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Abstract: Financial market data analysts are increasingly turning towards machine learning
techniques for data analysis and making decisions. This paper explores how knowledge graphs,
essentially a network of real entities and their relationships, can be used to improve collaborative
financial market data analysis and make it more efficient and user friendly. This paper reviews the
current state of financial market data analysis, the challenges in deploying machine learning models
in industrial environments, and the concepts such as ML-Ops and knowledge graphs. A software
architecture comprising various roles, layers and services such as Data Engineers, Data Analysts,
public users, APIs, workflows, analytics libraries, UX layer, Business Layer, etc. is introduced and
described in detail. Then, it discusses how knowledge graphs can be used to enhance collaborative
financial market data analysis. Finally, a case study is presented to demonstrate the usage of the
whole system, within the context of financial market data analytics of equities.
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1. Introduction

Developing ML applications is becoming more popular and important, and with so many
different types of ML algorithms available [11], building tools that can help choose appropriate
machine learning techniques, help apply models to different datasets, and integrate it with
operational systems is extremely significant. Many users or analysts working for the same
organisation often have similar goals [8]. Hence, allowing them to contribute collaboratively at
different stages of ML model lifecycle (i.e discovery, development, deployment, maintenance)
becomes essential.

For example, analysts find it difficult to apply machine learning techniques to financial market
data [8]. Most literature is only focused on building models and not implementation and integration
with operational systems [10]. Hence, the provision of software tools for practitioners and researchers
to implement, operate, and maintain models in a collaborative way is required.

To implement and maintain models, the users require methods and tools that can be customised
to tailor to their needs specifically, for example, in financial markets as they are quite diverse when
accurate analysis is required [9]. However, they lack expert computing skills [3]. Hence, software
tools that provide easy customisation with minimal coding are required.

This paper identifies that existing tools and approaches have limitations, then contributes by
proposing an architecture to overcome these limitations and shows a working example in the form
of financial market data analysis.

2. Background

2.1. Related Work

The ML development cycle by an analyst within an organisation involves various steps. Firstly,
they gather raw data and clean or prepare it. Then, they analyse the data by exploring it and choosing
or creating relevant features, followed by training and testing the model. The final step is to deploy
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this ML application within the enterprise system. ML development is typically done by multiple
people in an organisation, such as data analysts and data engineers.

There is a lot of interest in industrial ML applications, and to implement ML models. Obtaining
data and preprocessing it appropriately for different ML models is a big task in itself. Many data
scientists rely on features provided by vendors however in many cases they wish to create their own
features [6]. Even then, there is a plethora of options to choose from, and each option requires a
comprehensive understanding of how that ML algorithm works [8]. Operationalising models can also
be challenging as fitting generic models to a specific business problem requires high proficiency [8].
Along with this, collaboration presents an additional challenge as it requires streamlining and
synchronization across the team.

There are plenty of tools or libraries available for performing analytics using machine learning.
Broadly, they can be classified into tools supporting programming languages, or part of a platform
that offers Artificial Intelligence as a Service (AlaaS) [1]. There is also an increasing use of API/services
to capture different stages of the analytics pipeline such as data acquisition, preprocessing, analysis
and interpretation which necessitates a tool to integrate them properly.

On one hand, tools with programming languages require a high degree of understanding of
those languages. AlaaS platforms, on the other hand, are focused more on how Al can be leveraged
to accomplish your task. It is a type of Al outsourcing which seeks to enable users to experiment with
Al without investing too much money or effort. There are quite a few AlaaS providers currently
active in the market [1]. These tools are comprehensive as Al needs a detailed iterative approach to
deal with quality data such as that of financial markets [2].

Due to a wide range of development tools and the increasing availability of services that can be
used off-the shelf, this paper focuses on some innovative methods that allow teams to collaboratively
assemble the entire solution from reading the data to presenting it.

2.2. ML Application Development Methods

Developing ML applications has become a collaborative effort as it is an appealing paradigm to
build high-quality ML models [12]. Four types of methods that enable collaborative ML application
development have been identified:

1. Community model sharing (e.g., OpenML): online platforms about sharing machine learning
algorithms, models, experiments, and so on. It is meant to encourage open source development
where people can freely collaborate and quickly build upon new advances in the field of machine
learning [5].

2. Using a low code programming platform: an approach that requires some basic programming
knowledge, in order to accomplish the required software development task. Instead of using
complex coding tools, visual interfaces, combined with basic logic, can be used to perform any
task, even those requiring multiple people to collaborate [3].

3. Composition and workflow platforms: enable the enactment of multiple services (typically
developed by multiple people) to achieve a complex analytics goal, such as in MLFlow [15].

4. MLOps: a practice that unifies ML application development with ML system operations. It is
about streamlining the process of deploying, maintaining and monitoring machine learning
models efficiently with high reliability [4].

