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Abstract: Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic inflammation 

and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on the protein-coding 

regions of the genome, where most disease-related mutations often occur, whole-exome sequencing (WES) is 

a powerful approach for investigating rare and complex conditions, like IGM. We report WES results on paired 

blood and tissue samples from eight IGM patients. Samples were processed using standard genomic protocols. 

Somatic variants were called with two analytical pipelines: nf-core/sarek with Strelka2 and GATK4 with 

Mutect2. Our WES study of eight patients did not find evidence supporting a clear genetic component. The 

discrepancies between variant calling algorithms, along with the considerable genetic heterogeneity observed 

amongst the eight IGM cases, indicate that common genetic drivers are not readily identifiable. With only three 

genes, CHIT1, CEP170, and CTR9, recurrently altered in multiple cases, the genetic basis of IGM remains 

uncertain. The absence of validation for somatic variants by Sanger sequencing raises further questions about 

the role of genetic mutations in the disease. These observations suggest that IGM may be influenced by non-

genetic factors, such as environmental triggers or immune system dysregulation, rather than being primarily 

a genetic disorder. 

Keywords: breast pathology; breast abscess; suppurative breast lesion; tuberculous mastitis; breast 

cancer; mastitis; idiopathic granulomatous mastitis; somatic mutations; pathogenic mutations; 

whole-exome sequencing 
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Idiopathic granulomatous mastitis (IGM) poses a significant clinical challenge [1,2]. It is 

characterised by chronic inflammation and granuloma formation in the breast, with the precise 

molecular mechanisms driving its pathogenesis remaining ambiguous [3–5]. Unlike other forms of 

mastitis with known risk factors of breastfeeding, infection, or autoimmunity, IGM perplexes 

clinicians and researchers alike due to its elusive aetiology and diverse clinical presentation [5–8]. 

The rarity of IGM complicates both its diagnosis and treatment [2,9]. Specific prevalence and 

incidence rates are not well-established in the literature due to their rarity and the diagnosis being 

one of exclusion [10]. Some studies indicate that the incidence may be higher in certain geographic 

regions and populations, but precise numbers are not widely available [2,11]. With its low incidence 

rate and heterogeneous clinical manifestations, establishing standardised diagnostic criteria and 

therapeutic guidelines proves challenging [2,11,12]. The lack of consensus regarding management 

also underscores the pressing need for a deeper understanding of the disease’s molecular 

underpinnings [10]. 

Advancements in genomic technologies have heralded a new era in unravelling the genetic basis 

of complex diseases. Whole exome sequencing (WES) has emerged as a powerful tool for 

comprehensively interrogating the coding regions of the genome, offering a promising avenue to 

explore the genetic landscape of rare disorders like IGM [13]. Studying IGM-related somatic 

mutations enhances our understanding of the molecular mechanisms underlying the disease’s 

pathogenesis. Such insights can lead to improved diagnostics through biomarker identification, 

enabling quicker and more accurate differentiation from other breast diseases [14]. In this study, we 

embark on a first-of-its-kind endeavour to identify somatic mutations associated with IGM by 

employing WES on matched blood and tissue samples from IGM patients. 

2. Results 

2.1. Patient Demographics and Clinical Characteristics 

Paired blood and breast tissue samples donated by eight women diagnosed with IGM were 

processed for WES. The patient demographic and clinical characteristics are shown in Table 1.  

Table 1. Description of demographic and clinical parameters of idiopathic granulomatous mastitis 

(IGM) patients. 

Demographic and clinical parameters 
IGM 

n = 8 

Demographics  

Median age at diagnosis (years, IQR) 33.0 (27.3-34.5) 

  

Ethnicity (n, %)  

Chinese 4 (50) 

Malay 3 (38) 

Others 1 (12) 

  

Body mass index (kg/m2, IQR) 27.770 (23.460-33.454) 

  

Education level (n, %)  

Up to secondary school 3 (38) 

Secondary school to pre-university 3 (38) 

Tertiary education 2 (25) 

Patient characteristics  

Parity (n, %)  

Yes 6 (75) 

No 2 (25) 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2024                   doi:10.20944/preprints202408.0010.v1

https://doi.org/10.20944/preprints202408.0010.v1


 3 

 

Number of children (n, %)  

No children 2 (25) 

1-2 children 5 (62) 

More than 2 children 1 (12) 

  

Smoking (n, %)  

Yes 2 (25) 

No 6 (75) 

  

Chronic illness1 diagnosis (n, %)   

Yes 2 (25) 

No 6 (75) 

  

Family history2 of breast cancer (n, %)  

Yes 1 (12) 

No 7 (88) 
1 Chronic illness: Heart attack, stroke, or high blood pressure. 2 First degree family history: Breast cancer in a 

parent, sibling, or child. 

