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Abstract: The open burning of sugarcane residue is commonly used as a low-cost and fast method during pre-
harvest and post-harvest periods. However, this practice releases various pollutants, including dioxins. This
study aims to predict polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, or dioxins) emissions
using the Grey Model (GM (1,1)) and to map the annual flux spatial distribution at the provincial level from
2023 to 2028. Using the activity rate of dry crop residue from national agencies and literature, and following
the guidelines set by the United Nations Environment Programme (UNEP), an annual emission inventory was
developed at the provincial level. The distribution of emissions from 2016 to 2022 was then mapped. The
average PCDD/Fs emission values exhibit significant variation among the provinces, averaging 309 pg
TEQ/year. Spatially, in line sugarcane production, South Sumatra and East Jawa consistently show high
emissions, often exceeding 400 pg/m2 Emissions based on the UNEP emission factor tend to be higher
compared to other factors, due to its generic nature and lack of regional specificity. The emission predictions
using the Grey Model GM (1,1) indicate that North Sumatra is expected to experience a steady increase in
PCDD/Fs emissions, whereas South Sumatra and Lampung are projected to see a slight decline. This forecast
assumes there will be any changes in regional intervention strategies. Most regions in Jawa Island show a
gradual increase in emissions, except for East Jawa, which is predicted to have a slight decline from 416 pg/year
in 2023 to 397 pg/year in 2028. Additionally, regions like Gorontalo and parts of East Jawa are projected to
remain "hotspots” with consistently high emissions, suggesting the need for targeted interventions. Future
studies should consider developing monthly emissions profiles to account for local agricultural practices and
seasonal conditions. The emission data generated in this study, which includes both spatial and temporal
distributions, is valuable for air quality modeling studies. Utilizing this data can help assess the impact of
current and future emissions on ambient air quality.

Keywords: dioxin; sugarcane; open burning; grey model

1. Introduction

Among of all agriculture production in Indonesia, sugarcane account as the 3rd largest that
increase from year to year, recorded in 2022 reach up to 32.4 million tonnes [1]. In sugarcane
harvesting, inadequate post-harvest handling will contribute to environmental degradation due to
the accumulation of cane trash. High-fiber portions of the sugarcane plant are left on the plantation,
resulting in post-harvest waste. This waste includes fresh and dry leaves, plant sticks, portions of
stalks, and roots left on the plantation [2]. Prolonged presence of this waste can reduce soil moisture
[3], inhibits ratoon cane shoot growth and disrupts soil processes during subsequent sugarcane
planting [4]. In fact, most of region are inseparable from practically use open burning in sugarcane
crop residue, commonly regarded as a swift and low-cost method for field clearance [5], significantly
impacts the environmental dynamics of agricultural regions. This practice typically involves the
burning off leaves, the thorough desiccation of cane tops, and the meticulous removal of agricultural
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debris from the soil. This meticulous approach aids in the efficient stalk harvest by minimizing
unwanted biomass and effectively reducing the risks posed by snakes and insects.

Studies have consistently demonstrated that sugarcane burning releases various pollutants:
particulate matter, black carbon, sulfur dioxide, and greenhouse gases such as CO2, N2O and CHa[6—
8]. Notably, highly toxic pollutants from sugarcane like PCDD/Fs [6,9,10] contribute significantly to
air pollution. Recent study [11] reveal that approximately 90% of dioxin in Indonesia originate from
open burning, including agriculture practices. Sugarcane open burning itself in Thailand contribute
approximately 26% to these sectoral emission [12]. Prior studies on dioxin emission inventories reveal
intriguing insights. In the total U.S. inventory for the year 2000, dioxin emissions were estimated at
approximately 1500 g TEQ [13]. Within the agriculture sector, including sugarcane, emissions
accounted for 131 g TEQ per year in 2012, representing 4.52% of all sources [14]. Meanwhile in
Portugal, uncontrolled combustion (including open burning in agriculture) ranked as the second-
highest contributor to dioxin emissions, constituting around 28.9% of all sources or approximately
0.31 g TEQ per year [15]. Then in China, the annual release of PCDD/PCDF from open burning
reached 12 g TEQ in 2015 [16]. Notably, Zhang, et al. [17] emphasized that constructing a
comprehensive dioxin emission inventory specifically for sugarcane biomass combustion remains
challenging due to the diverse factors influencing dioxin emissions. In Southeast Asia there is limited
study has been conducted, Thailand using country-specific activity data, emphasizing the
environmental impact of biomass combustion and reveal open burning in sugarcane fields is
acknowledged as a significant contributor to air pollution [18].

