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Abstract: The open burning of sugarcane residue is commonly used as a low-cost and fast method during pre-

harvest and post-harvest periods. However, this practice releases various pollutants, including dioxins. This 

study aims to predict polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, or dioxins) emissions 

using the Grey Model (GM (1,1)) and to map the annual flux spatial distribution at the provincial level from 

2023 to 2028.  Using the activity rate of dry crop residue from national agencies and literature, and following 

the guidelines set by the United Nations Environment Programme (UNEP), an annual emission inventory was 

developed at the provincial level. The distribution of emissions from 2016 to 2022 was then mapped. The 

average PCDD/Fs emission values exhibit significant variation among the provinces, averaging 309 pg 

TEQ/year. Spatially, in line sugarcane production, South Sumatra and East Jawa consistently show high 

emissions, often exceeding 400 pg/m². Emissions based on the UNEP emission factor tend to be higher 

compared to other factors, due to its generic nature and lack of regional specificity. The emission predictions 

using the Grey Model GM (1,1) indicate that North Sumatra is expected to experience a steady increase in 

PCDD/Fs emissions, whereas South Sumatra and Lampung are projected to see a slight decline. This forecast 

assumes there will be any changes in regional intervention strategies. Most regions in Jawa Island show a 

gradual increase in emissions, except for East Jawa, which is predicted to have a slight decline from 416 pg/year 

in 2023 to 397 pg/year in 2028. Additionally, regions like Gorontalo and parts of East Jawa are projected to 

remain "hotspots" with consistently high emissions, suggesting the need for targeted interventions. Future 

studies should consider developing monthly emissions profiles to account for local agricultural practices and 

seasonal conditions. The emission data generated in this study, which includes both spatial and temporal 

distributions, is valuable for air quality modeling studies. Utilizing this data can help assess the impact of 

current and future emissions on ambient air quality. 

Keywords: dioxin; sugarcane; open burning; grey model 

 

1. Introduction 

Among of all agriculture production in Indonesia, sugarcane account as the 3rd largest that 

increase from year to year, recorded in 2022 reach up to 32.4 million tonnes [1]. In sugarcane 
harvesting, inadequate post-harvest handling will contribute to environmental degradation due to 
the accumulation of cane trash. High-fiber portions of the sugarcane plant are left on the plantation, 

resulting in post-harvest waste. This waste includes fresh and dry leaves, plant sticks, portions of 
stalks, and roots left on the plantation [2]. Prolonged presence of this waste can reduce soil moisture 

[3], inhibits ratoon cane shoot growth and disrupts soil processes during subsequent sugarcane 
planting [4]. In fact, most of region are inseparable from practically use open burning in sugarcane 
crop residue, commonly regarded as a swift and low-cost method for field clearance [5], significantly 

impacts the environmental dynamics of agricultural regions. This practice typically involves the 
burning off leaves, the thorough desiccation of cane tops, and the meticulous removal of agricultural 
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debris from the soil. This meticulous approach aids in the efficient stalk harvest by minimizing 

unwanted biomass and effectively reducing the risks posed by snakes and insects.  
Studies have consistently demonstrated that sugarcane burning releases various pollutants: 

particulate matter, black carbon, sulfur dioxide, and greenhouse gases such as CO2, N2O and CH4 [6–
8]. Notably, highly toxic pollutants from sugarcane like PCDD/Fs  [6,9,10] contribute significantly to 
air pollution. Recent study [11] reveal that approximately 90% of dioxin in Indonesia originate from 

open burning, including agriculture practices. Sugarcane open burning itself in Thailand contribute 
approximately 26% to these sectoral emission [12]. Prior studies on dioxin emission inventories reveal 

intriguing insights. In the total U.S. inventory for the year 2000, dioxin emissions were estimated at 
approximately 1500 g TEQ [13]. Within the agriculture sector, including sugarcane, emissions 
accounted for 131 g TEQ per year in 2012, representing 4.52% of all sources [14]. Meanwhile in 

Portugal, uncontrolled combustion (including open burning in agriculture) ranked as the second-
highest contributor to dioxin emissions, constituting around 28.9% of all sources or approximately 

0.31 g TEQ per year [15]. Then in China, the annual release of PCDD/PCDF from open burning 
reached 12 g TEQ in 2015 [16]. Notably, Zhang, et al. [17] emphasized that constructing a 

comprehensive dioxin emission inventory specifically for sugarcane biomass combustion remains 
challenging due to the diverse factors influencing dioxin emissions. In Southeast Asia there is limited 
study has been conducted, Thailand using country-specific activity data, emphasizing the 

environmental impact of biomass combustion and reveal open burning in sugarcane fields is 
acknowledged as a significant contributor to air pollution [18]. 