The women have a median age of 33 (interquartile range 27.3-34.5) (Table 1). The other 

demographic variables reported were ethnicity, body mass index and education level (Table 1). 

Clinical characteristics reported were parity, number of children, smoking, chronic illness diagnosis, 

and first-degree family history of breast cancer (Table 1). All patients reported no alcohol 

consumption; no previous or existing diagnosis of autoimmune conditions (coeliac disease, type 1 

diabetes mellitus, Graves’ disease, inflammatory bowel disease, multiple sclerosis, psoriasis, 

rheumatoid arthritis, or lupus erythematosus); and no previous or existing cancer diagnosis. 

2.2. DNA Quality and Sequencing Metrics 

Genomic DNA extraction yielded mean DNA concentration from blood samples at 12.5 ng/µL, 

and from tissue samples at 10.7 ng/µL (Supplementary Table S1, Supplementary Figure S1). WES 

libraries prepared had typical fragment size distributions with peak range of 320-337 bp for the blood 

samples, and 315-332 bp for the tissue samples (Supplementary Table S2). An average of almost 91 

million reads per sample was obtained (Supplementary Table S3). Reads were aligned to the human 

GRCh38 reference genome using BWA, with a mean mapping rate of 100.0% (Supplementary Table 

S3). The average duplication rate was 17.2%, ensuring efficient use of sequencing capacity 

(Supplementary Table S3). The average coverage depth across target exonic regions was 37.5x (range 

26.66-53.51x), ensuring high sensitivity for variant detection (Supplementary Table S3). 100% of target 

regions were covered at least 20x, indicating uniform coverage across the exome (Supplementary 

Table S3). The GC content of the reads was within the expected range for human exonic sequences 

(range 42.3-43.7%) (Supplementary Table S3). Other summary statistics for sequencing performance, 

coverage metrics and sequencing read quality control values are displayed in Supplementary Table 

S3. 

2.3. Somatic variants identified from WES 

Variant calling by Strelka2 in nf-core/sarek pipeline and Mutect2 in GATK4 Best Practises 

workflow, yielded 

• Variants called from blood samples: Variants identified in blood samples (Supplementary Table 

S4), and 

• Variants called from paired blood/tissue samples: Variants identified in the tissue sample that 

were not present in the corresponding blood sample (Table 2).  
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Table 2. Somatic variants identified from WES of paired blood/tissue samples through Strelka2 and 

Mutect2 variant calling. 

Case 

Somatic 

variants 
SNVs1 Indels2 PTVs3 Pathogenic4 

Pathogenic / 

Likely 

Pathogenic4 

Likely 

Pathogenic4 

Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 Strelka2 Mutect2 

1 57 224 56 219 1 1 1 13 0 0 0 0 0 0 

2 50 46 48 38 2 7 0 5 0 0 0 0 0 0 

3 57 72 56 69 1 2 1 4 0 0 0 0 0 0 

4 53 52 51 48 2 4 3 5 0 0 0 0 0 0 

5 56 33 54 28 2 5 2 6 0 0 0 0 0 0 

6 80 35 79 26 1 8 0 4 0 0 0 0 0 0 

7 65 39 65 32 0 6 0 5 0 0 0 0 0 0 

8 53 52 52 39 1 11 0 8 0 0 0 0 0 0 

Median 

(range) 

56.5 

(50-80) 

49  

(23-224) 

55  

(48-79) 

38.5 

(26-219) 

1  

(0-2) 

5.5  

(1-11) 

0.5  

(0-3) 

5  

(4-13) 

0  

(0-0) 

0  

(0-0) 

0  

(0-0) 

0  

(0-0) 

0  

(0-0) 

0  

(0-0) 

1 Single nucleotide variants. 2 Insertions and deletions. 3 Protein-truncating variants. These correspond to 

variants annotated as nonsense mutations, or frameshift insertions or deletions by GATK4 Funcotator. 4 ClinVar 

annotation of pathogenicity within GATK4 Funcotator variant annotation. 