Previous study mentioned either flaming or smouldering, significantly impact the emission of
dioxins during sugarcane burning [17]. Besides, there is a significant correlation between exposure
to high concentrations of PCDD/Fs and an increased relative risk of mortality from all causes [19].
PCDD/Fs are known to have detrimental effects on health like carcinogenic effects mediated by the
aryl hydrocarbon receptor to noncancerous effects like atherosclerosis, hypertension, and diabetes
[20,21]. On top of that, PCDD/Fs have a substantial environmental concern due to their persistence
in ecosystems and their ability to accumulate in the food chain. Notwithstanding at low levels
exposure, dioxins may lead to long-term health effects.

The Grey Model (1,1) stands as a well-established and fundamental model in grey prediction
theory, as highlighted by [22]. Renowned for its linear properties [23], the GM(1,1) model has found
extensive application across various fields due to its computational efficiency [24]. The benefits of
using the grey prediction model include its ability to function effectively with limited modelling data
[25], particularly in situations where comprehensive datasets are unavailable or difficult to obtain.
This characteristic makes it highly suitable for early-stage research and preliminary assessments.
Additionally, the computational simplicity of the grey prediction model means that it requires fewer
resources and less time to implement compared to more complex predictive models. Despite its ease
of calculation, the grey prediction model is renowned for its high simulation accuracy, making it a
reliable tool for forecasting. Due to these advantages, the grey prediction model has found extensive
application across various domains. Furthermore, its versatility extends to fields such as
environmental science, where it helps predict pollution levels and natural resource availability, and
in healthcare for predicting disease outbreaks and patient outcomes [26]. The model’s ability to
produce accurate predictions with minimal data inputs and straightforward calculations [25] makes
it a popular choice in both academic research and practical applications. Notably, it has been
employed in diverse studies, including CO: emission inventory related energy consumption in
Turkey [27], CO:z emission in China [28], CO: emission in Vietnam [29], and SO: emission in China
[30].

Despite the scarcity of research on dioxin emissions from agriculture in Indonesia, specifically
related to sugarcane, we intend to estimate PCDD/Fs emissions resulting from the open burning of
sugarcane crop residues between 2012 and 2022. Following UNEP guidelines to calculate the dioxin
emission inventory, then we also map the distribution of annual flux emissions at the provincial level.
The main aim of our study is leverages the Grey Model (1,1) to predict future emissions. In our study,
we delve into time series forecasting for dioxin emission in 2023 — 2028, particularly when faced with
incomplete information and uncertain factors. The approach involves converting original data of
annual emission inventory of PCDD/Fs in 2016 — 2022 into a cumulative form using Accumulated
Generating Operation (AGO) to reduce randomness and enhance trend visibility. Subsequently, we
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calculate the first-order difference sequence, discrete accumulated generating operation (DAGO)
from the cumulative data and extrapolate sequence so we can get the dioxin prediction emission.

2. Material and Methods
2.1 General Introduction of Indonesia

Indonesia, spanning from 0° 47' 21.39" S to 113° 55' 16.78" E, is located in Southeast Asia. It has
a population of approximately 275.5 million and covers an area of 1.9 million square kilometers. The
country comprises 33 provinces, many of which are separated by the sea. Indonesia has an
agriculture-dependent economy, with sugarcane being one of the key crops, influenced significantly
by local temperature, humidity, and rainfall patterns. The country experiences two distinct seasons:
a dry season from March to September and a rainy season from October to February. Figure 1
illustrates the population density and sugarcane production across each province in 2022.

10°

Density Population (people/ha)

Province List:

