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Abstract: Automated systems, regulated by algorithmic protocols and predefined set-points for feedback control,
require the oversight and fine-tuning of skilled technicians. This necessity is particularly pronounced in automated
greenhouses, where optimal environmental conditions depend on the specialized knowledge of dedicated
technicians, emphasizing the need for expert involvement during installation and maintenance. To address
these challenges, this study proposes the integration of data acquisition technologies using Internet of Things
(IoT) protocols and optimization services via Reinforcement Learning (RL) methodologies. The proposed model
was tested in an industrial production greenhouse for the cultivation of industrial hemp, applying adapted
strategies to the crop, and was guided by an agronomic technician knowledgeable about the plant. The expertise
of this technician was crucial in transferring the RL model to a real-world automated greenhouse equipped
with IoT technology. The study concludes that the integration of IoT and RL technologies is effective, validating
the model’s ability to manage and optimize greenhouse operations efficiently and adapt to different types of
crops. Moreover, this integration not only enhances operational efficiency but also reduces the need for constant
human intervention, thereby minimizing labor costs and increasing scalability for larger agricultural enterprises.
Furthermore, the RL-based control has demonstrated its ability to maintain selected temperatures and achieve
energy savings compared to classical control methods.

Keywords: smart agriculture; reinforcement learning; IoT; greenhouse energy management

1. Introduction

Automated greenhouse systems require the meticulous configuration of diverse parameters to
guarantee that the actuators execute the designated functions accurately. This configuration entails
the determination of appropriate set-points for various subsystems including climate, lighting, and
irrigation control. Typically, these parameters and control rules are reactive. In recent years, numerous
studies have advanced models based on set-point selection strategies employing various heuristic
or artificial intelligence paradigms, coupled with the implementation of predictive solutions. The
application of reinforcement learning (RL) to greenhouse management has gained significant attention
in recent years due to its potential to optimize energy usage and automate various control processes.
This section provides an overview of the most relevant studies, categorized by their approaches and
contributions.

2. Literature Review

The use of reinforcement learning (RL) in the energy management of greenhouses and precision
agriculture techniques has evolved significantly. This analysis is based on the references provided,
which highlight key contributions in this field. Future research directions are also discussed.
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Reinforcement learning (RL) has become a powerful tool in optimizing energy management in
greenhouses and precision agriculture. This paper reviews key contributions to the field, analyses
their contributions, and discusses future research directions.

Kiumarsi et al. [1] present a comprehensive survey and implementation guidelines for optimal
and autonomous control using RL. They discuss applications in complex systems, emphasizing their
potential to enhance energy efficiency and reduce operational costs in greenhouses. Perera et al. [2]
review various applications of RL in energy management, from generation to consumption. They
highlight specific cases of intelligent greenhouses that use RL to optimize energy use. Wang et al. [3]
present an RL controller based on recurring neural networks based on long-term memory (LSTM) for
microgrid management, with potential applications in greenhouses.

Kazmi et al. [4] explore the use of deep RL for optimal control in hybrid energy systems of
buildings, applicable to energy management in greenhouses. Ruelens et al. [5] examine the application
of RL in electric water heaters, with direct implications for energy management in greenhouses.

Zhang et al. [6] discuss the developments and future challenges in precision agriculture, including
the integration of RL for better resource management in greenhouses. Liu et al. [6] provide a compre-
hensive review of RL applications in smart agriculture, highlighting various use cases and the potential
benefits of RL in optimizing agricultural processes, including greenhouse energy management.

Mason et al. [7] review the applications of RL in smart grids, discussing how these methods
can be applied to improve energy management and efficiency in interconnected systems such as
greenhouses. Hosseinloo et al. [8] explore data-driven predictive control using RL for energy efficiency
and comfort management in buildings, with potential applications in greenhouses to optimize climate
control systems. Sun et al. [9] present a study on multi-agent RL for integrated energy management of
interconnected microgrids, applicable to complex greenhouse energy systems. Alani et al. [10] discuss
the opportunities and challenges of RL-based energy management for smart homes and buildings,
with insights applicable to greenhouse energy systems.

Fuetal. [11] survey the applications of RL in building energy management, providing information
relevant to greenhouse energy systems. Mauree et al. [12] review data-driven and machine learning
models for building energy performance prediction, fault detection, and optimization, applicable
to greenhouse energy management. Kazmi et al. [13] discuss the application of multi-agent RL for
building energy management, with potential benefits for greenhouse systems. Yang et al. [14] explore
energy optimization in smart home buildings using deep RL, providing information for greenhouse
energy management.

Ruelens et al. [15] discuss learning sequential decision making for optimal control of thermally
activated resources, applicable to greenhouse energy systems. Vazquez-Canteli and Henze [16] discuss
the integration of reinforcement learning with predictive control of the model for the response to
demand in buildings, which can be applied to optimize energy management in greenhouses. Sutton
and Barto [17] discuss the application of RL in real-world games, providing insights that can be adapted
to complex energy management systems in greenhouses. Peters et al. [18] discuss a reinforcement
learning approach to autonomous vehicles, which can provide insights for autonomous control in
greenhouse energy systems. Kar et al. [19] present QD-learning, a collaborative Q-learning approach
that can be applied to cooperative energy management strategies in greenhouses.

Sierla et al. [20] review reinforcement learning applications in urban energy systems, which can
provide valuable information for energy management in greenhouse environments. Vazquez-Canteli
and Nagy [21] discuss reinforcement learning for demand response, which is highly relevant for
dynamic energy management in greenhouses. Mauree et al. [12] review assessment methods for
urban environments, providing methodologies that can be adapted to evaluate energy performance in
greenhouses.
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2.1. Future Research Directions

Despite significant advancements, several areas require further exploration to fully implement RL
in greenhouse energy management.

¢ Integration with IoT: The integration of RL with IoT devices can enhance real-time data acquisi-
tion and decision-making processes in greenhouses. Future research should focus on developing
seamless IoT-RL integration frameworks.

¢ Scalability: Research on scaling RL solutions to larger, more complex greenhouse systems is
necessary to ensure widespread adoption. Studies should address computational challenges and
the ability to handle large datasets.

