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Abstract: Magnetic resonance imaging (MRI) is crucial for its superior soft tissue contrast and high spatial
resolution. Integrating deep learning algorithms into MRI reconstruction enhances image quality and efficiency,
but a comprehensive review of optimization-based deep learning models for MRI reconstruction has been
missing. This study fills that gap by examining the latest optimization-based algorithms in deep learning for MRI
reconstruction, including gradient descent algorithms, proximal gradient descent algorithms, ADMM, PDHG, and
diffusion models combined with gradient descent. Learnable optimization algorithms (LOA) are highlighted for
their ability to map optimization processes to structured neural networks, improving model interpretability and
performance. The study demonstrates significant advancements in MRI reconstruction through deep learning,
with successful clinical applications. These findings provide valuable insights and resources for researchers

aiming to advance medical imaging using innovative deep learning techniques.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology that is non-invasive
and non-ionizing, providing precise in-vivo images of tissues vital for disease diagnosis and medical
research. As an indispensable instrument in both diagnostic medicine and clinical studies, MRI plays
an essential role[1,2].

Although MRI offers superior diagnostic capabilities, its lengthy imaging times, compared to other
modalities, restrict patient throughput. This challenge has spurred innovations aimed at speeding up
the MRI process, with the shared objective of significantly reducing scan duration while maintaining
image quality[3,4]. Accelerating data acquisition during MRI scans is a major focus within the MRI
and clinical application community. Typically, scanning one sequence of MR images can take at least
30 minutes, depending on the body part being scanned, which is considerably longer than most other
imaging techniques. However, certain groups such as infants, elderly individuals, and patients with
serious diseases who cannot control their body movements, may find it difficult to remain still for the
duration of the scan. Prolonged scanning can lead to patient discomfort and may introduce motion
artifacts that compromise the quality of the MR images, reducing diagnostic accuracy. Consequently,
reducing MRI scan times is crucial for enhancing image quality and patient experience.

MRI scan time is largely dependent on the number of phase encoding steps in the frequency
domain (k-space), with common methods to accelerate the process involving the reduction of these
steps by skipping phase encoding lines and sampling only partial k-space data. However, this
approach can lead to aliasing artifacts due to under-sampling, violating the Nyquist criterion[5]. MRI
reconstruction involves creating clear MR images from undersampled k-space data, which is then used
for diagnostic and clinical purposes. Compressed Sensing (CS)[6] MRI reconstruction and parallel
imaging[3,7,8] are effective techniques that address this inverse problem, speeding up MRI scans and
reducing artifacts. By allowing for under-sampling and heaving the ability to reconstruct high-quality
MRI images from under-sampled data, CS significantly reduces scan time while offering images that
are often comparable to those obtained from fully sampled data.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Deep learning has seen extensive application in image processing tasks [9-13] because of its ability
to efficiently manage multi-scale data and learn hierarchical structures effectively, both of which are
essential for precise image reconstruction and enhancement. Convolution neural network (CNN) also
extensively utilized in MRI reconstruction due to its proficiency in handling complex patterns and
noise inherent in MRI data[14-23]. By learning from large datasets, deep learning algorithms can
improve the accuracy and speed of reconstructing high-quality images, thus significantly enhancing
the diagnostic capabilities of MRI technology.

Optimization-based network unrolling algorithms was introduced in recent years [23-33], each
inspired by classical optimization techniques tailored to address the challenges inherent in MRI data
and end-to-end deep models. We introduced a class of learnable optimization algorithms (LOA)
that can increase the interpretability of the deep models that benefit from the MR physical informa-
tion, and also enhance the training efficiency. Specifically, this paper discusses the Gradient Descent
and Proximal Gradient Descent Algorithm Inspired Networks, Variational Networks and Iterative
Shrinkage-Thresholding Algorithm (ISTA) Network, and Alternating Direction Method of Multipliers
(ADMM) inspired network, which leverage iterative methods to refine MRI reconstructions, reducing
artifacts and improving image clarity. Diffusion models integration, specifically the score-based diffu-
sion Model and Domain-conditioned Diffusion Modeling represent a novel approach by combining the
strengths of deep learning with diffusion processes to address the under-sampling issue more robustly.
These methods collectively represent a robust framework for improving the speed and accuracy of
MRI scans, advancing both the theory and application of machine learning in medical imaging. The
integration of these sophisticated deep learning techniques with traditional optimization algorithms
provides a dual advantage of enhancing diagnostic capabilities while significantly reducing scan times.
By reviewing how these optimization methods are used in conjunction with novel deep learning
techniques, we aim to shed light on the capabilities of state-of-the-art MRI reconstruction techniques
and the scope for future work in this direction.

This paper is organized in the following structure: Section 1 introduces the importance of MRI
reconstruction and LOA methods. Section 2 presents the compressed sensing (CS)-based MRI recon-
struction model. Section 3 provides a detailed overview of various optimization algorithms utilizing
deep learning techniques. Section 4 discusses the current issues and limitations of learnable optimiza-
tion models. Section 5 concludes the paper by summarizing the key findings and implications of the
study.