Previous study mentioned either flaming or smouldering, significantly impact the emission of 
dioxins during sugarcane burning [17]. Besides, there is a significant correlation between exposure 
to high concentrations of PCDD/Fs and an increased relative risk of mortality from all causes [19]. 

PCDD/Fs are known to have detrimental effects on health like carcinogenic effects mediated by the 
aryl hydrocarbon receptor to noncancerous effects like atherosclerosis, hypertension, and diabetes 

[20,21]. On top of that, PCDD/Fs have a substantial environmental concern due to their persistence 
in ecosystems and their ability to accumulate in the food chain. Notwithstanding at low levels 
exposure, dioxins may lead to long-term health effects.  

The Grey Model (1,1) stands as a well-established and fundamental model in grey prediction 
theory, as highlighted by [22]. Renowned for its linear properties [23], the GM(1,1) model has found 

extensive application across various fields due to its computational efficiency [24]. The benefits of 
using the grey prediction model include its ability to function effectively with limited modelling data 
[25], particularly in situations where comprehensive datasets are unavailable or difficult to obtain. 

This characteristic makes it highly suitable for early-stage research and preliminary assessments. 
Additionally, the computational simplicity of the grey prediction model means that it requires fewer 

resources and less time to implement compared to more complex predictive models. Despite its ease 
of calculation, the grey prediction model is renowned for its high simulation accuracy, making it a 
reliable tool for forecasting. Due to these advantages, the grey prediction model has found extensive 

application across various domains. Furthermore, its versatility extends to fields such as 
environmental science, where it helps predict pollution levels and natural resource availability, and 

in healthcare for predicting disease outbreaks and patient outcomes [26]. The model’s ability to 
produce accurate predictions with minimal data inputs and straightforward calculations [25] makes 
it a popular choice in both academic research and practical applications. Notably, it has been 

employed in diverse studies, including CO2 emission inventory related energy consumption in 
Turkey [27], CO2 emission in China [28], CO2 emission in Vietnam [29], and SO2 emission in China 

[30].  
Despite the scarcity of research on dioxin emissions from agriculture in Indonesia, specifically 

related to sugarcane, we intend to estimate PCDD/Fs emissions resulting from the open burning of 

sugarcane crop residues between 2012 and 2022. Following UNEP guidelines to calculate the dioxin 
emission inventory, then we also map the distribution of annual flux emissions at the provincial level. 

The main aim of our study is leverages the Grey Model (1,1) to predict future emissions. In our study, 
we delve into time series forecasting for dioxin emission in 2023 – 2028, particularly when faced with 
incomplete information and uncertain factors. The approach involves converting original data of 

annual emission inventory of PCDD/Fs in 2016 – 2022 into a cumulative form using Accumulated 
Generating Operation (AGO) to reduce randomness and enhance trend visibility. Subsequently, we 
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calculate the first-order difference sequence, discrete accumulated generating operation (DAGO) 

from the cumulative data and extrapolate sequence so we can get the dioxin prediction emission. 

2. Material and Methods  

2.1 General Introduction of Indonesia 

Indonesia, spanning from 0° 47' 21.39'' S to 113° 55' 16.78'' E, is located in Southeast Asia. It has 
a population of approximately 275.5 million and covers an area of 1.9 million square kilometers. The 

country comprises 33 provinces, many of which are separated by the sea. Indonesia has an 
agriculture-dependent economy, with sugarcane being one of the key crops, influenced significantly 

by local temperature, humidity, and rainfall patterns. The country experiences two distinct seasons: 
a dry season from March to September and a rainy season from October to February. Figure 1 
illustrates the population density and sugarcane production across each province in 2022. 

  

 
Province List: 

1 : Aceh 13 : Central Jawa 21 : Central Kalimantan 

2 :  North Sumatra 14 : D.I. Yogyakarta 22 : South Kalimantan 

3 : West Sumatra 15 : East Jawa 25 : Central Sulawesi 

4 : Riau 16 : Banten 26 : South Sulawesi 

5 : Jambi 17 : Bali 27 : Southeast Sulawesi 

6 : South Sumatra 18 : West Nusa Tenggara 28 : Gorontalo 

7 : Bengkulu 19 : East Nusa Tenggara 29 : West Sulawesi 

8 : Lampung 20 : West Kalimantan 30 : Maluku 

9 : Bangka Belitung 

Island 

21 : Central Kalimantan 31 : North Maluku 

10 : Riau Island 22 : South Kalimantan 32 : West Papua 

11 : D.K.I Jakarta 23 : East Kalimantan 33 : Papua 

12 : West Jawa 24 : North Sulawesi   

Figure 1. Population Density and Sugarcane Production by Province in 2022 

2.2 Emission Inventory 

The emission inventory relies on the UNEP Toolkit (UNEP, 2012). Nonetheless, the limitation of 
this study is that we do not use local emission factors; instead, we rely on a general emission factor 