¢ Interdisciplinary Approaches: Combining RL with other Al techniques, such as genetic algo-
rithms and fuzzy logic, could yield more robust energy management solutions. Exploration of
hybrid models that leverage the strengths of different Al paradigms is essential.

¢ Environmental Adaptability: Developing RL algorithms capable of adapting to diverse environ-
mental conditions will be crucial for global applications. This includes designing algorithms that
can learn and adapt to changing weather patterns, pest infestations, and other environmental
variables.

¢ Economic Viability: Studies on the cost-effectiveness of RL implementations in greenhouses
can drive commercial interest and investment. Future research should focus on performing
cost-benefit analyses and developing business models that highlight the economic advantages of
RL-based energy management systems.

¢ User-Friendly Interfaces: Developing user-friendly interfaces and control systems for green-
house operators is vital for the practical implementation of RL. Research should focus on creating
intuitive dashboards and control panels that allow operators to easily interact with and oversee
RL systems.

* Sustainability Metrics: Future work should also explore the development of sustainability
metrics that RL systems can optimize. This includes not only energy efficiency but also water
usage, pesticide application, and overall environmental impact.

¢ Policy and Regulatory Compliance: Research should address how RL systems can be designed
to comply with local and international policies and regulations concerning energy usage and
environmental protection.

* Data Privacy and Security: With the increasing use of IoT and RL, ensuring data privacy and
security is essential. Future research should develop robust security protocols to protect sensitive
data in greenhouse management systems.

* Real-World Case Studies: Conducting real-world case studies and pilot projects can provide
valuable insights into the practical challenges and benefits of implementing RL in greenhouses.
These studies can help refine RL models and identify best practices for successful adoption.

2.2. Literature review conclusion

The RL paradigm has shown significant potential to optimize energy management in greenhouses
and precision agriculture techniques. From optimal autonomous control to deep RL, the reviewed
references indicate a growing trend towards intelligent, adaptive solutions that promote energy
efficiency and sustainability. Future research should focus on integrating RL with IoT, scalability,
interdisciplinary approaches, environmental adaptability, economic viability, user-friendly interfaces,
sustainability metrics, policy compliance, data privacy and security, and real-world case studies to
further advance this technological evolution.

In conclusion, the field of reinforcement learning for greenhouse management has made significant
progress, yet challenges remain. Future research should focus on improving scalability, integrating
advanced technologies, and developing hybrid models to fully realize the potential of RL in this
domain.
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3. Model proposed

The Reinforcement Learning (RL) problem involves a digital agent exploring an environment to
achieve a specific goal. In the field of automated greenhouses, it is about managing environmental
conditions and crop growth while optimizing resources and inputs. RL is based on the hypothesis that
all goals can be characterized by maximizing the expected cumulative reward. The agent must learn to
perceive and manipulate the state of the environment through its actions to optimize this reward. In
the model presented in this work, the agent performs control actions to adjust the set points, ensuring
that the internal conditions of the greenhouse stay within the predefined maximum and minimum
limits. By doing so, the agent optimizes the management of resources such as water, energy, and
inputs, leading to improved plant growth. Figure 1 shows the application scenario of the RL paradigm.
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Figure 1. RL paradigm in greenhouse proposed

The system must be able to collect relevant data, establish the necessary sensors and communica-
tion protocols, and manage them appropriately using the IOT paradigm.

The proposed model uses a layered architecture (Figure 2) to integrate the services and function-
alities of the platform (IoT + RL). In an agricultural facility, whether newly constructed or already
operational, monitoring and actuation devices are installed and interfaced with the processing and
control layer. The following provides a detailed description of each layer:
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In the physical layer, IoT sensors/actuators, human-machine interfaces (HMIs) and machine-
to-machine interfaces (MMI) are installed. The farmer and technicians can act by entering data and
requests. The processing layer filters data, executes control actions, and communicates with the upper
layer.

The control layer embedded devices receive data from the upper layer to manage the different
processes and perform control and maintenance actions. This layer must provide the necessary support
to communicate the data to the sensor/actuators installed.

The interoperability layer integrates different RL agents connected to digital twin algorithms.
The model proposes the development of RL agents to optimize the use of set-point values in various
control loops within an automated facility. The RL agent modifies the set-point values to achieve
one or more specified objectives, such as maintaining environmental conditions, improving electrical
consumption, reducing water use, and optimizing renewable energy use. This process operates
automatically and can be analyzed through an interface where users can test control strategies. This
interface enables simulations on a digital twin model that replicates different states based on the
knowledge acquired from the analyzed data obtained from IoT network sensors. In this layer, the
deployment of RL agents, the development of digital twin functionalities, and the implementation of
user interfaces are executed.

In the application layer, applications are designed and developed on different platforms (mobile
phones, business networks, computers, etc.). In each of them, a relationship is defined between the
user and the type of access allowed.

3.1. Development in an Automated Greenhouse

Greenhouses provide a controlled environment for plant cultivation, allowing for improved
growth and productivity compared to traditional open-field agriculture. However, managing a
greenhouse efficiently involves complex decision-making processes to balance resource usage, such as
water and energy, with the optimal growing conditions for plants. Traditional management methods
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often rely on predefined schedules and heuristics, which may not adapt well to dynamic environmental
conditions and changing plant needs.

Reinforcement learning (RL) offers a promising solution to this challenge by enabling systems
to learn optimal strategies through interactions with the environment. RL algorithms can adapt to
changing conditions and learn from experience, making them well suited to the dynamic and complex
nature of greenhouse management. By continuously adjusting actions based on observed outcomes,
RL can optimize resource usage while maintaining or improving crop yields.

One of the scenarios where the model can be applied is in energy management. In the case of
use of this work, the model is based on a reinforcement learning algorithm in greenhouse energy
management. Specifically, the model employs a prediction model to forecast the greenhouse’s environ-
mental conditions throughout the day. Based on these predictions, they implement a reinforcement
learning (RL) algorithm that rewards minimal energy usage to regulate the greenhouse’s temperature.
The algorithm refines the temperature control loop by optimizing the choice of the set-point input for
the existing regulation loop. In essence, the algorithm adjusts the set point value to optimize energy
consumption while maintaining the selected minimum and maximum temperature thresholds.