2. MRI Reconstruction Model

Parallel imaging is a k-space method that utilize coil-by-coil auto-calibration, such as GRAPPA
[34] and SPIRIT [35]. CS-based methods were applied on image domain such as SENSE [3], which
depend on the accurate knowledge of coil sensitivity maps for optimization. The formulation for the
MRI reconstruction problem in CS-based parallel imaging is described by a regularized variational
model as follows:

1
min = || Ax — £]3 + pR(x), (1)

where x € C" is the MR image to be reconstructed, consisting of n pixels, and f € C" denotes the
corresponding undersampled measurement data in k-space. The data fidelity term % | Ax — £||3 enforces
physical consistency between the reconstructed image x and the partial data f measured in the k-space.
The regularization operator R : C" — R emphasizes the sparsity of the MRI data or low rankness
constraints. The regularizer provides prior information to avoid overfitting of the data fidelity term.
The weight parameter # > 0 balances the data fidelity term and regularization term. The measurement
data is typically expressed as f = Ax + & with e € C™ representing the noise encountered during
acquisition. The forward measurement encoding matrix A € C"*" utilized in parallel imaging is
defined by:

A :=PnFS, ()
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where S := [S, ..., S] refers to the sensitivity maps of ¢ different coils, F € C"*" represents the 2D
discrete Fourier transform, and P € N"*"(m < n) is the binary undersampling mask that captures
m sampled data points according to the undersampling pattern (2. The Figure 1 shows the image
reconstruction diagram.

—( Coil sensitivity maps (S)

Undersampled Forward measurement
measurement data (f) encoding matrix (A)

Undersampling mask
(Po)

Solve MRI reconstruction model
min % [|Ax — £]|3 + uR(x)
X

to get updated images:
x(1), x(2),...., x(t-1)

Reconstructed MR
Image (x(t))

Figure 1. Demonstration of MRI reconstruction process.

3. Optimization-Based Network Unrolling Algorithms for MRI Reconstruction

Deep learning-based model leverages large dataset and further explores the potential improve-
ment of reconstruction performance compared to traditional methods and has successful applications
in clinic field[14-20,36,37]. Most existing deep learning-based methods rendering end-to-end neural
networks mapping from the partial k-space data to the reconstructed images [38—42]. To improve the
interpretability of the relation between the topology of the deep model and reconstruction results, a
new emerging class of deep learning-based methods known as learnable optimization algorithms (LOA)
have attracted much attention e.g. [23-33,43,44]. LOA was proposed to map existing optimization
algorithms to structured networks where each phase of the networks corresponds to one iteration of
an optimization algorithm.

The architectures of these networks are modeled after iterative optimization algorithms. They
retain the data fidelity term, which describes image formation based on well-established physical
principles that are already known and do not need to be relearned. Instead of using manually designed
and overly simplified regularization as in classical reconstruction methods, these networks employ
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deep neural networks for regularization. Typically, these reconstruction networks consist of a few
phases, each mimicking one iteration of a traditional optimization-based reconstruction algorithm. The
manually designed regularization terms in classical methods are replaced by layers of CNNs, whose
parameters are learned during offline training.

For instance, ADMM-Net [45], ISTA-Net™ [46], and cascade network [47] are applied on single-
coil MRI reconstruction, where the encoding matrix is reduced to A = PqF as the sensitivity map
S is identity. Variational network (VN)[14] introduced gradient descent method with a given (pre-
calculated) sensitivities S. MoDL [48] proposed a recursive network by unrolling the conjugate
gradient algorithm using a weight sharing strategy. Blind-PMRI-Net [49] designed three network
blocks to alternatively update multi-channel images, sensitivity maps, and the reconstructed MR image
using an iterative algorithm based on half-quadratic splitting. VS-Net [50] derived a variable splitting
optimization method. However, existing methods still face the lack of accurate coil sensitivity maps
and proper regularization in the parallel imaging problem. Alder et al.[51] proposed a reconstruction
network that unrolled primal-dual algorithm where the proximal operator is learnable.

3.1. Gradient Descent Algorithm Inspired Network

3.1.1. Variational Network
Variational Network (VN) solves the model (1) by using gradient descent:

(D = (0 _ 4O (AAT (Ax®) — £) + VR(x®)). 3)

This model was applied to multi-coil MRI reconstruction. The regularization term was defined by the
N

Field of Expert model: R(x) = Y, < H;(Gix),1 >. A convolution neural network G; is applied to the
i=1

MRI data. The function H; is defined as nonlinear potential functions which are composed of scalar
activation functions. Then take the summation of the inner product of the non-linear term 7;(G;x) and
the vector of ones 1. The sensitivity maps are pre-calculated and being used in A. The algorithm of
VN unrolls the step (3) where the regularizer R is parameterized by the learnable network g; together
with nonlinear activation function H;:

N
x(t+1) _ x(t) _ “(t) ()\AT (Ax(t) _ f) + Z(gl‘(t))THi(gi(t)x(t)»‘ (4)
i=1

A simple gradient descent step can be utilized for different designs of the variational model, even for
different tasks. The following subsection introduces the customized variational model with joint tasks:
MRI reconstruction and multi-contrast synthesis.

