Markov chain models can be categorized as follows: homogeneous Markov,
staged-homogeneous Markov, non-homogeneous Markov, semi-Markov, and hidden Markov
models. Figure 2 shows the types of Markov chain models and the corresponding TPM estimation
methods for pavement performance.
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Markov Chain Models for Pavement Performance

: Types of
| Markov
'LChain Models
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Markov Markov Markov Markov Markov

I'TPM |
| Estimation Expected-Value Percentage Transition Simulation-based Econometric Models Duration Models :
L Methods =", I __________ 1 ____________ I ___________ I _____________ I ______ |
Control Points Percentage Calculation Technique Models Models
= Actual Conditions = Roadway Length = Monte Carlo = Probit = Parametric (Exponential
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Conditions using Sections = Random-effect = Semi-parametric (Cox
Linear Regression = Transition Time Probit Proportional Hazard Models)
= Actual Probability = Logit =Non-parametric
Distributions = Sequential Logit = Combined Parametric
and Semi-parametric

Figure 2. Markov Chain models and TPM estimation methods for pavement performance.

Homogeneous Markov Models

These models are time-independent, do not require large amounts of historical data, and are
computationally simpler for pavement condition prediction. The data needed for these models is the
pavement condition observations of two successive transitions. The future pavement condition after
a period of time t is calculated by multiplying the current probability distributions (S°) by the TPM
(IP) raised to the power t; St = S° x P*.

The TPM of homogeneous Markov models is estimated using the expected-value or percentage
transition methods. The expected-value method estimates P;; by minimizing the difference between
the predicted pavement condition using Markov models and predetermined control points. These
control points could be: (1) the actual pavement condition, (2) the predicted pavement condition
using simple linear regression analysis, or (3) the actual probability distributions of pavement
condition. The percentage transition method estimates P;; as the percentage of the amount of
pavements (number of pavement sections, total length of pavement sections, or total remaining
service lives of pavement sections) that have moved from state i to state j during the time t to the
amount of pavements that was originally in state i.

[20] used the expected-value method to derive TPMs for homogeneous Markov models to
predict pavement cracking, raveling, roughness, and rutting. To estimate the TPM, they minimized
the difference between the models’ predictions and each control point. Ten condition states and 1-
year duty cycle were assumed for the Markovian model structure. Different pavement performance
patterns were assumed, and then pavement condition data was generated for 20 years. Pavement
condition was predicted using the minimization with respect to each type of control points and then
compared with the actual observations. For the control points 1 and 2, the predicted pavement
conditions were found to be different from the actual observations, but for the third type of control
points, the predicted and actual probability distributions were found to be similar. Hence, the
excepted-value method is considered of high reliability in estimating pavement TPM when the third
type of control points is used. [21] derived TPMs for homogeneous Markovian models using the
percentage transition method to predict pavement cracking and roughness in Arizona. Pavement
sections were categorized into various groups based on traffic volume and weather condition to
account for the variation in the data of pavement sections. [21] found that the developed pavement
performance curves using the percentage transition method match the actual performance curves.
[19] developed homogeneous Markov models to predict pavement distress ratings and PCR in the
state of Ohio. Ten condition states and 1-year duty cycle were assumed for the Markov model
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structure. The transition probabilities were estimated using the percentage transition method and the
methodology introduced by [21]. Pavements were grouped based on their respective traffic volume,
weather condition, and treatment type. The estimated TPM was found to be overestimated during
the latter ages of pavement, and so the researchers used the statistical imputation to overcome this
overestimation.

[16] and [22] estimated the TPM for homogeneous Markovian models to optimize pavement
rehabilitation treatments and predict pavement distress rating (DR) in Palestine. Ten condition states
and l-year duty cycle were assumed for the Markovian models’ structure. The TPM was estimated
as the percentage of the number of remaining pavement sections in each state at the end of the duty
cycle to the total number of sections at the beginning of the duty cycle. [17] found that pavement
deterioration rates do not change significantly during a period of 5 or 6 years, and thus [16] assumed
an analysis period of 5 years for their model. [22] investigated the sensitivity of the TPM to pavement
section lengths 10, 30, 50 and 100m, and he concluded that the transition probabilities become more
unstable when pavement section length increases. As a result, he recommended using shorter
pavement sections to avoid instability in TPM values.