Incorporating climate predictions into the RL model can further enhance its performance by
allowing anticipatory adjustments.

Reinforcement learning (RL) offers a promising approach to energy consumption by learning from
the environment and making data-driven decisions. This study focuses on the Q-Learning algorithm, a
model-free RL method, to determine the connection and disconnection of the air conditioning system.

3.2. Methodology

The proposed system uses the Q-Learning algorithm to make watering decisions based on real-
time data from IoT sensors. The states, variables, actions, and reward function are designed to reflect
the dynamics of the greenhouse environment. The methods are indicated in Table 1

Table 1. This is a table caption.

ine Phase  Description

Control strategies. Analysis of environmental and control variables with the
inePhase1 agronomic expert. Examination of all possible strategies that can be part of

optimization. Strategies for choosing set-points.

IoT infrastructure. Design of the IoT infrastructure needed for the greenhouse to
inePhase2 carry out the control and data set generation. Deployment of various embedded
systems interconnected with the required IoT technologies.

Data-set generation. Sensors generate data that are analyzed to determine
greenhouse behavior models. Each greenhouse has specific characteristics that
must be taken into account when applying the model. Data set are captured in
normalized format (csv, json)

Digital model and an RL algorithm. The objective is to maintain the greenhouse
temperature between the minimum and maximum limits by optimizing the
connection and disconnect of the air conditioning system. Implementation by
comparing all strategies with those proposed in the model to determine their
effectiveness. To act on the installation, a digital model is previously created on
which the RL algorithm begins its calculations. This model will be adjusted to
the reality of the behavior in the greenhouse application. Theoretical analysis
validates reward strategies and policies that will be applied in an applied way.

Training and Evaluation Train the RL agent using the constructed data set and
the results of the analysis, iteratively updating the policy based on observed
rewards and state transitions. With the data set obtained with the capture of IoT
data and the results of the theoretical simulations, the policies, reward functions,
and actions most appropriate to the type of greenhouse and installation are
promoted.

ine Phase 3

ine Phase 4

ine Phase 5

ine
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4. Phase 1. Control Stategies (set point in the environmental regulation loop)

Reinforcement Learning (RL) techniques can optimize air conditioning connection strategies by
making decisions based on continuous feedback from plants and the environment. Various sensors
(energy consumption, temperature, humidity, weather data, etc.), actuators, and a data processing unit
must be used. In Table 2 different strategies and their relationship with IoT technologies are shown.

Table 2. Energy Control Strategies. Standard control vs. RL control.

Strategy Description IoT sensors

ine Set-point selec- This is the simplest and most commonly used strategy. The temperature sensors.
tion (standard con- technician selects the temperature, and the maximum and min-

trol) imum values

ine Set-point adjust- The values assigned at the set point are adjusted and modified Temperature,  en-
ment with RL algo- by predicting expected conditions in the greenhouse. These ergy consumption,

rithm (RL actions) to  changes are made at scheduled sampling times weather  forecast,

optimize energy con- and  temperature

sumption prediction inside the
greenhouse.

The selection of the appropriate irrigation strategy for greenhouse cultivation depends on various
factors, including crop type, environmental conditions, and resource availability. Strategies based on
substrate moisture, evapotranspiration, and VPD offer customized approaches to optimize water use,
improve crop performance, and promote sustainable agricultural practices.

5. Phase 2. IoT infrastructure

The IoT infrastructure is designed with the strategy of being interoperable with existing green-
house subsystems: climate, lighting, irrigation, etc. To achieve this, it is designed and developed at
two levels.

The Figure 3 describes the Internet of Things (IoT) network. Here is the identification of the
components according to the numbers in the image: The sequence of events and data sequence are
listed below,

¢ Climate energy data is captured and stored in the system.

¢ Sensors collect environmental conditions.

¢ The data is sent to the gateway, which then transmits it to the local server and cloud services.

® The data is stored on the local server. The datasets are created with the main variables

® Local and cloud services allow remote monitoring and control of the system.

¢ The prediction of the environmental conditions in the next few hours is obtained

e With the data and predictions the learning algorithm is executed

¢ The algorithm proposes a modification of the set-point by increasing or decreasing its value,
using the values of the reinforcements or Q values


https://doi.org/10.20944/preprints202407.2247.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 d0i:10.20944/preprints202407.2247.v1

8 of 25
Climate
Energy
Sensors
Tout
H out
ToT
protocol _ \O\
Intranet .
protocol IoT network Control i gﬂ'?:: T.
.' in
i
| & Kwh, H in
IoT @ To Ta of J T
protocol it # W
| | | |
Cloud Server platform
LI \ -
Bing @ o Services
= — = protocol
Local Server platform
Digital Platform
Figure 3. IoT platform. Basic infrastructure for data capture, analysis and management services
Table 3. Identification of components in the IoT network for a solar energy management system.
Number Component Description
1 IoT Gateway or Router: This device acts as a central communication point between
various sensors and devices and the cloud server. It uses IoT protocols to transmit data.
2 Sensors and Meters: These devices collect data from different sources:
2a Energy meter (A-Wh) that measures the amount of energy consumed.
2b Temperature sensor (thermostat) that measures the ambient temperature.
3 Solar Energy Controller: This component receives data from the sensors and manages
the distribution of energy.
3a Inverter that converts solar energy from direct current (DC) to alternating current (AC).
3b Batteries for energy storage.
3¢ Switches and fuses for protection.
4 Local Server or Database: Stores and processes data locally. It is where all the data is

collected for processing before being sent to the cloud.

5 Cloud Services: The data is sent to the cloud for additional storage and analysis. Cloud
services can provide interfaces to monitor and control the system.

M Monitoring Computer: Allows users to interact with the system, probably through a
graphical interface for real-time monitoring and control of the system.

6. Phase 3. Data set generation

Data sets generated from IoT sensors provide a rich source of information for decision makers.
These data sets enable real-time monitoring and analysis, allowing for informed decision-making based
on accurate and up-to-date information. In greenhouse facilities, IoT sensor traffic data can be used to
optimize traffic flow, reduce congestion, and improve public transportation systems. Generating high-
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quality datasets from IoT sensor data requires addressing issues related to data quality and consistency.
Sensors can produce noisy or incomplete data, which can affect the accuracy and reliability of the
data sets. Implementing robust data pre-processing and cleaning techniques is essential to ensure the
integrity of the data sets.