3.1.2. Variational Model for Joint Reconstruction and Synthesis

This subsection introduces a provable learnable optimization algorithm[52] for joint MRI recon-
struction and synthesis. Consider the partial k-space data {f1, f,} of the source modalities (e.g. T1
and T2) obtained from the measurement domain. The goal is to reconstruct the corresponding images
{x1,%,} and synthesize the image x3 of the missing modality (e.g. FLAIR) without having its k-space
data. The following optimization model is designed:

2 3
min Pg, (x1,%2,X3) := 3 .):1 |Ax; — il + 5 ‘21 | foo; (i)
1= 1=

+ 31120 ([fuor (1), foo, (x2)]) — %3] 13-

2,1

(5)
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2
The first term 3 Z |A;x; — £;]|3 ensures the fidelity of the reconstructed images {x,%,} to their partial

k-space data {fy, f, }. The second term E || fw; (i) ||2,1 regularizes the images using modality-specific
55
feature extraction operators fy,,i = 1,2,3. The third term % ||Zo([fw, (x1), fw, (x2)]) — x3||3 enforces
consistency between the synthesized image x3 and the learned correlation relationship from the
reconstructed images x1, xp. To synthesize the image x3 using x; and xp, a feature-fusion operator gy
was employed which learns the mapping from the features f,, (x1) and fu, (x2) to the image x3.
Denote X = {xq,x2, X3}, the forward Learnable Optimization Algorithm is presented in Algorithm
1. In step 3, the algorithm performs a gradient descent update with a step size found via line search,
while keeping the smoothing parameter e > 0 fixed. In step 4, the reduction of & ensures the
subsequence which met the & reduction criterion must have an accumulation point that is a Clarke
stationary point of the problem.

Algorithm 1 Learnable Descent Algorithm for joint MRI reconstruction and synthesis

1: Input: Initial estimate Xy, step size range 0 < 77 < 1, initial smoothing parameter &, a,c > 0, t = 0.

Maximum iterations T. Set tolerance €;, > 0.
2: fort=20,1,2,...,T—1do

3 Xppr = Xp — zxtVCID% W(Xt) where the step size a; is determined by a line search such that
(Xe41) — @, (Xe) < =7 [X¢41 — Xe|[* holds.

4: 1f(?%7cl>®v Xt+1 | < one, set €141 = 17¢; otherwise, set g, = €.

5. if oe < €], terminate and go to step 6,

6: end for and output X().

The Algorithm 1 is a forward MRI reconstruction algorithm. The backward network training
algorithm is designed to solve a bilevel optimization problem:

mﬂ;n Y ””ZE( ()’y;Df’”l) s.t. @(’y):argmin®2f\:/ll”£(®,'y;Df’), (6)

where  £(©,7;D1) i= Ll12o([fur (%), fun (33)]) — %513

The following Algorithm 2 was proposed for training the model for joint reconstruction and synthesis.

(7)

Algorithm 2 Mini-batch alternating direction penalty algorithm

1: Input Training data D', validation data D! tolerance 8;,; > 0. Initialize ®, 7, 5, A > 0 and
Vs € (0,1), vy > 1.
while § > §;,; do

Sample training batch B C D! and validation batch B C D!
while ||V L(®,y; B, B |? + || V,L(©,v; B, Bv)||2 > § do

fork=1,2,...,K (inner loop) do

Update © + @ — p Vo £(©,v; B, B*)
end for
Update y ¢ 7 — 0, V,L(©,; B, BUY)
end while and update § < v50, A < v A.
end while and output: ©, 7.

—_
=

3.2. Proximal Gradient Descent Algorithm Inspired Networks

Solving inverse problems using proximal gradient descent has been largely explored and success-
fully applied in medical imaging reconstruction[23,52-63].
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Applying a proximal gradient descent algorithm to approximate a (local) minimizer of (1) is
an iterative process. The first step is gradient descent to force data consistency, and the second step
applies a proximal operator to obtain the updated image. The following steps iterates the proximal
gradient descent algorithm:

bt = Xt — ptAT (AXt — f), (8&)
Xpy1 = proxptR(.)(bt), (8b)

where p; > 0 is the step size and prox 4 is the proximal operator of R defined by
1
propr(b) = argmin$||x—b||%—|—7€(x). )
X

The gradient update step (8a) is straightforward to compute and fully utilizes the relationship between
the partial k-space data f and the image x to be reconstructed as derived from MRI physics. This step
involves implementing the proximal operation for regularization R, which is equivalent to finding
the maximum-a-posteriori solution for the Gaussian denoising problem at a noise level ,/p [64,65].
Thus, the proximal operator can be interpreted as a Gaussian denoiser. However, because the proximal
operator prox,r in the objective function (1) does not admit closed form solution, a CNN can be
used to substitute prox R Constructing the network with residual learning[53,58,58,66] is suitable to
avoid the gradient vanishing problem. This approach allows the CNN to effectively approximate the
proximal operator and facilitate the optimization process.

Mardani et al.[53] introduced a recurrent neural network (RNN) architecture enhanced by residual
learning to learn the proximal operator more effectively. This learnable proximal mapping effectively
functions as a denoiser, progressively eliminating aliasing artifacts from the input image.