[23] developed homogeneous Markov models to predict pavement present serviceability index
(PSI). He estimated the TPM as the ratio between the actual transition time that each state takes to
move to the next state and the duty cycle. He assumed five condition states and one and two years
for the duty cycle. The transition time was interpolated from a deterministic pavement performance
curve that represents the relation between pavement PSI and respective equivalent single axle loads
(ESALs) using the AASHTO's design methodology [1]. The estimated transition probabilities were
found to be consistent with the engineering intuition. Table 1 shows the key studies that used the
expected-value and the percentage transition methods to estimate TPMs for homogenous Markov
models for pavements.

Table 1. Prior homogenous Markov models and associated TPM estimation methods.

Expected-value Percentage Transition

Control Points Key Percentage Calculation Key Studies
Studies
Actual pavement condition [24] Percentage of pavement length [25-27], [28], [29],
that transits to different states [30,31]

Predicted pavement [32] Percentage of the number of [10,22,33], [34], Abaza
condition using linear pavement sections that transit to and Murad (2010), [14]
regression different states
Actual probability [35], [6], Percentage of the duty cycle to [37]
distributions of pavement [36] the transition time

condition

Although the homogenous Markov models are computationally easy, they suffer from several
drawbacks. The results of homogeneous Markov models can be questionable because of their
stationary assumption [4]. This assumption ignores the change in pavement deterioration rate due to
the increase in traffic loading and the degradation of pavement structural capacity [15]. Additionally,
the homogeneous Markovian models do not account for the impact of the exogenous variables such
as traffic loads and environmental conditions. To overcome this limitation, pavement sections can be
segmented based on pavement attributes such as pavement age, traffic loading, and climate severity.
However, the pavement section segmentation decreases the sample size which in turn lowers the
accuracy of Markovian models. Homogeneous Markov models could yield an overestimation of
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pavement condition over the entire lifetime of pavement [38] or its latter ages [19]. This
overestimation could lead to insufficient M&R actions during pavement life. Statistical imputation
techniques were recommended by [19] to avoid this expected overestimation.

The expected-value and transition percentage methods are typically used to derive constant
TPMs for the homogeneous Markov models of pavement condition prediction. These methods
require two consecutive transitions of pavement conditions, which is insufficient to capture the
historical behavior of pavements. To overcome this limitation, [20] suggested calculating the average
transition probabilities for more than one duty cycle. [32] concluded that the expected-value method
is more accurate than the percentage transition in estimating the TPM for modeling timber bridges’
elements. In the expected-value method, the methodology of minimizing the difference between the
estimated pavement condition using simple linear regression and using Markov models is unreliable
since the relationship between pavement condition and pavement age is non-linear, and pavement
age is not the only variable influences pavement condition.

Staged-Homogeneous Markov Models

[17] introduced this type of models to overcome the limitation of data unavailability when
developing a non-homogeneous Markov model. Staged-homogeneous Markov models involve
dividing the analysis period into zones, each of 5 or 6 years at maximum. Pavement sections are
sorted and grouped based on their ages. Homogeneous TPMs are established for every zone. The
future condition of pavement section at any time t is calculated by multiplying the current
probability distributions of this section by the TPM of every zone until the time t, ie. S'=
S9%x P” x P,” X ..x P.'7"; where P, is the TPM of the first zone raised to power z, and z is the
zone size in years; P, is the TPM of the zone that includes the time t, and nis the number of
zones until the zone that includes t. In the staged-homogeneous Markov models the TPM is
estimated using the expected-value or percentage transition methods.