Supplementary Table S4 and Table 2 show the number of somatic variants, single nucleotide 

variants (SNVs), insertions and deletions (indels) called by the two variant callers for blood samples, 

and blood/tissue paired samples respectively, for the 8 cases. Variants annotated as 

“Nonsense_Mutation”, “Frame_Shift_Ins”, “Frame_Shift_Del” with Funcotator were labelled protein-

truncating variants (PTVs). Table 2 also shows the number of PTVs, and ClinVar pathogenicity 

annotations for the eight cases. 

In paired blood-tissue samples, Strelka2 called more variants than Mutect2 (Table 2, Figure 1a). 

Medians of all variants called were 56.5.5 (range 50-80) for Strelka2 and 49 (range 23-224) for Mutect2 

(Table 2). Strelka2 and Mutect2 also called more SNVs than indels (Table 2, Figure 1a). 

(a) 

 

Variants called from matched blood-tissue samples

Case

Variant Caller

C
o
u
n
ts
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(b) 

 

Figure 1. Single nucleotide variants (SNVs) and insertion and deletion variants (indels) called by 

Strelka2 and Mutect2, from (a) matched blood-tissue samples; (b) blood samples. 

Amongst non-synonymous mutations annotated with Funcotator, missense mutations were 

annotated the most (Figure 2a).  

(a) 

 

Variants called from blood samples

Case

Variant Caller

C
o

u
n

ts

Strelka2 variants called annotated Mutect2 variants called annotated
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(b) 

 

Figure 2. Mutations annotated by Funcotator from variants called with Strelka2 and Mutect2 matched 

blood-tissue samples. (a) All non-sysnonymous mutations annotated from Strelka2 and Mutect2 

variant calls; (b) Protein-truncating variants (nonsense mutations, and frame-shift insertions and 

deletions) annotated from Strelka2 and Mutect 2 variant calls. 

More non-synonymous mutations and more types of non-synonymous mutations were 

annotated from the variants called by Mutect2, than by Strelka2 (Figure 2a). Median mutations 

annotated per sample was 49 for variants called by Mutect2, vs 11.5 for variants called by Strelka2 

(Figure 2a). Variants called by Strelka2 were annotated as missense mutations, splice sites and 

nonsense mutations; variants called by Mutect2 were annotated as those already mentioned, as well 

as frameshift insertions and deletions, in-frame insertion and deletions, and non-stop mutations 

(Figure 2a). None of the variants called in matched blood-tissue comparisons were pathogenic, or 

likely pathogenic, as per ClinVar annotation (Table 2). Less variants called in matched blood-tissue 

samples were annotated as PTVs in Strelka2 variant calling (median 0.5, range 0-3), compared to that 

of Mutect2 (median 5, range 4-13), despite the opposite comparison for total number of variants called 

(Table 2, Figures 1a and 2b). 

Further examination of PTVs from the matched blood-tissue Strelka2 and Mutect2 variant calling, 

found 53 genes altered across the eight cases (Figure 3). 

Mutect2 variants annotated as PTVsStrelka2 variants annotated as PTVs
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Figure 3. Altered genes in PTVs from Strelka2 and Mutect2 matched blood-tissue variant calling. 

49 genes altered were identified from variants called by Mutect2, and the remaining 4 genes were 

identified from variants called by Strelka2 (Figure 3). Only 3 out of the 53 genes were altered in more 

than 1 case (Figure 3): 

• CHIT1, altered in Cases 3, 4 and 5, nonsense mutations 

• CEP170, altered in Cases 4 and 5, nonsense mutations 

• CTR9, altered in Cases 7 and 8, nonsense mutation and frameshift deletion, respectively 

The remaining genes were only altered in single cases (Figure 3).  

Functional enrichment analysis of the altered genes with enrichR did not reveal any statistically 

significant (p<0.05) pathways enriched (Supplementary Table S5, Supplementary Figure S2).  

Pathways with the lowest p-values identified include terpenoid backbone biosynthesis (p=0.0526, 

adjusted p=0.481), protein export (p=0.0549, adjusted p=0.481), and protein processing in the 

endoplasmic reticulum (p=0.0618, adjusted p=0.481) (Supplementary Table S5, Supplementary Figure 

S2). The genes IDI2, SEC62, DNAJB12, and DNAH1 were implicated in these pathways 

(Supplementary Table S5). 

