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Abstract: Financial market data analysts are increasingly turning towards machine learning 

techniques for data analysis and making decisions. This paper explores how knowledge graphs, 

essentially a network of real entities and their relationships, can be used to improve collaborative 

financial market data analysis and make it more efficient and user friendly. This paper reviews the 

current state of financial market data analysis, the challenges in deploying machine learning models 

in industrial environments, and the concepts such as ML-Ops and knowledge graphs. A software 

architecture comprising various roles, layers and services such as Data Engineers, Data Analysts, 

public users, APIs, workflows, analytics libraries, UX layer, Business Layer, etc. is introduced and 

described in detail. Then, it discusses how knowledge graphs can be used to enhance collaborative 

financial market data analysis. Finally, a case study is presented to demonstrate the usage of the 

whole system, within the context of financial market data analytics of equities. 
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1. Introduction 

Developing ML applications is becoming more popular and important, and with so many 

different types of ML algorithms available [11], building tools that can help choose appropriate 

machine learning techniques, help apply models to different datasets, and integrate it with 

operational systems is extremely significant. Many users or analysts working for the same 

organisation often have similar goals [8]. Hence, allowing them to contribute collaboratively at 

different stages of ML model lifecycle (i.e discovery, development, deployment, maintenance) 

becomes essential. 

For example, analysts find it difficult to apply machine learning techniques to financial market 

data [8]. Most literature is only focused on building models and not implementation and integration 

with operational systems [10]. Hence, the provision of software tools for practitioners and researchers 

to implement, operate, and maintain models in a collaborative way is required. 

To implement and maintain models, the users require methods and tools that can be customised 

to tailor to their needs specifically, for example, in financial markets as they are quite diverse when 

accurate analysis is required [9]. However, they lack expert computing skills [3]. Hence, software 

tools that provide easy customisation with minimal coding are required.  

This paper identifies that existing tools and approaches have limitations, then contributes by 

proposing an architecture to overcome these limitations and shows a working example in the form 

of financial market data analysis. 

2. Background 

2.1. Related Work 

The ML development cycle by an analyst within an organisation involves various steps. Firstly, 

they gather raw data and clean or prepare it. Then, they analyse the data by exploring it and choosing 

or creating relevant features, followed by training and testing the model. The final step is to deploy 
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this ML application within the enterprise system. ML development is typically done by multiple 

people in an organisation, such as data analysts and data engineers. 

There is a lot of interest in industrial ML applications, and to implement ML models. Obtaining 

data and preprocessing it appropriately for different ML models is a big task in itself. Many data 

scientists rely on features provided by vendors however in many cases they wish to create their own 

features [6]. Even then, there is a plethora of options to choose from, and each option requires a 

comprehensive understanding of how that ML algorithm works [8]. Operationalising models can also 

be challenging as fitting generic models to a specific business problem requires high proficiency [8]. 

Along with this, collaboration presents an additional challenge as it requires streamlining and 

synchronization across the team. 

There are plenty of tools or libraries available for performing analytics using machine learning. 

Broadly, they can be classified into tools supporting programming languages, or part of a platform 

that offers Artificial Intelligence as a Service (AIaaS) [1]. There is also an increasing use of API/services 

to capture different stages of the analytics pipeline such as data acquisition, preprocessing, analysis 

and interpretation which necessitates a tool to integrate them properly.  

On one hand, tools with programming languages require a high degree of understanding of 

those languages. AIaaS platforms, on the other hand, are focused more on how AI can be leveraged 

to accomplish your task. It is a type of AI outsourcing which seeks to enable users to experiment with 

AI without investing too much money or effort. There are quite a few AIaaS providers currently 

active in the market [1]. These tools are comprehensive as AI needs a detailed iterative approach to 

deal with quality data such as that of financial markets [2]. 

Due to a wide range of development tools and the increasing availability of services that can be 

used off-the shelf, this paper focuses on some innovative methods that allow teams to collaboratively 

assemble the entire solution from reading the data to presenting it. 