3.2.1. Iterative Shrinkage-Thresholding Algorithm (ISTA) Network

ISTA-Net " [46] formulate the regularizer as a /1 norm of non-linear transform R (x) = ||¢(x)|;.
The proximal gradient descent updates (8) become:

by =x — AT (Ax; — ), (10a)

1
Xt41 :argmm—Hx—th%—i— lo(x)||1- (10b)
X 2Pt

The proximal step (10b) can be parameterized as an implicit residual update step due to the lack of
closed form solution:
X1 = br + H(by), (11)

where H is a deep neural network with residual learning that approximates the proximal point.
Using the mean value theorem, ISTA-Net™ derives an approximation theorem: || ¢(x) — ¢(b;) |3 ~
5|)x — b||3 with 6 > 0. Thus the proximal update step (10b) was written as

!
i1~ argmin 2| p(x) = p(be) 3 + 501l () . (12)

Assuming ¢ is orthogonal and invertible, ISTA-Net " provides the following closed-form solution:

xi11 = ¢(Sp,(@(bt))), (13)

d0i:10.20944/preprints202407.2135.v1
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where B; = p; and Sg,(x) = proxﬁt”,lh(x) = [sign(x;) max(|x;| — B¢, 0)] € R" is the soft shrinkage
operator with vector x = (x1,...,x,) € R". Thus, equation (11) is reduced to an explicit form as given
in (13), which we summarize together with (10a) in the following scheme:

by =x — ptAT (Ax; — f), (14a)
xt = bt + ¢¢(Sp, (¢t (bt))). (14b)

The deep network @ is applied with the symmetric structure to ¢ and is trained separately to enhance
the capacity of the network. The initial input xo was set to be the zero-filled reconstruction AT f.
The loss function was designed in two parts: The first part is the discrepancy loss:

1 «
Lii(©) = S lxr(£,©) ~x3 (15)

This loss measures the squared discrepancy between the reference image x* and the reconstructed
image from the last iteration x7(©). The second part of the loss function is to enforce the consistency
of @r and ¢y
1&,
Lig(©) =35} [#e(g:(x") —xII3 (16)
t=1

This loss aims to ensure that ¢;¢; = I, an identity mapping. The training process is minimizes the
following loss function:

Lioss = Lais(0) + 1Lia(©). (17)
where y is a balancing parameter.

3.2.2. Parallel MRI Network

Parallel MRI network[58] leveraged residual learning to learn the proximal mapping and tackle
model (8), thus bypassing the requirement for pre-calculated coil sensitivity maps in the encoding
matrix (2). Similar to the model for joint reconstruction and synthesis[52], parallel MRI network
considers the MRI reconstruction as a bi-level optimization problem:

ngn l(x@,X"), (18a)

s.t. xg = argmin Pg(x). (18b)
X

The variable x = (x1,...,x;) € C"*"*¢ denotes the multi-coil MRI data scanned from c¢ coil elements,
with each x; corresponding to i-th coil for i = 1- - - c. The study constructs a model ®g to incorporate
dual regularization terms applied to both image space and k-space, described by:

Px) = 1 Y [P — 3 + R(T () + Ry(Fxi). 19)
i=1

The channel-combination operator J aims to learn a combination of multi-coil MRI data which
integrates the prior information among multiple channels. Then the image domain regularizer R
extracts the information from the channel-integration image 7 (x). The regularizer R is designed to
obtain prior information from k-space data.

d0i:10.20944/preprints202407.2135.v1
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The upper-level optimization (18a) is the network training process where the loss function
{(x@,x*) is defined as the discrepancy between learned xg and the ground truth x*. The lower level
optimization (18b) is solved by the following redefined algorithm:

b =x{") — o FIPL(PaFX ), i=1, (20a)
%) = [prox, gz )] i=1,-c, (20b)
X = prox, (r) (&), i=1-0 e (20¢)

The proximal operator can be understood as a Gaussian denoiser. Nevertheless, the proximal operator
prox, r in the objective function (20b) lacks a closed-form solution, necessitating the use of a CNN as
a substitute for prox, ». This network is designed as a residual learning network denoted by ¢ in the
image domain and ¢ in the k-space domain, and the algorithm (20) is implemented in the following

scheme:
bl = x — p FIPL (PP ~£), i=1- (21a)
)_(St) — bl‘(i’) +(P(bz(t))’ i=1,---,c (Zlb)
" = () + Fl(FRD), =1 210)

The CNN ¢ utilizes channel-integration operator J and operates with shared weights across iterations,
effectively learning spatial features. However, it may erroneously enhance oscillatory artifacts as real
features. In the k-space denoising step (21c), the k-space network ¢ focuses on low-frequency data,
helping to remove high-frequency artifacts and restore image structure. Alternating between (21b)
and (21c) in their respective domains balances their strengths and weaknesses, improving overall
performance.

This network architecture has also been generalized to quantitative MRI (qQMRI) reconstruction
problems under a self-supervised learning framework. The next subsection introduces a similar
learnable optimization algorithm for the gMRI reconstruction network.