Temperature and Humidity Sensors: inside and outside the greenhouse. Weather forecast and
energy consumption. The Methodology for Data Capture is:

¢ Sensor Placement. Strategically place sensors to capture a representative sample of environmental
conditions within the greenhouse. This includes placing sensors at various depths and locations
throughout the greenhouse to monitor microclimates.

¢ Data Logging and Transmission. Utilise data loggers and wireless networks to ensure continuous
data capture and transmission. This includes setting up a reliable network infrastructure that
can handle the data volume and frequency required for RL applications.

¢ Data storage. Implement a centralized data storage solution, preferably cloud-based, to store the
large volumes of data generated by the sensors. Ensure the storage system supports efficient
data retrieval and processing.

¢ Data prepossessing: cleaning, and normalisation. Address issues related to missing values,
sensor malfunctions, and noise in the data. Techniques such as interpolation and filtering should
be applied to ensure data quality and consistency. Normalise sensor data to a common scale to
facilitate accurate analysis and model training. This step is crucial for integrating diverse data
types into a cohesive dataset.

6.1. Materials and methods

Data capture was carried out on a hemp crop in a technical greenhouse (Figure 4) with the
following characteristics: Glass greenhouse of 50 m2 (5 x 10 m) each. All of them have an automatic
climate and irrigation control system with the following equipment:

¢ Humidifier with osmosis water mist.

¢ Air conditioners to heat and cool the modules. Twin, Triple Mitsubishi PUHZ-P200YKA Three-
phase Classic Inverter Nominal cooling capacity (Min. - Max.) kW 19.00 Nominal heat capacity
(Min. - Max.) kW 22.40

¢ Thermal shading screen.

¢ Extractor fan and zenithal opening windows with anti-trip mesh.

¢ Artificial light lamps to increase net assimilation.

® Micro-sprinkler and drip or flood irrigation system.

e Temperature and humidity probes.

¢ Electrical, compressed air, mains water and osmosed water connections.

* Embedded device (raspberrypi4) that deploys an intranet (WiFi, Bluetooth Low Energy) for
communication, monitoring, and control.

¢ Electric energy meter in three-phase and single-phase circuits (shelly 3 EM). This consumption
meter communicates with the embedded system through the WiFi and IP protocol.

¢ Communication to Web servers to obtain the temperature prediction in the greenhouse area.
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Figure 4. Industrial greenhouse used to deploy the IoT data. A control intranet has been deployed
with embedded devices and communications based on IoT protocols (WiFi and MQTT)

This work develops and tests a low-cost sensor/actuator network platform, based on the Internet
of Things, integrating machine-to-machine and human-machine interface protocols used in [22].
The system integrated Internet of Things (IoT) paradigms, ubiquitous sensor networks, and edge
computing to create a smart agricultural environment. Implementation (Figure ??) included machine-
to-machine and human-machine interface protocols to enable seamless communication and control
processes considering a precision agriculture scenario.
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Figure 5. Example of daily data obtained in the dataset. The data is obtained daily every minute and
stored in a dataset to obtain temperature prediction models inside the greenhouse.

7. Phase 4. Digital model and RL algorithm

RL involves an agent learning to make sequential decisions through interaction with its environ-
ment to maximize cumulative rewards. In the context of greenhouse control, RL offers a promising
framework to optimize energy use while maintaining the configured maximum and minimum temper-
ature conditions. The theoretical model serves to support decision making at a given moment.The
objective is to start from prior knowledge that allows the system to initiate decision making more
effectively. From the initial configuration of the RL algorithm, the system will adapt to the specific
conditions of the installation, optimizing control as feedback information is obtained on the evolution
of the system, compared to its previous behavior. It is therefore about introducing a finer regulation
that is capable of improving the existing one by adapting to the specific conditions of the installation.

7.1. Greenhouse model based in differential equations.

There is knowledge and mathematical models of the behavior of temperature in a greenhouse.
These models provide a good starting point for defining reward policies and functions. For all
these reasons, the RL model is based on the knowledge already acquired to, from there, introduce
improvements and optimize current operation. The behavior of the temperature inside a greenhouse
is influenced by several factors, including the external temperature, solar radiation, and the thermal
dynamics of the greenhouse itself. Here, we present a mathematical model to simulate the dynamics
of the greenhouse temperature.

The thermal model of a greenhouse when both heating and cooling are applied can be described
by the following differential equation.
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CgreenhousedT'det) = Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin(t) - Tout(t)) @

To discretize this equation for algorithmic application, we consider a time step At. The temperature
change over the time step from t to t + At can be approximated as:

dTin(t) _ Tin(t + At) — Tin(t)
at At @)

Substituting this into the differential equation gives:

Cgreenhouse Tin(t ks AAti — Tin<t) = Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin(t) - Tout(t)) (3)

Solving for Tin (t + At), we get the following:

At

Tin(t + At) = Tin(t) =+ [Qsolar(t) + Qheat(t) - Qcool(t) - UA(Tin(t) - Tout(t))] (4)

Cgreenhouse
where:

* Cgreenhouse 18 the heat capacity of the greenhouse (J/°C),

* Tin(t) is the inside temperature of the greenhouse at time ¢ (°C),

e Tin(t + At) is the inside temperature of the greenhouse at time t + At (°C),
* Tout(t) is the outside temperature at time ¢ (°C),

* Qsolar () is the solar radiation entering the greenhouse at time ¢ (W),

® Qheat(f) is the heating power applied to the greenhouse at time t (W),

* Qco01(t) is the cooling power applied to the greenhouse at time t (W),

e U is the overall heat transfer coefficient (W/m?°C),

* A is the surface area of the greenhouse (m?),

* At is the time step (s).

This discretized equation can be used to iteratively compute the inside temperature of the
greenhouse in discrete time steps for the purpose of applying control algorithms. This model is simple
and the results give us a first analysis of trends and future strategies. In the scenario of an RL algorithm,
the actions taken depend on the value of the set temperature. The actions that can be taken are shown
in the Table 4.