1: Aceh 13: Central Jawa 21: Central Kalimantan

2: North Sumatra 14: D.I Yogyakarta 22: South Kalimantan

3: West Sumatra 15: EastJawa 25: Central Sulawesi

4: Riau 16: Banten 26: South Sulawesi

5: Jambi 17: Bali 27: Southeast Sulawesi

6: South Sumatra 18: West Nusa Tenggara 28: Gorontalo

7: Bengkulu 19: East Nusa Tenggara 29: West Sulawesi

8: Lampung 20: West Kalimantan 30: Maluku

9: Bangka Belitung 21: Central Kalimantan  31: North Maluku
Island

10: Riau Island 22: South Kalimantan 32: West Papua

11: D.K.IJakarta 23: East Kalimantan 33: Papua

12: WestJawa 24: North Sulawesi

Figure 1. Population Density and Sugarcane Production by Province in 2022

2.2 Emission Inventory

The emission inventory relies on the UNEP Toolkit (UNEP, 2012). Nonetheless, the limitation of
this study is that we do not use local emission factors; instead, we rely on a general emission factor
from UNEP for open burning of crop residue in sugarcane. The emission factor for air emissions is 4
ug TEQ/t (toxic equivalent per ton) of material burned (UNEP, 2012). Sugarcane production is
calculated on a dry weight basis in tonnes per year (Ps), combined with the sugarcane residue-to-
cane production ratio (RPPs) to estimate the quantity of dry sugarcane residue (Qs), as shown in
equation (1). The assumption of RPPs is 33%. Using the activity rate, which accounts for the quantity
of dry sugarcane residue in tonnes per year within the harvested area in hectares (A), we determine
the biomass fuel load (BL) on a dry mass basis (kg/m?). This is calculated by dividing Qs by A and
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adjusting the scale by a factor of 10, as specified in equation (2). The next step involves calculating
the actual biomass consumed (Bb, in kg/m?) during combustion, which is obtained by multiplying
the biomass fuel load (BL) by the combustion factor (Cf, set at 0.64) as outlined in equation (3).
Equation (4) computes the annual flux of PCDD/Fs (in kg/m?) for spatial emissions by multiplying
the biomass consumed (Bb) by the Emission Factor (EF), which is determined by the UNEP guideline
for open burning of crop residue in sugarcane: PCDD/Fs Annual Flux Emission. Finally, PCDD/Fs
emissions are calculated using equation (5), where emissions are the product of the Emission Factor
(EF) and the activity rate. To estimate uncertainty, we employ Monte Carlo method, leveraging
activity rate data. This approach involves generating many random samples to simulate the
variability in the activity rate, thereby providing a probabilistic distribution of possible outcomes.

Qs = P x RPP; (1)
BL=(%)x107" (2)

Bb = BL x Cf (3)
PCDD /F Anual Flux Emission = Bb X EF (4)
PCDD/F emissions = Emission factor (EF) x Activity rate (5)

2.3. Emission Factors

The UNEP Toolkit recommends an emission factor of 4 ug TEQ/t of material burned for
estimating the release PCDD/Fs and dioxin-like polychlorinated biphenyls (d1-PCBs) from sugarcane
burning, as informed by the assessment conducted by Black, et al. [31]. The reason of chosen to use
this emission factor is because it is supported by relatively consistent results published in peer-
reviewed literature, indicating reliability. Although there is a wide range of results within this sub-
category, the UNEP Toolkit's emission factor is derived from a comprehensive assessment, which
considers a variety of influencing factors such as combustion facilities, operating conditions, fuel
composition, and accidental addition of contaminants [17]. This makes it a robust choice, especially
given the limited geographic range of other studies that might not fully capture the diverse conditions
present in sugarcane burning practices.

However, in Table 1, we observe variations among the published emission factors associated
with sugarcane burning, comparing different countries and experimental methods. These factors
exhibit a wide range, highlighting the impact of both geographical location and experimental
approach on the results. For instance, a burn facility in Hawaii, USA, reports the highest mean EF at
126 ug TEQ/t fuel, with a range of 98-148 ug TEQ/t fuel, suggesting high emission levels under
controlled conditions. Conversely, a sugarcane pile burn facility in Florida, USA, exhibits the lowest
mean EF at 0.34 ug TEQ/t fuel. Field experiments in Queensland, Australia, and Florida, USA, show
mean EFs of 0.95 ug TEQ/t fuel and 1.39 ug TEQ/t fuel, respectively, with varying ranges and
standard deviations, indicating differences in burning practices and environmental conditions.
Laboratory burn tunnel experiments in Queensland, Australia, demonstrate a mean EF of 4.4 ug
TEQ/t fuel, with a notable standard deviation of 3.7, reflecting high variability in emissions. These
findings emphasize the importance of considering both location and method when assessing
emission factors for sugarcane burning.

Table 1. Comparison of Different Emission Factor of Dioxin.