3.2.3. RELAX-MORE

RELAX-MORE [66] introduced an optimization algorithm to unroll the proximal gradient for
gMRI reconstruction. RELAX-MORE is a self-supervised learning where the loss function minimizes
the discrepancy between undersampled reconstructed MRI k-space data and the “true” undersampled
k-space data retrospectively. The well-trained model can be applied to other testing data using transfer
learning. As new techniques develop [67-69], transfer learning may serve as an effective method to
enhance the reconstruction timing efficiency of RELAX-MORE.

The qMRI reconstruction model aims to reconstruct the quantitative parameters P and this
problem can be formulated as a bi-level optimization model:

ngn U(PaFSM(P(f|©)),f) s.t (22a)
P(f|®) = argmin g (P), (22b)

P
where Kg(P) := 1 || PaFSM(P) —f |3 +BRo(P). (22¢)

The model M represents the MR signal function that maps the set of quantitative parameters P :=
{p1,--,pN} to the MRI data. The loss function in (22a) is addressed through a self-supervised
learning network, and P(f|©) is derived from the network parameterized by ©. The upper-level
problem (22a) focuses on optimizing the learnable parameters for network training, while the lower
level problem (22b) concentrates on optimizing the quantitative MR parameters. RELAX-MORE uses
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T mapping obtained through the variable flip angle (vFA) method [70] as an example. The MR signal
model M is described by the following equation:

(1 — e TR/T1) gin g
1—e TR/Ticosyy ’

Mi(Ty, Ip) =Io - (23)
where 774 represents flip angle for k = 1, ..., Ny, where N is the total number of the flip angles acquired.
T; and Ij are the spin-lattice relaxation time maps and proton density maps, respectively. Therefore,
the parameter set need to reconstructis P = {Tq,Ip}.

Similar to the Parallel MRI Network[58], RELAX-MORE employs a proximal gradient descent
algorithm to address the lower level problem (22b), with a residual network structure designed to
learn the proximal mapping. Below is the unrolled learnable algorithm for resolving (22b):

Algorithm 3 Learnable Proximal Gradient Descent Algorithm

Input ()/ﬂz( )/ 1(1)Ii:11"'/N-
1: fort—ltono

2: fori—ltoNdo

MON ( (t=1)\N 2
3: P =p; Vp, |PaFS {Pl o) —flI3
A Wg‘ ’(tﬁ Ao ) M(
5: end for (DN
6: M{p; "),
7: end for .
Output: {pl( ) vV, and x), vt e {1,---,T}.

Step (4) implements the residual network structure to learn the proximal operator with regular-

ization fRg. The learnable operators We and Weg has symmetric network structure, and %(t) is the
soft thresholding operator threshold parameter v.

3.3. Alternating Direction Method of Multipliers (ADMM) Algorithm Inspired Networks
ADMM introduced an auxiliary variable v to solve the following bi-level problem:
1 2
min [|Ax — £ + pR(v) (24a)
s.t. v=Dx, (24b)

we can consider D as a gradient operator to reinforce the sparsity of MRI data such as total variation
norm.

The first step is to form the augmented Lagrangian for the given problem. The augmented
Lagrangian combines the objective function with a penalty term for the constraint violation and a
Lagrange multiplier:

1
Lo(x,v,A) = 5[ Ax = 3 + pR(v)+ < A, Dx—v > +£|Dx— ], (25)

where A is he Lagrange multiplier and p > 0 is a penalty parameter.
The ADMM algorithm solves the above problem by alternating the following three subproblems:

1
X¢41 = arg min EHAX - f||% + §||Dx — (vt — ut)||%, (26a)
X

vier = argmin & [ D1 — (v — w) |3+ pR(v), (26b)
v

U1 = w + (Dxpyp — ). (26¢)

d0i:10.20944/preprints202407.2135.v1
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We can obtain the closed-form solutions for each subproblem as follows:
xi+1 = (ATA+pD D) (ATE+ oD (vi — u)), (272)
Vit = Prox,, p(Dxt+1 +uy), (27b)
U1 = ur + (DXxpy1 — Vig). (27¢)
If regularizer is [y norm R(v) = ||v|[1, then (27b) reduces to v;,1 = Sg(Dx;y1 + ur) with the soft

shrinkage threshold g = u/p.

3.3.1. ADMM-Net

ADMM-Net[45] reformulates these three steps through an augmented Lagrangian method. This
approach leverages a cell-based architecture to optimize neural network operations for MRI image
reconstruction. The network is structured into several layers, each corresponding to a specific operation
in the ADMM optimization process. The gradient operator D is parameterized as deep neural network
D. All the scalars y and p are learnable parameters to be trained and updated through ADMM

iterations:
Xiy1 = (ATA + ptDTD)_l (ATf + ptDT (Vt - ut)), (28&)
vit1 = Sp(Dxp1 +ur), (28b)
W1 = w + (Dxpp1 — Vig1)- (28¢)

The Reconstruction layer (28a) uses a combination of Fourier and penalized transformations to
reconstruct images from undersampled k-space data, incorporating learnable penalty parameters and
filter matrices. The Convolution layer ¢; = Dx;; applies a convolution operation, transforming the
reconstructed image to enhance feature representation, using distinct, learnable filter matrices to in-
crease the network’s capacity. The Non-linear Transform layer (28b) replaces traditional regularization
functions with a learnable piecewise linear function, allowing for more flexible and data-driven trans-
formations that go beyond simple thresholding. Finally, the Multiplier Update layer (28c) updates the
Lagrangian multipliers, essential for integrating constraints into the learning process, with learnable
parameters to adaptively refine the model’s accuracy. Each layer’s output is methodically fed into the
next, ensuring a coherent flow that mimics the iterative ADMM process, thus systematically refining
the image reconstruction quality with each pass through the network.