To make a useful comparison, ML analytics software development methods can be evaluated
against the following features:

1. Maintaining domain knowledge- When analysts perform any task, they rely on shared
understanding of domain knowledge, such as, in financial market data analysis within an
organisation, they need to define and operate complex workflows that involve the entire
analytics cycle where it is possible for multiple ML techniques to operate over a large number of
measures to be included in one workflow [6].

2. ML pipeline composition- Analysts typically require customisable and collaborative solutions
without the need for expert coding skills to define and maintain workflows. Many complex
analysis problems require group effort but the majority of tools assume one analyst [7].
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3. Quality control and testing- Quality control and software testing are essential components of
any project to ensure successful deployment, and with many separate components such as in
this case, it becomes critical to maintain quality and testing requirements collaboratively.

Table 1 below summarises how existing techniques address all required features.

Table 1. Comparison of existing techniques.

Methods Collaboratively Collaborative Collaborative quality
maintain domain composition control and testing
knowledge

OpenML 4 x x

Low code platforms | % v x

MLOps 4 x v

Workflows * 4 x

While OpenML allows to maintain domain knowledge collaboratively, it lacks collaborative
composition and quality control. Low code platforms and workflows allow collaborative
composition but lack collaborative domain knowledge and quality control. MLOps performs the best
out of the four methods by allowing collaborative domain knowledge maintenance and quality
control but still lacks collaborative composition.

Hence, the purpose of this paper is to investigate a method that allows high customization, good
user experience, and that can be used collaboratively. Basically, a solution fulfilling all three
requirements mentioned in Table 1 is required.

3. Proposed Solution
3.1. Knowledge Graph

The proposed solution is based on using a knowledge graph, which makes collaboratively
maintaining domain knowledge possible [13]. In practice, different roles such as data engineers, data
scientists, software engineers, DevOps engineers, business analysts and researchers have different
parts of knowledge who have to collaborate, and there are many services that perform different
functions.

For example, consider a service that generates trading signals based on the stock price data. But,
this price could be the daily open price, or it could also be the daily closing price. A knowledge graph
would keep track of this information, making the whole service more convenient and not requiring
to keep changing it based on which price we want to use. Also, a knowledge graph would be able to
automatically suggest the most appropriate generating trading signal service if we present it with the
price data, thus increasing usability and convenience. Hence, a knowledge graph shows how
different data concepts relate to each other thus helping to perform composition, and it also identifies
relevant services.

Competency questions are a set of queries that the artifact must be able to answer once it is built
and implemented according to Design Science Research methodology [16,17]. They define the key
requirements, problems, or use cases that the artifact should address. They help ensure the artifact
meets the needs of its intended users and serves its purpose effectively. They act as a benchmark
against which the quality and utility of the final artifact can be evaluated [16,17]. An example of this
is shown below in Table 2 with the context being financial market data analysis.
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Table 2. Competency Questions and Answers.

Questions

Answers

Which variable is linked to asset price?

Volatility

How is asset price determined?

Using mean as proxy

How is mean price determined?

Using daily price as proxy

How is daily price measured?

Using close price from the dataset

In normal programming, every analytic module is closely linked with data, or variables, whose
information can be extracted from the knowledge graph. This is critical as almost all the measures
are interdependent. For example, in financial market data analytics, trade count will have an effect
on trading volume. It is important to figure out these dependencies, which can make the task more
complicated. The amount of data is large, and there are plenty of ways or tools to interpret it.
Choosing the correct combination and cleaning the data, such as removing outliers, is of paramount
importance for accurate, reliable and precise prediction [14]. An illustration of such
interdependencies is shown below in Figure 1.

Mean

Price <
Standard
Deviation
Volatility

Figure 1. Interdependencies of Financial Measures.

Here, the mean and the standard deviation are calculated from the price, which are then used to
determine the volatility. Volatility can affect the behaviour of market participants, thus influencing
the price. In summary, a knowledge graph would answer various questions related to these
measures. Figure 2 below shows an example of how would such a knowledge graph look like within
the context of financial market data analysis. This knowledge graph is based on the Research Variable

Ontology (RVO) [18].
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secondVariable linkType firstVariable
> Volatility causal linkedVariable 2
@ proxy linkType secondVariable
StandardDeviation proxy MeanPrice
linkType firstVariable
DailyPrice |€——————secondVariable—— linkedVariable 3
measuredBy
closePrice < containMeasure DATASET
dataSource
Yahoo API

Figure 2. Knowledge Graph.

3.2. Architecture

As per the identified gap, a method to fully allow collaboration of ML analytics is required.
Figure 3 shows the software architecture of the proposed solution.
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Figure 3. Software Architecture.