from UNEP for open burning of crop residue in sugarcane. The emission factor for air emissions is 4 
µg TEQ/t (toxic equivalent per ton) of material burned (UNEP, 2012). Sugarcane production is 
calculated on a dry weight basis in tonnes per year (Ps), combined with the sugarcane residue-to-

cane production ratio (RPPs) to estimate the quantity of dry sugarcane residue (Qs), as shown in 
equation (1). The assumption of RPPs is 33%. Using the activity rate, which accounts for the quantity 

of dry sugarcane residue in tonnes per year within the harvested area in hectares (A), we determine 
the biomass fuel load (BL) on a dry mass basis (kg/m²). This is calculated by dividing Qs by A and 
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adjusting the scale by a factor of 10-1, as specified in equation (2). The next step involves calculating 

the actual biomass consumed (Bb, in kg/m²) during combustion, which is obtained by multiplying 
the biomass fuel load (BL) by the combustion factor (Cf, set at 0.64) as outlined in equation (3). 

Equation (4) computes the annual flux of PCDD/Fs (in kg/m²) for spatial emissions by multiplying 
the biomass consumed (Bb) by the Emission Factor (EF), which is determined by the UNEP guideline 
for open burning of crop residue in sugarcane: PCDD/Fs Annual Flux Emission. Finally, PCDD/Fs 

emissions are calculated using equation (5), where emissions are the product of the Emission Factor 
(EF) and the activity rate. To estimate uncertainty, we employ Monte Carlo method, leveraging 

activity rate data. This approach involves generating many random samples to simulate the 
variability in the activity rate, thereby providing a probabilistic distribution of possible outcomes. 

𝑄𝑠 = 𝑃𝑠 𝑥 𝑅𝑃𝑃𝑠 (1) 

𝐵𝐿 = (
𝑄𝑠

𝐴
) x10−1 (2) 

𝐵𝑏 =  𝐵𝐿 ×  𝐶𝑓 (3) 

𝑃𝐶𝐷𝐷/𝐹 𝐴𝑛𝑢𝑎𝑙 𝐹𝑙𝑢𝑥 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝐵𝑏 ×  𝐸𝐹 (4) 

𝑃𝐶𝐷𝐷/𝐹 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹) 𝑥 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 (5) 
 

2.3. Emission Factors 

The UNEP Toolkit recommends an emission factor of 4 µg TEQ/t of material burned for 

estimating the release PCDD/Fs and dioxin-like polychlorinated biphenyls (dl-PCBs) from sugarcane 
burning, as informed by the assessment conducted by Black, et al. [31]. The reason of chosen to use 

this emission factor is because it is supported by relatively consistent results published in peer-
reviewed literature, indicating reliability. Although there is a wide range of results within this sub-
category, the UNEP Toolkit's emission factor is derived from a comprehensive assessment, which 

considers a variety of influencing factors such as combustion facilities, operating conditions, fuel 
composition, and accidental addition of contaminants [17]. This makes it a robust choice, especially 

given the limited geographic range of other studies that might not fully capture the diverse conditions 
present in sugarcane burning practices. 

However, in Table 1, we observe variations among the published emission factors associated 

with sugarcane burning, comparing different countries and experimental methods. These factors 
exhibit a wide range, highlighting the impact of both geographical location and experimental 

approach on the results. For instance, a burn facility in Hawaii, USA, reports the highest mean EF at 
126 µg TEQ/t fuel, with a range of 98-148 µg TEQ/t fuel, suggesting high emission levels under 

controlled conditions. Conversely, a sugarcane pile burn facility in Florida, USA, exhibits the lowest 
mean EF at 0.34 µg TEQ/t fuel. Field experiments in Queensland, Australia, and Florida, USA, show 
mean EFs of 0.95 µg TEQ/t fuel and 1.39 µg TEQ/t fuel, respectively, with varying ranges and 

standard deviations, indicating differences in burning practices and environmental conditions. 
Laboratory burn tunnel experiments in Queensland, Australia, demonstrate a mean EF of 4.4 µg 

TEQ/t fuel, with a notable standard deviation of 3.7, reflecting high variability in emissions. These 
findings emphasize the importance of considering both location and method when assessing 
emission factors for sugarcane burning. 