Country Exp approach Mean Eful::ig) TEQ/ Range stdv  Ref.
UNEP Field 4 - - (32
Sugarcane QLD, Field 0.95 0.52-1.4 - [9]
Australia
Sugarcane QLD, Lab burn 4.4 1.6-9.6 3.7 [10]

Australia tunnel
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Sugarcane HI, USA Burn Facility 126 98-148 -
Sugarcane FL, USA Burn Facility 6.9 4-9.8 -
Sugarcane standing e

FL, USA Burn Facility 2.3 1.6-4.4 -
Sugarcane pile FL, Burn Facili 0.34 7

USA v '

Sugarcane FL, USA Field 1.39 0.85-2.3 0.57 [9,10]
Sugarcane FL, USA Field 1.9 0.96-2.8 - [9]

2.4. Activity Data

The national statistical agency [1,33-36] collects annual sugar cane production data for each
province. This dataset includes information on production area (in hectares) and total production (in
tons) from 2016 to 2022. Using this data, we calculate the ratio of harvested sugarcane to residue.
Table S1 resents annual sugarcane production data for each Indonesian province. As seen in the table,
only 9 province engage in sugarcane production from total 33 provinces. In 2016, the annual
production ranged from approximately 3,000 tons, harvested from an area of around 7,000 hectares.
West Nusa Tenggara began sugarcane production in 2017, followed by East Nusa Tenggara in 2021.
The decrease in harvested area is not always the same as production, seen in several areas like West
Jawa) experienced a decrease in harvested area (9889 hectares less in 2020 compared to 2019),
production showed an opposite trend, increasing from 32,488 tons in 2019 to 39,492 tons in 2020.
However, the production increase is attributed to the adoption of local sugarcane varieties that are
more resistant to pests and diseases, require less water, and have higher sugar recovery rates at the
mills [37,38]. This will certainly impact the ratio of residue to production across different provinces.

2.5. Grey Model

In this study, the predict of PCDD/Fs emissions from 2023 to 2028 based on data from 2016 to
2022 that employ the 'Grey Model First Order One Variable' (GM (1,1)). This model is particularly
useful when dealing with limited and uncertain data. The GM (1,1) model is advantageous due to its
simplicity and has short time series data, where traditional statistical methods may not be as effective
to be used [39]. This approach involves converting original data into cumulatiove using AGO.
Despite its simplicity, this model still achieving excellent prediction results [40]. The concept shown
in the figure 1 below, the input data being processed through predictive modeling to output. This
model uses feedback mechanisms to adjust predictions based on input data, ensuring accurate and
reliable emission forecasts. After gather and order the input data sequencially according to the years
then we initiate the model.

”Z
DO

d y

dt

Figure 1. GM (1,1) Concept of Feedback Control System.

Firstly, the process begins by organizing the input data chronologically. The initial step involves
converting the raw data into an accumulative sum to improve the data regularity, which is crucial
for handling the exponential growth characteristics typical in grey models. This accumulation helps
in smoothing out random fluctuations in the time series data. The first-order differential equation of
the model is described in Equation 6. The calculation known as the DAGO from the cumulative data
and extrapolate this sequence to predict dioxin emissions.
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where a and b are parameters estimated using the least squares method applied to the cumulative
data series. Continuing with inverse accumulated, time response to predict the future PCDD/Fs
emission. x© (1) is the first value of original historical emissions data and k is the time step. This
constructed model will forecast future values. By inputting the values of k for the years 2023 to 2028,
the model will predict the corresponding PCDD/Fs emissions (equation 7). The Inverse Accumulated
Generating Operation (IAGO) is used to convert the predicted accumulated values back to the
original scale, providing the forecasted emissions for each year.

2O (k+1) = (x@(W) - 2)e* +2 (7)

GM (1,1) performance evaluation is assessed through cross-validation of mean absolute
percentage error (MAPE) and Mean Absolute Error (MAE). In equation §, ei and Yi are the error and
observation values (here using 3 year prediction data) of the ith period. While MAE the is a measure
used to quantify the accuracy of a forecasting model by averaging the absolute errors in the
predictions show in equation (9).

€i

1
MAPE = ; ?:1 Y_L

x100 (8)
MAE = ~ 37 le)l  (9)

3. Results and Discussion

3.1. Annual Emission and Geographical Distribution

The activity rate of sugarcane crop residue burning is influenced by biomass fuel load (BL),
biomass sugarcane consumption (Bb), and the quantity of dry sugarcane residue (Qs). Table S2
provides a comprehensive overview of BL, Bb, and Qs in Indonesian provinces from 2016 to 2022.
The data indicates substantial differences of sugarcane residue among the provinces. For instance,
D.IL Yogyakarta shows consistently high values in both BL and Bb, with sugarcane residue quantities
peaking at 367,918 tonnes/year in 2016 and 340,266 tonnes/year in 2022. Similarly, West Jawa displays
significant biomass fuel load and consumption, reaching a Bb of 0.14 kg/m? and Qs of 72,365
tonnes/year in 2022. Compared to Thailand, where the biomass fuel load was 10.15 million tons in
2012 [18], Indonesia's biomass fuel load is significantly smaller, highlighting differences in
agricultural practices between the two countries. However, there are other also other factors that
influence the activity rate like moisture content mentioned in a simulation study conducted by
Spaunhorst, et al. [41] demonstrated that different biomass densities, ranging from 6.1 to 24.2 Mg/ha
with 44% moisture content during lower wind speeds, resulted in a smoldering effect. This effect
reduced weed emergence by 23% compared to burning postharvest residue with 30% moisture
during breezy conditions.