[17] developed a staged-homogeneous Markov model to predict pavement PCI using data from
the PAVER database. They assumed 10 condition states with 1-year duty cycle for the Markov
model structure. The zone size was assumed to be 6 years. The TPM was estimated using the
expected-value method by minimizing the difference between the actual and predicted pavement
condition. The developed model was validated by comparing its predictions with the actual
observations and with the predictions from a previous homogeneous Markov model that was
developed by Keane and Wu (1985) in collaboration with the U.S. Army Construction Engineering
Research Laboratory (USA-CERL). The results showed that the staged-homogeneous Markov model
of [17] outperforms its homogeneous counterpart of Keane and Wu (1985). [15] presented staged-
homogeneous Markov models to predict pavement deterioration rate (DR) using data spanning from
1998 to 2015 for a major urban arterial road in Palestine. Two models were built: three-year and five-
year staged-homogeneous Markov models. The TPMs were estimated using the percentage transition
method with the transition probability equals the proportion of the number of pavement sections that
transits from one state to another. The TPM was assumed to change by a constant C every stage/zone
(3 or 5 years) in both models. The constant C was assumed to take on values greater than 1, and its
value was exactly determined by minimizing the difference between the actual and predicted
transition probabilities/DRs. Both models of [15] were found to be statistically reliable in predicting
pavement condition. However, the three-year staged-homogeneous Markov model was found to be
superior to the other model with respect to the sum square errors (SSE). Table 2 summarizes the
methods of estimating the TPM in the expected-value and percentage transition methods for the
staged-homogeneous Markov models, and key studies that used these methods for pavement
performance modeling.


https://doi.org/10.20944/preprints202407.1863.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2024 d0i:10.20944/preprints202407.1863.v1

Table 2. Prior staged-homogenous Markov models and associated TPM estimation methods.

Expected-value Percentage Transition

Control Points Key Studies = Percentage Calculation Key
Studies

Actual pavement condition - Percentage of pavement length that =

transits to different states

Predicted pavement condition Butt et al. Percentage of the number of pavement Abaza

using linear regression (1987) sections that transit to different states (2016a)

Actual probability distributions - Percentage of the duty cycle to the =

of pavement condition transition time

The staged-homogeneous Markov models have two advantages. First, they are more reliable
than the homogeneous Markov models in pavement condition prediction because they account for
the non-stationary process of pavement deterioration. Second, they require relatively limited
amounts of data. However, since the staged-homogeneous Markov models use the expected-value
and percentage transition methods to estimate TPMs, they suffer from the limitations of these TPMs’
estimation methods (discussed earlier). Unlike the staged-homogeneous Markov models found in the
literature and because pavement deterioration rate varies over time, the analysis period should be
divided into unequal zones based on pavement performance curve and its respective rate of
deterioration, not into constant zones.

Non-Homogeneous Markov Models

These models are time-dependent and consider the non-stationary property of pavement
deterioration process. These models account for the uncertainty inherently attributed to explanatory
variables such as traffic loads and weather conditions [4,13,15,39]. Although non-homogeneous
Markov models fit realistically the random behavior of pavement condition over time, they have not
been adopted widely in pavement performance modeling because they require extensive
computation and large amounts of data. The future condition of pavement at any time ¢t is calculated
by multiplying the current probability distributions of this pavement by the TPM of every duty cycle
until the time ¢, i.e., St =5% X P; X P, X ..X P, In non-homogeneous Markov models, the TPM is
estimated using one of the following methods: percentage transition, simulation-based, econometric
models or duration models.

[40] developed a non-homogeneous Markov model to predict pavement DR in Palestine. Ten
condition states and 1-year duty cycle were assumed for the Markovian model structure. He used the
percentage transition method to estimate the TPM of the first duty cycle. The remaining TPMs were
calculated by multiplying the TPM of the first duty cycle by the two factors: traffic loads and
pavement structure number. The developed models yielded transition probabilities comparable with
the actual data, which ascertains that the change in pavement deterioration rate due to traffic loading
should be considered when modeling pavement performance. Furthermore, the TPM can be
estimated using the simulation-based method in which transition probabilities are expressed in terms
of the percentiles of pavement condition states. [39] and [41] used this method to develop non-
homogeneous Markov models to predict pavement condition. The pavement deterioration formula
developed in the model of Ontario Pavement Analysis of Cost (2000) was employed, and the impact
of the ensuing explanatory variables was included: material modulus and thickness of each pavement
layer, subgrade modulus, annual average daily traffic (AADT), traffic growth rate, truck percentage,
number of traffic lanes in each direction, and ESALs. Using Monte Carlo simulation, the transition
probabilities of pavement condition were estimated assuming that the studied variables follow the
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standard normal distribution. The researchers further checked the sensitivity of the transition
probabilities to the independent variables considered in their study, and they found that pavement
transition probabilities are significantly sensitive to traffic growth rate, subgrade strength and
pavement layer thickness.