Table 1. Comparison of Different Emission Factor of Dioxin. 

Country Exp approach 
Mean EF ug TEQ/ (t 

fuel) 
Range stdv Ref. 

UNEP Field 4 - - [32] 

Sugarcane QLD, 

Australia 
Field 0.95 0.52-1.4 - [9] 

Sugarcane QLD, 

Australia 

Lab burn 

tunnel 
4.4 1.6-9.6 3.7 [10] 
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Sugarcane HI, USA Burn Facility 126 98-148 - 

Sugarcane FL, USA Burn Facility 6.9 4-9.8 - 

Sugarcane standing 

FL, USA 
Burn Facility 2.3 1.6-4.4 - 

[9] 
Sugarcane pile FL, 

USA 
Burn Facility 0.34 - - 

Sugarcane FL, USA Field 1.39 0.85–2.3 0.57 [9,10] 

Sugarcane FL, USA Field 1.9 0.96–2.8 - [9] 

2.4. Activity Data  

The national statistical agency [1,33–36] collects annual sugar cane production data for each 
province. This dataset includes information on production area (in hectares) and total production (in 

tons) from 2016 to 2022. Using this data, we calculate the ratio of harvested sugarcane to residue. 
Table S1 resents annual sugarcane production data for each Indonesian province. As seen in the table, 

only 9 province engage in sugarcane production from total 33 provinces. In 2016, the annual 
production ranged from approximately 3,000 tons, harvested from an area of around 7,000 hectares. 
West Nusa Tenggara began sugarcane production in 2017, followed by East Nusa Tenggara in 2021. 

The decrease in harvested area is not always the same as production, seen in several areas like West 
Jawa) experienced a decrease in harvested area (9889 hectares less in 2020 compared to 2019), 

production showed an opposite trend, increasing from 32,488 tons in 2019 to 39,492 tons in 2020. 
However, the production increase is attributed to the adoption of local sugarcane varieties that are 

more resistant to pests and diseases, require less water, and have higher sugar recovery rates at the 
mills [37,38]. This will certainly impact the ratio of residue to production across different provinces. 

2.5. Grey Model 

In this study, the predict of PCDD/Fs emissions from 2023 to 2028 based on data from 2016 to 
2022 that employ the 'Grey Model First Order One Variable' (GM (1,1)). This model is particularly 
useful when dealing with limited and uncertain data. The GM (1,1) model is advantageous due to its 

simplicity and has short time series data, where traditional statistical methods may not be as effective 
to be used [39]. This approach involves converting original data into cumulatiove using AGO. 

Despite its simplicity, this model still achieving excellent prediction results [40]. The concept shown 
in the figure 1 below, the input data being processed through predictive modeling to output. This 
model uses feedback mechanisms to adjust predictions based on input data, ensuring accurate and 

reliable emission forecasts. After gather and order the input data sequencially according to the years 
then we initiate the model. 

 

Figure 1. GM (1,1) Concept of Feedback Control System. 

Firstly, the process begins by organizing the input data chronologically. The initial step involves 

converting the raw data into an accumulative sum to improve the data regularity, which is crucial 
for handling the exponential growth characteristics typical in grey models. This accumulation helps 

in smoothing out random fluctuations in the time series data. The first-order differential equation of 
the model is described in Equation 6. The calculation known as the DAGO from the cumulative data 
and extrapolate this sequence to predict dioxin emissions. 
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𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏    (6) 

where a and b are parameters estimated using the least squares method applied to the cumulative 

data series. Continuing with inverse accumulated, time response to predict the future PCDD/Fs 
emission. x(0) (1) is the first value of original historical emissions data and k is the time step. This 

constructed model will forecast future values. By inputting the values of k for the years 2023 to 2028, 
the model will predict the corresponding PCDD/Fs emissions (equation 7). The Inverse Accumulated 
Generating Operation (IAGO) is used to convert the predicted accumulated values back to the 

original scale, providing the forecasted emissions for each year. 

𝑥̂(1) (𝑘 + 1) = (𝑥(0)(1) −  
𝑏

𝑎
 ) 𝑒−𝑎𝑘 +

𝑏

𝑎
   (7) 

GM (1,1) performance evaluation is assessed through cross-validation of mean absolute 
percentage error (MAPE) and Mean Absolute Error (MAE). In equation 8, ei and Yi are the error and 

observation values (here using 3rd year prediction data) of the ith period. While MAE the is a measure 
used to quantify the accuracy of a forecasting model by averaging the absolute errors in the 

predictions show in equation (9). 
 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑒𝑖

𝑌𝑖
|𝑛

𝑖=1 𝑥100   (8) 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑒𝑖|

𝑛
𝑖=1    (9) 

3. Results and Discussion 

3.1. Annual Emission and Geographical Distribution 

The activity rate of sugarcane crop residue burning is influenced by biomass fuel load (BL), 

biomass sugarcane consumption (Bb), and the quantity of dry sugarcane residue (Qs). Table S2 
provides a comprehensive overview of BL, Bb, and Qs in Indonesian provinces from 2016 to 2022. 