A median of 2 [range 1-3] overlapping variants per sample were called by both variant callers 

from paired blood/tissue samples (Table 3).  

Table 3. Somatic variants identified from WES of paired blood/tissue samples that overlap in Strelka2 

and Mutect2 variant calling. 

Case Somatic 

variants 
SNVs1 Indels2 PTVs3 Pathogenic4 

Pathogenic / Likely 

Pathogenic4 

Likely 

Pathogenic4 

1 3 3 0 0 0 0 0 

2 2 2 0 0 0 0 0 

3 1 1 0 0 0 0 0 

4 1 1 0 0 0 0 0 

5 2 2 0 0 0 0 0 

6 2 2 0 0 0 0 0 

7 3 3 0 0 0 0 0 

8 2 2 0 0 0 0 0 

C
o

u
n

t

G
e
n

e
s

87654321Case

Number of cases

Genes altered in protein-truncating variants (PTVs) from Strelka2 and Mutect2 matched blood-tissue variant calling

Nonsense mutation

Frameshift insertion

Frameshift deletion

Variants called by Strelka2
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Median 

(range) 2 (1-3) 2 (1-3) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 
1 Single nucleotide variants. 2 Insertions and deletions. 3 Protein-truncating variants. These correspond to 

variants annotated as nonsense mutations, or frameshift insertions or deletions by GATK4 Funcotator. 4 ClinVar 

annotation of pathogenicity within GATK4 Funcotator variant annotation. 

All overlapping variants are single nucleotide variants, none of which were annotated as PTVs, 

or pathogenic or likely pathogenic (Table 3). Only 1 variant from Patient 4 (missense mutation) and 

1 variant from Patient 8 (splice site) were annotated as non-synonymous mutations. 

Supplementary Table S4 and Figure 2b show the variants and their categorisations for the 

Strelka2 and Mutect2 variant calling in only the blood samples. Supplementary Table S6 details the 

overlapping variants per sample called by both variant callers in only the blood samples. 

2.4. Validation of Somatic Variants with Sanger Sequencing 

A subset of variants was selected for validation using Sanger sequencing (Supplementary Table 

S7). None of the selected variants were validated through Sanger sequencing (Supplementary Table 

S7). 

3. Discussion 

This study presents somatic variants identified through WES in paired blood and breast tissue 

samples from eight women diagnosed with IGM. WES libraries exhibited typical fragment size 

distributions, high mapping rates, and sufficient coverage depth across exonic regions. Somatic 

variant calling revealed more variants by Strelka2 compared to Mutect2 in paired samples. This flips 

when variants called by Mutect2 are annotated to more non-synonymous mutations and PTVs than 

those called by Strelka2. However, none of the variants were pathogenic per ClinVar annotation. 

Further examination identified 53 altered genes, with CHIT1, CEP170 and CTR9 genes altered in more 

than one case. Functional enrichment analysis did not show statistically significant pathways, 

although terpenoid backbone biosynthesis, protein export, and protein processing in the endoplasmic 

reticulum were implicated. Validation of variants through Sanger sequencing did not yield any 

validated variants. 

Differences in the variability of sensitivity and specificity between different variant calling 

algorithms have been extensively discussed [15–19]. Their differences in algorithm and focus of the 

variant caller underscores this discrepancy between Strelka2 and Mutect2 in terms of the number of 

variants identified, and their limited overlap. Strelka2 uses a probabilistic model leveraging local 

assembly and realignment to call variants for more sensitivity in identifying low-frequency somatic 

mutations, especially in matched tumour-normal pairs, by using Bayesian methods to model both 

the tumour and normal samples [20]. Contrastingly, the haplotype-based approach in Mutect2 

employs a sophisticated filtering process that incorporates various sources of evidence to distinguish 

between true mutations and sequencing artefacts [21]. Designed to balance sensitivity and specificity, 

Mutect2 minimises false positives by implementing additional artefact filters for oxidative artefacts 

and strand bias, on top of the standard filtering preprocessing [21]. Furthermore, nf-core/sarek 

Strelka2’s use of hard filters based on fixed thresholds, vs GATK4 Mutect2 use of machine learning to 

filter variants could provide additional explanation for the large discrepancy in called variants [20–

22]. 