The econometric models are recommended for TPM estimation to reflect the historical behavior
of pavement condition based on large amounts of historical data. These models associate pavement
deterioration with the influential pertinent explanatory variables. Also, they yield pavement
condition predictions that are more accurate than that obtained from the abovementioned methods,
percentage transition and simulation-based [42—44]. The key econometric models that are used in
Markovian pavement performance models include Probit, Logit and Ordered-Probit. Probit and
Logit models are employed to statistically model pavement condition states as discrete variables.
They are grouped into binary and multinomial models based on the number of outcomes of the
model. These models assume a latent continuous dependent variable (U) that takes values from —oo
to oo, and correlates with an explanatory variables vector (X). The probability of selecting a specific
choice or for the outcome to be a specific value depends on the estimated U for all choices or for all
expected values. Equation 2 shows the estimation of the Probit or Logit models; where P(i) is the
probability of choice i, I is the total number of choices, n is the number of observations, f is the
model parameter, and ¢ is the error term.

P,(D) = P(BiXin— BiXm Z&m— &n) VI#I (2)

In Probit models, the error term follows the standard normal distribution (®), whereas, in Logit
models, it follows the logistic distribution. The maximum likelihood estimation (MLE) method is
used to estimate models” parameters (8) by maximizing the log-likelihood function that is illustrated
in Equations 3 and 4 for Probit and Logit models, respectively.

Log_Likelihood = LL = In P(i)
N
= Z 6; N ®@(P1X1n— B2Xon) + (6; — 1) In@(B1X10n— B2X2n) 3)

I

Z | BXi) =10 )" EXP(BXin)| @

i=1

”MZ

where §; is the value of the choice i. [44] developed a non-homogeneous Markov model to
predict pavement cracking rate using Logit models to estimate the TPM. Pavement condition data
were retrieved from the state of Florida during the period from 1986 to 2003. The pavement age,
ESALs, crack index (CI) and a number of rehabilitation cycles were found to be statistically significant
in estimating pavement TPMs. The researchers set the pavement data of 2003 aside to build a
homogeneous Markov model, and then compare its results with that of the non-homogeneous
Markov model. The values of the validation measures: average absolute error (AAE), root mean
square error (RMSE) and coefficient of determination (R?), demonstrated that the superiority of the
non-homogeneous Markov model to the homogeneous Markov model. The study conducted by [44]
assures that pavement condition propagates due to exogenous variables that should be taken into
account when developing Markovian prediction models for pavements. [45] developed an artificial
neural networks (ANNs) model to predict pavement CI. The research team compared the results of
the ANNs model with that of their non-homogeneous Markov model of [44]. Based on the values of
the same validation measures they used in 2005 with respect to both models, they found that both
models have a similar performance for a single-year prediction, but the non-homogeneous Markov
model was found to be more accurate than the ANNSs for multiple-year predictions.
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Ordered-Probit models estimate discrete and ordered dependent variables when the order
matters. Equations 5 shows the estimation of Ordered-Probit models.

P(Cp =k) = (W — BXp) = P(Wi—1 — BXn) (5)

where C, isthe choice of n observations, k isthe choice value (0,1, ...,K), @ isthe cumulative
distribution function, and ¥, is the order of the choice k. The MLE method is used to estimate the
model’s parameters (8, V). [4] developed ordered-Probit and sequential Logit models to estimate the
TPM for pavement PSI prediction. The sequential Logit model is a series of independent binary Logit
models. Unlike ordered-Probit models, sequential Logit models account for the dependency between
condition states. Pavement structure and environment relevant variables and traffic loading were
considered in these models. Data from the AASHO Road Test was employed for models’ validation.
These models were compared with prior three models namely, the non-homogeneous and
homogenous Markov models of [17,21], respectively, and the duration model [46]. The ordered-
Probit and sequential Logit models were found to be reliable in the prediction of pavement PSI, and
more accurate than the prior three models.