The data indicates substantial differences of sugarcane residue among the provinces. For instance, 
D.I. Yogyakarta shows consistently high values in both BL and Bb, with sugarcane residue quantities 
peaking at 367,918 tonnes/year in 2016 and 340,266 tonnes/year in 2022. Similarly, West Jawa displays 

significant biomass fuel load and consumption, reaching a Bb of 0.14 kg/m² and Qs of 72,365 
tonnes/year in 2022. Compared to Thailand, where the biomass fuel load was 10.15 million tons in 

2012 [18], Indonesia's biomass fuel load is significantly smaller, highlighting differences in 
agricultural practices between the two countries. However, there are other also other factors that 
influence the activity rate like moisture content mentioned in a simulation study conducted by 

Spaunhorst, et al. [41] demonstrated that different biomass densities, ranging from 6.1 to 24.2 Mg/ha 
with 44% moisture content during lower wind speeds, resulted in a smoldering effect. This effect 

reduced weed emergence by 23% compared to burning postharvest residue with 30% moisture 
during breezy conditions.  

Table 2 summarizes the descriptive statistics of PCDD/Fs emissions across Indonesian provinces 

from 2016 to 2022. The revised statement based on the data provided in the table would be as follows: 
The average PCDD/Fs emission values exhibit significant variation among the provinces. North 

Sumatra records a mean emission of 232 pg/yr, whereas East Nusa Tenggara displays the lowest 
mean emission at 187 pg/yr. Notably, East Jawa shows the highest mean emission value at 435 pg/yr, 
indicating significant variability in emissions between provinces. The standard deviation values also 

exhibit considerable variation, with D.I. Yogyakarta presenting the highest variability (std = 70), 
suggesting fluctuating emission levels over the years. In contrast, East Nusa Tenggara has a relatively 

high standard deviation of 153, but this is based on a limited sample size (n=2), which may affect the 
reliability of the PCDD/Fs emission inventory. The range of minimum emission values spans from as 
low as 50 pg/yr in East Nusa Tenggara to 290 pg/yr in D.I. Yogyakarta. Conversely, the maximum 

values range from 294 pg/yr in East Nusa Tenggara to 487 pg/yr in Gorontalo, illustrating a wide 
dispersion in emission levels across the provinces. The 50th percentile (median) values align closely 
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with the mean values in most provinces, indicating a symmetrical distribution of emission data. 

However, provinces like West Nusa Tenggara show a substantial difference between the median 
(276.5 pg/yr) and the mean (435 pg/yr), hinting at potential outliers or skewed data. The 50th 

percentile (median) values align closely with the mean values in most provinces, indicating a 
symmetrical distribution of emission data. However, provinces like West Nusa Tenggara show a 
substantial difference between the median (276.5 pg/yr) and the mean (435 pg/yr), hinting at potential 

outliers or skewed data. 

Table 2. Annual Dioxin Emissions by Province (2016–2022, pg/yr). 

 North 

Sumatra 

South 

Sumatra 
Lampung 

West 

Jawa 
East Jawa 

D.I 

Yogyakarta 

East 

Jawa 

West Nusa 

Tenggara 

East Nusa 

Tenggara 

South 

Sulawesi 

Goront

alo 

N (years) 7 7 7 7 7 7 7 6 2 7 7 

mean 232 301 428 301 331 247 435 242 187 287 414 

stDev 41 39 24 26 25 70 18 107 153 80 85 

min 178 255 387 245 290 120 407 50 78 149 237 

25% 202 266.5 418 302.5 319.5 225.5 425 210 132 262 405 

50% 225 301 431 305 341 239 439 276.5 186 289 441 

75% 261 333 438 316 349 294 448 315 240 325 460 

max 293 351 464 322 353 334 455 333 294 400 487 

As shown in figure 2, the trend of PCDD/Fs emissions at provincial level from 2016 – 2022. The 

average dioxin from sugarcane residue burning emissions in Indonesia, at approximately 309 pg 
TEQ/year, are notably lower compared to the emissions reported from the United States in 2001, 
which included states like Florida, Hawaii, Louisiana, and Texas, each by 37.5 g TEQ/yr [9]. Despite 

the US utilizing smaller emission factors (ranging from 0.017 to 0.025 ug TEQ/kg), factors such as 
higher combustion efficiency (90%) and a greater proportion of the harvested area being burned 

(50%) contribute to these increased emissions. Nonetheless, from all sectors, Indonesia still count as 
among the top five countries in terms of PCDD/Fs emissions, releasing 1.17 to 2.04 kg TEQ across all 
sector and all media (atmosphere, soil, and water) [42]. 