Both algorithms identified more SNVs than indels, which is consistent with typical findings in 

WES studies [23–25]. Despite the larger number of variants identified by Strelka2, the fewer non-

synonymous mutations and PTVs annotation in Funcotator contrasted with Mutect2 variant calls in 

matched blood-tissue samples, emphasises the need for the multiple variant caller approach for 

capturing the full spectrum of genetic alterations [26,27]. The limited overlap across the different 

categorisations of the variants in both the matched blood-tissue calls and the blood only calls, signals 

further optimisation of the variant calling pipelines and validating identified variants through 

independent methods are necessary. 
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From the PTVs from the matched blood-tissue Strelka2 and Mutect2 variant calling, CHIT1, 

CEP170, and CTR9, were altered in more than one case. CHIT1 has been implicated in both 

granulomatous and non-granulomatous inflammatory conditions, including multiple sclerosis, 

sarcoidosis, inflammatory bowel disease, and a few fibrotic interstitial lung diseases (tuberculosis, 

idiopathic pulmonary fibrosis, scleroderma-associated interstitial lung diseases, chronic obstructive 

pulmonary diseases) [28–32]. Song and Shao (2024) have also proposed CHIT1 as one of 12 genes in 

an immune-mediated genetic prognostic risk score model when administering immunotherapy in 

triple negative breast cancer [33]. CEP170 and CTR9 are involved in cell cycle processes, in which 

dysregulation have been described to result in the secretion of inflammatory factors, impair immune-

mediated processes, and increase inflammation [34–38]. Potentially, the alterations in CHIT1, CEP170, 

and CTR9 may individually, or collectively contribute to granuloma formation and chronic 

inflammation in the breast tissue in IGM. 

Unfortunately, there is considerable genetic heterogeneity amongst the eight IGM cases since 

the remaining 50 genes are each altered in single cases. This variability complicates efforts to pinpoint 

common genetic drivers of the disease, and could suggest IGM may arise from multiple genetic 

pathways. Such heterogeneity is consistent with the clinical diversity observed in IGM, where 

patients present with a wide range of symptoms and disease severities [4,10,39]. However, the lack 

of statistically significant pathways identified from functional enrichment analysis of the 53 genes, 

with all pathways identified enriched by only one to two genes, suggests there may not be identifiable 

genetic drivers for IGM among these eight patients. 

Both pipelines rely on rigorous variant calling and annotation processes to maximise the 

reliability and validity of the identified somatic variants. Unfortunately, none of the selected variants 

identified from WES were validated with Sanger sequencing. Despite achieving high coverage depth 

across all exome-targeted regions, WES is prone to inaccuracies, due to sequencing artefacts or 

accurately identifying variants in regions of genomic instability [40]. False positives can arise in short-

read technology, particularly in regions with high GC content or repetitive sequences [41]. Sanger 

sequencing, with its ability to provide uniform coverage and longer read lengths, is a valuable 

orthogonal validation tool [42]. Other studies have also described somatic variants identified from 

WES that were not found in Sanger sequencing [24,25,43,44]. Discrepancies between WES and Sanger 

sequencing results can be attributed to their inherent differences in their error profiles or limitations 

in detecting variants present at low allele frequencies, especially in heterogeneous samples like those 

from IGM patients [45–47].  

It must be recognised that the application of WES to the study of IGM presents its own unique 

set of challenges. WES mainly targets the exonic regions of the genome and is not as effective in 

identifying large structural variations, including deletions, duplications, inversions, and 

translocations [48]. Additionally, the rarity of IGM limits access to large patient cohorts for 

comprehensive genomic analysis with sufficient power to detect smaller effect sizes and lower impact 

somatic mutations [49]. Given our sample size of eight patients with matched blood and tissue 

samples, this study has low statistical power (0.230) to detect a significant difference in somatic 

mutations between the paired samples if such a difference truly exists [50]. The ideal power of at least 

0.80 requires an odds ratio of approximately 7.25 to detect a statistically significant difference in 

somatic mutations between the paired blood and tissue samples [50].  

