
Article Not peer-reviewed version

Energy-Efficient Clustering in Wireless

Sensor Networks Using Grey Wolf

Optimization and Enhanced CSMA/CA

Mohammed Kaddi * , Mohammed Omari , Khouloud Salameh , Ali Alnoman , Mohammed Awad

Posted Date: 30 July 2024

doi: 10.20944/preprints202407.2221.v1

Keywords: wireless sensor networks; medium access control, routing protocols, cross-layer protocols,

energy consumption.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3725140
https://sciprofiles.com/profile/2559960
https://sciprofiles.com/profile/1575445
https://sciprofiles.com/profile/2105291


 

Article 

Energy‐Efficient Clustering in Wireless Sensor 

Networks Using Grey Wolf Optimization and 

Enhanced CSMA/CA 

Mohammed Kaddi 1,*, Mohammed Omari 2, Khouloud Salameh 2, Ali Alnoman 2 and 

Mohammed Awad 2 

1  LDDI Laboratory, Mathematics and Computer Science Department, University of Adrar, Adrar, Algeria; 

kaddimohammed1983@univ‐adrar.edu.dz (M.K.) 
2  Computer Science and Engineering Department, American University of Ras Al Khaimah, Ras Al 

Khaimah, United Arab Emirates; mohammed.omari@aurak.ac.ae (M.O.), khouloud.salameh@aurak.ac.ae 

(K.S),   

ali.alnoman@aurak.ac.ae (A.A.), mohammed.awad@aurak.ac.ae (M.A.) 

*  Correspondence: kaddimohammed1983@univ‐adrar.edu.dz; 

Abstract:  Survivability  is  a  critical  concern  in WSNs,  heavily  influenced  by  energy  efficiency. 

Addressing severe energy constraints in WSNs requires solutions that meet application goals while 

prolonging network  life. This paper presents an energy optimization approach  (EOAMRCL)  for 

WSNs, integrating the Grey Wolf Optimization (GWO) for enhanced performance. EOAMRCL aims 

to enhance energy efficiency by selecting the optimal duty‐cycle schedule, transmission power, and 

routing paths. The proposed approach employs a centralized strategy using a hierarchical network 

architecture. During  the  cluster  formation phase,  an objective  function,  augmented with GWO, 

determines  the  ideal cluster heads  (CHs). The routing protocol  then selects routes with minimal 

energy consumption  for data  transmission  to CHs, using  transmission power as a metric.  In  the 

transmission  phase,  the MAC  layer  forms  a  duty‐cycle  schedule  based  on  cross‐layer  routing 

information, enabling nodes to switch between active and sleep modes according to their network 

allocation vectors (NAV). This process is further optimized by an enhanced CSMA/CA mechanism, 

which incorporates sleep/activate modes and pairing nodes to alternate between active and sleep 

states.  This  integration  reduces  collisions,  improves  channel  assessment  accuracy,  and  lowers 

energy consumption, thereby enhancing overall network performance. EOAMRCL was evaluated 

in a MATLAB environment, demonstrating superior performance compared  to EEUC, DWEHC, 

and CGA‐GWO protocols, particularly in terms of network lifetime and energy consumption. This 

highlights  the  effectiveness  of  integrating  GWO  and  the  updated  CSMA/CA  mechanism  in 

achieving optimal energy efficiency and network performance. 

Keywords:  wireless  sensor  networks;  medium  access  control;  routing  protocols;  cross‐layer 

protocols; energy consumption 

 

1. Introduction 

In nature, various micro‐sensors are organized to form a sensor network used for monitoring 

and  control  purposes.  A  Wireless  Sensor  Network  (WSN)  consists  of  small,  low‐power,  and 

inexpensive sensor nodes capable of detecting, measuring, collecting, and processing data from their 

environment, such as conductivity, temperature, and pressure [1,2]. These networks are employed in 

various  applications,  including  commercial,  industrial,  military,  civil,  healthcare,  security,  and 

emergency  surveillance  [3]. Typically,  a  large  number  of  these  low‐cost, multi‐functional  sensor 

nodes are randomly distributed over an area of interest. These sensors collaborate to communicate 

data wirelessly to a base station (BS) and between nodes using multi‐hop communication [4].   
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Table 1. List of acronyms. 

Acronym  Description 

ACO  Ant Colony Optimization 

AODV  Ad hoc On demand Distance Vector 

ARE  Average Residual Energy 

AR‐SC  Adjustable Range Set Covers 

BACA  Binary Ant Colony Algorithm 

BS  Base Station 

BSTS  Bulk Service a Time Scheme 

CCA  Clear Channel Assessment 

CCBE   Cross‐layer Cluster‐Cased Energy‐efficient 

CEE  Cross‐layer Energy Efficiency 

CGA  Chaotic Genetic Algorithm 

CH  Clusterhead 

CL‐MAC  Cross‐Layer MAC 

CREC  Cross‐layer, Reliable, and Efficient Communication protocol 

CSMA/CA  Carrier Sense Multiple Access with Collision Avoidance 

DLC  Data Link Control 

DWEHC  Distributed Weight Based Energy‐Efficient Hierarchical Clustering 

EAP‐CMAC  Energy Aware Physical‐layer Network Cooperative MAC 

ECC  Error Correction Codes 

ECCA  Enhanced Clear Channel Assessment 

EEUC  Energy‐Efficient Unequal Clustering 

EOAMRCL  Energy Optimization Approach based on MAC/Routing Cross‐Layer 

EQPD‐MAC 
Energy‐aware QoS MAC protocol based on Prioritized Data and 

Multi‐hop routing 

FIS  Fuzzy Inference System 

FND, HND, LND  First Node Dead, Half of Nodes Dead, Last Node Dead 

FQA  Fuzzy Logic with a Quantum Annealing Algorithm 

GCRAD  Cross‐layer Routing for Disaster 

GCWGC  Greedy Coverage Weighted Communication 

GWO  Grey Wolf Optimization 

HC  Hill Climbing 

HEED  Hybrid Energy‐Efficient Distributed Clustering 

IoT  Internet of Things 

IP  Internet Protocol 

LEACH  Low‐Energy Adaptive Clustering Hierarchy 

MAC  Medium Access Control 

NAV  Network Allocation Vector 

NS2  Network Simulator version 2 

OCCH  Optimized Connected Coverage Heuristic 

OSI  Open Systems Interconnection 

OSTS  One Service a Time Scheme 

OTTC  Overlapping Target and Connected Coverage 

PHY  Physical Layer 

PNC  Physical Layer Network Coding 

QoS  Quality of Service 

RSSI  Received Signal Strength Indication 

SA  Simulated Annealing 

TCP  Transmission Control Protocol 

TDMA  Time‐Division Multiple Access 

TSLC  Topological Structure by Layered Configurations 

WSN  Wireless Sensor Network 

WSNs offer significant advantages such as scalability, simplicity, ease of deployment, and self‐

organizing  capabilities  [5].  However,  the  communication  process  in WSNs  is  energy‐intensive 

because each node acts as a relay, forwarding received information to its neighbors until it reaches 

the BS. Compared  to wired  sensor  networks, WSNs  face  limitations  including  restricted  battery 

power,  limited  memory  and  processing  capacity,  non‐rechargeable  batteries,  environmental 

constraints, lack of global addressing, security issues, mobility challenges, and short communication 

ranges  [6]. Sensor nodes  in WSNs are often powered by small batteries with  limited capacity  [7], 

making  energy  efficiency  crucial  for  extending  the  networkʹs  lifespan  [8,9].  In  challenging 
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environments  such as monitoring volcanoes,  replacing  the batteries  is difficult and necessitates a 

longer operating period [10]. Thus, developing energy‐efficient routing strategies to minimize battery 

usage is essential for WSNs [9,11]. Various approaches have been employed to conserve energy in 

nodes, utilizing  routing protocols  from  the physical  layer  to  the  network  layer  to  improve data 

collection methods [12]. Achieving energy balance across different sensor nodes remains a primary 

concern  in sensor network design, as  the power usage of nodes varies depending on application 

demands. Wireless sensors are often deployed in harsh environments where they cannot be replaced 

or recharged [13]. 

Recent  research  literature  has  proposed  several  strategies  to  increase  the  lifetime  of WSNs, 

including  transmission  range  optimization,  power‐saving  sleep  modes,  low‐power  hardware 

designs, and power‐aware protocols [14]. Consequently, various routing and Medium Access Control 

(MAC) protocols have been developed to address these issues, enabling faster and more cost‐effective 

information delivery to the BS. WSN nodes typically face constraints in energy, processing power, 

and memory. Therefore,  it  is essential to conduct research and development on  low‐computation, 

resource‐aware  algorithms  for WSNs,  focusing  on  small,  embedded  sensor  nodes with  limited 

resources. Given  the  critical  importance of  energy  consumption  in WSNs,  specific hardware and 

algorithms [15] have been designed with energy efficiency or awareness as a primary focus. Methods 

such as  fuzzy  clustering, nano  topology, and  rough  set  theory are applied, especially  to  identify 

abnormalities in sensor networks [16]. 

The protocol stack in a WSN combines elements of the TCP/IP and OSI models. The data link, 

network, and physical layers are the most studied in the literature for reducing energy consumption 

in WSNs. The primary purpose of the network layer is routing, facilitated by the routing protocol, 

which  determines  the  path  between  transmitting  and  receiving  nodes  to  enable  effective  data 

transport. The data  link  layer comprises  two sublayers: DLC  (Data Link Control), responsible  for 

multiplexing and error management, and MAC, which handles channel access and scheduling. The 

physical layer is accountable for data encryption, frequency generation, and modulation [17]. 

Within a  layered architecture, each  layer has  independent functionality and can only use  the 

services provided by the layer directly below it. Therefore, communication is restricted to adjacent 

layers. Conversely, the cross‐layer technique allows any layer to utilize services from any other layer. 

This interaction between different layers of the network protocol stack enhances WSN performance. 

Cross‐layer designs have identified six options based on potential interactions between the routing, 

MAC, physical, and application layers [18]. 

This paper makes several key contributions to the field of WSN clustering: 

 Designed a novel cross‐layer protocol targeting the MAC and network layers. 

 Optimized clustering by identifying optimal CHs based on residual energy, intra‐cluster 

distances, and inter‐cluster distances. 

 Implemented a robust objective function for CH selection. 

 Utilized Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and Network 

Allocation Vector (NAV) for active mode/sleep mode management. 

 Highlighted the effectiveness of cross‐layer designs in peer protocols, and identified key 

strategies from these protocols to inform the development of our own. 

 Conducted extensive simulations comparing our protocol with peers. 

 Demonstrated superior performance of EOAMRCL in terms of overall network remaining 

energy, number of dead nodes, total data received at the BS and network lifetime. 

 Validated the effectiveness of our cross‐layer approach in reducing energy consumption and 

enhancing network performance. 

The  remainder  of  the  paper  is  structured  as  follows:  Section  2  reviews  related works  and 

discusses the incorporation of OSI layers in WSN clustering. Section 3 details the integration of WSN 

node sleep scheduling into the CSMA/CA mechanism. Section 4 introduces the fundamentals of the 

Grey Wolf Optimization (GWO) algorithm and its application in optimization. Section 5 outlines our 

proposed Energy Optimization Approach based on MAC/Routing Cross‐Layer (EOAMRCL). Section 
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6  evaluates  the performance  of  the proposed  approach  through  simulation  results  and  analysis. 

Finally, Section 7 concludes the study with final remarks and future perspectives. 

2. Incorporating OSI Layers in WSN Clustering 

The cross‐layer protocol design has become a key focus in recent network research, especially in 

WSNs, as  it plays a crucial role  in developing new protocols that address the challenge of energy 

saving  within  the  constraints  of WSNs.  By  leveraging  the  cross‐layer  principle,  this  approach 

significantly increases energy efficiency, thereby enhancing overall network performance. 