 

Figure 2. Total Annual Dioxin Emission in Each Province over 2016 – 2022. 

In this emissions inventory, there are several factors that might influence uncertainty: emission 
factor, activity rate and model for prediction. Unfortunately, the study of dioxin emission factors 

remains limited in Indonesia and Southeast Asia. To address this gap, we compare the emission 
results using factors from several field simulation studies conducted in the USA [31] and Australia 
[10]. Table 3 presents a comparison of PCDD/Fs emissions (in picograms per year) from sugarcane 
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open burning in Indonesia, utilizing emission factors derived from these field measurements. This 

approach allows us to utilize established and peer-reviewed emission factors to estimate emissions 
more accurately, despite the regional limitations of direct local studies. 

Table 3. Comparison Of PCDD/Fs Emission (Pg/Yr) By Different Emission Factors. 

 

Year 

UNEP  USA Australia 

(4µg TEQ/t material burned) (1.39µg TEQ/t fuel) (0.95µg TEQ/t fuel) 

2016 5311 1883 1644 

2017 4836 1095 749 

2018 5010 1057 723 

2019 4955 1686 1152 

2020 5018 1108 757 

2021 4998 1229 840 

2022 4838 1119 765 

From the table, it is evident that there are significant differences when using different emission 
factors. Markly, emissions based on the UNEP factor tend to be higher compared to the other two 

factors. The UNEP factor, more generic nature, and lack of regional specificity. While The USA and 
Australia factors might be more accurate for their respective contexts. Sugarcane burning conditions 

(e.g., temperature, moisture content, combustion efficiency) impact dioxin formation. Variations in 
field practices, such as pre-harvest burning versus post-harvest burning, contribute to differences. 
Sugarcane composition varies globally. Factors like sugarcane variety, soil nutrients, and growth 

conditions affect the chemical makeup. Different compositions lead to varying dioxin emissions. 
Regarding activity-related uncertainty, it may also stem from the ratio of produced sugarcane to 

burning residue. In this study, we assume a uniform 33% residue ratio [43] across all provinces, which 
is higher than the ratio observed in India (20%) according to S. Bhuvaneshwari, et al. [44]. However, 

variations in this ratio are likely due to different sugarcane varieties and harvest conditions. 
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Figure 4. Spatial Distribution Dioxin Emission in Each Province over 2016 – 2022. 

Spatially, certain regions in Indonesia consistently exhibit higher PCDD/Fs emissions. Provinces 

such as Lampung and South Sumatra, known for their extensive sugarcane agriculture, show 
persistently elevated levels of PCDD/Fs emissions. This trend is likely driven by intensive 

agricultural activities and the widespread practice of crop residue burning, which releases significant 
quantities of dioxins. This trend is likely driven by the intensive agricultural activities and the 

prevalent practice of crop residue burning as a cost-effective method to prepare land for new 
plantings. Such practices, while economically beneficial in the short term [45,46], release significant 
quantities of dioxins, which are known for their persistence in the environment and potential to 

bioaccumulate. High PCDD/Fs emissions are predominantly observed in agricultural regions. For 
example, South Sumatra and East Jawa have shown consistently high emissions, often exceeding 400 

pg/m². 
This pattern is influenced by the extensive cultivation and agricultural practices in these regions. 

In contrast, while East Jawa and Central Jawa also engage in substantial sugarcane cultivation, their 

emission profiles vary, with some regions showing spikes in certain periods followed by reductions. 
Regions like North Sumatra and West Jawa consistently exhibit high emission levels, reflecting the 

spatial distribution of intensive agricultural activities. However, new regions such as Gorontalo have 
begun to show increased emissions, reaching higher levels in recent years. This indicates a spatial 
expansion of high emission areas beyond the traditional agricultural hubs. The spatial distribution 

maps for 2020 and 2021 reveal continued high emissions in key areas, with some fluctuations. 
Notably, East Nusa Tenggara exhibited significant emission levels despite fewer data points, 

suggesting sporadic yet high-intensity emission events. By 2022, there was a noticeable decrease in 
emission levels across most provinces, except for Gorontalo and parts of East Jawa, which remained 
hotspots for PCDD/Fs emissions. However, higher emission intensity over the areas cultivated with 