Duration models assume that the transition probability of pavement condition is the probability
distribution of the time elapsed until pavement changes its condition state. Duration models are
effective in estimating the TPMs if relevant data are available for more than 10 years. Also, they
account for censored data that is inherently associated with infrastructure data collection [7]. In the
duration models, the data is considered either left-censored, right-censored or interval censored if
the duration of leaving a given state is less than a certain value, greater than a certain value or on an
interval between two values, respectively. The estimation of pavement transition probabilities using
duration models is presented in Equations 6 and 7 based on the study of [47].

R(t,At) = p(t <T <t+At|T >t) (6)

p(t<T<t+At)_F(t+At)—F(t)_F(t+At)—F(t) 7
p(T'>t) 1-F@®) S(0) 2
where R(t,At) is the transition probability from state 1 to state 0 during the time At conditional

R(t,At) =

on the observed state 1 at time t, F(t) is the cumulative distribution function of the duration
random variable T, S(t) is the survivor probability. When At approaches Zero the transition
probability is called hazard rate. The hazard rate is estimated using parametric, semi-parametric or
nonparametric models. In parametric models, the hazard rate follows a pre-specified distribution
such as the normal or exponential distribution, which is a limitation of these models [47].
Semiparametric models relax the limitation of the parametric models and determine the distribution
of the hazard rate based on the actual data. Unlike parametric models, Semiparametric models relate
the hazard rate to its pertinent exogenous variables. Nonparametric models neither assume
distribution function nor derive a specific relation between the hazard rate and its exogenous
variables [7], but it mainly depends on the training dataset. [13] developed condition prediction
models for pavement IRI, rutting and cracking. For the estimation of pavement TPMs, they
implemented the duration models to account for the irregularities in pavement inspection periods.
Pavement condition was discretized to five condition states. Four hazard models following the
exponential distribution were developed to calculate the transition probabilities of states 1, 2, 3 and
4. The ESALs and the structural number (SN) variables were included in the hazard models. Data
from a national highway in Korea was used for models’ validation. The results showed that the
predicted transition probabilities fit the actual observations. Table 3 shows a summary of the TPM
estimation methods for non-homogeneous Markovian models along with the key studies that used
these methods for pavement condition predictions.
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Table 3. Prior non-homogenous Markov models and associated TPM estimation methods.

Percentage Transition Simulation- Econometric Models Duration Models
based

Percentage Key Key Studies =~ Models Key Hazard Rate Key Studies
Calculation Studies Studies Technique
Percentage of - Lietal. Probit - Parametric Mishalani
pavement (1996), and
length that Li (1997) Madanat,
transits to (2002)

different states

Percentage of Abaza Ordered- [48], Li Semi- Mauch and
the number of (2017) Probit (2005) parametric Madanat
pavement (2001)

sections that
transits to

different states

Percentage of - Random- Madanat Non- Madanat et
duty cycle to the effect etal. parametric al. (2005),
transition time Probit (1997) Kobayashi et
Logit Yang et al. (2010)
al. (2005,
[45]
Sequential  Li (2005) Combined [49]
Logit parametric
and semi-
parametric