3.4. Primal-Dual Hybrid Gradient (PDHG) Algorithm Inspired Networks

There are several networks[51,71] are developed inspired by the PDHG algorithm. PDHG can be
used to solve the model (1) by iterating the following steps:

diq = proxgHT(.)(dt + (tAxy), (29a)
X1 = PTOXp, R (1) (x¢ + UtATdt+1)r (29b)
Xi+1 = Xpp1 +0(Xep1 — Xt), (29¢)
where H is the data fidelity function defined as H(Ax,f) := ||Ax — f||3 in the model (1). In the

Learned PDHG[53], the traditional proximal operators are replaced with learned parametric operators.
These operators are not necessarily proximal but are instead learned from training data, aiming to act
similarly to denoising operators, such as Block Matching 3D (BM3D). The proximal operators can be
parameterized as deep networks Gy and KCyr. PD-Net[71] iterates the following two steps:

di1 = Gy (dy, (1AX;, 1), (30a)
xe41 = Ko (xt, ATd 1), (30b)
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The key innovation here is that these operators—both for the primal and dual variables—are
parameterized and optimized during training, allowing the model to learn optimal operation strategies
directly from the data. The learned PDHG operates under a fixed number of iterations, which serves
as a stopping criterion. This approach ensures that the computation time remains predictable and
manageable, which is beneficial for time-sensitive applications. The algorithm maintains its structure
but becomes more adaptive to specific data characteristics through the learning process, potentially
enhancing reconstruction quality over traditional methods.

3.5. Diffusion Models Meet Gradient Descent for MRI Reconstruction

A notable development for MRI reconstruction using diffusion model is the emergence of De-
noising Diffusion Probabilistic Models (DDPMs)[72-75]. In Denoising Diffusion Probabilistic Models
(DDPMs), the forward diffusion process systematically introduces noise into the input data, incremen-
tally increasing the noise level until the data becomes pure Gaussian noise. This alteration progressively
distorts the original data distribution. Conversely, the reverse diffusion process, or the denoising
process, aims to reconstruct the original data structure from this noise-altered distribution. DDPMs
effectively employ a Markov chain mechanism to transition from a noise-modified distribution back
to the original data distribution via learned Gaussian transitions. The learnable Gaussian noise can
be parametrized in a U-net architecture that consists of transformers/attention layers[76] in each
diffusion step. The Transformer model has demonstrated promising performance in generating global
information and can be effectively utilized for image denoising tasks.

DDPMs represent an innovative class of generative models renowned for their ability to master
complex data distributions and achieve high-quality sample generation without relying on adversarial
training methods. Their adoption in MRI reconstruction has been met with growing enthusiasm due
to their robustness, particularly in handling distribution shifts. Recent studies exploring DDPM-based
MRI reconstructions [72-75] demonstrate how these models can generate noisy MR images which
are progressively denoised through iterative learning at each diffusion step, either unconditionally or
conditionally. This approach has shown promise in enhancing MRI workflows by speeding up the
imaging process, improving patient comfort, and boosting clinical throughput. Moreover, the model
[73] has proven exceptionally robust, producing high-quality images even when faced with data that
deviates from the training set (distribution shifts) [67], accommodating various patient anatomies and
conditions, and thus enhancing the accuracy and reliability of diagnostic imaging.

3.5.1. Score-Based Diffusion Model

Chung et al. [72] presented an innovative framework that applies score-based diffusion models to
solve inverse imaging problems. The core technique involves training a continuous time-dependent
score function using denoising score matching. The score function of the data distribution log p:(x(t))
is defined as the gradient of log density w.r.t the input data. This is estimated by a time-conditional
deep neural network Sg(x(t), t). The score model is trained by minimizing the following loss function
on the magnitude image:

L(©) = B (1) p(x(1) [x(0)) x(0) ~puees LIS (X(E), £) = V(1) Tog pr(x () [x(0)) [13]. 31)

During inference, the model alternates between a numerical Stochastic Differential Equation
(SDE) solver and a data consistency step to reconstruct images. The method is agnostic to subsampling
patterns, enabling its application across various sampling schemes and body parts not included
in the training data. Chung et al. [72] proposed the following algorithm with predictor-corrector

(PC) sampling algorithm[77]. Fori = N —1,---,0, the predictor is defined as x; = x; 1 + ((712+1 —

