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Article 

Simplified Proof of the Collatz Conjecture   
Using Regularity 

General solution‐Calculation method by multiples of 6 and remainder‐ 

Haruhiro Shiraishi 1,*, Hajime Shiraishi 2 

1  Fisheries Agency, 
2  Kurume Institute of Technology 

*  Correspondence: author: ryoma.haruhiro@gmail.com 

Abstract: In solving the Collatz conjecture, it turns out that if we let all integers k be 6n, 6n+1, 6n+2, 

6n+3, 6n+4, 6n+5, then we can solve the Collatz conjecture periodically. The Collatz conjecture states 

that for any positive integer P (initial value), if n is even, divide n by 2; if n is odd, repeat the rule of 

multiplying n by 3 and adding 1, which always converges to 1. One open problem has been proved 

by this paper. The authors hope to contribute to the mathematical community by presenting simple 

proofs of conjectures in the history of mathematics such as the Collatz conjecture. 
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1. Introduction 

The Collatz problem is one of the unsolved problems in number theory. Jeffrey also wrote and 

published  a  book  on  the  famous Collatz  conjecture  as  an  unsolved  problem  [2,3],  and Conway 

challenged this unsolved problem while using Fractran [4,5]. Subsequently, computer‐based research 

continued,  and  numerous  scholars  tackled  this difficult problem with  interest  [6–14]. The major 

difference between  this paper and other papers on  the Collatz conjecture  is  that  the  regularity  is 

calculated  by  hand,  without  using  any  computer.  Thus,  we  assume  that  the  computational 

complexity can be drastically reduced. Also, it is impossible to show all numbers by computer. This 

is because numbers are not finite. Therefore, in this paper, we proved the Collatz conjecture by a very 

simple method  using  regularity  and  limits.  The  proof method  described  in  this  paper  can  be 

effectively used to provide clues to solving many unsolved problems. 

2. Methods 

In solving Collatz’s conjecture, we first took into consideration the importance of using the fact 

that all integers are represented by an+1, an+2...an+(a‐1). If n is even, then n = 2m, and if n is odd, then 

n = 2m+1 (m ≥ 0). 

First, 

(1) N = 6n 

(A) n= 2m (when n is even) 

When N = 6n and n is even, since N = even, using 6n = 6 and 2m = 12m, we can express the next 

number as 12m/2, which is 6m. If we use the fact that m≥1, then when n is even (n=2m) and some 

positive integer is N=6n, the next number of N must satisfy N=6n’. (n≠n’) 

(B) n = 2m+1 (when n is odd) 

If N = 6n and n is odd, then the next number is N = even. 

(6n = 6・(2m+1) =12m+6) 

Thus, the following number is (12m+6)/2 = 6m+3, which always satisfies N=6n’+3. (n≠n’) 

This can be summarized and written as Table 1. 
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Table 1. Next number N’ for N = 6n. 

N  N’ (Next N is N’) 

6n (n=2m)  6n’ (any integer with n’ ≥ 0) 

6n (n=2m+1)  6n’+3 (any integer with m≥0) 

(2) N = 6n+1 

(A) n= 2m (when n is even) 

If N = 6n and n  is even,  then N  is odd; using N’=3N+1,  the next  integer  is 3・(6n+1)+1 = 3・

(6(2m)+1)+1 and the next number can be expressed as 36m+4 = 6・(6m)+4. Here, using the fact that 

m≥1, if n is even (n=2m) and some positive integer is N=6n, the next number of N will always satisfy 

N=6・(6m)+4=6n’+4 (n≠n’). 

(B) n = 2m+1 (when n is odd) 

N = 6n where n is odd as in A when n is odd. Therefore, 

Using N’=3N+1, the next integer can be expressed as 3・(6n+1)+1 = 3・(6(2m+1)+1)+1 and the 

next number can be expressed as 36m+22= 6・(6m+3)+4=6n’+4 (n≠n’). 

This can be summarized and written as in Table 2. 

Table 2. Next number N’ for N = 6n+1. 

N  N’ (Next N is N’) 

6n+1 (n=2m)  6n’+4 (any integer with n’≥0) 

6n+1(n=2m+1)  6n’+4 (any integer with n’≥0) 

  (3) N = 6n+2 

(A) n= 2m (when n is even) 

If N = 6n+2 and n is even, then N is even; using N’=N/2, the next integer is N’ = (6(2m)+2)/2 = 

6m+1, and the next number N’ can be expressed by 6⋅m+1. If we use the fact that m≥1, then if n is 

even  (n=2m)  and  some  positive  integer  is  N=6n+2,  the  next  number  N’  of  N  must  satisfy 

N=6⋅m+1=6n’+1 (n≠n’). 