Another difficulty lies in the disease’s inherent heterogeneity [2,4,8,10]. With a broad spectrum 

of clinical features, ranging from localised breast masses to diffuse inflammatory changes, identifying 

consistent genetic signatures associated with IGM is challenging [39]. Moreover, the multifactorial 

and inflammatory nature of IGM adds another layer of complexity to the study of its aetiology [8,51]. 

While various hypotheses, including immune dysregulation, infectious triggers, and hormonal 

influences, have been proposed, the precise interplay of genetic and environmental factors remains 

poorly understood [8,11]. Understanding these complex interactions is key to determining the 

underlying causes of IGM.  

This study pioneers the investigation into somatic variants in IGM patients. While the matched 

blood-tissue WES variant calls did not identify any ClinVar annotated pathogenic variants, the 
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detection of variants in multiple genes suggests that IGM may involve a variety of molecular 

mechanisms. Larger studies with more comprehensive datasets are needed to uncover significant 

genomic drivers and biological pathways associated with IGM. Furthermore, larger scale studies 

could also unearth possible associations between different variants and, the clinical manifestations 

and severity of IGM [2,10]. Future studies should also focus on integrating additional omics data, 

such as transcriptomics and proteomics, to provide a more comprehensive understanding of the 

disease. The challenges in validating somatic variants underscore the need for improved 

methodologies and protocols for variant validation. Addressing these challenges requires a 

multifaceted approach, including refining bioinformatics pipelines to mitigate false positives, and an 

integrated orthogonal validation approach to ensure the accuracy of variant calls. 

4. Materials and Methods 

4.1. Patient Recruitment 

The study population and patient recruitment have been previously described [8]. In brief, adult 

female patients with IGM were recruited from five participating hospitals in Singapore between 2018 

and 2020. IGM diagnoses were based on breast core biopsy histopathology for non-caseating 

granulomatous inflammation and absence of malignancy. Patients were also negative for 

Mycobacterium tuberculosis infection (acid-fast bacillus stain), and fungal infection (Grocott 

(methenamine) silver stain or Periodic acid–Schiff stain). Study coordinators sought written informed 

consent from potential IGM patients identified by clinicians and physicians. All studies were 

performed in accordance with the Declaration of Helsinki. This study was approved by the National 

Healthcare Group Domain Specific Review Board (reference number: 2017/01057) and the Agency for 

Science, Technology and Research Institutional Review Board (reference number: 2020-152). 

4.2. Sample Collection 

A subset of eight IGM patients who donated paired blood and core tissue biopsy samples for 

research use were included in our study (Figure 4).  

 

Figure 4. Patient recruitment, inclusion, and exclusion flowchart. 
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Fresh blood samples were collected with DNA/RNA Shield Blood Collection tubes (catalogue 

number R1150; Zymo Research, Irvine, CA, USA). Fresh tissue samples were obtained with 

ultrasound-guided core tissue biopsies from three different regions of the affected breast area. Tissue 

cores were collected in 2mL-collection tubes with 300µL DNA/RNA Shield without breads (catalogue 

number R1100-250; Zymo Research, Irvine, CA, USA). 

4.3. DNA Extraction and Sequencing 

Genomic DNA was extracted from the collected whole blood and fresh tissue samples, and the 

WES library was prepared with standard protocols. Briefly, DNA extraction was performed with 

Quick-DNA Miniprep Plus Kit (catalogue number D4069; Zymo Research, Irvine, CA, USA) 

according to the manufacturer’s instructions. WES library was prepared with NEBNext®  Ultra™ II 

DNA Library Prep Modules for Illumina®  (catalogue number E7645L; New England Biolabs, Ipswich, 

MA, USA) according to the manufacturer’s instructions. Exome capture was performed with 

NimbleGen SeqCap EZ Exome Library Kit v3.0 (catalogue number 06465692001; Roche, Basel, 

Switzerland). DNA concentrations and quality were measured after extraction, shearing, pre-, and 

post-exome capture for quality control. Libraries were sequenced with 2 × 150 bp paired-end reads 

on HiSeq4000.  

4.4. Quality Control and Somatic Variant Calling 

Two analytical pipelines were used to identify somatic variants in the paired blood and tissue 

samples. The nf-core/sarek pipeline (version 3.3.0) was executed for identifying somatic mutations 

with singularity [52–57]. Raw sequencing reads were aligned to human GRCh38 reference genome 

(version from 22 July 2016, Broad Institute, from 

https://console.cloud.google.com/storage/browser/genomics-public-

data/resources/broad/hg38/v0;tab=objects?prefix=&forceOnObjectsSortingFiltering=false) with BWA 

[58]. GATK4 was applied according to GATK Best Practises recommendations parameters for hard 

filtering and score recalibration for removing duplicates and base quality score recalibration 

[21,59,60]. Strelka2 was used for matched tissue-normal pair variant calling [20].  