Sakib et al. [19] propose the EQPD‐MAC (Energy‐aware QoS MAC protocol based on Prioritized 

Data and Multi‐hop routing) protocol, an innovative solution designed to address energy efficiency 

and Quality of Service (QoS) challenges  in WSNs. The EQPD‐MAC protocol integrates prioritized 

data handling with multi‐hop routing to ensure the timely delivery of high‐priority packets while 

conserving energy. This approach is particularly crucial in WSNs where energy resources are limited 

and efficient data transmission is necessary for maintaining network functionality. The methodology 

behind EQPD‐MAC  involves an adaptive active/sleep  time mechanism aimed at minimizing  idle 

listening and reducing overall energy consumption. By implementing a cross‐layer communication 

strategy that incorporates the Ad hoc On demand Distance Vector (AODV) routing protocol, EQPD‐

MAC  achieves  efficient multi‐hop  routing.  The  protocol  supports  four  levels  of  packet  priority, 

dynamically adjusting active times based on the network load to optimize performance. This ensures 

that  high‐priority  data  packets  are delivered  promptly,  enhancing  the QoS  of  the  network.  The 

EQPD‐MAC protocol was implemented and tested using the Castalia Simulator, with performance 

comparisons made against  three other QoS MAC protocol. The  results demonstrated  that EQPD‐

MAC  significantly  reduced  sensor  node  energy  consumption  by  up  to  30.3%,  per‐bit  energy 

consumption by up  to  29.6%,  and  sink node  energy  consumption by up  to  27.4%. Additionally, 

EQPD‐MAC increased throughput by up to 23.3% compared to the other protocols, showcasing its 

superior  energy  efficiency  and  network  performance.  Advantages  of  the  EQPD‐MAC  protocol 

include  its  superior  energy  efficiency  achieved  through  adaptive  active/sleep  times,  effective 

handling of multi‐priority packets ensuring timely delivery of critical data, enhanced throughput, 

and reduced latency. 

Wang et al. [20] propose a novel hybrid clustering and routing protocol for WSNs that combines 

Fuzzy Logic with a Quantum Annealing algorithm (FQA) to enhance network stability and minimize 

energy consumption. The Fuzzy Inference System (FIS) is employed to select appropriate CHs based 

on parameters such as residual energy, number of neighbors, distance to the BS, and node centrality. 

During the routing phase, the    quantum annealing algorithm is utilized to find the optimal route 

from  the CHs  to  the  BS,  enhancing  energy  efficiency.  The  authors  introduce  an  on‐demand  re‐

clustering mechanism that reduces computation time and overhead compared to periodic clustering 

methods. An energy threshold is defined to filter candidate CHs, further optimizing the process. The 

FQA  protocol  is  evaluated  against  peer  protocols  across  various  scenarios,  showing  superior 

performance  in  terms  of  energy  consumption,  network  lifetime,  number  of  alive  nodes,  and 

throughput.  Simulation  results  demonstrate  that  the  proposed  FQA  protocol  significantly 

outperforms the compared protocols, achieving better energy efficiency and network performance. 

This  hybrid  approach  leverages  the  strengths  of  fuzzy  logic  for  CH  selection  and  the  global 

optimization capability of quantum annealing for routing, providing a robust solution for energy‐

efficient WSN management. 

Xenakis et al. [21] employed Simulated Annealing (SA) to address the significant challenge of 

energy loss and node placement in WSNs. Their research focuses on optimizing the energy efficiency 

of topology control, power management, and packet transmission within WSNs. By leveraging SA, 

they aim to find optimal solutions for deploying network topologies that meet both coverage and 

connectivity requirements. Their approach involves several key strategies. Firstly, they optimize the 

networkʹs topology to ensure that sensor nodes are deployed in a manner that maximizes coverage 

while maintaining necessary connections. This  involves careful placement of nodes to achieve the 

best  possible  balance  between  coverage  and  connectivity,  thereby minimizing  energy wastage. 
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Additionally, Xenakis et al. address power control by implementing Error Correction Codes (ECC) 

at the MAC layer, which helps in transmitting data packets more reliably and with reduced energy 

consumption. At the physical layer, they control power usage to further enhance energy efficiency. 

These combined strategies aim to reduce the average power dissipation across the network. Their 

findings suggest  that using SA  to deploy an almost optimal  topology  significantly  lowers power 

consumption and improves network coverage compared to traditional random sampling heuristics. 

The use of SA allows for a more systematic and efficient exploration of the possible configurations, 

leading to better overall performance in terms of energy usage and network lifespan. Moreover, by 

integrating ECC at the MAC layer, the protocol ensures that data packets are transmitted with higher 

reliability,  reducing  the need  for  retransmissions and  thus saving energy. This  layered approach, 

which  simultaneously  addresses  topology  control, power management, and packet  transmission, 

demonstrates  a  comprehensive method  for  enhancing WSN  performance.  Xenakis  et  al.ʹs work 

underscores the effectiveness of combining advanced optimization techniques like SA with energy‐

efficient  protocols  to  tackle  the  inherent  challenges  of WSNs.  Their  research  provides  valuable 

insights  into  how  systematic  optimization  can  lead  to  significant  improvements  in  both  energy 

consumption and network  reliability, paving  the way  for  future  innovations  in WSN design and 

management. 

EAP‐CMAC, a novel cooperative MAC protocol proposed by Sami et al. [22], stands for Energy 

Aware Physical‐layer Network Cooperative MAC. This protocol  is designed  for  ad hoc wireless 

networks, blending collaborative communication with physical  layer network coding  (PNC). The 

EAP‐CMAC  protocol  dynamically  selects  the  optimal  transmission mode  among  three  options: 

classic  collaboration,  direct  transmission,  and  PNC‐based  transmission.  This  selection  process 

considers the quality of the source‐to‐destination connection and the status of the destination queue. 

One of the key innovations of EAP‐CMAC is its combined approach to power allocation and relay 

selection.  This  approach  takes  into  account  the  residual  energy  of  nodes  and  their  positional 

information, aiming to minimize power dissipation and significantly extend the networkʹs lifespan. 

By optimizing power distribution and relay choices based on these  factors, the protocol enhances 

energy efficiency across the network. To rigorously evaluate the performance of EAP‐CMAC, Sami 

et al. presented a 3D Markov model. This model analyzes the protocolʹs operation and estimates the 

probability of successful data transfer within the network. Additionally, the protocol  introduces a 

precise NAV      parameter to increase spatial reuse, further improving network efficiency. Analytical 

research and simulation results demonstrate that EAP‐CMAC outperforms other methods focused 

on network lifespan extension. The optimal power distribution strategy employed by EAP‐CMAC 

enhances network lifespan performance by 7% compared to an equal power distribution approach. 

This significant  improvement underscores the effectiveness of the protocolʹs power allocation and 

relay  selection  mechanisms.  Furthermore,  the  protocolʹs  ability  to  adaptively  choose  the  best 

transmission  mode  based  on  real‐time  network  conditions  ensures  robust  and  efficient 

communication. This adaptability, coupled with strategic power management, makes EAP‐CMAC a 

highly effective solution for enhancing the longevity and performance of ad hoc wireless networks. 

Sami et al.ʹs work highlights the critical importance of integrating collaborative communication and 

advanced network coding  techniques  to achieve superior energy efficiency and network  lifespan. 

Their  research  provides  a  valuable  framework  for  future  developments  in  cooperative  MAC 

protocols,  showcasing  the  potential  for  significant  advancements  in  the  field  of  ad  hoc wireless 

networks. 

Niroumand  et  al.  [23] proposed  a novel  cross‐layer geographic  routing  approach  for WSNs 

tailored for disaster relief operations, named Geographic Cross‐layer Routing for Disaster (GCRAD). 

This  innovative  solution  integrates  routing  and MAC  layer  functions  through  a  unified  route 

formation method for relay selection. GCRAD evaluates several criteria for relay selection, including 

the number of prospective relay nodes, the state of the node queue, and the distance from the BS. By 

incorporating  these  criteria  into  a  single  phase,  GCRAD  effectively  eliminates  inefficient 

transmissions,  shortens  the  communication  process,  and minimizes  collision  probabilities.  This 

streamlined approach enhances the efficiency of the routing process, making it particularly suitable 
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for  the high‐demand,  time‐sensitive scenarios often encountered  in disaster  relief operations. The 

GCRAD protocolʹs design aims to address the unique challenges posed by disaster‐related traffic, 

where  rapid and  reliable  communication  is  critical. By  focusing on  a  comprehensive  set of  relay 

selection criteria, GCRAD ensures that the most suitable relay nodes are chosen, thereby optimizing 

the  overall  network  performance.  Simulation  results  using  the NS2  simulator  demonstrate  that 

GCRAD significantly reduces power consumption, end‐to‐end  latency, and  improves the delivery 

rate  compared  to  advanced  inter‐geographic  routing  strategies.  The  protocolʹs  ability  to  reduce 

power  consumption  is  crucial  in  disaster  scenarios  where  energy  resources  are  limited  and 

replenishment may not be feasible. Moreover, GCRADʹs reduction in end‐to‐end latency ensures that 

critical information is relayed swiftly across the network, which is vital for effective disaster response. 

The protocolʹs improved delivery rate indicates its robustness in maintaining reliable communication 

even under  the  stressful conditions  typical of disaster environments. Niroumand et al.ʹs  research 

highlights  the  importance  of  cross‐layer  integration  in  enhancing  the  performance  of WSNs  for 

disaster relief. Their work provides valuable insights into how geographic routing strategies can be 

optimized  through  cross‐layer  design,  leading  to  more  efficient  and  reliable  communication 

networks. The GCRAD protocol sets a precedent for future research and development in the field, 

demonstrating that a well‐designed cross‐layer approach can address the complex requirements of 

disaster  relief operations. By  ensuring  energy  efficiency,  reducing  latency,  and maintaining high 

delivery rates, GCRAD contributes to the advancement of WSN technology in critical applications. 

Mohamed et al. [24] conducted an in‐depth analysis of four representative connected coverage 

algorithms:  Adjustable  Range  Set  Covers  (AR‐SC),  Optimized  Connected  Coverage  Heuristic 

(OCCH),  Greedy  Coverage Weighted  Communication  (GCWGC),  and  Overlapping  Target  and 

Connected Coverage (OTTC). Their study focused on evaluating the characteristics and performance 

of these recent energy‐efficient coverage strategies within the context of Industrial WSNs (IWSNs). 

The researchers performed extensive comparisons to  integrate the features of fundamental design 

concepts aimed at maximizing connectivity and coverage of IWSNs. These comparisons were based 

on several critical metrics, including average power consumption, network lifespan, dead node rate, 

and  coverage  time. By  simulating  various  network  properties within  a  noisy  environment,  they 

aimed  to  achieve  optimal  network  coverage.  Each  of  the  four  algorithms was  examined  for  its 

suitability in different industrial domains based on its coverage features. For instance, AR‐SC focuses 

on adjusting the sensor range to form optimal coverage sets, whereas OCCH employs heuristics to 

enhance connected coverage efficiently. GCWGC utilizes a greedy approach to balance coverage and 

communication weights, and OTTC aims to overlap target areas while maintaining connectivity. The 

study revealed that achieving uniform performance across all metrics is challenging. Consequently, 

the selection of a hedging algorithm should be tailored to the specific requirements of the practical 

application.  Factors  such  as  maximum  longevity,  convergence  speed,  and  other  essential 

performance metrics must be considered when choosing the most appropriate algorithm. Once the 

primary performance  criterion  is  identified, efforts can be directed  toward optimizing additional 

parameters  to enhance overall network performance. This research provides valuable  insights  for 

IWSN designers,  offering  them  the  knowledge  to  select  practical  hedging  approaches  that meet 

expected performance metrics in various industrial applications. By understanding the strengths and 

limitations of each algorithm, designers can make informed decisions that align with their specific 

operational needs. Mohamed et al.ʹs work highlights the importance of tailored algorithm selection 

in the context of IWSNs. Their comprehensive analysis demonstrates that while no single algorithm 

excels in all aspects, each has distinct advantages that can be leveraged depending on the application. 

This  approach  ensures  that  IWSNs  can  achieve  optimal  performance,  reliability,  and  energy 

efficiency in diverse industrial environments. 

A novel Cross‐ Layer MAC (CL‐MAC) protocol [25] has been developed for WSNs to effectively 

manage multi‐stream, multi‐packet, and multi‐hop  traffic patterns while accommodating varying 

traffic loads. The CL‐MAC protocol is designed around a stream configuration packet structure that 

utilizes routing data to efficiently transport multiple data packets across different multi‐hop streams. 