(B) n = 2m+1 (when n is odd) 

N = 6n+2=6(2m+1) +2 = 12m+8 where n is odd, as in (A). 

Thus, using N’=N/2, the next integer is (12m+8)/2 = 6m+4, and the following number 

N’= 6・(m)+4=6n’+4 (n≠n’). 

This can be summarized and written as Table 3. 

Table 3. Next number N’ when N = 6n+2. 

N  N’ (Next N is N’) 

6n+2 (n=2m)  6n’+1 (any integer with n’≥0) 

6n +2(n=2m+1)  6n’+4 (any integer with n’≥0) 

3. Results 

 Calculating similarly for N = 6n+3, 6n+4, and 6n+5, the regularity is determined as shown in 

Table 4. 

Table 4. Next number N’ for N = 6n. 

N  N’ (Next N is N’) 

6n (n=2m)  6n’ (any integer with n’≥0,n’=n/2) 
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6n (n=2m+1)  6n’+3 (any integer with n’≥0, n’=(n‐1)/2) 

6n+1 (n=2m)  6n’+4 (any integer with n’ ≥ 0, n’ = 3n) 

6n+1(n=2m+1)  6n’+4 (any integer with n’≥0, n’ = (n‐1)/2) 

6n+2 (n = 2m)  6n’+1 (any integer with n’ ≥ 0, n’ = n/2) 

6n+2 (n = 2m+1)  6n’+4 (any integer with n’≥0, n’ = (n‐1)/2) 

6n+3 (n = 2m)  6n’+4 (any integer with n’ ≥ 0, n’ = 3n) 

6n+3 (n = 2m+1)  6n’+4 (any integer with n’ ≥ 0, n’ = 3n) 

6n+4 (n = 2m)  6n’+2 (any integer with n’ ≥ 0, n’ = n/2) 

6n+4(n = 2m+1)  6n’+5 (any integer with n’ ≥ 0, n’ = (n‐1)/2) 

6n+5 (n = 2m)  6n’+4 (any integer with n’ ≥ 0, n’ = 3n) 

6n+5(n = 2m+1)  6n’+4 (any integer with n’ ≥ 0, n’ = 3n) 

We can see the rules in Table 4 are repeated. Now, when all the numbers are covered, we can 

depict them as in Figure 1. From Figure 1, it is obvious that n will eventually always be in the 1,4,2,1 

loop. 

Now, suppose N is a very large number, whether it converges to 1, 4, 2, 1, 

From 6n + 4 to the next 6n + 4, if n is always smaller, the proof is possible according to the loop 

rule. 

When in a loop, 

Even with the smallest coefficient, n’ = 1/2x in the 6n+4→6n+4 step; n’ = 1/2x in the 6n+2→6n+1 

step; and n’ = 1/2x in the 6n+2→6n+1 step. Thus, the convergence is at least 1/4 times faster. Note that 

when n=2m+1, the convergence speed is faster. On the other hand, when 6n+1 is an odd number, n’ 

= 3n+1 times. an is the initial value of the loop, Collatz’s expectation converges to n = 0 (n = 1,4,2,1...) 

as in equation (1). 

lim
௡→ஶ

ሺଷ௡ାଵ
ସ௡

ሻ = 0 (1) 

From Equation (1), once  in a  loop, it always converges to n = 0. Therefore,  it  is considered to 

converge at loops of 4, 2, and 1. 
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Figure 1. Collatz’s rule of prediction. 

4. Discussion 

Conventionally,  there was  a  section  in which  the Collatz  conjecture  attempted  to make  its 

mathematical sense by performing all the calculations. In the present paper, however, we have tried 

to classify the numbers very simply up to N = 6n, 6n+1...6n+5, and have concentrated on finding the 

regularities of these numbers. As a result, we were able to prove that every number always eventually 

enters a loop cycle and takes the form 6n+1, 6n+4, 6n+2, 6n+1. The final convergence of n to 0 was 

proved by using the limit to skip n to ∞, but a more rigorous proof is being considered in the future. 

5. Conclusions 

Regularities existed in Collatz ‘s conjecture. By extending the initial values of Collatz’s conjecture 

from 6n+1 to 6n+5, usually referred to as the 3n+1 problem, this paper shows that for all numbers, as 

expected by Collatz, it eventually falls into a loop and converges to 1, 4, 2, 1 with n = 0. Since this 

study uses a simplified method, it is possible to communicate the solution not only to experts but 

also to the public. The authors believe that if they can suggest that Collatz’s conjecture was correct, 

then Collatz’s hope will be fulfilled. 
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