[4] stated that the simulation-based method is less expensive with respect to the computation
process and data collection than the transition percentage method when they are used for non-
homogeneous Markovian models. Prior researchers such as [39,41] used the simulation-based
method to estimate pavement TPMs; however, they were limited to the assumption that the
explanatory variables follow the standard normal distribution. The econometric models link relevant
explanatory variables to a latent continuous variable that is further used to estimate the discrete
dependent variable (condition states). A methodology which simulates the latent nature of pavement
deterioration process. Since these models consider the effect of pertinent independent variables in
the estimation of pavement TPMs, the segmentation of pavement sections that is recommended to
capture the impact of exogenous variables in other models, is not necessary. These econometric
models utilize the MLE method to estimate models” parameters, thus they need an extensive amount
of data. The MLE method assumes the standard normal distribution or logistic distribution and the
homoscedasticity. If these assumptions are violated, the computation process becomes complex, and
the accuracy of the models becomes questionable. Also, the interpretation of parameters estimated
by the MLE is difficult compared with that by the Ordinary Least Squares (OLS). The econometric
models assume that condition states are independent and identically distributed; however, future
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condition states of pavements hinge on the current and previous historical condition states.
Additionally, these models do not account for data censoring that results from the infrequent or lack
of pavement condition inspections [47]. Madanat et al. (1997) developed a random-effect Probit
model to predict the condition of bridge decks. They found that when Probit models were associated
with random-effect models, they were able to capture the heterogeneity attributed to infrastructure
data and yield more accurate predictions than when using Probit models only. Future research is
encouraged to explore the association of random-effect with the Probit models developed for
pavement condition prediction to account for the heterogeneity that is attributed to pavement
condition data.

Duration models are recommended for pavement performance estimation because the initiation
time of pavement distresses is highly variable [50], and they account for the irregularity inherently
attributed to pavement condition inspections [13]. Duration models are appropriate in estimating
pavement transition probabilities if frequent and continuous observations over a long time (i.e. 20
years) are available [7]. The common assumption of hazard and survivor models is that each
condition state lowers down by only one state during a duty cycle [51], which disregards the
condition states that deteriorate by more than one state. Data collected for a short window (i.e. less
than 10 years) is usually left-censored [7]. As such, if the duration models are to be used to estimate
pavement transition probabilities, data should be collected for a long time (i.e. 20 years) to reduce the
potential data censoring. Based on the guidance from prior research, survival models are preferable
for pavement condition models because they relax the assumption of the econometric models
(condition states are independent and identically distributed). Also, to avoid data left-censoring,
condition states can be assumed to transit midway between two consecutive inspection times [47].
[52] used the Bayesian estimation approach to estimate the parameters of the econometric and
duration models and found it to be more accurate than the MLE method.

Semi-Markov Models

Unlike staged-homogeneous Markov models, semi-Markov models estimate the TPMs of
pavement condition by dividing pavement lifetime into uneven intervals (holding times: the times
that pavements take to completely leave their current states) corresponding to pavement
performance curve (Figure 3). To estimate a TPM for each interval, the holding time is assumed to
follow a specific probability distribution. Semi-Markov models assume that holding times could
follow any continuous-time distribution, so they are more flexible than the traditional Markov
models that assume that holding times follow exponential distribution [53].
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Figure 3. Pavement condition states against its age.
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[53] developed semi-Markov and homogeneous Markov models to predict pavement CI in the
state of Florida. Data were obtained from the Florida Department of Transportation (FDOT) for more
than 20 years. Fifty percent of the data was retained for validation and assessment of models’
performance. Due to data limitation, seven condition states were created (from state 10 to state 4).
The holding times were assumed to follow the Weibull distribution. The parameters of the Weibull
distribution were estimated by minimizing the difference between the estimated and actual
probability distributions. Wang et al.’s methodology [21] was used to estimate the homogeneous
Markov model. Monte Carlo simulation was used to generate the TPMs and the probability
distributions for both models. Both models were found to be statistically significant in terms of the
Chi-square test statistic; however, the semi-Markov model was found to outperform its counterpart.
Additionally, the semi-Markov model was found to over-predict pavement condition during the 7-
11 years period due to data limitation during this period.

Semi-Markov models outperform homogeneous and staged-homogeneous Markov models
because they relax the assumption of stationary transition probabilities; however, they require more
extensive data to estimate the distribution of the holding times. With the continuous increase in the
collected pavement condition data, semi-Markov models could be computationally less expensive
than non-homogeneous Markov models [54]. It is difficult to apply semi-Markov models at the
pavement network level because one holding time may follow different distributions for different
pavement sections [55].