The core functionality of CL‐MAC involves evaluating all neighboring flow configuration requests 
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and packets held within the buffer of the routing layer when constructing a flow. This comprehensive 

assessment allows CL‐MAC to make informed decisions about scheduling based on the current state 

of the network. By doing so, the protocol can dynamically adjust its methods to optimize performance 

under varying conditions. One of the key features of CL‐MAC is its ability to adapt to the real‐time 

network  environment,  ensuring  efficient  data  transmission  even  under  high  traffic  loads.  This 

adaptability  is  crucial  for maintaining high performance  in WSNs, where  traffic patterns  can  be 

unpredictable  and  variable.  The  efficacy  of  CL‐MAC  was  thoroughly  examined  using  the  ns2 

simulator,  and  its  performance  was  compared  to  other  protocols  across  various  network 

configurations and under different load and traffic conditions. The simulation results demonstrated 

that CL‐MAC significantly enhances the delivery rate and reduces end‐to‐end delay. Furthermore, it 

achieves these improvements while also lowering the average power consumption per transmitted 

packet. These findings highlight the potential of CL‐MAC to provide superior performance in terms 

of energy efficiency and data delivery reliability. By  leveraging cross‐layer design principles, CL‐

MAC  can  coordinate  between  different  protocol  layers  to  optimize  resource  use  and  network 

performance. The development of CL‐MAC addresses several critical challenges in WSNs, such as 

managing diverse traffic patterns and maintaining energy efficiency. Its ability to handle multiple 

streams and packets concurrently, while adjusting to network conditions, makes it a robust solution 

for various WSN  applications. Moreover,  the  reduction  in  end‐to‐end delay  ensures  timely data 

delivery, which  is essential for applications that require real‐time monitoring and rapid response. 

The lower power consumption per packet extends the overall network lifespan, making CL‐MAC an 

energy‐efficient choice for long‐term deployments. 

Kannughatta  et  al.  [26] proposed  an  innovative MAC protocol designed  to  enhance  energy 

efficiency  in WSNs by utilizing a  leader‐follower communication technique. This protocol aims to 

eliminate intra‐area collisions and minimize inter‐area collisions through the implementation of two 

distinct MAC protocol stacks. The proposed MAC protocol introduces a sleep schedule to conserve 

idle power  by  employing  a duty  cycle mechanism. This duty  cycle  ensures  that nodes  alternate 

between active and sleep states, thereby reducing unnecessary energy consumption when nodes are 

idle. By effectively managing the activity periods of sensor nodes, the protocol significantly extends 

the overall network lifespan. In their study, Kannughatta et al. explored current MAC protocols to 

identify  the most effective  strategies  for achieving energy efficiency. They  found  that  the  leader‐

follower  communication  technique was  particularly  effective  in  coordinating  data  transmission 

within the network. The leader node handles the majority of communication tasks, while follower 

nodes  remain  in  a  low‐power  sleep  state until  they  are needed. This  approach not only  reduces 

energy  consumption  but  also  helps  in  organizing  the  networkʹs  communication  structure more 

efficiently. The dual MAC protocol stacks play a crucial role in the proposed solution. One stack is 

dedicated to managing intra‐area communications, ensuring that data transmissions within a specific 

area are collision‐free. The second stack handles  inter‐area communications, focusing on reducing 

collisions between different areas of the network. This dual‐stack approach enhances the protocolʹs 

ability to manage complex traffic patterns and maintain high performance under varying network 

conditions.  Simulation  results  demonstrated  the  effectiveness  of  the  proposed MAC  protocol  in 

comparison to  the most commonly used MAC protocols  in WSNs. The results showed significant 

improvements  in  energy  efficiency, with  reduced  collision  rates  and  lower  power  consumption. 

These enhancements translate into a longer network lifespan and more reliable data transmission. 

The introduction of a sleep schedule and duty cycle mechanism ensures that the protocol can adapt 

to the networkʹs real‐time conditions, making it suitable for various WSN applications. The leader‐

follower technique provides a structured approach to data transmission, reducing the overall energy 

expenditure and improving network efficiency. 

Weiwei et al. [27] proposed a novel protocol named CREC (Cross‐layer, Reliable, and Efficient 

Communication protocol) based on the innovative concept of node initiative. This approach allows 

for the integration of multiple functions within a unified protocol framework, significantly enhancing 

the  overall  communication  operations  in WSNs. The CREC  protocol  offers  several  key  features, 

including  dispersed  congestion  management,  robust  geographic  routing,  and  medium  access 
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contention networking. These features are designed to optimize energy efficiency, ensure the fidelity 

of sensory data, and account for physical channel effects, thereby facilitating efficient and reliable 

data transmission. One of the core innovations of the CREC protocol is its focus on node initiative, 

which empowers  individual nodes  to perform multiple  roles within  the network. This  capability 

allows nodes to dynamically adapt to changing network conditions and requirements, ensuring that 

communication remains efficient and reliable. By integrating these functions into a single framework, 

CREC  minimizes  the  complexity  and  overhead  typically  associated  with  multi‐layer  systems. 

Dispersed  congestion  management  is  a  critical  component  of  CREC,  helping  to  prevent  data 

bottlenecks and ensuring smooth data flow across the network. This feature is particularly important 

in WSNs,  where  congestion  can  lead  to  increased  energy  consumption  and  reduced  network 

performance.  By managing  congestion  effectively,  CREC  enhances  the  overall  efficiency  of  the 

network. Robust geographic routing within CREC ensures that data packets are transmitted through 

the most efficient paths, taking into account the geographic positions of nodes. This routing strategy 

reduces  the  likelihood  of  packet  loss  and  ensures  timely  data  delivery,  which  is  essential  for 

maintaining the accuracy and reliability of sensory data. Medium access contention networking is 

another vital aspect of CREC, enabling nodes  to access  the communication medium  in an orderly 

manner.  This  feature  reduces  collisions  and  ensures  that  data  packets  are  transmitted without 

interference, further improving the reliability of data transmission. Simulation results demonstrate 

that the CREC protocol significantly improves energy usage and network performance compared to 

previously suggested multi‐layer systems. The protocolʹs ability  to optimize energy consumption 

while maintaining high levels of data fidelity and transmission reliability makes it a valuable solution 

for WSNs. 

Jun  et  al.  [28]  proposed  an  innovative  routing  algorithm  named  Topological  Structure  by 

Layered Configurations (TSLC) to enhance the performance quality of data transmission in WSNs. 

This  algorithm  leverages  the  cross‐layer  design  technique  to  integrate  the  functionalities  of  the 

network and MAC layers, thereby optimizing the overall network performance. The TSLC algorithm 

operates by dynamically accessing and utilizing the status information of network nodes across both 

the MAC and network layers. This cross‐layer approach allows for more informed decision‐making 

regarding routing and data transmission, ultimately  leading to more efficient network operations. 

One of the primary goals of the TSLC algorithm is to conserve energy across the entire network. By 

intelligently managing the routing paths and data transmission processes, TSLC minimizes energy 

consumption, which is critical for extending the lifespan of WSNs. The algorithm achieves this by 

selecting  optimal  routes  that  reduce  the  number  of  transmissions  and  retransmissions,  thereby 

conserving the battery life of individual sensor nodes. In addition to energy conservation, the TSLC 

algorithm also aims to prolong the overall network lifespan. By ensuring that energy consumption is 

balanced across all nodes and avoiding  the premature depletion of any single nodeʹs battery,  the 

algorithm maintains  network  functionality  for  a  longer  period. This  is  particularly  important  in 

WSNs deployed in remote or inaccessible areas where node replacement or recharging is not feasible. 

The cross‐layer design of the TSLC algorithm also contributes to improving the service performance 

quality of the network. By coordinating the activities of the MAC and network layers, the algorithm 

can reduce latency, improve data throughput, and enhance the reliability of data transmission. This 

results  in  a  higher  QoS  for  applications  relying  on WSNs,  such  as  environmental monitoring, 

industrial automation, and security surveillance. Simulation results demonstrate the effectiveness of 

the TSLC algorithm in achieving its design goals. The algorithm shows significant improvements in 

energy savings, network lifespan, and service performance quality compared to traditional routing 

algorithms. These results validate the benefits of the cross‐layer design approach and highlight the 

potential of TSLC to enhance the efficiency and reliability of WSNs. 

To address the challenges of high energy consumption, collision detection, transmission delay, 

and throughput in mobile WSNs (MWSN), Xin et al. [29] proposed a Cross‐layer Energy Efficiency 

(CEE) model. This  innovative model  integrates  three critical  layers:  the physical  layer  (PHY),  the 

MAC layer, and the network layer, each contributing to enhanced network performance. The CEE 

model  employs  full‐duplex  interfaces  in  the PHY  layer,  allowing  simultaneous  transmission  and 
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reception of data, which significantly reduces the time required for data exchange and minimizes 

collision occurrences. This feature is crucial for improving the overall data throughput and reducing 

transmission  delays  in MWSNs.  In  the  network  layer,  the  CEE model  focuses  on  the  strategic 

placement  of  nodes.  By  optimizing  node  placement,  the model  ensures  efficient  coverage  and 

connectivity,  which  are  essential  for  reducing  energy  consumption  and  enhancing  network 

reliability. Proper node placement also helps in minimizing the distance over which data must be 

transmitted, thereby conserving energy and prolonging the lifespan of the sensor nodes. The MAC 

layer within the CEE model incorporates an advanced MAC protocol designed to manage data access 

and transmission effectively. This protocol reduces the likelihood of collisions and ensures that data 

packets are transmitted in an orderly and efficient manner. By coordinating the activities of sensor 

nodes, the MAC protocol helps in maintaining a low level of energy consumption and improves the 

overall  efficiency  of  the  network.  Compared  to  existing models,  the  CEE model  offers  several 

significant advantages. In terms of power control, the model dynamically adjusts the power levels 

used for data transmission, ensuring that energy is used efficiently without compromising the quality 

of  communication.  This  adaptive  power  control mechanism  is  essential  for maintaining  energy 

efficiency  across  the  network.  The  CEE model  also  excels  in  reducing  transmission  delays  and 

improving throughput. By leveraging full‐duplex communication and optimizing the MAC protocol, 

the  model  ensures  that  data  packets  are  delivered  promptly  and  reliably.  This  is  particularly 

important  in MWSNs, where  timely data  transmission  is critical  for many applications,  including 

those  in  the  Internet of Things  (IoT). Performance assessments of  the CEE model demonstrate  its 

effectiveness in minimizing energy dissipation and outperforming other transmission models. The 

results indicate that CEE can be effectively utilized in practical MWSN deployments, offering a robust 

solution for enhancing energy efficiency and network performance. 

Mammu et al. [30] introduced a novel method called interlayer Cluster‐Based Energy‐efficient 

routing (CCBE) to extend the network lifespan and enhance the energy efficiency of WSNs. The CCBE 

approach organizes nodes into hexagonal architectures, with each hexagonal group comprising a CH 

and  several  cluster members.  The  CCBE method  begins with  the  CH  selection  process, which 

considers  both  the  distance  from  the  BS  and  the  remaining  energy  of  the  nodes.  This  dual 

consideration ensures that the chosen CHs are optimally positioned to minimize energy consumption 

during data transmission and are capable of managing the networkʹs energy resources effectively. By 

selecting CHs with higher residual energy and closer proximity to the BS, the protocol reduces the 

energy  expenditure  associated  with  long‐distance  transmissions.  Once  the  CHs  are  selected,  a 

contention‐free protocol is implemented to prevent collisions during transmission operations. This 

protocol  ensures  that  data  packets  are  transmitted  without  interference,  which  is  crucial  for 

maintaining efficient communication and conserving energy. The CH then assigns transmission slots 

to each cluster member based on their remaining energy levels. This slot assignment strategy aims to 

extend the sleep duration of nodes with lower energy reserves, thereby conserving their battery life 

and balancing the overall energy consumption within the network. The effectiveness of the CCBE 

protocol was  demonstrated  through  simulations, which  showed  that  it  outperforms  the Hybrid 

Energy‐Efficient Distributed Clustering (HEED) ( ) and Low‐Energy Adaptive Clustering Hierarchy 

(LEACH)  ()  protocols  in  terms  of  energy  dissipation,  network  lifespan,  and  throughput.  The 

simulation  results  highlighted  that  CCBEʹs  approach  to  CH  selection,  collision  prevention,  and 

energy‐aware slot assignment significantly enhances the energy efficiency and longevity of WSNs. 