0?)Se(Xit1,0i+1) + 4 /(71-2Jrl — o€ with € ~ N(0,1). The corrector is defined as x; = x; + A;Se (x;, ;) +
V/2A ;€ with step size A; > 0.
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Incorporating a gradient descent step to emphasize the data consistency after the predictor and
corrector, we can obtain the following algorithm:

Algorithm 4 Score-based sampling for MRI reconstruction [72]

Input: xy ~ N(0,021), Learned score function ©, step size {¢;}, noise schedule {c;} and MRI

encoding matrix A.
1: fori=N-1,..,0do

2:  Re(x;) + Predictor(Re(x;41), 05, 0i11)
3. Im(x;) < Predictor(Im(x;.1),0,0511)
4 x; = Re(x;) + jIm(x;)

5: X; < Xj — AT (AXZ‘ — f)

6: forj=1,..,Mdo

7 Re(x;) < Corrector(Re(x;11), 0, €;)
8: Im(x;) < Corrector(Im(x;;1),0;, €;)
9: x; = Re(x;) + jIm(x;)

10: X; < Xj — AT (AXi — f)
11:  end for
12: end for

The above algorithm can be variate to other two different algorithms. One is the parallel imple-
mentation for each coil image for parallel MRI reconstruction. The other one considers the correlation
among the multiple coil images and eliminates the calculation of sensitivity maps, and the final magni-
tude image is obtained by using the sum-of-root-sum-of-squares of each coil. The results outperforms
conventional deep learning methods: UNet[78], DuDoRNet[79] and E2E-Varnet[80] which requires
complex k-space data.

3.5.2. Domain-Conditioned Diffusion Modeling

Domain-conditioned Diffusion Modeling (DiMo)[60] and quantitative DiMo were developed
to apply on both accelerated multi-coil MRI and quantitative MRI (@QMRI) using diffusion models
conditioned on the native data domain rather than the image domain. The method incorporates a
gradient descent optimization within the diffusion steps to improve feature learning and denoising
effectiveness. The training and sampling algorithm for MRI reconstruction is illustrated in Algorithm
5and 6.

Algorithm 5 Training Process of Static DiMo

Input: t ~ Uniform({1,---,T}),e ~ N(0,1), fully scanned k-space fy ~ q(fy), undersampling mask
Pq, partial scanned k-space f, and coil sensitivities S.

Initialisation : 1

1: ft — \/&»tfo—f—\/l—ﬁéte.A N

2: £ PQ()LJ‘F (1 — /\t)ft) + (]]. — PQ)ft > DC
3: fork=0toK—1do

4: ft — ft *ﬂkat%”A}—_lﬂ 7f||% >GD
5: end for

6: Take gradient descent update step

Velle —eo(f:, 1)113

Until converge
Output: f;,t € {1,---,T}.
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Algorithm 6 Sampling Process of Static DiMo

Input: fr ~ A(0,1), undersampling mask Pq, partial scanned k-space f, and coil sensitivities S.
1: fort=T-1,...,0do

22z~ N(0,1)ift > 0,elsez =0

3 £ =pe(tip1,t+1) + 012 .
4: f; « ’PQ(Atf + (1 — At)ft) + (]l — PQ)ft > DC
5. fork=0toK—1do
6 ff (—%t—ﬂkvif% |A]:71ft—fH% >GD
7 end for
8: end for

Output: f

In the training and sampling algorithm, the data consistency (DC) term was used to emphasize
the physical consistency between the partial k-space and reconstructed images. Then gradient descent
(GD) algorithm is applied iteratively into the diffusion step to refine k-space data further. The matrix 1
only contains value of one. GD in here solves the optimization problem (1) without the regularization
term.

Static DiMo performed a qualitative comparison with both image domain diffusion model:
Chung et al. [72] and k-space domain diffusion model: MC-DDPM][81] and demonstrated robust
performance in reconstruction quality and noise reduction. Quantitative DiMo reconstructs the
quantitative parameter maps from the partial k-space data. The MR signal model M defined in (23)
maps MR parameter maps to the static MRI, therefore it is one more function inside the reconstruction
model:

1 )
min 2| AM(A) — 3. 32

The MR parameter maps are denoted as A = {4;}¥ | where ¢; indicates each MR parameter and N is
the total number of MR parameters to be estimated.

The training and sampling diffusion model for quantitative MRI (qMRI) DiMo follows the same
steps as static DiMo, where the signal model should take the inverse when calculating the quantitative
maps A from the updated k-space. Quantitative DiMo showed the least error compared to other
methods[82-84]. This is likely achieved through integrating the unrolling gradient descent algorithm
and diffusion denoising network, prioritizing noise suppression without compromising the fidelity
and clarity of the underlying tissue structure.

4. Discussion

4.1. Selection of Acquisition Parameters

The selection of acquisition parameters is a critical aspect of MRI reconstruction, influencing the
efficiency and accuracy of deep learning models. The architecture of deep reconstruction networks
and efficient numerical methods play a pivotal role in this selection. In LOAs, one must determine
the appropriate number of iterations T and the initial step size for gradient descent to ensure the
reconstruction network converges to the local optimum of the problem (1). The convergence to the
local optimum is essential for producing high-quality reconstructed images. The required number
of iterations and the step size depend on the specific application tasks and whether the step size is
learnable or fixed in the gradient descent-based algorithm used for reconstruction. Proper tuning of
these parameters is crucial for optimizing the performance of the reconstruction network.