sugarcane showed in spatial distributions of annual emissions (0.1° x 0.1°) specifically monthly 
emissions in the dry season [12]. Yearly trends on the maps also reveal sporadic peaks in emissions 
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in certain years could be linked to less stringent enforcement of environmental policies or temporary 

increases in agricultural production demands.  
Given that Indonesia contributes 72.81% of the total PCDDs/PCDFs emissions in the air across 

all inventories in Southeast Asia, trends analyse from 2003 to 2019 [47]. By examining changes over 
time (from 2016 to 2022), we can identify patterns, such as increasing or decreasing emissions. 
Furthermore, regions with consistently high emissions emerge as ‘hotspots,’ which may require 

targeted interventions. Moreover, the broader environmental impact of these emissions cannot be 
overstated.  

3.2. Uncertainty  

The mean values reported for each year represent the expected average quantity of PCDD/Fs 
emissions in kilograms of toxic equivalents (TEQ). These values are quite low, all around 0.003 to 
0.004 ug TEQ per year. This suggests that the typical emission load of PCDD/Fs from sugarcane 

residue burning is minimal on an annual basis. The standard deviation values range from 
approximately 0.0107 to 0.0128 ug TEQ, which are significantly larger than the mean values. This 

high standard deviation relative to the mean indicates a large variability in the estimated emissions. 
Such variability could be due to several factors. Differences in annual sugarcane yield can cause 
significant fluctuations in the quantity of available biomass for burning, directly affecting emissions. 

Changes in the harvested area impact the amount of residue burned and thus influence emissions. 
Meanwhile variability in how completely the biomass burns (combustion efficiency) and the specific 

amount of PCDD/Fs produced per ton of burned material (emission factor) can also introduce 
considerable uncertainty into the emissions estimate. 

3.3. Emission Prediction  

Table 4 offers a compelling predicted emission from 2023 – 2028, presenting an upward trend in 

some areas, while others show fluctuating or stable patterns. The Grey Model GM(1,1) is particularly 
suited due to often the case with environmental data collected from diverse geographical locations 

like Indonesia. North Sumatra, regions traditionally intensive in sugarcane cultivation, is predicted 
to experience a steady increase in PCDD/Fs emissions unlike South Sumatra and Lampung with a 
slight decline. This trend may be attributed to expanding agricultural activities and possibly stagnant 

technological advancements in crop residue management. The sustained increase underscores the 
urgent need for implementing more robust sustainable agricultural practices in these regions. Most 

region in Jawa Island show gradually increase in their emission projections except for East Jawa that 
has slight decline from 416 pg/yr in 2023 to 397 pg/yr in 2028. These variations could reflect 
intermittent enforcement of agricultural burning regulations or periodic shifts in agricultural 

practices. Such data suggests that policy interventions need to be adaptable and responsive to the 
changing dynamics of agricultural practices in these provinces. West Nusa Tengggara indicate a 

substantial increase from 296 pg/yr in 2023 to 381 pg/ year in 2028. East Nusa Tengggara that start to 
plant sugarcane in 2021 has a gradual decrease. This might be indicating the lack of data as input in 
grey model also that can be seen from the higher MAPE and MAE. South Sulawesi, experience a 

significant decline emission in all projected years. While Gorontalo with the highest emissions still 
projected to have highest increase emission. The grey model resulted varying performance across 

regions (as shown in Table 6), with certain areas, particularly Jawa Island, demonstrating more 
accurate predictions than others. Factors such as data availability (including the lack of data in East 
Nusa Tenggara), model complexity, and local characteristics might influence these results.  

Table 4. Annual PCDD/Fs Emission Prediction in Each Province over 2023 – 2028 (pg/yr). 

 2023 2024 2025 2026 2027 2028 

North Sumatra 260 271 282 293 305 317 

South Sumatra 242 232 222 213 204 195 

Lampung 413 411 409 407 405 402 

West Jawa 306 308 310 312 314 316 

Central Jawa 351 356 362 367 372 378 

D.I. Yogyakarta 270 279 288 298 307 318 
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 2023 2024 2025 2026 2027 2028 

East Jawa 416 412 408 405 401 397 

West Nusa Tenggara 296 311 327 344 362 381 

East Nusa Tenggara 180 178 176 174 172 170 

South Sulawesi 216 201 187 173 161 150 

Gorontalo 505 534 564 595 629 664 

Such data suggests that policy interventions need to be adaptable and responsive to the changing 
dynamics of agricultural practices in these provinces. West Nusa Tengggara indicate a substantial 
increase from 296 pg/yr in 2023 to 381 pg/ year in 2028. East Nusa Tengggara that start to plant 

sugarcane in 2021 has a gradual decrease. This might be indicating the lack of data as input in grey 
model also that can be seen from the higher MAPE and MAE. South Sulawesi, experience a significant 

decline emission in all projected years. While Gorontalo with the highest emissions still projected to 
have highest increase emission. The grey model resulted varying performance across regions (as 
shown in Table 6), with certain areas, particularly Jawa Island, demonstrating more accurate 

predictions than others. Factors such as data availability (including the lack of data in East Nusa 
Tenggara), model complexity, and local characteristics might influence these results. 