By  organizing  nodes  into  hexagonal  clusters  and  optimizing CH  selection, CCBE minimizes  the 

energy required for data transmission and reduces the likelihood of collisions. The protocolʹs energy‐

aware  slot  assignment  further  ensures  that  the  networkʹs  energy  resources  are  used  efficiently, 

allowing  for  longer operational periods without  the need  for battery  replacement or  recharging. 

Mammu  et  al.ʹs  research  underscores  the  importance  of  interlayer  strategies  in  enhancing  the 

performance of WSNs. The CCBE protocolʹs comprehensive approach to energy management and 

efficient  data  transmission  provides  a  robust  framework  for  improving  the  sustainability  and 

reliability of WSNs. By addressing key challenges such as energy dissipation, collision prevention, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 July 2024                   doi:10.20944/preprints202407.2221.v1

https://doi.org/10.20944/preprints202407.2221.v1


  10 

 

and balanced energy consumption, CCBE offers a practical  solution  for extending  the  lifespan of 

sensor networks. 

Kurian et al.  [31] addressed  the  challenge of optimal  sensor placement  in WSNs  to enhance 

sensing coverage,  taking  into account sensor  limitations such as energy, communication distance, 

and  sensing  range. They aimed  to optimize  sensor placement using a variant of  the Ant Colony 

Optimization (ACO) algorithm, known as the Binary Ant Colony Algorithm (BACA), and integrated 

it with other optimization algorithms  like Hill Climbing  (HC) and SA. ACO simulates  the search 

process  carried out by ants when  looking  for  food. Each ant makes a  random probabilistic path, 

representing a possible solution. Ants leave a pheromone trail to trace their way back to the colony. 

When an ant finds a shorter path, it strengthens the pheromone trail by repeatedly traveling back and 

forth, encouraging other ants to follow the optimized route. If another ant discovers a better path, it 

updates  the pheromone  trail, continuously  improving  the solution until an optimal path  is  found 

after several iterations. The BACA algorithm differs from ACO in that it makes binary path decisions 

(0 or 1), indicating whether a sensor is in sleep or active mode, with the goal of optimizing sensor 

configuration and coverage. The solution is then updated based on the quality of previous solutions, 

evaluated using a fitness function. Specifically, old pheromone trails evaporate while better paths 

have  their pheromone strengthened. However, when  the search space  is  large and complex, or  if 

initial  trial solutions are poorly chosen, BACAʹs performance can be  limited. To enhance solution 

exploration  and  achieve  a  global  optimum,  BACA  is  integrated with  the HC  algorithm, which 

iteratively  compares  adjacent  solutions  and  selects  the  best  one,  and  the  SA  algorithm, which 

iteratively reduces the probability of accepting worse solutions as the solution progresses.   

Khujamatov  et  al.  [32]  presented  an  innovative  energy‐efficient  clustering  and  routing 

mechanism for WSNs using a hybrid approach that combines Chaotic Genetic Algorithm (CGA) and 

GWO  . This method, named CGA‐GWO, aims  to address  the significant challenge of minimizing 

overall energy consumption in WSNs, which is crucial for extending the operational lifespan of these 

networks. The hybrid approach  leverages  the strengths of both CGA and GWO  to select energy‐

aware cluster heads and establish optimal routing paths to the base station, thereby ensuring efficient 

energy utilization. The proposed CGA‐GWO method was evaluated through extensive simulations 

and compared with other relevant systems. The performance metrics considered in the evaluation 

included the number of live nodes, average remaining energy level, packet delivery ratio, and the 

overhead associated with  cluster  formation and  routing. These metrics provide a  comprehensive 

assessment  of  the  systemʹs  efficiency  and  effectiveness  in  managing  energy  consumption  and 

ensuring  reliable  data  transmission.  The  simulation  results  demonstrated  that  CGA‐GWO 

outperforms the other systems in terms of energy efficiency and network lifetime. Specifically, CGA‐

GWO showed a higher number of live nodes over time, indicating better energy conservation and 

longer operational periods. The average remaining energy levels were also higher in networks using 

CGA‐GWO,  underscoring  its  effectiveness  in managing  energy  consumption.  Furthermore,  the 

packet delivery ratio was improved, highlighting the systemʹs reliability in data transmission. The 

overhead associated with cluster  formation and routing was significantly  reduced, making CGA‐

GWO a more efficient solution for WSNs. 

The collection of research works reviewed (Table 2) underscores the importance of cross‐layer 

optimization and  the strategic  integration of multiple OSI  layers  to enhance  the performance and 

energy efficiency of WSNs. These studies reveal common features and techniques that collectively 

contribute  to  the advancement of WSN  technology. A  recurring  theme across  these works  is  the 

emphasis on energy efficiency, which is paramount given the limited power resources of WSN nodes. 

By  leveraging cross‐layer designs, protocols can optimize energy usage by coordinating functions 

across the physical, data link, and network layers. This holistic approach allows for more informed 

and effective decision‐making, as it considers the interactions and dependencies between different 

layers of the network stack. 

One of the key techniques highlighted  is the use of adaptive duty cycles and sleep schedules 

managed  by  the MAC  layer.  Protocols  such  as  EQPD‐MAC  and CL‐MAC  incorporate  dynamic 

scheduling  to ensure nodes  spend minimal  time  in active  states unless necessary. This  technique 
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significantly  reduces  idle  power  consumption  and  extends  the  overall  network  lifespan.  The 

integration of these schedules with routing decisions ensures that energy savings do not compromise 

data transmission reliability or latency. 

Another common technique is the strategic selection of CHs and relay nodes based on multiple 

criteria, including residual energy and distance to the BS. The protocols CCBE and GCRAD exemplify 

this approach by evaluating nodes’ energy levels and proximity to optimize data routing paths and 

reduce energy expenditure. This method ensures balanced energy consumption across the network, 

preventing early depletion of nodes and maintaining network functionality over a longer period. 

The  importance of robust and reliable data transmission  is also a focal point  in these studies. 

Techniques  such  as  ECC  and  PNC  are  employed  to  enhance  data  integrity  and  reduce 

retransmissions.  By  ensuring  that  data  packets  are  transmitted  accurately  and  efficiently,  these 

methods contribute to lower energy consumption and improved network performance. The use of 

full‐duplex communication in the CEE model further highlights the potential of advanced physical 

layer techniques to enhance throughput and reduce delays. 

Table 2. Comparison of different MAC‐Network routing techniques. 

Protocol/ 

Technique 

Involved 

OSI 

Layers 

MAC 

Technique 

Parameters 

Used 
Routing  Scalability  Key Findings 

EQPD‐MAC 

[19] 

Network 

MAC 
TDMA 

Residual Energy, 

Packet Priority, 

Multi‐Hop Path 

Multi 

Hop 
High 

Combines prioritized 

data handling with multi‐

hop routing for efficient 

energy usage 

FQA [20] 
Network 

MAC 
TDMA 

Residual Energy, 

Neighbors, 

Distance to BS, 

Node Centrality 

Multi 

Hop 
High 

Combines fuzzy logic for 

CH 

selection with quantum 

annealing for optimal 

routing 

SA, ECC [21] 
Physical 

Data Link 
TDMA 

Coverage, 

Connectivity 

Multi 

Hop 
Medium 

Lower power 

consumption and better 

network coverage 

compared to heuristics 

EAP‐CMAC 

[22] 

Physical 

Data Link 
CSMA/CA 

Quality of 

Connection, 

Destination 

Queue 

Multi 

Hop 
Medium 

Improved network 

lifespan and reduced 

power dissipation 

GCRAD [23] 
Data Link 

Network 
ALOHA 

Number of 

Relays, Node 

Queue State, 

Distance to BS 

Multi 

Hop 
High 

Effective for disaster relief 

with reduced latency and 

power 

usage 

ARSC, OCCH, 

CWGC, OTTC 

[24] 

Physical 

Data Link 

Network 

TDMA 

Average Power 

Consumption, 

Network 

Lifespan 

Single 

and Multi 

Hop 

Medium 

Insight into selecting 

appropriate algorithms 

based on specific 

network needs 

CL‐MAC [25] 
Data Link 

Network 
CSMA/CA 

Network 

Conditions 

Multi 

Hop 
Medium 

Enhanced data 

transmission 

efficiency and reduced 

energy consumption 

MAC [26]  Data Link  TDMA 
Idle Power, 

Duty Cycle 

Multi 

Hop 
Medium 

Improved network 

lifespan and reduced idle 

power 

consumption 

CREC [27] 

Physical 

Data Link 

Network 

CSMA/CA 

Node Initiative, 

Congestion 

Management, 

Channel Effects 

Multi 

Hop 
High 

Significant energy usage 

reduction and better 

network performance 

TSLC [28] 
Data Link 

Network 
CSMA/CA 

Node Status, 

Energy 

Consumption 

Multi 

Hop 
High 

Enhanced energy 

conservation and 

prolonged network 

lifespan 
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Protocol/ 

Technique 

Involved 

OSI 

Layers 

MAC 

Technique 

Parameters 

Used 
Routing  Scalability  Key Findings 

CEE [29] 
Data Link 

Network 
CSMA/CA 

Node Placement, 

Full‐duplex 

Interfaces 

Multi 

Hop 
High 

Effective for mobile 

networks with significant 

energy efficiency and 

performance 

improvements 

CCBE [30] 

Physical 

Data Link 

Network 

TDMA 

Distance to BS, 

Residual Energy, 

Slot Assignment 

Multi 

Hop 
High 

Superior energy efficiency 

and network longevity 

compared to traditional 

clustering protocols 

BACA, HC, SA 

[31] 

Physical 

Data Link 

Network 

TDMA 

Sensor 

Placement, 

Sensing 

Coverage 

Single 

Hop 
Medium 

Achieved high 

sensing coverage 

CGA‐GWO [32] 
MAC 

Network 
TDMA 

Distance to BS, 

Residual Energy 

Multi 

Hop 
High 

Combines CGA 

and GWO for efficient 

clustering and routing 

The incorporation of geographic and hierarchical routing strategies is another significant aspect 

observed. Protocols like GCRAD and TSLC utilize geographic information and layered topological 

structures  to make  routing  decisions  that  optimize  both  energy  efficiency  and  coverage.  These 

strategies ensure that data packets follow the most efficient paths, reducing the number of hops and 

associated energy costs. 

Congestion  management  and  collision  avoidance  are  critical  for  maintaining  network 

performance  under  varying  traffic  loads.  Protocols  such  as  CREC  and  CL‐MAC  address  these 

challenges  by  implementing  advanced MAC  layer mechanisms  to manage medium  access  and 

prevent data collisions. These approaches ensure smooth data flow and minimize energy wastage 

due to retransmissions. 

Collectively,  these works demonstrate  that  effective WSN protocols must  integrate multiple 

layers and techniques to address the complex and interrelated challenges of energy efficiency, data 

transmission  reliability,  and  network  longevity. Cross‐layer  designs, which  coordinate  functions 

across  the  physical,  data  link,  and  network  layers,  provide  a  comprehensive  framework  for 

optimizing WSN performance. Techniques such as adaptive duty cycles, strategic node selection, 

robust data transmission methods, and advanced routing strategies are essential components of these 

integrated solutions. 

3. Integration of WSN Node Sleep Scheduling into the CSMA/CA Mechanism 

The traditional CSMA/CA mechanism is widely used for medium access control in WSNs [33]. 

However, it does not inherently account for energy conservation, which is crucial in sensor networks 

where nodes are often battery‐powered. By integrating a sleep/activate mode, nodes can conserve 

energy by switching to a low‐power sleep state when not actively transmitting or receiving data. 

Gao et al. [33] propose an extended Markov‐based analytical model for the IEEE 802.15.4 slotted 

CSMA/CA algorithm, incorporating a newly enabled sleep mode to reduce power consumption in 

WSNs. This study focuses on how sleep mode can impact network performance, particularly in terms 

of throughput and power consumption, which are critical metrics for the efficiency and longevity of 

WSNs. The authors develop a model  that  takes  into account  the active/sleep  transitions of sensor 

nodes. By enabling  the  radio  to shut down during sleep mode, significant energy savings can be 

achieved. The model analyzes the impact of various duty cycles on the overall network performance, 

allowing for a detailed understanding of how different sleep schedules can optimize power usage 

without severely affecting throughput. Implementation of the proposed model is validated through 

numerical simulations. The performance metrics analyzed include throughput, power consumption, 

and the balance between active and sleep periods. The results demonstrate that the proposed model 

accurately matches the simulations, confirming its reliability. The study shows that enabling sleep 
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mode  can  effectively  reduce  power  consumption  while  maintaining  satisfactory  network 

performance, making it a valuable addition to the IEEE 802.15.4 standard. 