The architecture is organised in 4 layers. Under the Data Layer, we have raw data and the
corresponding knowledge graph to ensure the ability to collaboratively maintain domain knowledge.
Under the Services Layer, we have analytics along with knowledge acquisition and workflows to
ensure collaborative quality control. On top of this, the business layer has engines which are
connected to their respective GUIs at UX layer, to cater for collaborative composition. The knowledge
graph takes input from the workflow creation engine and figures out what sort of data is required
and then sends it to the workflow execution engine. This engine then feeds into the services layer
which processes and feeds the information in the knowledge acquisition engine.

The three actors- data analyst, user, and data engineer are responsible for the defining,
executing, and acquiring processes respectively. Data analysts are responsible for developing and
fine-tuning ML models which includes collecting, preprocessing, analysing, training and testing
models. Data engineers focus on building and maintaining data infrastructure that supports ML
development and deployment which includes designing data pipelines, managing data storage and
processing, and ensuring data quality and accessibility. Users are customers for which the solution is
designed. Their feedback and usage enables evaluation of model performance and identification of
improvements areas.

3.3. Development Processes

Performing development work collaboratively involves a few steps. Firstly, a workflow is
agreed upon which includes the different component services and files that form the whole service.
It also includes the order in which they will be executed. Then, these component services are allocated
to different members of the development team. Once all of them are finished, they are executed as
per the workflow, and the whole service is now functioning.

4. Demonstration and Evaluation

The example used here is a case study for conducting financial market data analysis. Basically,
it is a workflow for intraday data analysis, shown below in Figure 4. It includes the required
information, such as the component services, order, and files. Let’s assume that multiple people are
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collaborating to build this service. They can then collaborate by building smaller component services
shown in blue in Figure 4, which are then integrated and executed into the overall service as shown.

Compute Intraday
Measures

||

T
“Trades and Quotes Raw Build Trades and Quotes Intraday Measures (FAIC

data file (CSV) Timeseries DLISON)

Visualise

Figure 4. Workflow for intraday data analysis.

Here, we have the raw data in the form of a CSV file, from which a time series is built. This can
be used to generate measures. Then, the results can be visualised or fed into models for generating
trading signals. Once the signals are generated, orders can be placed for backtesting. A self-
explanatory example concerning “timeseries” and “visualise” components is shown below in Figures
5 to 8. The “build trades and quotes timeseries” component is a python file that takes input from the
CSV and creates the JSON file containing basic measures. The “visualise” component is a Jupyter
Notebook file that takes in the JSON file and produces a HTML file containing the required

visualisations.
A ] = D E F G H | J K L M N 0 P Q R s .
1 HRIC Domain  Date-Time GMT Offs( Type Ex/Cntrb.ILOC Price Volume Market WBuyer 1D Bid Price Bid Size  No. BuyerSeller 1D Ask Price AskSize No. Seller: Qualifiers Se l
2 BHPAX  Market Pr 2019-07-1 10 Quote 412 1081 8 114 Eiy)
3 BHP.AX Market Pr 2019-07-1 10 Quote 41 1098 9 4114 7
4 BHP.AX  Market Pr 2019-07-1 10 Quote 412 1188 10 A1 Eiy)
5 BHP.AX  Market Pr 2019-07-1 10 Quote 412 1260 1 4114 17
6 BHP.AX Market Pr 2019-07-1 10 Quote an 1170 10 4114 317
7 BHP.AX Market Pr2019-07-1 10 Quote a1 170 4114 | 5
8 BHPAX Market Pr 2019-07-1 10 Quote an 1228 1 4114 382
9 BHP.AX  Market Pr 2019-07-1 10 Quote an 1318 2 4114 |
10 BHP.AX  Market Pr 2019-07-1 10 Quote an 1 u 414 mn
11 BHPAX  Market Pr 2019-07-1 10 Quote 412 1228 4114 355 5
12 BHP.AX  Market Pr 2019-07-1 10 Quote 4112 1201 1 41.14 355
13 BHP.AX  Market Pr 2019-07-1 10 Trade 4124 27 41.08094 412 1201 4114 355 B[ACT_FLAG!

Figure 5. Raw intraday tick data (CSV file).

Figure 6. JSON file with time series and intraday measures information from data in Figure 5.
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Figure 7. Front-end (GUI) for modifying the JSON file of Figure 6 ad hoc.

4l 17, 2019 ShareVolumeTraded

00100 01100 02100 03100 04100 08100 06100
ul 17, 2009 TradaCount

3:00
Jul 17, 201% AveragePrice

06100 01:66 02160 03160 04100 08:00 08160
17, 2019

Figure 8. Visualisation of the generated time-series and intraday measures.

5. Conclusion

This paper has discussed how knowledge graphs can enable collaboration in the field of financial
market data analysis. This is done by creating a software architecture that integrates workflows and
knowledge graphs. This software architecture is described comprehensively and a case study
demonstrating the usage within the context of equity markets has been shown at the end. This leads
to an enhanced experience of collaborative financial market data analysis.
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