Table 4. Actions example taken by RL algorithm using differential equations. Values can be modified
depending on the needs of the installation (cooling or heating). The number of actions can also be
modified.

ine Action 1 Tsetpoint = Tsetpoint +2

ine Action 2 Teetpoint = Tsetpoint + 1

ine Action 3 Tsetpoint = Tsetpoint

ine Action 4 Tsetpoint = Tsetpoint -1

ine Action 5 Tsetpoint = Tsetpoint -2
me

7.2. Greenhouse model based in predictions

This model has two parts. In the first case, the behavior of the greenhouse temperature in the
next moments of time is predicted on the basis of IoT data and the machine learning paradigm. Once
the future value of the temperature inside the greenhouse is calculated, the best possible action for
regulation is taken.
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Table 5. Actions example taken by RL algorithm using temperature (T;,,) prediction. The control
values are limited by Tyax and T,;,,. Values can be modified depending on the needs of the installation
(cooling or heating). The number of actions can also be modified.

ine Action 1 Tsetpoint = Tin?predictsd +2

ine Action 2 Tsetpoint = Tin_preﬂlicted +1

ine Action 3 Tsetpoint = Tin_predicted

ine Action 4 Tsetpoz’nt = Tin?predicted -2

ine Action 5 Tsetpoint = Tin_predicted -1
me

The interior temperature of a greenhouse based on external climatic conditions and historical can
be obtained with several models, including linear regression, decision tree, gradient boost, random
forest, and neural networks, can be compared to identify the most accurate and consistent predictive
model.

The data set used consists of climatic data collected from a greenhouse over several months. The
variables include:

¢ TE: Exterior Temperature

* HRE: Exterior Relative Humidity
* RGE: Exterior Global Radiation

* VV: Wind Speed

¢ DV: Wind Direction

e LL: Rainfall

¢ TI: Interior Temperature

¢ HRI: Interior Relative Humidity

The data is resampled to intervals that are configured according to the installation, and lag features
are created to incorporate historical data into the prediction model.
The actions taken are shown in Table 7.

7.3. Reinforcement Learning deployment

Reinforcement Learning (RL) is a subfield of machine learning where an agent learns to make
decisions by interacting with an environment to maximize a cumulative reward. In the context of
controlling the temperature of a greenhouse, an RL agent can learn when to turn the heater on or off to
maintain the desired temperature and minimize energy consumption.

The RL model consists of the following elements:

* State (s): Represents the current situation of the environment. In our case, the state can include
the internal temperature of the greenhouse, the external temperature, and solar radiation.

¢ Action (a): The decision taken by the agent in each state. In our case, actions are turning the
heater on (az = 1) or off (a = 0).

* Reward (r): The feedback received by the agent after taking an action in a state. The reward can
be a function of the internal temperature and energy consumption.

* Policy (): The strategy followed by the agent to make decisions. The policy maps states to
actions.

* Value (V(s)): The expected value of the cumulative reward starting from state s following policy
TT.

* Q-Value (Q(s,a)): The expected value of the cumulative reward starting from state s taking
action a and following policy 7.

The goal of the RL agent is to learn an optimal policy 77* that maximizes the cumulative reward.
This is formalized in the optimal control problem in a Markov Decision Process (MDP).
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RL Model Formulas
State Value Function:
Vi(s) =E| Y 7're | s0 :s] ©)
t=0
where 7y € [0,1) is the discount factor that weights the importance of future rewards.
Action Value Function (Q-Value):
i [e0]
Q%(s,a) =E|Y _2'ri [ so=s,a0 = a] (6)
| =0
Q-Value Update (Q-Learning):
Q(st,ar) <= Q(st,a) + |1+ ymax Q(sp41,a) — Q(St/ﬂt)} )

where « is the learning rate.

8. Phase 5. Training

To start with prior knowledge and avoid the initial errors that RL introduces, actions, functions,
and reward policies are analyzed first through simulation and then using real data obtained in the
cultivation process. Firstly, an analysis is carried out using differential equations that model the
climatic behavior in a greenhouse and then apply it with the data obtained in the greenhouse.

8.1. RL Algorithm application in greenhouse model based in differential equations model

The RL agent intervenes in the control process following the following steps:

1. Observe Current State: The agent observes the current state s;, which includes the internal
temperature (Tj,), the external temperature (T,,;), and solar radiation (Qs,,/)-

. Select Action: Based on its policy 7, the agent chooses an action a; (turn the heater on or off).

. Apply Action: The chosen action is applied to the environment.

. Observe Reward and Next State: The agent receives a reward r; and observes the next state s; 1.

. Update Policy: The agent updates its policy using the learning algorithm, such as Q-Learning.

U= Wi

By formulating temperature control as a sequential decision-making problem, RL algorithms can
adaptively adjust based on real-time environmental data and set-point conditions. One crucial aspect
in applying RL to temperature control is the choice of state representation, which captures relevant
information about the environment for decision-making.

The process is based on the technician’s previous configuration and a theoretical model of
temperature behavior on which the RL algorithm performs the calculations. This model can be based
on energy balances or be a model obtained by studying the behavior of greenhouse conditions.

Selecting an appropriate state representation is essential to allow the RL agent to effectively
learn and adapt its cotrol policies to achieve optimal performance under varying environmental
conditions. Furthermore, careful selection of control actions is equally important, as it determines how
the RL agent interacts with the environment. By choosing suitable control actions, such as adjusting
the temperature set-poin, the RL agent can effectively optimize energy usage. Finally, algorithms
are developed to optimize the reward functions associated with states and actions, ensuring that
the RL agent learns to make decisions that lead to the most favorable outcomes. This approach
allows the development of intelligent control systems capable of dynamically responding to changing
environmental conditions and ambient conditions needs.

The Q learning algorithm has five actions(Table 4):

The Table 6 describes examples of potential reward functions applicable in RL algorithms.
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Table 6. Different Reward Functions used.