Zhu et. al [34] address the performance issues of the standard IEEE 802.15.4 CSMA/CA scheme 

under heterogeneous buffered conditions by proposing two novel transmission schemes: One Service 

a Time Scheme  (OSTS)  and Bulk Service  a Time Scheme  (BSTS). These  schemes  are designed  to 

improve the behavior of time‐critical buffered networks with heterogeneous, unsaturated traffic. The 

primary goal  is to enhance delay,  fairness, throughput, and energy efficiency. The study employs 

modified  semi‐Markov  chains and a macro‐Markov  chain  combined with  the  theory of M/G/1/K 

queues  to  model  these  schemes.  This  approach  evaluates  the  characteristics  of  the  improved 

CSMA/CA schemes, focusing on throughput, packet delay, and energy consumption in unsaturated, 

unacknowledged  IEEE  802.15.4  beacon‐enabled  networks.  By  incorporating  these  models,  the 

authors aim to provide a comprehensive analysis that captures the dependent interactions of different 

types  of  nodes  in  the  network.  The  proposed  schemes were  implemented  and  tested  through 

simulations. Performance metrics such as delay,  fairness,  throughput, and energy efficiency were 

analyzed and compared to other non‐priority schemes. The results demonstrate that the proposed 

OSTS  and  BSTS  schemes  significantly  improve  delay  and  fairness  while  achieving  superior 

throughput and energy efficiency in heterogeneous situations. Comprehensive simulations confirm 

that the modelsʹ analysis results align well with the simulation outcomes. 

In their paper, Patel and Kumar [35] propose an enhancement to the Clear Channel Assessment 

(CCA) mechanism within  the  IEEE  802.15.4  standard, which  is  crucial  for  the  slotted CSMA/CA 

protocol. This enhancement aims to improve the performance of WSNs by optimizing the process of 

determining whether a communication channel is clear before transmitting data. The Enhanced Clear 

Channel Assessment  (ECCA) mechanism  involves modifying  the  existing CCA process  to better 

handle  channel  access  in  beacon‐enabled,  acknowledged mode  operations. The  proposed ECCA 

method incorporates additional checks and adaptive strategies to reduce the likelihood of collisions 

and increase the accuracy of channel assessments. The methodology includes the integration of an 

enhanced CCA process that performs multiple checks to ensure the channel is clear, thus improving 

the reliability of transmissions. This is achieved by incorporating a more detailed assessment of the 

channel state, considering  factors such as signal strength and  the presence of  interference, which 

traditional CCA methods might  overlook.  Implementation  of  the  ECCA mechanism was  tested 

through comprehensive simulations. The performance metrics analyzed included throughput, packet 

delay, and energy consumption. The results demonstrated significant improvements in all metrics 

compared  to  the  standard CCA method.  Specifically,  the ECCA method  reduced  the number of 

collisions and retransmissions, leading to more efficient use of the communication channel and lower 

energy consumption for sensor nodes. 

The comparative analysis of the three works (Table 3) underscores substantial advancements in 

the performance and energy efficiency of IEEE 802.15.4 CSMA/CA schemes by leveraging features at 

the Data Link Layer and Physical Layer. Patel and Kumarʹs Enhanced Clear Channel Assessment 

(ECCA)  mechanism  introduces  enhanced  CCA  checks  and  adaptive  strategies,  significantly 

improving channel assessment accuracy, reducing collisions, and enhancing throughput and energy 

efficiency. Zhu et al. study proposes the One Service a Time Scheme (OSTS) and Bulk Service a Time 

Scheme  (BSTS), which  address  performance  issues  in  heterogeneous  buffered  conditions.  These 

schemes  improve  delay,  fairness,  throughput,  and  energy  efficiency  through  effective  buffer 

management and adaptive sleep scheduling. Gao et al. incorporate sleep mode into the IEEE 802.15.4 

CSMA/CA mechanism using an extended Markov‐based model, optimizing duty cycles to reduce 

power  consumption while maintaining  satisfactory network performance. This approach ensures 

energy‐efficient  transmission and minimizes  idle  listening. Collectively,  these works demonstrate 

that  integrating adaptive mechanisms, enhanced assessment  strategies, efficient sleep scheduling, 

and optimized duty cycles can significantly enhance the robustness and energy efficiency of WSNs, 

providing valuable insights for future research and practical implementations. 
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Table 3. Comparison of different CSMA/CA based routing protocols. 

Protocol/ 

Technique 

Involved 

OSI Layers 

MAC 

Technique 

Parameters 

Used 

Physical Layer   

Features 

Data Link Layer   

Features 

Markov Model [33] 
Physical 

MAC 
CSMA/CA 

Duty Cycle, 

Sleep Mode, 

Active/Sleep 

Transitions 

Energy‐efficient 

transmission, 

minimized idle 

listening 

Duty cycle 

optimization, sleep 

mode transitions 

OSTS, BSTS 

[34] 

Physical 

MAC 
CSMA/CA 

Buffered 

Conditions, 

Channel 

Assessment, 

Sleep 

Scheduling 

Optimized signal 

transmission, reduced 

interference 

Buffer management, 

sleep scheduling 

Enhanced CCA 

Mechanism 

[35] 

Physical 

MAC 
CSMA/CA 

Signal 

Strength, 

Interference, 

Channel State 

Improved channel 

sensing, interference 

handling 

Enhanced CCA checks, 

adaptive strategies 

4. Grey Wolf Optimization 

Grey Wolf Optimization (GWO) is an innovative algorithm inspired by the social hierarchy and 

hunting behavior of grey wolves in nature. Developed by Mirjalili et. al. in 2014 [36], GWO has gained 

significant  attention  due  to  its  simplicity,  flexibility,  and  effectiveness  in  solving  complex 

optimization problems. GWO mimics the  leadership structure of grey wolf packs, which  includes 

alpha, beta, delta, and omega wolves. The alpha wolves represent the best solution, beta and delta 

wolves guide  the search, and omega wolves explore new  solutions. This hierarchy helps balance 

exploration and exploitation during the optimization process. 

The GWO algorithm  involves  three main phases: searching  for prey  (exploration), encircling 

prey (exploitation), and attacking prey (convergence). Initially, wolves are randomly positioned in 

the search space. During the exploration phase, wolves update their positions relative to alpha, beta, 

and  delta wolves,  encouraging  diverse  search  space  exploration.  In  the  exploitation  phase,  the 

algorithm fine‐tunes solutions by encircling the best solutions found so far. Finally, the algorithm 

converges by simulating the wolvesʹ attack on prey, refining the best solutions. 

GWOʹs ability to balance exploration and exploitation makes it highly effective across various 

applications,  including engineering design,  feature selection, and neural network  training. Recent 

enhancements, such as hybridizing GWO with other optimization techniques like HC and SA, further 

improve its performance [37]. For instance, integrating GWO with HC and SA has shown superior 

performance in complex optimization tasks by enhancing solution quality and convergence speed. A 

significant  advantage  of  GWO  is  its  minimal  parameter  requirement,  which  simplifies 

implementation and reduces computational overhead. Moreover, GWO is derivative‐free, making it 

suitable  for  problems  with  complex,  non‐differentiable  objective  functions.  Its  adaptability  to 

different problem domains and its robustness in handling various optimization scenarios contribute 

to its growing popularity. 

Recent studies have focused on improving GWOʹs exploration capabilities and convergence rate. 

For example, researchers have proposed better exploration strategies and adaptive mechanisms to 

maintain diversity in the population and prevent premature convergence. These improvements aim 

to  enhance GWOʹs  effectiveness  in  large‐scale and high‐dimensional optimization problems  [38]. 

Experimental results have demonstrated GWOʹs superiority over other optimization algorithms in 

terms of solution quality and computational efficiency. By leveraging the natural behaviors of grey 

wolves, GWO  provides  a  powerful  and  versatile  tool  for  solving  a wide  range  of  optimization 

challenges [39]. 

Algorithm 1: Grey Wolf Optimization 

1. Initialize the grey wolf population  𝑋௜  ሺ𝑖 ൌ 1,2, … ,𝑛ሻ, where  𝑛  is the number of grey 

wolves; 

2. Initialize the maximum number of iterations Max_Iteration; 
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3. Initialize the parameters  𝑎,  𝐴, and  𝐶; 
4. Evaluate the fitness of each grey wolf ; 

5. Identify the best three solutions: 

𝛼  (best solution); 
𝛽  (second best solution); 
𝛾  (third best solution); 

6. While (t < Max_Iteration) Do 

7. For each grey wolf (𝑋௜) Do 
8. Update the position of the current grey wolf using the following equations

(update  𝐴  and  𝐶  using random values  𝑟ଵ  and  𝑟ଶ): 
 𝐴 ൌ  2 ⋅ 𝑎 ⋅ 𝑟ଵ െ 𝑎; 
 𝐶 ൌ  2 ⋅ 𝑟ଶ; 

9. Calculate the distance between the grey wolf and the prey (best positions): 

 𝐷ఈ ൌ ∣ 𝐶 ⋅ 𝛼 െ 𝑋௜ ∣; 
 𝐷ఉ ൌ ∣ 𝐶 ⋅ 𝛽 െ 𝑋௜ ∣; 
 𝐷ఊ ൌ ∣ 𝐶 ⋅ 𝛾 െ 𝑋௜ ∣; 

10. Update the position of the grey wolf:   

 𝑋ଵ ൌ 𝛼 െ 𝐴 ⋅ 𝐷ఈ; 
 𝑋ଶ ൌ 𝛽 െ 𝐴 ⋅ 𝐷ఉ; 
 𝑋ଷ ൌ 𝛾 െ 𝐴 ⋅ 𝐷ఊ; 
 𝑋௜ ൌ

௑భା௑మା௑య
ଷ

; 

11. End For; 

12. Update  𝑎,  𝐴, and  𝐶: 
 Decrease  𝑎  linearly from 2 to 0 over the course of iterations; 
 𝐴   and  𝐶   are  updated  using  random  values  𝑟ଵ   and  𝑟ଶ  in  each 

iteration; 

13. Evaluate the fitness of each grey wolf; 

14. Update  𝛼,  𝛽, and  𝛾  if there are any better solutions; 
15. Increment the iteration counter t; 

16. End While; 
17. Return  𝛼  as the best solution found. 

5. Energy Optimization Approach based on MAC/Routing Cross‐Layer (EOAMRCL) 

To  minimize  energy  consumption  in  WSNs,  we  propose  a  centralized  approach  with  a 

hierarchical  architecture,  where  the  network  is  partitioned  into  clusters,  and  all  processes  are 

managed at  the BS. Our proposed protocol, EOAMRCL,  focuses on both  the MAC  layer and  the 

network  layer, which  are  essential  in  self‐organizing  networks  for  enhancing  performance  and 

addressing scaling  issues. This cross‐layer protocol offers a comprehensive clustering solution by 

utilizing an objective  function  to  identify  the optimal CHs based on residual energy  levels,  intra‐

cluster distances, and inter‐cluster distances. Additionally, during the transmission phase, each node 

creates an active mode/sleep mode schedule based on the NAV,  leveraging the MAC  layerʹs duty 

cycle schedule. This schedule is generated using inter‐layer routing information, ensuring efficient 

and energy‐saving communication within the network. 

5.1. Incorporating Node Paring in CSMA/CA and NAV (MAC Layer) 

In our protocol, we make  several key  assumptions:  the nodes  in  the network are  randomly 

dispersed, and at each iteration, all the sensors gather data and transmit it to a central BS. The sensor 

nodes relay their position data to the BS, enabling the formation of clusters. Within these clusters, 

nodes that are within intra‐cluster transmission range and of the same application type are connected 

in pairs based on minimal distance, using broadcast matching information shared with all nodes in 

the network (Figure 1). This connectivity ensures that nodes become aware of one anotherʹs presence 

and positions, facilitating efficient communication within the network. 
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Figure 1. Clustered network topology. 

