

Article

Not peer-reviewed version

Simplified Proof of the Collatz Conjecture Using Regularity General solution-Calculation Method by Multiples of 6 and Remainder

[Haruhiro Shiraishi](#) * and [Hajime Shiraishi](#)

Posted Date: 1 August 2024

doi: [10.20944/preprints202408.0021.v1](https://doi.org/10.20944/preprints202408.0021.v1)

Keywords: Collatz conjecture; 6n; regularity

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Simplified Proof of the Collatz Conjecture Using Regularity

General solution-Calculation method by multiples of 6 and remainder-

Haruhiro Shiraishi ^{1,*}, Hajime Shiraishi ²

¹ Fisheries Agency,

² Kurume Institute of Technology

* Correspondence: author: ryoma.haruhiro@gmail.com

Abstract: In solving the Collatz conjecture, it turns out that if we let all integers k be $6n$, $6n+1$, $6n+2$, $6n+3$, $6n+4$, $6n+5$, then we can solve the Collatz conjecture periodically. The Collatz conjecture states that for any positive integer P (initial value), if n is even, divide n by 2; if n is odd, repeat the rule of multiplying n by 3 and adding 1, which always converges to 1. One open problem has been proved by this paper. The authors hope to contribute to the mathematical community by presenting simple proofs of conjectures in the history of mathematics such as the Collatz conjecture.

Keywords: Collatz conjecture; $6n$; regularity

1. Introduction

The Collatz problem is one of the unsolved problems in number theory. Jeffrey also wrote and published a book on the famous Collatz conjecture as an unsolved problem [2,3], and Conway challenged this unsolved problem while using Fractran [4,5]. Subsequently, computer-based research continued, and numerous scholars tackled this difficult problem with interest [6–14]. The major difference between this paper and other papers on the Collatz conjecture is that the regularity is calculated by hand, without using any computer. Thus, we assume that the computational complexity can be drastically reduced. Also, it is impossible to show all numbers by computer. This is because numbers are not finite. Therefore, in this paper, we proved the Collatz conjecture by a very simple method using regularity and limits. The proof method described in this paper can be effectively used to provide clues to solving many unsolved problems.

2. Methods

In solving Collatz's conjecture, we first took into consideration the importance of using the fact that all integers are represented by $a_{n+1}, a_{n+2} \dots a_{n+(a-1)}$. If n is even, then $n = 2m$, and if n is odd, then $n = 2m+1$ ($m \geq 0$).

First,

$$(1) N = 6n$$

$$(A) n = 2m \text{ (when } n \text{ is even)}$$

When $N = 6n$ and n is even, since $N = \text{even}$, using $6n = 6$ and $2m = 12m$, we can express the next number as $12m/2$, which is $6m$. If we use the fact that $m \geq 1$, then when n is even ($n=2m$) and some positive integer is $N=6n$, the next number of N must satisfy $N=6n'$. ($n \neq n'$)

$$(B) n = 2m+1 \text{ (when } n \text{ is odd)}$$

If $N = 6n$ and n is odd, then the next number is $N = \text{even}$.

$$(6n = 6 \cdot (2m+1) = 12m+6)$$

Thus, the following number is $(12m+6)/2 = 6m+3$, which always satisfies $N=6n'+3$. ($n \neq n'$)

This can be summarized and written as Table 1.

Table 1. Next number N' for $N = 6n$.

N	N' (Next N is N')
$6n$ ($n=2m$)	$6n'$ (any integer with $n' \geq 0$)
$6n$ ($n=2m+1$)	$6n'+3$ (any integer with $m \geq 0$)

(2) $N = 6n+1$ (A) $n=2m$ (when n is even)

If $N = 6n$ and n is even, then N is odd; using $N'=3N+1$, the next integer is $3 \cdot (6n+1)+1 = 3 \cdot (6(2m)+1)+1$ and the next number can be expressed as $36m+4 = 6 \cdot (6m)+4$. Here, using the fact that $m \geq 1$, if n is even ($n=2m$) and some positive integer is $N=6n$, the next number of N will always satisfy $N=6 \cdot (6m)+4=6n'+4$ ($n \neq n'$).

(B) $n = 2m+1$ (when n is odd) $N = 6n$ where n is odd as in A when n is odd. Therefore,

Using $N'=3N+1$, the next integer can be expressed as $3 \cdot (6n+1)+1 = 3 \cdot (6(2m+1)+1)+1$ and the next number can be expressed as $36m+22=6 \cdot (6m+3)+4=6n'+4$ ($n \neq n'$).

This can be summarized and written as in Table 2.

Table 2. Next number N' for $N = 6n+1$.

N	N' (Next N is N')
$6n+1$ ($n=2m$)	$6n'+4$ (any integer with $n' \geq 0$)
$6n+1$ ($n=2m+1$)	$6n'+4$ (any integer with $n' \geq 0$)

(3) $N = 6n+2$ (A) $n=2m$ (when n is even)

If $N = 6n+2$ and n is even, then N is even; using $N'=N/2$, the next integer is $N' = (6(2m)+2)/2 = 6m+1$, and the next number N' can be expressed by $6m+1$. If we use the fact that $m \geq 1$, then if n is even ($n=2m$) and some positive integer is $N=6n+2$, the next number N' of N must satisfy $N=6 \cdot m+1=6n'+1$ ($n \neq n'$).