Strategy Reward Function Proposal

R1 = -1 if Qheating >0
0 if Qheating =0

Reward function penalizes the agent for
using the heating system

Reward function penalizes the use
of the heating system taking into account R2=—(a-E+pB-D1+v-L1)
the efficiency and the actual deviation
from the desired temperature range

Refined Reward Function: Energy consumption penalty.
Temperature stability. Exceeding maximum and minimum temperatures.
Penalty for frequent changes in the set point

R3=—(a-E4+p-D2+7-L2+6-85)

An appropriate RL algorithm, such as Q learning, deep Q network (DQN), or posterior policy opti-
mization (PPO), should be chosen, based on the complexity of the task and the available computational
resources, where:

* «, B, and 7y are weight coefficients that can be tuned.
¢ [ is the energy consumption penalty.

* Ti, is the current inside temperature.

* Tsetpoint is the setpoint temperature.

¢ D1, D2 is the penalty for temperature deviation.
D1 = ‘Tin - Tsetpoint‘

D2 = |Tin - setpoint| + (Tin - sei:point)2

e [1,L2 are the limit penalty for exceeding the maximum or minimum temperature.The limit
penalty is applied when the inside temperature exceeds the maximum or minimum temperature
limits:

|Tin - Tmax| if Tin > Tiax
Ll = |Tin - Tminl if Tin < Thin
0 if Tinin < Tin < Tmax
(Tin - Tmax)z if Tin > Tmax
L2 = (Tmin - Tin>2 if Tin < Tin
0 otherwise

where Tinax and Ty are the maximum and minimum allowable temperatures, respectively.

¢ Sis the set point change penalty.
¢ The set-point change penalty discourages frequent and large adjustments to the set-point temper-
ature:

S= |Tset-point - Tprevious_set—point|

where Tprevious_set-point 18 the set-point temperature from the previous time step.
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Analysis of the reward functions for greenhouse control

The reward function aims to balance the trade-offs between energy efficiency, temperature stability,
and smooth set-point adjustments. By carefully tuning the weights «, §, 7, and J, the reinforcement
learning agent can learn an optimal strategy to control the greenhouse temperature. Three reward
functions are indicated in Table 6. In this section, we analyze the result obtained by applying each of
them to the temperature evolution model in a greenhouse (Figure 6). From the result obtained, the
first conclusions will be drawn to obtain the best initial configuration of the RL algorithm that will act
in the installation under real conditions. In this work, we compare the three strategies in the Table 4.
We also compare the control with RL and the results obtained with a classic control without RL. This
analysis and comparison will result in the theoretical improvement of the algorithm compared to the
current control and the best-reward policy. Once the theoretical analysis of the best reward function
applicable to the theoretical model and greenhouse conditions has been carried out, the algorithm
is implemented in the facility using real data and actions defined in the previous step. Comparison
of energy consumption between the reinforcement learning (RL)-based control and a fixed set point
control at different sampling times showed varied results. The following analysis examines the
percentage difference in energy consumption between systems controlled by Reinforcement Learning
(RL) and those with a fixed set point. The cooling and heating processes of the greenhouse have been
analyzed. Each of the analyses provides a figure with six images with different comparisons. The six
subplots in each provided figure are evaluated to determine which system is more energy efficient and
effective in maintaining the desired temperature range.

Control Loop

T — Tout
setpoint £ E;
4 on/of f
/’/ K Q¢
|
Etionf('rset;aint)
“‘\\ Tin v
&
RL Agent dT; _ Qsotar + Qneat = U+ A - (Tin — Tour)
dt - Cgreenhouse
RL (Q-Learning)
Reward function RL feedback
RL Control analysis

Figure 6. Comparative analysis between RL control, Table 4 reward functions and RL control

1a) Cooling temperature control analysis using the differential equation model (Figure 7)

In R1a-R1b the RL system manages to maintain the inside temperature within the desired range
more effectively than the fixed setpoint system. Temperature variations with RL control are less
pronounced and stay closer to the set-point compared to the fixed set-point system. In R2a-R2b Similar
to R1a-R1b, the RL control maintains a more stable temperature, with fewer and smaller deviations
from the set point. The fixed set point system shows greater fluctuations and occasionally falls outside
the desired temperature range. In R3a-R3b the graph reinforces the previous observations, where
the RL system exhibits better control over the temperature, keeping it within the desired limits more
consistently than the fixed set-point system. The fixed set point control shows larger temperature
changes and less precision in maintaining the set point. Rla and R3a appear to perform the best, with


https://doi.org/10.20944/preprints202407.2247.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 d0i:10.20944/preprints202407.2247.v1

17 of 25

higher and more consistent energy savings at different sampling times. The Top Left Subplot shows a
slight edge in overall savings stability.

Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint)

Rla R2a R3a

Inside Temperature: RL vs Fixe

R1b R2b R3b
Figure 7. Comparative analysis in greenhouse cooling process

General Improvement with RL Control

Across all energy consumption graphs, the RL system consistently outperforms the fixed set point
system in terms of energy savings. The improvement is particularly notable for shorter sampling times
(5 to 20 minutes), where the savings are more substantial. Even at longer sampling intervals (up to 60
minutes), the RL system maintains a significant percentage of energy savings.

Temperature Control Effectiveness

The lower subplots demonstrate that the RL control system maintains the desired temperature
range more effectively than the fixed set-point system. The RL system results in smaller deviations
from the set-point, indicating better control and stability. The fixed set-point system shows larger
temperature fluctuations and occasionally fails to keep the temperature within the desired range.

Conclusion in cooling process using the differential equation model

The analysis indicates that the RL control system is highly effective in reducing energy consump-
tion compared to the fixed set-point system. Shorter sampling times yield the best results, with the RL
system showing a 45% improvement in energy efficiency. Furthermore, the RL system demonstrates
superior temperature control, maintaining the desired range more consistently and with fewer devi-
ations. In general, the RL system is a preferable choice for optimizing energy use and temperature
stability in greenhouse temperature control scenarios.

In the R1a-R1b subgraph shows a consistent improvement in energy consumption with the RL
system as the sampling time increases. For sampling times between 5 and 10 minutes, the RL system
shows significant energy savings of around -45%. As the sampling time increases, the savings decrease
slightly but remain significant, ending around -35% at 60 minutes. In R2a-R2b exhibits a similar
trend, with the RL system performing better than the fixed set-point system. The initial savings are
around -40%, with fluctuations as the sampling time increases. The savings dip slightly around 30 to 40
minutes but show an overall improvement, ending around -20% for 60 minutes. In R3a-R3b The trend
here is also consistent with the other graphs, showing that the RL system consistently saves energy
compared to the fixed set-point system. The savings are initially around -45% for shorter sampling
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times. Despite fluctuations, the savings remain significant throughout, ending around -35% for 60
minutes.