A  significant  feature of our  approach  is  the  alternation between  ʺSleepʺ  and  ʺWakeʺ modes 

within a single communication period. In sleep mode, nodes conserve energy by not communicating 

with CHs,  resulting  in minimal  energy  dissipation  (Figure  2).  This  reinforces  the  energy‐saving 

benefits of the proposed approach. Unpaired nodes, however, operate continuously in active mode 

until  their  energy  is depleted, highlighting  the  critical  importance  of  energy  conservation  in  the 

network. If the initial node in a pair is closer to the sink than its associated node it will transition to 

wake‐up mode, also known as active mode. During active mode,  the node  collects data  from  its 

environment and  transmits  it  to  the CHs. Meanwhile,  the associated nodeʹs  transceiver will enter 

sleep mode and remain powered off during this time, conserving energy. In subsequent iterations, 

nodes in active mode will switch to sleep mode, and those in sleep mode will become active, ensuring 

a balanced energy consumption across the network. 

 

Figure 2. Node paring. 

Figure 3 shows the integration of a sleep mode into the CSMA/CA mechanism. This integration 

primarily  aims  to  enhance  energy  efficiency,  which  is  crucial  for  the  longevity  of WSNs.  By 

incorporating sleep mode, nodes can significantly reduce their energy consumption when they are 

not actively transmitting or receiving data. This approach helps in maintaining the balance of energy 

consumption  across  the network. Nodes  can be paired  to  alternate  their  active  and  sleep  cycles, 

ensuring  that  no  single  node  is  overburdened,  thereby  preventing  early depletion  of  individual 

nodesʹ energy resources. 

   

Clusterhead Node 

Wireless Sensor Network 

Regular Node 

BS  

Coupled nodes 

Wireless Sensor Network 

pair 1 

pair 2 

pair 3 
pair 4 

pair 5 

pair 6 
Isolated nodes BS  
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Figure 3. Integration of sleep mode in CSMA/CA mechanism. 

In traditional CSMA/CA, the Network Allocation Vector (NAV) is used to indicate the duration 

that the channel will be occupied. This helps prevent collisions by informing nodes of the ongoing 

transmission  duration.  In  the  proposed  CSMA/CA  mechanism  with  node  pairing  and  sleep 

scheduling, the NAV must be adapted to account for the new sleep/activate mode and node pairing 

dynamics. Below is a conceptual update to the NAV mechanism (Figure 4). 

 

Figure 4. Integration of sleep mode in NAV. 

Duration      Pair ID Sleep Schedule   Transmission Slot 

16 bits  8 bits      32 bits      16 bits NAV Format 

Node 
A 100 ms  B   50ms active, 50ms sleep    25 ms 

Node B 
100 ms  A   50ms sleep, 50ms active    25 ms 

Node 
A 

Node B 

Broadcast NAV to Node B and 
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Enter sleep mode Apply CSMA/CA and transmit data 
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Apply CSMA/CA and transmit data 

Wakeup 
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5.2. Pre‐Clustering Phase (Network Layer) 

In our proposed protocol, we assume  that  the system  includes a certain percentage  (𝑚%) of 

advanced nodes, which have an additional energy  factor  𝜃  compared  to  the normal nodes. Each 

sensor node initially has an energy level of  𝐸଴. For advanced sensor nodes, their energy is increased 
by the factor  𝜃, making their total energy  𝐸଴ሺ1 ൅  𝜃ሻ. Equation (1) is used to calculate the predicted 
networkʹs total energy construction using  𝑛  nodes. 

𝑛𝐸଴ሺ1 ൅𝑚𝜃ሻ ൌ 𝑛𝑚𝐸଴ሺ1 ൅ 𝜃ሻ ൅ 𝑛ሺ1 െ𝑚ሻ𝐸଴  (1)

Consequently,  the  total  energy of  the network  is  enhanced by  this  factor. We  improved  the 

election technique by incorporating the remaining energy of individual nodes, taking into account 

the different probabilities for advanced and ordinary nodes. The probability function for normal and 

advanced member nodes is defined by Equations (2) and (3) respectively: 

𝑃௡௢௥௠௔௟ ൌ
𝑚

1 ൅ 𝜃𝑚
⋅
𝐸௥௘௦௜ௗ௨௔௟

𝐸଴
  (2)

𝑃௔ௗ௩௔௡௖௘ௗ ൌ
𝑚ሺ1 ൅ 𝜃ሻ

1 ൅ 𝜃𝑚
⋅
𝐸௥௘௦௜ௗ௨௔௟

𝐸଴
  (3)

At the end of each clustering round, the BS calculates the threshold probability of clusterheads 

𝑃௧௛௥௘௦௛௢௟ௗ: 

𝑃௧௛௥௘௦௛௢௟ௗ ൌ
𝑚ሺ1 ൅ 𝜃ሻ

1 ൅ 𝜃𝑚
⋅

ARE
𝐸଴
  (4)

Where ARE represents the average residual energy in the network. 

5.3. Clusters Formation Phase (Network Layer) 

Before  the start of each  iteration, every node  transmits  its remaining energy  to  the BS. Upon 

receiving the energy levels from all nodes, the BS calculates ARE and selects nodes with probability 

higher than  𝑃௧௛௥௘௦௛௢௟ௗ  to become candidate CHs. The BS then implements our proposed EOAMRCL 

approach, forming a set of wolf vectors from the group of nodes with probability above  𝑃௧௛௥௘௦௛௢௟ௗ. 
These wolf vectors consist solely of nodes eligible to be CHs, as shown in Figure 5.   
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Figure 5. Construction of wolf vectors from eligible CHs. 

The fitness value of each wolf vector is then calculated using Equation (5). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 ൌ 𝑤ଵ ⋅ 𝑓ଵ ൅ 𝑤ଶ ⋅ 𝑓ଶ ൅ 𝑤ଷ ⋅ 𝑓ଷ  (5)

Thus, the best wolf is the one with the lowest fitness value. In this context, 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ  are 
constants in a user‐defined function, with the requirement that 𝑤ଵ ൅ 𝑤ଶ ൅ 𝑤ଷ ൌ 1, used to determine 

the contribution of each sub‐objective,  𝑓ଵ,  𝑓ଶ, and  𝑓ଷ. In our experiments, we set the weight values as 

follows:  𝑤ଵ ൌ 0.45,𝑤ଶ ൌ 0.45,  𝑤ଷ ൌ 0.1.  These weights  ensure  equal  importance  is  given  to  both 

inter‐cluster and intra‐cluster distances, while using energy as a tie‐breaker in case of equal distances. 

The sub‐objective  𝑓ଵ  is calculated as the normalized sum of the distances between each CH in 

the wolf vector and all other nodes in the network, as shown in Equation (6): 

𝑓ଵ ൌ
1

𝑀𝐷 ൈ𝑁஼ு ൈ 𝑛
෍෍൜

𝑑𝑖𝑠𝑡൫𝐶𝐻௜ , 𝑆௝൯, 𝑆௝  𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝐶𝐻௜ 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ൠ

௡

௝ୀଵ

ே಴ಹ

௜ୀଵ

  (6)

Where: 

 𝑀𝐷  represents the maximum distance between two sensors, 

 𝑁஼ு  represents the number of CHs in the wolf vector, 

 𝑛  represents the total number of nodes. 

 𝐶𝐻௜  represents the clusterhead. 
 𝑆௝  represents the regular sensor node. 

To calculate  𝑑𝑖𝑠𝑡൫𝐶𝐻௜ , 𝑆௝൯, we use the Euclidean distance between two nodes A and B as shown 

in the following Equation (6). 

𝑑𝑖𝑠𝑡ሺ𝐴,𝐵ሻ ൌ ඥሺ𝑥஺ െ 𝑥஻ሻଶ ൅ ሺ𝑦஺ െ 𝑦஻ሻଶ  (7)

Where  ሺ𝑥஺,𝑦஺ሻ  ,  ሺ𝑥஻,𝑦஻ሻ  are the coordinates of A and B, respectively. 
The sub‐objective  𝑓ଶ  represents the normalized sum of the distances between each CH in the 

packet and the BS, as shown in Equation (8): 

Elligible CHs Elligible CHs 

 
1
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Regular nodes BS  
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𝑓ଶ ൌ
1

𝑀𝐷 ൈ𝑁஼ு
෍  𝑑𝑖𝑠𝑡ሺ𝐶𝐻௜ ,𝐵𝑆ሻ

ே಴ಹ

௜ୀଵ

  (8)

The  sub‐objective  𝑓ଷ  represents  the negative normalized  total  remaining  energy  of  the CHs 

within the wolf vector, as shown in Equation (9): 

𝑓ଷ ൌ
െ1

𝐸଴ ൈ 𝑁஼ு
෍𝐸஼ு೔

ே಴ಹ

௜ୀଵ

  (9)

Where  𝐸஼ு೔represents the remaining energy of  𝐶𝐻௜. 
Our process of updating and calculating new wolf vector is systematically guided by GWO. This 

connection to a proven optimization algorithm lends our work credibility and relevance within the 

field of optimization [40]. 

Algorithm 2: Cluster formation phase algorithm 

18. Input: Probability threshold  𝑃௧௛௥௘௦௛௢௟ௗ; 
19. Form wolf vectors from the group of nodes with probability greater than  𝑃௧௛௥௘௦௛௢௟ௗ; 
20. Initialize alpha (α), beta (𝛽), and gamma (γ) wolf vectors with the best fitness values

using Equation (5); 

21. While (𝑡 < Max_Iteration) Do 
22. For 𝑝 = 1 to NWV Do % NWV is the number of wolf vectors 

23. Calculate the fitness value for each wolf vector (𝑝); 
24. If  𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑝ሻ  < 𝛼 Then 
25. Update 𝛾 = 𝛽; 
26. Update 𝛽 = 𝛼; 
27. Update 𝛼 = 𝑝; 
28. Else If  𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑝ሻ  < 𝛽 Then 
29. Update 𝛾 = 𝛽; 
30. Update 𝛽 = 𝑝; 
31. Else If  𝐹𝑖𝑡𝑛𝑒𝑠𝑠ሺ𝑝ሻ  < 𝛾 Then 
32. Update 𝛾 = 𝑝; 
33. End If; 

34. End For; 

35. Update the positions of wolf vectors (see Figure 6); 

36. Apply modulus operation over the vectors’ coordinates (see Figure 6); 

37. Calculate the new fitness values of wolf vectors; 

38. End While; 
39. Output: The best set of CHs (alpha wolf vector); 
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Figure 6. Example of wolf vectors update. 

5.4. Transmission Phase (MAC and Network Layer) 

Upon being chosen as the CH, the node broadcasts a message across the network. Only nodes 

in active mode can hear these messages sent out by various CHs. These active nodes then choose their 

CHs based on the Received Signal Strength Indication (RSSI). During their NAV time slots, active 

mode  nodes  transmit  their  detected  data  to  the CH. Nodes  in  sleep mode  conserve  energy  by 

switching off their transceivers and do not transmit any data. 

After receiving data from its members, each CH aggregates and combines this data with its own. 

According to their allocated NAV time slots, each cluster node forwards the gathered data directly 

to the BS. Data aggregation and compression are essential data processing tasks carried out by CHs 

after receiving data from every cluster member. These processes maximize energy usage efficiency 

and extend the networkʹs lifetime. 
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In the next iteration, each node adjusts or maintains its mode (active or sleep) based on its state 

(paired or isolated), residual energy, and the residual energy of neighboring nodes. The flowchart 

shown in Figure 7 illustrates the node mode configuration for the upcoming iteration. When a node 

becomes a CH, it uses its broadcast capability to inform the entire network of its status. This broadcast 

is a critical step, as it ensures that all active mode nodes are aware of their new CH and can make 

informed decisions about which CH to connect to base on the strength of the RSSI. The active nodes 

then engage in data transmission during their assigned NAV time slots, ensuring that their data is 

efficiently communicated to the CH. 

 

Figure 7. Cross‐layer transmission phase. 

The role of the MAC layer cannot be overstated in this process. It ensures that nodes operate in 

a synchronized manner, with precise timing for data transmission and reception. This coordination 

prevents data collisions and optimizes the use of the networkʹs limited energy resources. By carefully 

managing  the active and  sleep modes of nodes,  the MAC  layer helps  to prolong  the operational 

lifespan of the network. 

Once  the  CH  collects  data  from  its  cluster  members,  it  performs  data  aggregation  and 

compression, which are vital for reducing the volume of data that needs to be transmitted to the BS. 