2.2. ML Application Development Methods 

Developing ML applications has become a collaborative effort as it is an appealing paradigm to 

build high-quality ML models [12]. Four types of methods that enable collaborative ML application 

development have been identified:  

1. Community model sharing (e.g., OpenML): online platforms about sharing machine learning 

algorithms, models, experiments, and so on. It is meant to encourage open source development 

where people can freely collaborate and quickly build upon new advances in the field of machine 

learning [5]. 

2. Using a low code programming platform: an approach that requires some basic programming 

knowledge, in order to accomplish the required software development task. Instead of using 

complex coding tools, visual interfaces, combined with basic logic, can be used to perform any 

task, even those requiring multiple people to collaborate [3]. 

3. Composition and workflow platforms: enable the enactment of multiple services (typically 

developed by multiple people) to achieve a complex analytics goal, such as in MLFlow [15]. 

4. MLOps: a practice that unifies ML application development with ML system operations. It is 

about streamlining the process of deploying, maintaining and monitoring machine learning 

models efficiently with high reliability [4]. 

To make a useful comparison, ML analytics software development methods can be evaluated 

against the following features: 

1. Maintaining domain knowledge- When analysts perform any task, they rely on shared 

understanding of domain knowledge, such as, in financial market data analysis within an 

organisation, they need to define and operate complex workflows that involve the entire 

analytics cycle where it is possible for multiple ML techniques to operate over a large number of 

measures to be included in one workflow [6]. 

2. ML pipeline composition- Analysts typically require customisable and collaborative solutions 

without the need for expert coding skills to define and maintain workflows. Many complex 

analysis problems require group effort but the majority of tools assume one analyst [7]. 
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3. Quality control and testing- Quality control and software testing are essential components of 

any project to ensure successful deployment, and with many separate components such as in 

this case, it becomes critical to maintain quality and testing requirements collaboratively. 

Table 1 below summarises how existing techniques address all required features. 

Table 1. Comparison of existing techniques. 

 

While OpenML allows to maintain domain knowledge collaboratively, it lacks collaborative 

composition and quality control. Low code platforms and workflows allow collaborative 

composition but lack collaborative domain knowledge and quality control. MLOps performs the best 

out of the four methods by allowing collaborative domain knowledge maintenance and quality 

control but still lacks collaborative composition. 

Hence, the purpose of this paper is to investigate a method that allows high customization, good 

user experience, and that can be used collaboratively. Basically, a solution fulfilling all three 

requirements mentioned in Table 1 is required. 

3. Proposed Solution 

3.1. Knowledge Graph 

The proposed solution is based on using a knowledge graph, which makes collaboratively 

maintaining domain knowledge possible [13]. In practice, different roles such as data engineers, data 

scientists, software engineers, DevOps engineers, business analysts and researchers have different 

parts of knowledge who have to collaborate, and there are many services that perform different 

functions.  

For example, consider a service that generates trading signals based on the stock price data. But, 

this price could be the daily open price, or it could also be the daily closing price. A knowledge graph 

would keep track of this information, making the whole service more convenient and not requiring 

to keep changing it based on which price we want to use. Also, a knowledge graph would be able to 

automatically suggest the most appropriate generating trading signal service if we present it with the 

price data, thus increasing usability and convenience. Hence, a knowledge graph shows how 

different data concepts relate to each other thus helping to perform composition, and it also identifies 

relevant services.  

Competency questions are a set of queries that the artifact must be able to answer once it is built 

and implemented according to Design Science Research methodology [16,17]. They define the key 

requirements, problems, or use cases that the artifact should address. They help ensure the artifact 

meets the needs of its intended users and serves its purpose effectively. They act as a benchmark 

against which the quality and utility of the final artifact can be evaluated [16,17]. An example of this 

is shown below in Table 2 with the context being financial market data analysis. 
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Table 2. Competency Questions and Answers. 

 
In normal programming, every analytic module is closely linked with data, or variables, whose 

information can be extracted from the knowledge graph. This is critical as almost all the measures 

are interdependent. For example, in financial market data analytics, trade count will have an effect 

on trading volume. It is important to figure out these dependencies, which can make the task more 

complicated. The amount of data is large, and there are plenty of ways or tools to interpret it. 