1b) Heating temperature control analysis using the differential equation model (Figure 8)

Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint) Percentage Difference in Energy Consumption (RL vs Fixed Setpoint)

Inside Temperature: RL vs Fixed Setpoint Inside Temperature: RL vs Fixed Setpoint

..............
.............

R1b R2b R3b
Figure 8. Comparative analysis in greenhouse heating process

General Improvement with RL Control

Across all energy consumption graphs, the RL system consistently outperforms the fixed set point
system in terms of energy savings. The improvement is particularly notable for shorter sampling times
(5 to 20 minutes), where the savings are more substantial. Even at longer sampling intervals (up to 60
minutes), the RL system maintains a significant percentage of energy savings.

Temperature Control Effectiveness

The bottom subplots demonstrate that the RL control system maintains the desired temperature
range more effectively than the fixed set point system. The RL system results in smaller deviations
from the set point, indicating better control and stability. The fixed set point system shows larger
temperature fluctuations and occasionally fails to keep the temperature within the desired range.

Conclusion in heating process using the differential equation model

The analysis indicates that the RL control system is highly effective in reducing energy consump-
tion compared to the fixed set-point system. Shorter sampling times yield the best results, with the RL
system showing a 45% improvement in energy efficiency. Furthermore, the RL system demonstrates
superior temperature control, maintaining the desired range more consistently and with fewer devi-
ations. In general, the RL system is a preferable choice for optimizing energy use and temperature
stability in greenhouse temperature control scenarios.

8.2. RL greenhouse control based in temperature prediction model

The first goal is to design and implement a model that predicts indoor temperature (TI) based
on various environmental variables. The model takes advantage of past data and predicted future
values to make accurate forecasts.Once there is an estimated value of the temperature evolution inside
the greenhouse, the RL algorithm is applied acting on the set-point, depending on the said evolution.
From the previous study using the differential equations model, it was concluded that the reward
function R1 is viable to display the algorithm. For all these reasons, in this analysis with data obtained
in the greenhouse we are going to use this reward function.


https://doi.org/10.20944/preprints202407.2247.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2024 d0i:10.20944/preprints202407.2247.v1

19 of 25

Prediction model

The model predicts the indoor temperature (TI) using the following variables:

External Temperature (TE)
External Relative Humidity (HRE)
Wind Direction (DV)

Wind Speed (VV)

External Global Radiation (RGE)
Internal Relative Humidity (HRI)

The prediction is based on the past values (lags) of these variables for the previous 60 minutes
and the predicted external temperatures for the next 60 minutes.

We created lagged characteristics for the last 60 minutes and leading characteristics for the future
external temperature (TE). This allows the model to capture temporal dependencies. The data set
is divided into training and testing sets. The features are standardized to have a mean of 0 and a
standard deviation of 1. We use a Linear Regression model to predict the indoor temperature.

For predicting the interior temperature of the greenhouse, Random Forest and Linear Regression
models are the most reliable based on their lower RMSE and MAE values. The Neural Network
model’s high error rates suggest that it may not be suitable for this particular prediction task without
further tuning or perhaps a different architecture or feature set. Linear regression is chosen for its
simplicity and interpretability.The model’s performance is evaluated using the Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) on both the training and testing datasets.

The Figure 9 compares the performance of different machine learning models based on two
metrics: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Data were captured from
November 2023 to May 2024.
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Figure 9. Machine learning methods to predict the temperature inside the greenhouse (TI)
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2a) Cooling control analysis using the temperature prediction model (Figure 10 )

The RL agent was trained to control the greenhouse temperature. The performance of the RL-
based control was compared to that of a fixed set point control. The total energy consumption and the
inside temperature regulation were evaluated.

The actions selected depend on the predicted temperature. In this way, it does not depend on a
value set in the set point, but on variable values that depend on the behavior of the greenhouse.

Comparative Energy Consumption: RL vs Fixed Setpoint
Total energy savings: 35.44% Inside Temperature: RL vs Fixed Setpoint vs Predicted

e~ RL Energy Consumption . 30— Inside (U

50 Fixed Setpoint Energy Consumption ‘ Inside Temperature (Fixed Setpoint)
predicted Inside Temperature
284 - Tmax

Cumulative Energy Consumed (kWh)
Temperature (*C)

o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140
Time (intervals) Time (intervals)

Figure 10. Energy Consumption: RL vs Fixed Setpoint (left) and Inside Temperature: RL vs Fixed
Setpoint vs Predicted (right)

Figure 10 shows the regulation of inside temperature using RL control, fixed setpoint control,
and predicted inside temperature. The RL control maintains the temperature closer to the upper limit
(Tmax) compared to the fixed set-point control. This dynamic adjustment helps minimize energy
consumption while ensuring that the temperature stays within the desired range. The predicted
temperature provides a reference for the RL control actions. The cumulative energy consumption
graph (the graph on the right) demonstrates that the RL-based control performs better than the fixed
set point control, achieving a total energy savings of 35.44%. This significant reduction in energy usage
highlights the efficiency of the RL algorithm in optimizing the control strategy. The graph on the right
reveals that the RL control effectively maintains the temperature within the desired range (between
T_min and T_max). The RL control shows a more dynamic response compared to the fixed set-point
control, which can lead to more efficient heating. The predicted temperature aligns well with the actual
inside temperature regulated by the RL control, indicating accurate predictions and effective control
actions. The RL-based temperature control (in the cooling phase) method shows significant advantages
over fixed set point control in terms of energy savings and effective temperature regulation. The ability
of RL to adaptively adjust the set point temperature based on predicted inside temperatures leads to
optimized energy consumption and better maintenance of the desired temperature range.

2b) Heating control using the temperature prediction model (Figure 11)

Figure 11 compares the cumulative energy consumption between the RL-based control and the
fixed set-point control. The RL control demonstrates significant energy savings, with a total reduction
of 25.93% compared to the fixed set-point control. This indicates the effectiveness of the RL algorithm
in optimizing energy usage while maintaining the desired temperature.