Figure 5 complements these insights by visualizing the spatial distribution of emissions across 
the provinces, emphasizing the diverse emission trajectories. For instance, Gorontalo is predicted to 
maintain high emissions, highlighting it as a persistent hotspot. Conversely, regions like South 

Sulawesi and East Nusa Tenggara exhibit high-emission events despite an overall downward trend, 
suggesting that localized interventions are necessary to effectively mitigate emissions. This variation 

across provinces highlights the necessity for targeted and adaptable policy interventions to support 
sustainable sugarcane agriculture and effectively manage PCDD/Fs emissions in Indonesia. 

 

Figure 5. Prediction Spatial Distribution Dioxin Emission in Each Province over 2023 – 2028. 

The forecast data provided by the Grey Model GM(1,1) serves as a valuable tool for policymakers 

and environmental managers in Indonesia.  However, model improvements might be necessary. The 
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results of the model’s performance (Table 6) highlight varying degrees of prediction reliability. 

Regions like East Jawa and Central Jawa, which demonstrate exceptional prediction accuracy, could 
serve as benchmarks for refining the model’s accuracy in other regions with less precise predictions. 

For instance, East Jawa shows highly precise model predictions with the lowest MAPE of 1.4% and 
an MAE of 6. In contrast, East Nusa Tenggara, which has only two years of data, and South Sulawesi 
exhibit the highest MAPE values at 100% and 83%, respectively, paired with substantial MAEs of 186 

and 143. 

Table 6. Grey Model Performance Evaluation of Dioxin Emission Prediction. 

 MAPE (%) MAE 

North Sumatra 36 95 

South Sumatra 9 27 

Lampung 6 26 

West Jawa 18 58 

Central Jawa 3 12 

D.I. Yogyakarta 78 177 

East Jawa 1.4 6 

West Nusa Tenggara 42 140 

East Nusa Tenggara 100 186 

South Sulawesi 83 143 

Gorontalo 29 129 

However, It is recommended to have monthly emissions profiles that can show local agricultural 

practices (such as varying harvesting times for different crop types) and seasonal conditions (dry or 
wet). The emission data generated in this study deliver spatially and temporally , holds valuable 
potential for air quality modelling studies like several studies [48,49]. By leveraging this data, 

researchers can assess the impact of current and future emissions on ambient air quality.  

4. Conclusions 

From 2016 to 2022 the average PCDD/Fs emission values exhibit significant variability among 
the provinces, prominently. Gorontalo has the highest mean emission value at 414 pg/yr while East 

Jawa displayed relatively stable emissions with less variability compared to other provinces. 
Spatially, certain regions in Indonesia consistently exhibit higher PCDD/Fs emissions. Provinces such 

as Lampung and South Sumatra. By 2022, there was a noticeable decrease in emission levels across 
most provinces; however, Gorontalo and parts of East Jawa, which remained hotspots for PCDD/Fs 
emissions. This regions with consistently high emissions emerge as ‘hotspots,’ which may require 

targeted interventions. Related with uncertainty, emissions based on the UNEP factor tend to be 
higher compared to the previous studies. The Grey Model GM(1,1) predicts future emissions with an 

upward trend in some areas, while others show fluctuating or stable patterns. However, It is 
recommended to have monthly emissions profiles that can show local agricultural practices (such as 

varying harvesting times for different crop types) and seasonal conditions (dry or wet). Further 
research and refinement are crucial to improving our understanding of dioxin emissions in this 
region. To enhance accuracy and reduce uncertainty in future research, it may be beneficial to use 

localized emission factors obtained by conducting field studies and collecting combustion conditions 
based on fuel types and sugarcane varieties. By identifying regions with increasing emission trends, 

resources can be strategically allocated to develop and implement effective control measures. These 
might include promoting non-burning agricultural residue methods, enhancing farmer education 
and support programs, and investing in research and development for sustainable farming 

technologies. 

Supplementary Information: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. Additional information, as noted in the text, is available in the supplementary 
materials. 
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