Submitted:
27 July 2024
Posted:
29 July 2024
You are already at the latest version
Abstract
Keywords:
MSC: 26A33; 35A01; 35B44; 35K15; 35R11
1. Introduction
- If , then the solution blows up in finite time for any nontrivial initial data.
- If , then there are both global solutions and nonglobal solutions corresponding to small and large initial data, respectively.
- If for some and any , then the solution blows up in finite time.
- If for some , then there is such that the solution is global in time whenever .
2. Preliminaries
- (a)
- for and .
- (b)
- for .
- (a)
- If , then
- (b)
- If , then
3. Blow-Up of Solution
- (a)
- is large enough;
- (b)
- and
4. Global Existence
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1966, 13, 109–124. [Google Scholar]
- Hayakawa, K. On nonexistence of global solution of some semilinear parabolic equation. Proc. Japan Acad. 1973, 49, 503–505. [Google Scholar]
- Kobayashi, K.; Sirao, T.; Tanaka, H. On the blowing up problem for semilinear heat equations. J. Math. Soc. Japan 1977, 29, 407–424. [Google Scholar] [CrossRef]
- Weissler, F. B. Existence and non-existence of global solutions for semilinear heat equation. Israel J. Math. 1981, 6, 29–40. [Google Scholar] [CrossRef]
- Lee, T. Y.; Ni, W. M. Global existence, large time behavior and life span on solution of a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc. 1992, 333, 365–378. [Google Scholar] [CrossRef]
- Pinsky, R. G. Existence and nonexistence of global solutions for ut=Δu+a(x)up in Rn. J. Differ. Eqns. 1997, 133, 152–177. [Google Scholar] [CrossRef]
- Galaktionov, V. A.; Kurdyumov, S. P.; Mikhailov, A. P.; Samarskii, A. A. Unbounded solutions of the Cauchy problem for the parabolic equation ut=∇(uα∇u)+uβ. Soviet Phys. Dokl. 1980, 25, 458–459. [Google Scholar]
- Qi, Y. W. On the equation ut=Δuα+uβ. Proc. Roy. Soc. Edinburgh Sect. A. 1993, 123, 373–390. [Google Scholar] [CrossRef]
- Mochizuki, K.; Mukai, K. Existence and nonexistence of global solution to fast diffusions with source. Meth. Appl. Anal. 1995, 2, 92–102. [Google Scholar] [CrossRef]
- Galaktionov, V. A. Blow-up for quasilinear heat equations with critical Fujita’s exponent. Proc. Roy. Soc. Edinburgh Sect. A 1994, 124, 517–525. [Google Scholar] [CrossRef]
- Kawanago, T. Existence and behavior of solutions ut=Δ(um)+ul. Adv. Math. 1997, 7, 367–400. [Google Scholar]
- Mochizuki, K.; Suzuki, R. Critical exponent and critical blow-up for quasilinear parabolic equations. Israel J. Math. 1997, 7, 141–156. [Google Scholar] [CrossRef]
- Mukai, K.; Mochizuki, K.; Huang, Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal. 2000, 39, 33–45. [Google Scholar] [CrossRef]
- Guo, J. S.; Guo, Y. J. On a fast diffusion equation with source. Tohoku Math. J. 2001, 53, 571–579. [Google Scholar] [CrossRef]
- Qi, Y. W. The critical exponents of parabolic equations and blow-up in Rn. Proc. Roy. Soc. Edinburgh Sect. A. 1998, 128, 123–136. [Google Scholar] [CrossRef]
- Suzuki, R. Existence and nonexistence of global solutions of quasilinear parabolic equations. J. Math. Soc. Japan 2002, 54, 747–792. [Google Scholar] [CrossRef]
- Winkler, M. A critical exponent in a degenerate parabolic equation. Math. Meth. Appl. Sci. 2002, 25, 911–925. [Google Scholar] [CrossRef]
- Li, Y. H.; Mu, C. L. Life span and a new critical exponent for a degenerate parabolic equation. J. Differ. Eqns. 2004, 207, 392–406. [Google Scholar] [CrossRef]
- Yang, C.; Zheng, S.; Zhou, S. Critical exponents in a degenerate parabolic equation with weighted source. Applicable Analysis 2013, 92, 814–830. [Google Scholar] [CrossRef]
- Igarashi, T. Blow-up and critical exponents in a degenerate parabolic equation with weighted source. Funkcialaj Ekvacioj 2023, 66, 17–34. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Sun, H.R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 2015, 46, 69–92. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Berbiche, M.; Kirane, M. Existence of global solutions and blow-up of solutions for coupled systems of fractional diffusion equations. Electronic J. Diff. Equ. 2020, 110, 1–28. [Google Scholar] [CrossRef]
- Kaplan, S. On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 1963, 16, 305–330. [Google Scholar] [CrossRef]
- Giga, Y.; Umeda, N. Blow-up directions at space infinity for solutions of semilinear heat equations. Bol. Soc. Parana. Mat. 2005, 23, 9–28. [Google Scholar]
- Shimoj<i>o</i>¯, M. On blow-up phenomenon at space infinity and its locality for semilinear heat equations (Japanese). Master’s thesis, The University of Tokyo, 2005.
- Igarashi, T.; Umeda, N. Existence and nonexistence of global solutions in time for a reaction-diffusion system with inhomogeneous terms. Funkcialaj Ekvacioj 2008, 51, 17–37. [Google Scholar] [CrossRef]
- Shimoj<i>o</i>¯, M. The global profile of blow-up at space infinity in semilinear heat equations. J. Math. Kyoto Univ. 2008, 48, 339–361. [Google Scholar]
- Shimoj<i>o</i>¯, M.; Umeda, N. Blow-up at space infinity for solutions of cooperative reaction-diffusion systems. Funkcialaj Ekvacioj 2011, 54, 315–334. [Google Scholar]
- Li, L.; Liu, J-G. A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 2018, 50, 2867–2900. [Google Scholar] [CrossRef]
| BU1 [Proposition 3 (a)] | BU1 [Theorem 1 (b)] | |
| BU1 for large | ||
| GE2 for small | BU1 [Theorem 1 (b)] | |
| [Theorems 1 (a) and 2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).