Another analytical pipeline, also applying GATK4 according to the GATK Best Practices 

workflow, was also used to identify somatic mutations [21,59,60]. Preprocessing sequencing reads 

followed the same parameters as above, but the different processes were applied individually in the 

same sequence, without the wrapped container. Briefly, the raw sequencing reads were also aligned 

to the human GRCh38 reference genome using BWA [58]. Picard tools were utilised to mark and 

remove duplicates [21], and GATK4 BaseRecalibrator and GATK4 ApplyBQSR for base quality score 

recalibration, consistent with GATK Best Practices [21,59,60]. Matched tissue-normal pair somatic 

variant calling was executed using GATK4 Mutect2 [21]. The called variants underwent filtering with 

GATK FilterMutectCalls before variant annotation [21]. 

Variants called with Strelka2 in the nf-core/sarek pipeline, and variants called with Mutect2 in 

the GATK Best Practises workflow, were annotated with GATK4 Funcotator [21]. Variant annotation 

was performed against Funcotator data sources v1.7.20200521s (GRCh38), encompassing the 

following databases: 

• Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) (data source 

dated 15 March 2012) [61] 

• National Center for Biotechnology Information (NCBI) ClinVar (data source dated 29 April 2018) 

[62,63]; also used to perform clinical pathogenicity annotation 

• NCBI dbSNP (data source dated 18 April 2018) [64] 

• Human DNA repair genes (data source dated 24 May 2018) [65] 

• The Familial Cancer Database (FaCD) [66,67] 

• GENCODE (v34) [68]  

• Genome Aggregation Database (gnomAD) (v3.1.2) [69] 

• Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) Database 

(data source dated 30 November 2017) [70] 
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4.5. Validating Called Variants with Sanger Sequencing 

A subset of somatic variants identified through WES and visualised with Integrative Genomics 

Viewer (IGV, version 2.17.0) were validated with Sanger sequencing [71]. Primers for PCR 

amplification of the regions containing the variants were designed using Primer3web (version 4.1.0) 

[72–74]. The PCR products were purified using AMPure XP beads (product number A63882; 

Beckman Coulter Life Sciences, Indianapolis, IN, USA) in a ratio of 1:1 sample to bead volume. 

Purified PCR products were Sanger sequenced. The sequencing data were analysed using the CLC 

Main Workbench (version 7.7.3, QIAGEN, Hilden, Germany) to confirm the presence or absence of 

the variants. The validity of somatic variants identified was determined based on sequence quality, 

allele frequency, and variants presence in the corresponding matched blood samples. 

4.6. Gene-Set Analysis 

Functional enrichment analysis of gene sets of somatic variants identified was performed with 

enrichR (version 3.2) using the 2019 version of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

knowledge base [75–79]; comprehensive analysis and visualisation of somatic variants identified was 

performed with maftools (version 2.6.05) [79]; and other data visualisation was performed with ggplot2 

(version 3.4.4) [80]. All analyses and visualisations were performed in R (version 4.0.4) unless 

otherwise stated. 

4.7. Data and Sample Availability Statement 

The datasets used and analysed in the current study are available from the corresponding author 

on reasonable request, within limitations of the study’s Institutional Review Board (IRB). 

5. Conclusions 

This study leads the way in advancing our understanding of the genetic complexities of IGM, 

through WES and comprehensive bioinformatics analysis. While numerous somatic variants have 

been identified, their clinical significance remains to be fully elucidated. Challenges encountered in 

variability across variant calling algorithms, Sanger validation, and heterogeneous genetic profiles, 

underscore the ongoing need for methodological refinement and larger-scale studies to 

comprehensively understand the genetic underpinnings of IGM. Despite these challenges, this study 

represents a critical step forward in decoding the genetic landscape of IGM. More large-scale 

investigations, robust validation studies, and integration of multi-omics approaches in future work, 

will contribute to unravelling the genomic intricacies of IGM. 
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