(B) $n = 2m+1$ (when n is odd) $N = 6n+2=6(2m+1)+2=12m+8$ where n is odd, as in (A).Thus, using $N'=N/2$, the next integer is $(12m+8)/2 = 6m+4$, and the following number $N'=6 \cdot (m)+4=6n'+4$ ($n \neq n'$).

This can be summarized and written as Table 3.

Table 3. Next number N' when $N = 6n+2$.

N	N' (Next N is N')
$6n+2$ ($n=2m$)	$6n'+1$ (any integer with $n' \geq 0$)
$6n+2$ ($n=2m+1$)	$6n'+4$ (any integer with $n' \geq 0$)

3. Results

Calculating similarly for $N = 6n+3$, $6n+4$, and $6n+5$, the regularity is determined as shown in Table 4.

Table 4. Next number N' for $N = 6n$.

N	N' (Next N is N')
$6n$ ($n=2m$)	$6n'$ (any integer with $n' \geq 0, n'=n/2$)

6n (n=2m+1)	6n'+3 (any integer with n' ≥ 0, n' = (n-1)/2)
6n+1 (n=2m)	6n'+4 (any integer with n' ≥ 0, n' = 3n)
6n+1(n=2m+1)	6n'+4 (any integer with n' ≥ 0, n' = (n-1)/2)
6n+2 (n = 2m)	6n'+1 (any integer with n' ≥ 0, n' = n/2)
6n+2 (n = 2m+1)	6n'+4 (any integer with n' ≥ 0, n' = (n-1)/2)
6n+3 (n = 2m)	6n'+4 (any integer with n' ≥ 0, n' = 3n)
6n+3 (n = 2m+1)	6n'+4 (any integer with n' ≥ 0, n' = 3n)
6n+4 (n = 2m)	6n'+2 (any integer with n' ≥ 0, n' = n/2)
6n+4(n = 2m+1)	6n'+5 (any integer with n' ≥ 0, n' = (n-1)/2)
6n+5 (n = 2m)	6n'+4 (any integer with n' ≥ 0, n' = 3n)
6n+5(n = 2m+1)	6n'+4 (any integer with n' ≥ 0, n' = 3n)

We can see the rules in Table 4 are repeated. Now, when all the numbers are covered, we can depict them as in Figure 1. From Figure 1, it is obvious that n will eventually always be in the 1,4,2,1 loop.

Now, suppose N is a very large number, whether it converges to 1, 4, 2, 1,

From $6n + 4$ to the next $6n + 4$, if n is always smaller, the proof is possible according to the loop rule.

When in a loop,

Even with the smallest coefficient, $n' = 1/2x$ in the $6n+4 \rightarrow 6n+4$ step; $n' = 1/2x$ in the $6n+2 \rightarrow 6n+1$ step; and $n' = 1/2x$ in the $6n+2 \rightarrow 6n+1$ step. Thus, the convergence is at least $1/4$ times faster. Note that when $n=2m+1$, the convergence speed is faster. On the other hand, when $6n+1$ is an odd number, $n' = 3n+1$ times. an is the initial value of the loop, Collatz's expectation converges to $n = 0$ ($n = 1,4,2,1\dots$) as in equation (1).

$$\lim_{n \rightarrow \infty} \left(\frac{3n+1}{4n} \right) = 0 \quad (1)$$

From Equation (1), once in a loop, it always converges to $n = 0$. Therefore, it is considered to converge at loops of 4, 2, and 1.