The second figure in the composite image shows the regulation of the inside temperature using
RL control, fixed set-point control, and the predicted inside temperature. The RL control maintains
the temperature closer to the upper limit (Tmax) compared to the fixed setpoint control. This dynamic
adjustment helps minimize energy consumption while ensuring that the temperature stays within the
desired range. The predicted temperature provides a reference for the RL control actions.

The cumulative energy consumption graph demonstrates that the RL-based control performs
better than the fixed set point control, achieving a total energy savings of 25.93%. This significant
reduction in energy usage highlights the efficiency of the RL algorithm in optimizing the control
strategy.
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The inside temperature regulation graph reveals that the RL control effectively maintains the
temperature within the desired range (between Tyin and Tmax). The RL control shows a more dynamic
response compared to the fixed set point control, which can lead to more efficient heating. The
predicted temperature aligns well with the actual inside temperature regulated by the RL control,
indicating accurate predictions and effective control actions.

The RL-based temperature control method shows significant advantages over the fixed set point
control in terms of energy savings and effective temperature regulation. The ability of RL to adaptively
adjust the setpoint temperature based on predicted inside temperatures leads to optimized energy
consumption and better maintenance of the desired temperature range.

Table 7. Actions taken by RL algorithm in heating case using temperature (TI) prediction. The control
values are limited by Tyax and Ty

ine Action 1 Tsetpoint = Tin?predicted

ine Action 2 Teerpoint = Tin?predicted -1

ine Action 3 Tsetpoint = Tin_predicted -2

ine Action 4 Tsetpoint = Tin_predicted -3

ine Action 5 Tsetpoint = Tin?predicted —4
me

Comparative Energy Consumption: RL vs Fixed Setpoint
Total energy savings: 25.93% Inside Temperature: RL vs Fixed Setpoint vs Predicted

~e— RL Energy Consumption — Inside (RL)
#— Fixed Setpoint Energy Consumption // Inside Temperature (Fixed Setpoint)
3 24 Predicted Inside Temperature
--- T_max
-=- T_min

35

30
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Figure 11. Comparative Energy Consumption: RL vs Fixed Setpoint and Inside Temperature: RL vs
Fixed Setpoint vs Predicted

This Q-learning algorithm optimizes (in the heating phase) the greenhouse set-point temperature
by selecting from five actions to adjust the set-point. The reward function penalizes heating usage,
encouraging the algorithm to find a set-point that minimizes energy consumption while maintaining
the desired temperature range.

Analysis of Energy Consumption and Savings for different Tt point

The graph on the left of Figure 12 illustrates the cumulative energy consumption over time for
different set point temperatures (Tstpoint)- The graph compares the energy consumption between
Reinforcement Learning (RL) based control and a fixed set-point control for various setpoints.

Key Observations:
¢ Energy Consumption Patterns:

— The energy consumption increases over time for both RL and fixed set point controls.
— For lower Tt point values, the energy consumption is generally lower. As Tsetpoins increases,

energy consumption increases.

¢ Comparison between RL and Fixed Set point:

— RL control consistently consumes less energy compared to fixed set point control for all set
points.
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— The difference in energy consumption between the RL and the fixed set point control is
more pronounced at higher set points.

Right Graph: Energy Savings for Different Tsetpoint

The graph on the right of Figure 12 shows the percentage of energy savings achieved by using the
RL control compared to the fixed set point control in different Tsetpoint values.

Key Observations:

* Energy Savings Trend:

— The energy savings increase with higher Tsetpoint values.
— The energy savings range from approximately 36% at Tsetpoins = 18.0°C to nearly 50% at

Tsetpoint = ZZOOC
¢ Efficiency of RL Control:

— The RL control becomes more efficient in terms of energy savings as the Tsetpins increases.
— This indicates that RL control is particularly beneficial in scenarios where higher set points

are required, resulting in significant energy savings.

The analysis of the graphs reveals that the RL-based control offers substantial energy savings
compared to the fixed set-point control across various set points. The energy savings are more
pronounced at higher set points, indicating the effectiveness of RL control in optimizing energy
consumption while maintaining desired temperature conditions in the greenhouse. This makes RL
control a promising approach for energy-efficient temperature regulation.

Comparative Energy Consumption for Different T_setpoints

,+ | — RLEnergy Consumption (T_setpoint=18.0°C) Energy Savings for Different T_setpoints
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Figure 12. Comparative analysis taking different reference temperatures (setpoints)

9. Conclusion

The integration of Internet of Things (IoT) protocols and Reinforcement Learning (RL) methodolo-
gies has been shown to be effective in managing and optimizing greenhouse operations for industrial
hemp cultivation. This combination not only enhances operational efficiency, but also maintains se-
lected temperatures and optimizes energy consumption more effectively than classical control methods.
By reducing the need for constant human intervention, this technological integration minimizes labor
costs and increases scalability for larger agricultural enterprises.

The RL based control system shows significant energy savings while maintaining the desired
temperature ranges, outperforming traditional fixed set-point control systems. Specifically, the study
shows energy savings of up to 45% during cooling processes and 25.93% during heating processes. In
addition, this new control approach simplifies the workload of technicians by eliminating the need for
complex analyzes to achieve the same results, allowing them to focus on higher-level oversight and
maintenance tasks.

Integration with IoT plays a crucial role in this setup, enabling real-time data acquisition and
seamless communication between various greenhouse subsystems. IoT devices collect and transmit
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environmental data that RL algorithms use to make informed dynamic adjustments to greenhouse
conditions. This IoT integration ensures that the RL model can adapt to changing conditions promptly
and accurately, thus optimizing resource use and improving overall system responsiveness.

RL algorithms are capable of adaptively adjusting set-point temperatures based on real-time
data and predictions, leading to optimized energy consumption and better maintenance of desired
environmental conditions. The study validates the practical implementation of RL models in automated
greenhouses in the real world, showcasing their ability to scale and adapt to different types of crops
and environmental conditions. These conclusions highlight the potential of combining IoT and
RL technologies to improve the efficiency, scalability, and sustainability of greenhouse operations,
particularly for industrial hemp cultivation.
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