These tasks help in conserving energy, as smaller data packets require less power to transmit. The 
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efficiency of this process directly impacts the networkʹs overall energy consumption and longevity. 

In  each new  iteration, nodes  reassess  their modes based  on  several  factors,  including  their  own 

residual energy and that of  their neighbors. This dynamic adjustment  is crucial  for maintaining a 

balanced energy consumption across the network, ensuring that no single node depletes its energy 

resources  too quickly. By constantly adapting  to the networkʹs state,  the nodes can optimize their 

energy usage and contribute to the networkʹs sustainability. 

6. Simulation Results 

In this section, we compare the efficiency of EOAMRCL to peer protocols: EEUC [41], DWEHC 

[42], and CGA‐GWO [32]. In order to perform simulation, we created many network configurations 

with  hundreds  of  randomly  placed  sensor  nodes.  Each  result  represents  the  average  of  twenty 

separate simulations. 

6.1. Radio Energy Model 

In the simulation section, we employ the same first‐order radio model for energy consumption 

presented in [43]. In this concept, a radio transmits an L‐bit data to a receiver situated a distance of  𝑑 
meters from it by dissipating an amount of energy  𝐸்௑ሺ𝐿,𝑑ሻ. A sensor nodeʹs radio has to use  𝐸ோ௑ሺ𝐿ሻ 
energy in order to receive an L‐bit message. The multi‐path (𝜀௙௦) channel is utilized in short distance 
transmission; the free space (ε௠௣) channel is used when the distance between two nodes or between 

a node and  the SB  is higher  than certain distance  𝑑଴. Radios can use  the  least amount of energy 

required to reach their intended receivers. To prevent unwanted transmissions, the radios have the 

capability  to be switched  into sleep mode. Equation 10 presents  the amount of energy needed  to 

transmit a packet of  𝐿  bits across a distance d [43]: 

𝐸்௑ ൌ ቊ
𝐿 ∗ 𝐸௘௟௘௖ሺ𝐿,𝑑ሻ ൅ 𝐿 ∗ 𝜀௙௦ ∗ 𝑑ଶ,𝑑 ൏ 𝑑଴
𝐿 ∗ 𝐸௘௟௘௖ሺ𝐿,𝑑ሻ ൅ 𝐿 ∗ ε௠௣ ∗ 𝑑ସ,𝑑 ൒ 𝑑଴

  (10)

Where: 

 𝐸்௑ represents the energy expended by the transmitter across a  𝑑‐meter distance in order to send 

a packet of  L  bits. 
 Eୣ୪ୣୡሺL, dሻ    is the energy needed to transfer a single bit over  𝑑 meters, both ways. 

 L  is the transmission packetʹs size. 

The distance at which the amplification factors begin to shift is known as  𝑑଴: 

𝑑଴ ൌ ඨ
𝜀௙௦
ε௠௣

ర
  (11)

For the receiver to receive a packet of  𝐿  bits, energy  𝐸ோ௑ሺ𝐿ሻ must be consumed as follows: 

𝐸ோ௑ሺ𝐿ሻ ൌ  𝐿 ∗ 𝐸௘௟௘௖  (12)

6.2. Simulation Parameters 

The selection of simulation parameters in Table 4 aims to create a realistic and comprehensive 

environment  for  evaluating  the  clustering  protocols.  The  network  zone  is  set  to  100  x  100 m², 

balancing sufficient coverage and computational feasibility, while the number of sensors ranges from 

50 to 250 to test the protocolʹs scalability under different network densities. The base station (BS) is 

located  at  coordinates  (90,90)  to  simulate  real‐world  scenarios where  the BS  is positioned  at  the 

networkʹs edge, challenging the protocolʹs data routing efficiency. A clusterhead percentage (P୭୮୲) of 

5%  ensures  the  effectiveness  of  selecting  optimal CHs  for  energy  efficiency  and  load  balancing. 

Incorporating 20% advanced nodes with an additional energy factor (𝜃) of 1 tests the protocolʹs ability 

to leverage these nodes for prolonged network operation. The initial energy (E଴) of 3 J/node provides 

a reasonable starting point for observing energy consumption patterns and the protocolʹs impact on 
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network  lifetime. Transmission energy  (Eୣ୪ୣୡ) of 50 nJ/bit and a packet size  (L) of 4000 bits reflect 

typical WSN energy  consumption,  crucial  for assessing data  transmission efficiency. Propagation 

energy values  (ε୤ୱ=  15 pJ/bit/m²  and  ε୫୮   =  0.0015 pJ/bit/m⁴)  account  for  energy  loss during data 

transmission over varying distances, essential for realistic wireless communication simulation. Data 

aggregation energy (Eୈ୅) of 5 nJ/bit/signal evaluates the protocolʹs effectiveness in reducing energy 

consumption  through data aggregation. Limiting  the node pairing distance  to  less  than 2 meters 

ensures  close  proximity  for  efficient  sleep/active  mode  coordination.  Fitness  function  weights 

(wଵ, wଶ, wଷ )  of  0.45,  0.45,  and  0.1  balance  the  importance  of  intra‐cluster  distances,  inter‐cluster 

distances, and residual energy, ensuring a comprehensive performance evaluation. These parameters 

collectively  create  a  realistic  and  challenging  simulation  environment,  enabling  a  thorough 

assessment of the EOAMRCL protocolʹs ability to enhance energy efficiency, extend network lifetime, 

and improve overall network performance in WSNs. 

Table 4. Simulation settings for network simulations. 

Parameter  Value 

Network Zone  100 x 100 m2 

Number of Sensors (𝑛)  50‐250 

BS Coordinates  (90,90) 

Clusterhead Percentage (P୭୮୲)  5 % 

Advanced Node Percentage (𝑚)  20 % 

Initial Energy (E଴)  3 J/node 

Additional Energy Factor (𝜃)  1 

Transmission Energy (Eୣ୪ୣୡ)  50 nJ/bit 

Packet Size (L)    4000 bits 

Propagation Energy (fading space  ε୤ୱ)  15 pJ/bit/m2   

Propagation Energy (multi‐path  ε୫୮)  0.0015 pJ/bit/m4   

Data Aggregation Energy (Eୈ୅)  5 nJ/bit/signal 

Node Pairing Distance    < 2 m 

Fitness Function Weights (wଵ, wଶ, wଷ)  0.45, 0.45, 0.1 

6.3. Evaluation Metrics 

The evaluation metrics used in the experimentations are described as follows: 

a. Network Residual Energy: 

 Measures the remaining energy in the network over time. 

 Indicates the efficiency of energy management by each protocol. 

 Higher residual energy implies better energy conservation and longer network lifespan. 

b. Clustering Iteration Performance: 

 Assessed using First Node Dead (FND), Half of Nodes Dead (HND), and Last Node Dead 

(LND). 

 FND: Iteration count when the first node dies. 

 HND: Iteration count when half of the nodes are dead. 

 LND: Iteration count when the last node dies. 

 Higher values indicate better energy distribution and prolonged network operation. 

c. Percentage of Live Nodes: 

 Represents the percentage of nodes remaining active over time. 

 Higher percentages indicate better energy management and network sustainability. 

 Critical for assessing the protocolʹs ability to maintain network functionality. 

d. Clustering Overhead: 
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 Measures the communication and computational costs associated with cluster formation 

and maintenance. 

 Lower  overhead  indicates  more  efficient  clustering  mechanisms,  reducing  strain  on 

network resources. 

 Essential  for  evaluating  the  protocolʹs  impact  on  network  performance  and  energy 

consumption. 

e. Percentage of Packets Received: 

 Indicates  the  reliability  of  data  transmission  by measuring  the  percentage  of  packets 

successfully received. 

 Higher percentages suggest better data integrity and communication efficiency. 

 Crucial for ensuring consistent and accurate data flow within the network. 

6.4. Experimental Results and Interpretation 

This section presents the experimental results and a detailed analysis of the performance of four 

protocols:  DWEHC,  EEUC,  CGA‐GWO,  and  EOAMRCL.  The  experiments  were  conducted  to 

evaluate  various  aspects  of  network  efficiency,  including  energy management,  node  longevity, 

clustering overhead, and data transmission reliability. By comparing these protocols across multiple 

metrics, we aim  to highlight  the strengths and weaknesses of each and demonstrate  the superior 

performance  of  EOAMRCL  in  enhancing  the  operational  lifespan  and  efficiency  of WSNs.  The 

subsequent figures and their interpretations provide insights into the effectiveness of these protocols 

under different conditions and performance criteria. 

Figure 8 compares the average remaining energy over 500 iterations. The graph highlights each 

protocolʹs energy management and network longevity. The DWEHC protocol exhibits the steepest 

decline in average remaining energy, indicating a higher rate of energy consumption compared to 

other protocols. By  around  100  iterations,  the  average  remaining  energy drops  significantly  and 

continues  to  decline  steadily.  This  can  be  attributed  to DWEHCʹs  lack  of  an  optimized  energy 

management strategy, resulting in faster depletion of nodesʹ energy reserves and a shorter network 

lifespan. 

 

Figure 8. Comparison of average residual energy. 

In comparison, the EEUC protocol performs better than DWEHC but still shows a considerable 

drop  in  energy  levels as  iterations progress. The  energy  consumption  is more  controlled, but by 

approximately  300  iterations,  the  average  remaining  energy  is  substantially  reduced.  EEUC’s 
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strategies help prolong network life to some extent, but they are not as effective as more advanced 

protocols,  lacking  the  optimization  needed  for  longer  durations.  The  CGA‐GWO  protocol 

demonstrates  a more  balanced  energy  consumption  pattern,  with  a  slower  decline  in  average 

remaining energy. The integration of GWO algorithm allows for more efficient clustering and routing 

decisions,  conserving  energy  and  extending  the  networkʹs  lifespan.  CGA‐GWO  achieves  better 

longevity and sustained performance over extended periods. 

EOAMRCL outperforms all other protocols, maintaining the highest average remaining energy 

throughout  the  500  iterations.  This  superior  performance  is  due  to  its  effective  cross‐layer 

optimization approach, integrating the MAC and network layers for enhanced energy efficiency. By 

leveraging  GWO,  EOAMRCL  optimally  selects  cluster  heads  and  routes,  minimizing  energy 

consumption  during  data  transmission.  The  protocolʹs  duty‐cycle  scheduling  at  the MAC  layer 

allows nodes to switch between active and sleep modes, further conserving energy. This results in a 

significantly  extended  network  lifetime  and  consistent  energy  levels,  showcasing  EOAMRCL’s 

effectiveness in managing energy consumption efficiently. 

In Figure 9, the DWEHC protocol shows a rapid progression from FND to LND. The FND occurs 

relatively early,  indicating  that  the energy  consumption among nodes  is not well balanced. As a 

result, nodes begin  to die off quickly,  leading  to a shorter network  lifespan. The HND and LND 

metrics further confirm this, with a significant number of nodes dying earlier compared to the other 

protocols. This suggests that DWEHC lacks effective mechanisms for managing energy consumption 

and distributing load evenly across nodes. 

 

Figure 9. Comparison of FND, HND and LND. 

The EEUC protocol demonstrates better performance than DWEHC, with a delayed FND and a 

more gradual progression to HND and LND. This indicates that EEUC has more effective clustering 

and  energy management  strategies, which  help  in  prolonging  the  networkʹs  operational  period. 

However, by the time half the nodes are dead, the network starts to decline rapidly, showing that 

while EEUC is better than DWEHC, it still falls short in maintaining node energy levels uniformly 

over extended periods. 

The CGA‐GWO protocol further improves on the EEUC performance, with the FND occurring 

later  and  a  slower  progression  to HND  and  LND.  This  improvement  can  be  attributed  to  the 

integration of the GWO algorithm, which enhances the selection of cluster heads and routing paths, 

leading to more balanced energy consumption among nodes. The prolonged periods before reaching 

HND and LND indicate that CGA‐GWO manages to maintain network stability and efficiency for a 

longer duration compared to DWEHC and EEUC. 
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EOAMRCL exhibits the best performance among all the protocols, with the FND occurring much 

later  and  a  very  gradual progression  to HND  and LND. This  is due  to  the  effective  cross‐layer 

optimization approach, which integrates the MAC and network layers to enhance energy efficiency. 