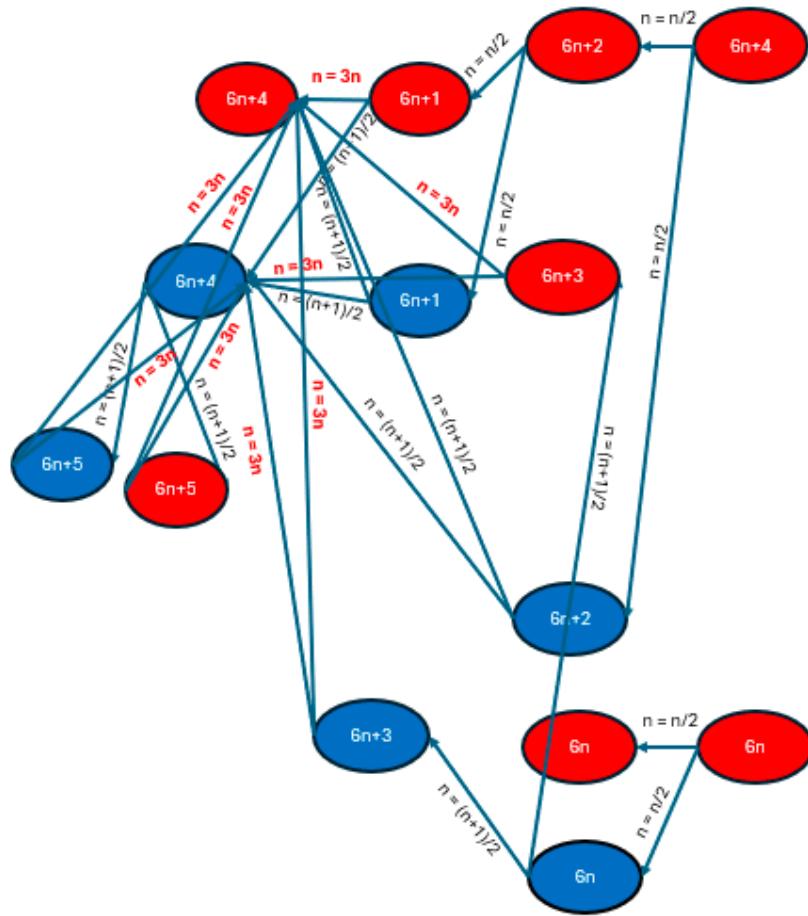


Figure 1. Collatz's rule of prediction.

4. Discussion

Conventionally, there was a section in which the Collatz conjecture attempted to make its mathematical sense by performing all the calculations. In the present paper, however, we have tried to classify the numbers very simply up to $N = 6n, 6n+1\dots 6n+5$, and have concentrated on finding the regularities of these numbers. As a result, we were able to prove that every number always eventually enters a loop cycle and takes the form $6n+1, 6n+4, 6n+2, 6n+1$. The final convergence of n to 0 was proved by using the limit to skip n to ∞ , but a more rigorous proof is being considered in the future.

5. Conclusions

Regularities existed in Collatz's conjecture. By extending the initial values of Collatz's conjecture from $6n+1$ to $6n+5$, usually referred to as the $3n+1$ problem, this paper shows that for all numbers, as expected by Collatz, it eventually falls into a loop and converges to 1, 4, 2, 1 with $n = 0$. Since this study uses a simplified method, it is possible to communicate the solution not only to experts but also to the public. The authors believe that if they can suggest that Collatz's conjecture was correct, then Collatz's hope will be fulfilled.

Author Contributions: Conceptualization, H. S.; methodology, H. S.; software, H. S.; validation, H.S.; project administration, H.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: No ethical approval is required.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated/analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Oliveira e Silva T (1999) Maximum excursion and stopping time record-holders for the $3x+1$ problem: computational results. *Math Comput* 68(225):371-384. <https://doi.org/10.1090/S0025-5718-99-01031-5>
2. Lagarias JC (2003) The $3x+1$ problem: an annotated bibliography (1963-1999) (sorted by author). [arXiv:math/0309224](https://arxiv.org/abs/math/0309224)
3. Lagarias JC (2006) The $3x+1$ problem: an annotated bibliography, II (2000-2009). [arXiv:math/0608208](https://arxiv.org/abs/math/0608208)
4. Conway JH (1972) Unpredictable iterations. In: *Proceedings of the 1972 Number Theory Conference*
5. Conway, J.H. (1987). FRACTRAN: A Simple Universal Programming Language for Arithmetic. In: Cover, T.M., Gopinath, B. (eds) *Open Problems in Communication and Computation*. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4808-8_2
6. Mol LD (2008) Tag systems and Collatz-like functions. *Theor Comput Sci* 390(1): 92-101. <https://doi.org/10.1016/j.tcs.2007.10.020>
7. Honda T, Ito Y, Nakano K (2017) GPU-accelerated exhaustive verification of the Collatz conjecture. *Int J Netw Comput* 7(1):69-85
8. Oliveira e Silva T (2010) Empirical verification of the $3x+1$ and related conjectures. In: Lagarias JC (ed) *The ultimate challenge: The $3x+1$ problem*. American Mathematical Society, Providence, pp 189-207
9. Leavens GT, Vermeulen M (1992) $3x+1$ search programs. *Comput Math Appl* 24(11):79-99 [https://doi.org/10.1016/0898-1221\(92\)90034-F](https://doi.org/10.1016/0898-1221(92)90034-F)
10. Shalom Eliahou, *The $3x+1$ problem: new lower bounds on nontrivial cycle lengths*, *Discrete Math.* **118** (1993), no. 1-3, 45-56. MR **1230053**, DOI 10.1016/0012-365X(93)90052-U
11. J. C. Lagarias and A. Weiss, *The $3x+1$ problem: two stochastic models*, *Ann. Appl. Probab.* **2** (1992), no. 1, 229-261. MR **1143401**, DOI 10.1214/aoap/1177005779
12. Jeffrey C. Lagarias, *The $3x+1$ problem and its generalizations*, *Amer. Math. Monthly* **92** (1985), no. 1, 3-23. MR **777565**, DOI 10.2307/2322189
13. Gary T. Leavens and Mike Vermeulen, *$3x+1$ search programs*, *Comput. Math. Appl.* **24** (1992), no. 11, 79-99. MR **1186722**, DOI 10.1016/0898-1221(92)90034-F
14. American Mathematical Society - 201 Charles Street Providence, Rhode Island 02904-2213

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.