4.2. Computing Memory Consumption and High-Performance Computing

Deep learning-based MRI reconstruction methods, particularly those involving unrolled opti-
mization algorithms, demand significant computational resources. The training process involves
substantial GPU memory consumption to store intermediate results and their corresponding gradients.
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This high memory requirement, coupled with potentially long training times, arises from the need
to repeatedly apply the forward and adjoint operators during training. To address these challenges,
leveraging high-performance computing resources such as quantum computing could be explored.
Quantum computing offers the potential to dramatically accelerate computations and reduce memory
constraints[85], paving the way for more efficient and scalable deep learning models in MRI recon-
struction. Additionally, advancements in hardware acceleration, such as the use of specialized Al chips
and tensor processing units (TPUs), could further enhance the performance of deep learning-based
MRI reconstruction.

4.3. Theoretical Convergence and Practical Considerations

While unrolling-based deep-learning methods are derived from numerical algorithms with con-
vergence guarantees, these guarantees do not always extend to the unrolled methods due to their
dynamic nature and the direct replacement of functions by neural networks. Theoretical convergence
is compromised, and only a few works have analyzed the convergence behavior of unrolling-based
methods in theory. Notable studies include [52,56,86], which provide insights into the theoretical
convergence of these methods. For example, reference [52] proved that if x(*) satisfies the stopping
criterion, then there exists a subsequence x(1+1) at least one accumulation point, and every accumula-
tion point of x(fi+1) is a Clarke stationary point of the (1). Understanding the convergence properties of
unrolled networks is crucial for ensuring the reliability and robustness of MRI reconstruction algo-
rithms. Future research should focus on establishing stronger theoretical foundations and convergence
guarantees for unrolling-based deep learning methods. This includes developing new theoretical
frameworks that can account for the dynamic and adaptive nature of these models, as well as creating
more rigorous validation protocols.

4.4. Limitations of the Existing Deep Learning Approaches

Despite the advancements in reconstructing MRI images through deep learning methods, there
are several practical challenges that need to be addressed. Most deep learning approaches focus
on designing end-to-end networks that are independent of intrinsic MRI physical characteristics,
leading to sub-optimal performance. Deep learning methods are also often criticized for their lack of
mathematical interpretation, being seen as "black boxes." Acquiring and processing large high-quality
datasets that are needed for training deep-learning models may be difficult, especially when dealing
with diverse patient populations and varying imaging conditions. Training deep neural networks may
require a large quantity of data and may be prone to over-fitting when data is scarce. Additionally,
both the training and inference process of deep learning models may require substantial computational
resources, which may act as a barrier for certain medical institutions. Hence, it may be a trade-off
between cost and time. Ensuring that the model generalizes well across different MRI scans and
clinical settings is also essential for the widespread adoption of deep-learning techniques. Finally, the
technologies utilized in clinical settings might need to be validated, transparent, and fully interpretable
in order to ensure that clinicians trust the decision-making capabilities of the algorithms. Future studies
may focus on addressing the above-mentioned challenges, which would accelerate the adoption of
deep learning methods and advance the field of medical imaging.

4.5. Future Directions and Research Opportunities

Future research should aim to address the limitations of current models and explore new avenues
for enhancement. Emerging Al techniques, such as reinforcement learning, offer promising directions
for improving MRI reconstruction. Reinforcement learning can optimize acquisition parameters
dynamically during the scan, leading to more efficient data collection and potentially reducing scan
times further. Personalized medicine approaches, where models are tailored to individual patient
characteristics, could provide significant benefits. These approaches can leverage patient-specific data
to enhance the accuracy and reliability of MRI reconstructions, leading to more precise diagnoses and
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personalized treatment plans. Additionally, the integration of self-supervised learning techniques,
which can operate with limited ground truth data, represents a promising avenue. Self-supervised
learning can leverage the inherent structure in MRI data to improve model training, reducing the
dependency on extensive labeled datasets.

Moreover, exploring hybrid models that combine multiple algorithms may offer a more com-
prehensive solution to the challenges of MRI reconstruction. These hybrid models can integrate the
strengths of different techniques, such as combining the robustness of classical optimization with
the adaptability of deep learning. Collaborative efforts between researchers, clinicians, and industry
partners will be essential for advancing the field and translating research innovations into clinical
practice. Ensuring that these models are user-friendly and seamlessly integrated into existing clinical
workflows will be critical for their successful implementation.

5. Conclusion

In conclusion, this paper provides a comprehensive overview of several optimization algorithms
and network unrolling methods for MRI reconstruction. The discussed techniques include gradient
descent algorithms, proximal gradient descent algorithms, ADMM, PDHG, and diffusion models
combined with gradient descent. By summarizing these advanced methodologies, we aim to offer a
valuable resource for researchers seeking to enhance MRI reconstruction through optimization-based
deep learning approaches. The insights presented in this review are expected to facilitate further
development and application of these algorithms in the field of medical imaging.
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