Choosing the correct combination and cleaning the data, such as removing outliers, is of paramount 

importance for accurate, reliable and precise prediction [14]. An illustration of such 

interdependencies is shown below in Figure 1. 

 

Figure 1. Interdependencies of Financial Measures. 

Here, the mean and the standard deviation are calculated from the price, which are then used to 

determine the volatility. Volatility can affect the behaviour of market participants, thus influencing 

the price. In summary, a knowledge graph would answer various questions related to these 

measures. Figure 2 below shows an example of how would such a knowledge graph look like within 

the context of financial market data analysis. This knowledge graph is based on the Research Variable 

Ontology (RVO) [18]. 
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Figure 2. Knowledge Graph. 

3.2. Architecture 

As per the identified gap, a method to fully allow collaboration of ML analytics is required. 

Figure 3 shows the software architecture of the proposed solution. 
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Figure 3. Software Architecture. 

The architecture is organised in 4 layers. Under the Data Layer, we have raw data and the 

corresponding knowledge graph to ensure the ability to collaboratively maintain domain knowledge. 

Under the Services Layer, we have analytics along with knowledge acquisition and workflows to 

ensure collaborative quality control. On top of this, the business layer has engines which are 

connected to their respective GUIs at UX layer, to cater for collaborative composition. The knowledge 

graph takes input from the workflow creation engine and figures out what sort of data is required 

and then sends it to the workflow execution engine. This engine then feeds into the services layer 

which processes and feeds the information in the knowledge acquisition engine.  

The three actors- data analyst, user, and data engineer are responsible for the defining, 

executing, and acquiring processes respectively. Data analysts are responsible for developing and 

fine-tuning ML models which includes collecting, preprocessing, analysing, training and testing 

models. Data engineers focus on building and maintaining data infrastructure that supports ML 

development and deployment which includes designing data pipelines, managing data storage and 

processing, and ensuring data quality and accessibility. Users are customers for which the solution is 

designed. Their feedback and usage enables evaluation of model performance and identification of 

improvements areas. 

3.3. Development Processes 

Performing development work collaboratively involves a few steps. Firstly, a workflow is 

agreed upon which includes the different component services and files that form the whole service. 

It also includes the order in which they will be executed. Then, these component services are allocated 

to different members of the development team. Once all of them are finished, they are executed as 

per the workflow, and the whole service is now functioning. 

4. Demonstration and Evaluation 

The example used here is a case study for conducting financial market data analysis. Basically, 

it is a workflow for intraday data analysis, shown below in Figure 4. It includes the required 

information, such as the component services, order, and files. Let’s assume that multiple people are 
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collaborating to build this service. They can then collaborate by building smaller component services 

shown in blue in Figure 4, which are then integrated and executed into the overall service as shown. 

 

Figure 4. Workflow for intraday data analysis. 

Here, we have the raw data in the form of a CSV file, from which a time series is built. This can 

be used to generate measures. Then, the results can be visualised or fed into models for generating 

trading signals. Once the signals are generated, orders can be placed for backtesting. A self-

explanatory example concerning “timeseries” and “visualise” components is shown below in Figures 

5 to 8. The “build trades and quotes timeseries” component is a python file that takes input from the 

CSV and creates the JSON file containing basic measures. The “visualise” component is a Jupyter 

Notebook file that takes in the JSON file and produces a HTML file containing the required 

visualisations. 

 

Figure 5. Raw intraday tick data (CSV file). 

 

Figure 6. JSON file with time series and intraday measures information from data in Figure 5. 
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Figure 7. Front-end (GUI) for modifying the JSON file of Figure 6 ad hoc. 

 

Figure 8. Visualisation of the generated time-series and intraday measures. 

5. Conclusion 

This paper has discussed how knowledge graphs can enable collaboration in the field of financial 

market data analysis. This is done by creating a software architecture that integrates workflows and 

knowledge graphs. This software architecture is described comprehensively and a case study 

demonstrating the usage within the context of equity markets has been shown at the end. This leads 

to an enhanced experience of collaborative financial market data analysis. 
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