Hidden Markov Models

Hidden Markov models (HMMs) assume pavements have two types of condition states:
observed states and hidden states. All pavement distresses such as cracking and potholes that can be
inspected and measured are observable, whereas pavement condition indices such as PCI and PSR
are unobservable or hidden states. Figure 4 shows the structural and temporal representation of the
HMMs. The transition probabilities of the hidden states (i.e., H,, H, H3) are estimated using the data
of the observed states (i.e., 01, 0,, 03) and the emission probabilities.

Transition Probabilities
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Figure 4. Hidden Markov Model diagram.

[52] developed an HMM to predict pavement composite condition index (CCI) when data is
incomplete. They assumed that pavement CCI represents roughness and cracking indicators.
Pavement roughness data was assumed to be complete while cracking data was assumed to be
incomplete. The hidden states were expressed by the CCI, whereas the observed states were
expressed by the roughness and cracking indicators. The transition probabilities of the observed
states were estimated using the multi-stage hazard methodology of [56]. The probability distribution
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of the hidden states was assumed to follow the exponential distribution. The probability distribution,
transition probabilities, and exponential rate were estimated using the MLE method and the
expectation-maximum algorithm. Data were acquired from Vietnam for Years 2001 and 2004.
Pavement sections were grouped into five condition states based on the CCI. The variables traffic
volume and pavement thickness were found to be statistically significant in estimating the transition
probabilities of pavements in state 2, whereas the pavement thickness was the only statistically
significant variable in estimating the transition probabilities of pavements in states 3 or 4. The
estimated deterioration rates for pavements in states from 1 to 5 were found to be higher than the
typical deterioration rates for typical pavements in Vietnam. To test the capability of the developed
model for an incomplete data scenario, only pavement roughness data was used to estimate
pavement deterioration rates. The estimated deterioration rates were found to be approximately
similar to that when the entire data was used.

[57] extended their prior work to [52]to examine the accuracy of predicting pavement condition
against the amount of available data. They assumed that the pavement CCI involves the roughness
and texture depth of pavement. The transition probabilities of pavement roughness and texture depth
were assumed to follow the exponential distribution. [57] used the data of their 2012 [52]. Four
scenarios of incomplete data were created. The entire roughness data was used in all scenarios, but
100%, 50%, 25% and 10% of the texture depth data was used in scenarios 1, 2, 3 and 4, respectively.
The results showed that the total duration taken by newly constructed pavements to move to state 5
is 14 years, which was consistent with pavement deterioration trends in Vietnam. Also, the predicted
deterioration rates for pavements in states 1 and 2 were found to be similar across all scenarios. The
predicted deterioration rates for pavements in states 3 and 4 for scenarios 2, 3 and 4 were found to be
higher than that for scenario 1. These results indicate that the accuracy of pavement condition
prediction improves if greater amounts of data are used for the HMM. Additionally, with 50% of the
texture depth data the model was capable to predict pavement condition with 3% deviation from the
predictions when the entire texture depth data was used. These results indicate that the required
amount of data for modeling pavement performance can be reduced if the HMM methodology is
used.

[58] presented an HMM model to estimate pavement cracking rates and potholes for heavy
traffic urban roadways in Japan from 2007 to 2011. The cracking rates were modeled using the
Markov model developed by [59]), while the potholes number was modeled using the Poisson
process. Markov Chain Monte Carlo simulation and Gipp's sampler algorithm (i.e. Bayesian
estimation approach) were used to estimate the models’ parameters. Pavement sections were
categorized into five condition states based on the cracking rates; where state 1 represents the lowest
cracking rates and state 5 represents the highest cracking rates. The estimated deterioration rates
associated with pavements in state 1 were found to be high with a holding time of 7 years. The
probability of potholes occurrence is negligible during the first condition state but it goes up during
the latter condition states.

Prior research [52,57,58] developed HMMs to predict pavement condition when data is
incomplete. Lethanh et al. (2014) did not test the validity of their model with actual data, while [52,57]
used data for only 2 years which may not be sufficient to capture the historical behavior pavements.
Additionally, the estimated transition probabilities were assumed to follow the exponential
distribution, which means that pavement deterioration rates were assumed constants. Hence, further
research is required to investigate the results of the HMMSs when more extensive pavement condition
data is employed, and other distribution functions are assumed.