By  leveraging GWO,  EOAMRCL  optimally  selects  cluster  heads  and  routes, minimizing  energy 

consumption during data transmission. Additionally, the duty‐cycle scheduling at the MAC  layer 

allows nodes to switch between active and sleep modes, further conserving energy. The result is a 

significantly extended network  lifetime, with nodes remaining  functional  for  longer periods,  thus 

delaying the FND, HND, and LND milestones. 

Figure  10  compares  the percentage of  live nodes over  500  iterations. The DWEHC protocol 

shows a rapid decline in the percentage of live nodes, with a significant drop occurring early in the 

iterations. By around 150  iterations,  less than half of the nodes remain alive,  indicating  inefficient 

energy management. The steep decline continues, and by 400 iterations, almost all nodes are dead. 

This pattern suggests that DWEHCʹs approach to clustering and routing is not effective in conserving 

node energy, leading to a shorter network lifespan. 

 

Figure 10. Comparison of live node percentage. 

In contrast, the EEUC protocol performs better than DWEHC, but still shows a steady decline in 

the percentage of live nodes. The drop is less steep initially, with around 60% of nodes remaining 

alive by 150 iterations. However, the decline accelerates after this point, and by around 400 iterations, 

the network is nearly depleted. This indicates that while EEUC improves energy efficiency compared 

to DWEHC, it is still not sufficient to sustain long‐term network operations. 

The CGA‐GWO protocol demonstrates a more gradual decline in the percentage of live nodes. 

By  leveraging  the GWO  algorithm, CGA‐GWO  achieves  better  clustering  and  routing decisions, 

which  help  in  distributing  the  energy  consumption more  evenly  across  nodes. As  a  result,  the 

percentage of live nodes remains higher for a longer duration, with around 50% of nodes still alive 

at 250 iterations. This indicates that CGA‐GWO is more effective in managing energy consumption 

and extending network life compared to DWEHC and EEUC. 

EOAMRCL  shows  the  best  performance  among  all  protocols,  maintaining  the  highest 

percentage of live nodes throughout the 500 iterations. The decline in live nodes is the most gradual, 

with over 60% of nodes still alive at 250 iterations. This superior performance can be attributed to the 

cross‐layer optimization approach of EOAMRCL, which integrates the MAC and network layers for 

enhanced  energy  efficiency.  By  using  GWO  to  optimally  select  cluster  heads  and  routes,  and 

incorporating duty‐cycle scheduling at the MAC layer to alternate nodes between active and sleep 
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modes,  EOAMRCL  effectively  conserves  energy.  As  a  result,  the  network  maintains  a  higher 

percentage of live nodes for a significantly extended period. 

Figure 11 compares the clustering overhead as a function of the number of nodes. The DWEHC 

protocol  shows  the highest clustering overhead, which  increases  sharply as  the number of nodes 

grows. Starting  from a small number of nodes,  the overhead rises steeply and continues  to climb 

consistently. By the time the network reaches 225 nodes, the clustering overhead approaches 90%. 

This high overhead can be attributed to DWEHCʹs less efficient clustering and routing mechanisms, 

which  require  more  frequent  updates  and  higher  communication  costs.  This  inefficiency  can 

significantly drain network resources and reduce overall performance. 

 

Figure 11. Comparison of clustering overhead. 

In  contrast,  the  EEUC  protocol  demonstrates  better  performance, with  a  slower  increase  in 

clustering overhead compared to DWEHC. However, the overhead still grows steadily as the number 

of nodes  increases,  reaching more  than 60% at 225 nodes. While EEUC manages  resources more 

effectively  than  DWEHC,  the  clustering  overhead  remains  substantial,  indicating  room  for 

improvement in clustering efficiency and resource management. 

The CGA‐GWO protocol shows a further reduction in clustering overhead, with a more gradual 

increase  as  the  number  of  nodes  grows.  The  overhead  remains  below  60%  even  at  225  nodes, 

demonstrating the benefits of integrating the GWO algorithm. GWO enhances clustering efficiency 

by making more informed and balanced decisions about cluster formation and maintenance, thereby 

reducing the frequency and cost of cluster updates. 

EOAMRCL exhibits  the  lowest  clustering overhead among all  the protocols. The  increase  in 

overhead is the most gradual, remaining well below 50% at 225 nodes. This superior performance 

can be attributed to EOAMRCLʹs effective cross‐layer optimization approach, which integrates the 

MAC  and  network  layers  to  enhance  energy  efficiency  and  reduce  communication  costs.  By 

leveraging  GWO  for  optimal  cluster  head  selection  and  routing,  and  incorporating  duty‐cycle 

scheduling to alternate nodes between active and sleep modes, EOAMRCL minimizes the clustering 

overhead.  This  efficient management  of  network  resources  ensures  that  the  protocol  can  scale 

effectively with the number of nodes without incurring excessive overhead. 

Figure 12 compares the number of packets received as a function of the number of nodes. The 

DWEHC protocol exhibits the lowest number of packets received, showing a gradual increase as the 

number of nodes grows. Starting from a minimal percentage, the packets received slowly climb but 

remain  significantly  lower  compared  to  other  protocols  throughout  the  range.  By  the  time  the 

network reaches 175 nodes, the percentage of packets received is still below 60%. This indicates that 
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DWEHC struggles with efficient data transmission, likely due to higher packet loss and less effective 

routing mechanisms, leading to poorer network performance. 

 

Figure 12. Comparison of network throughput. 

The EEUC protocol performs better  than DWEHC, with a  steeper  increase  in  the number of 

packets received as the number of nodes increases. However, the growth is still moderate, and by the 

time the network reaches 175 nodes, the packets received are below 80%. While EEUC improves data 

transmission efficiency compared to DWEHC, it still experiences limitations in routing and clustering 

efficiency, which affect its overall performance. 

The CGA‐GWO protocol shows a  further  improvement, with a higher percentage of packets 

received compared to EEUC and DWEHC. The increase is more pronounced, and by 175 nodes, the 

packets  received are around 80%. The  integration of  the GWO algorithm enhances  the protocol’s 

ability  to make efficient routing and clustering decisions,  leading  to better data  transmission and 

reduced packet loss. This results in a more reliable and efficient network performance. 

EOAMRCL demonstrates  the best performance among all protocols, maintaining  the highest 

percentage of packets received throughout the range of node counts. The increase is the most rapid, 

with over 90% of packets  received by 175 nodes. This  superior performance  can be attributed  to 

EOAMRCL’s effective cross‐layer optimization approach, which  integrates the MAC and network 

layers for enhanced energy efficiency and data transmission. By leveraging GWO for optimal cluster 

head  selection  and  routing,  and  incorporating duty‐cycle  scheduling  to  alternate nodes  between 

active and sleep modes, EOAMRCL minimizes packet loss and maximizes successful data delivery. 

This  efficient management  of data  transmission  ensures  that  the  protocol  can  handle  increasing 

network sizes without compromising performance. 

5.5. Discussion 

The  analyses  of  the  five  figures  collectively  highlight  the  advantages  and  disadvantages  of 

different  energy  optimization  approaches  for  WSNs.  DWEHC  consistently  shows  the  poorest 

performance across all metrics, indicating inefficient energy management and high overhead costs. 

The rapid depletion of energy, early node deaths, high clustering overhead, and low packet reception 

rates all underscore DWEHCʹs  inadequacies  in  sustaining network performance. EEUC performs 

better  but  still  experiences  significant  limitations  in maintaining  energy  efficiency  and  network 

performance. While it shows improvements in energy consumption and node longevity compared to 

DWEHC,  the protocolʹs  steady decline  in  live nodes and moderate clustering overhead  reveal  its 

insufficient  optimization  for  extended  network  operations.  CGA‐GWO  demonstrates  notable 
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improvements  in energy management, node  lifetimes, clustering overhead, and data transmission 

efficiency. The  integration of  the GWO algorithm allows  for more efficient clustering and routing 

decisions,  enhancing  overall  network  performance.  This  is  evidenced  by  the  balanced  energy 

consumption, delayed node deaths, and higher packet reception rates, indicating that CGA‐GWO is 

effective in extending network life and reliability. 

However, EOAMRCL outperforms all other protocols, showcasing the benefits of its cross‐layer 

optimization  approach.  By  integrating  the  MAC  and  network  layers  and  leveraging  GWO, 

EOAMRCL  achieves  superior  energy  efficiency,  prolonged  node  lifetimes,  reduced  clustering 

overhead, and  improved data transmission efficiency. The protocol maintains the highest average 

remaining energy, delays node deaths significantly, and ensures the highest percentage of live nodes 

across all iterations. Its low clustering overhead highlights its efficient resource management, while 

the  high  packet  reception  rates  demonstrate  its  robustness  in  data  transmission.  The  duty‐cycle 

scheduling  at  the MAC  layer, which  alternates  nodes  between  active  and  sleep modes,  further 

conserves energy and extends the networkʹs operational life. This multifaceted optimization ensures 

that EOAMRCL  not  only  addresses  the  limitations  of  single‐layer  protocols  but  also  sets  a  new 

standard for energy‐efficient management in WSNs. 

Overall, EOAMRCL proves to be the most effective solution for energy optimization in WSNs. 

Its comprehensive approach, which combines cross‐layer optimization with advanced algorithms 

like GWO, highlights the importance of integrating multiple layers and techniques to achieve optimal 

network performance. The protocolʹs ability  to manage energy  consumption efficiently, maintain 

network stability, and ensure  reliable data  transmission underscores  its  superiority. The  findings 

from  the  analyses  reinforce  the  critical  role of  advanced optimization methods  in  enhancing  the 

sustainability and performance of wireless sensor networks, making EOAMRCL a benchmark  for 

future developments in this field. 

7. Conclusion 

This paper introduces a novel multi‐layer protocol for energy‐efficient management in WSNs, 

emphasizing the interaction between the MAC and network layers to minimize unnecessary energy 

consumption. We developed a robust objective function to identify the optimal cluster group and the 

best CHs during the formation phase, while our routing protocol selects the most energy‐efficient 

route for data delivery based on transmission power. Our new data transmission strategy for both 

intra‐cluster and inter‐cluster communication effectively addresses excessive energy consumption in 

the  routing process. Each node  schedules active and  sleep modes using allotted NAV  time slots, 

allowing the MAC layer to generate a duty‐cycle schedule through cross‐layer routing information. 

Additionally, the integration of a modified CSMA/CA mechanism with sleep/activate mode enhances 

the  protocolʹs  energy  efficiency  by managing  node  activity more  effectively.  Simulation  results 

demonstrate  that EOAMRCL outperforms EEUC, CGA‐GWO, and DWEHC protocols  in  terms of 

overall network remaining energy, number of dead nodes, total data received at the BS, and network 

lifetime. The superior performance is due to the efficient multi‐layer approach, which overcomes the 

limitations of single‐layer protocols. The innovative EOAMRCL protocol significantly enhances the 

energy efficiency and longevity of WSNs by leveraging cross‐layer interactions. By integrating the 

MAC  and network  layers,  our protocol  ensures more precise  and  effective  energy management, 

leading to a notable reduction in energy wastage. This multi‐layer synergy is crucial for maintaining 

the balance between energy consumption and network performance, particularly in complex WSN 

environments. The use of NAV time slots for scheduling active and sleep modes further optimizes 

energy  usage,  enabling  nodes  to  conserve  energy  without  compromising  data  transmission 

reliability. Our extensive simulation results highlight EOAMRCLʹs ability to maintain higher residual 

energy levels, fewer dead nodes, and greater data throughput at the base station compared to the 

other protocols. This is attributed to the protocolʹs strategic approach to clustering and routing, which 

dynamically  adjusts  to  the  networkʹs  energy  states  and  communication  demands.  The  robust 

objective function plays a vital role in selecting the most suitable CHs, ensuring that energy resources 

are utilized efficiently and effectively throughout the networkʹs operation. 
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Future work will explore the applicability of EOAMRCL in mobile sensor networks, where node 

mobility  introduces  additional  challenges  to  energy  management  and  network  stability. 

Incorporating mobility into our protocol will require further refinement of the objective function to 

account for dynamic changes in node positions and energy levels. Additionally, we plan to evaluate 

the impact of incorporating more parameters into the objective function, such as node density and 

traffic load, to enhance its robustness and adaptability. We also intend to experiment with varying 

the  weights  assigned  to  different  parameters  within  the  objective  function.  This  will  help  us 

understand how different prioritizations can affect the overall performance of the protocol, allowing 

for more tailored and context‐specific implementations. 
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