Decision Tree

Based on the guidance and insights gained form the literature, a decision tree was developed to
assist pavement asset managers in the selection of appropriate Markovian methodologies and TPM
estimation methods. The criteria for selecting Markovian methodologies and TPM estimation
methods are data availability and model assumption. Figure 5 shows the developed decision tree that
will help highway agencies and future researchers choose the Markov methodologies that are
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appropriate for their data availability and desired level of accuracy and reliability. It can be noticed
that if only two consecutive transitions of pavement condition are available, then the appropriate
Markov methodology is the homogeneous one. On the other hand, if an extensive historical pavement
condition data is available, including observations of the potentially influential variables, then the
non-homogeneous Markov models are recommended in order to obtain highly accurate and reliable
pavement condition prediction models. In addition, the developed decision tree recommends TPM
estimation methods for use in Markov models. If the historical pavement condition data are available
but there is no information on explanatory variables exists, then the percentage transition method
can used with non-homogeneous Markov models, which may lead to less reliable models because of
the lake of consideration of the explanatory variables.
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Figure 5. Decision tree for selection of Markov methodologies and TPM methods.

Summary and Concluding Remarks

The current paper presents the state-of-the-art review of probabilistic modeling of pavement

performance using Markov chains. Markov models are categorized as follows: homogeneous

Markov, non-homogeneous Markov, staged-homogeneous Markov, semi-Markov and hidden
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Markov models. Several methods are employed to estimate the TPMs of pavements in Markov
models. These TPM estimation methods include the expected-value, percentage transition, and
simulation-based methods, and econometric and duration models. The various types of Markovian
models and the relevant TPM estimation methods are discussed. A decision tree has been developed
to help future researchers and practitioners select the appropriate Markov chain model and its
optimal corresponding TPM estimation method based on multiple criteria to model the performance
of pavement infrastructure.

The accuracy and reliability of pavement condition prediction depends on the employed
Markov model type, the TPM estimation method, the correlated explanatory variables, and the
quality and available amount of data. Markov chain models and TPM estimation techniques need
varying amounts of data. Some models such as non-homogenous Markov models need large
amounts of data to yield accurate predictions, but that is at the expense of data collection, storage,
and management. On the other hand, other models such as homogeneous Markov models need
smaller amounts of data and they are computationally more economical, but that is at the expense of
prediction accuracy. From prior research, the significant variables that affect pavement performance
in Markov models include pavement age, thickness and material modulus of pavement layers,
subgrade modulus, structure number, traffic load, number of rehabilitation cycles, and crack index.
Other independent variables that can be studied in future research include weather condition
(average annual precipitation, average annual temperature, and average annual freezing index), and
maintenance and rehabilitation effect.

Although the literature is rich in the discussion of Markov pavement performance models,
several limitations were found. Previous studies assumed that the impact of pavement maintenance
and rehabilitation can be captured in Markov chain models by updating the condition state vector
every period of time when pavement condition observations are available. This assumption is valid
only for short-term predictions and necessitates frequent monitoring of pavement condition. For
long-term (during rehabilitation lifecycle) predictions, the effect of pavement preventive
maintenance should be considered when estimating pavement transition probabilities. Additionally,
prior research focused on estimating the TPM for Markov models, but exhibited gaps in estimating
the number of condition states, the length of duty cycle, and the probability distributions. Further
research is needed to estimate the impact of the number of condition states and the length of duty
cycle on Markov model prediction accuracy and on the decision-making regarding the programming
of pavement maintenance and rehabilitation treatments. In non-homogeneous Markov models, the
econometric and duration models are the most frequently used method to estimate the TPM. The
econometric and duration models depend mainly on the MLE method in finding the global optimal
solution. Bayesian estimation approach is more accurate than the MLE method in determining the
globally optimal solution for the parameters of econometric and duration models. Therefore, future
research is needed to further investigate the accuracy of the estimated parameters in econometric and
duration models when using the MLE versus Bayesian estimation approaches.
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