Table 2 summarizes the descriptive statistics of PCDD/Fs emissions across Indonesian provinces
from 2016 to 2022. The revised statement based on the data provided in the table would be as follows:

The average PCDD/Fs emission values exhibit significant variation among the provinces. North
Sumatra records a mean emission of 232 pg/yr, whereas East Nusa Tenggara displays the lowest
mean emission at 187 pg/yr. Notably, East Jawa shows the highest mean emission value at 435 pg/yr,
indicating significant variability in emissions between provinces. The standard deviation values also
exhibit considerable variation, with D.I. Yogyakarta presenting the highest variability (std = 70),
suggesting fluctuating emission levels over the years. In contrast, East Nusa Tenggara has a relatively
high standard deviation of 153, but this is based on a limited sample size (n=2), which may affect the
reliability of the PCDD/Fs emission inventory. The range of minimum emission values spans from as
low as 50 pg/yr in East Nusa Tenggara to 290 pg/yr in D.I. Yogyakarta. Conversely, the maximum
values range from 294 pg/yr in East Nusa Tenggara to 487 pg/yr in Gorontalo, illustrating a wide
dispersion in emission levels across the provinces. The 50th percentile (median) values align closely

d0i:10.20944/preprints202408.0121.v1
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with the mean values in most provinces, indicating a symmetrical distribution of emission data.
However, provinces like West Nusa Tenggara show a substantial difference between the median
(276.5 pg/yr) and the mean (435 pg/yr), hinting at potential outliers or skewed data. The 50th
percentile (median) values align closely with the mean values in most provinces, indicating a
symmetrical distribution of emission data. However, provinces like West Nusa Tenggara show a
substantial difference between the median (276.5 pg/yr) and the mean (435 pg/yr), hinting at potential
outliers or skewed data.

Table 2. Annual Dioxin Emissions by Province (20162022, pg/yr).

North South West D.I East West Nusa East Nusa South Goront
Lampung East Jawa .
Sumatra Sumatra Jawa Yogyakarta Jawa Tenggara Tenggara Sulawesi alo
N (years) 7 7 7 7 7 7 7 6 2 7 7
mean 232 301 428 301 331 247 435 242 187 287 414
stDev 41 39 24 26 25 70 18 107 153 80 85
min 178 255 387 245 290 120 407 50 78 149 237
25% 202 266.5 418 3025 3195 225.5 425 210 132 262 405
50% 225 301 431 305 341 239 439 276.5 186 289 441
75% 261 333 438 316 349 294 448 315 240 325 460
max 293 351 464 322 353 334 455 333 294 400 487

As shown in figure 2, the trend of PCDD/Fs emissions at provincial level from 2016 —2022. The
average dioxin from sugarcane residue burning emissions in Indonesia, at approximately 309 pg
TEQ/year, are notably lower compared to the emissions reported from the United States in 2001,
which included states like Florida, Hawaii, Louisiana, and Texas, each by 37.5 g TEQ/yr [9]. Despite
the US utilizing smaller emission factors (ranging from 0.017 to 0.025 ug TEQ/kg), factors such as
higher combustion efficiency (90%) and a greater proportion of the harvested area being burned
(50%) contribute to these increased emissions. Nonetheless, from all sectors, Indonesia still count as
among the top five countries in terms of PCDD/Fs emissions, releasing 1.17 to 2.04 kg TEQ across all
sector and all media (atmosphere, soil, and water) [42].

500 Year
A 2016 Fl
=3 2017 7] _ =
1 2018 _ 1 _H 0

o 2019 L Il
3 2020
= 2021
&=l 2022

400

w
<]
s

o 0]

Emissions (pg TEQ/year)
~
i=]
<
1
1

© -0 -0 "0 -0-0-0-0 -0

LLLL L L L L L L L L L LLLLLLLILLLLILLLLILTL

0O -0 -"0-0-0-"0-0-"0-0-o0-"0o-07

N S S |
I O N

6. 0_.0_0_0_06_06__0_0]
T U U U U _ U U U U
N N N A O

S ) S S

I - - -

a-a-a-n-a-na-a-na-ana-a- o na-a- ol

[P o-o0- o0 0.0 0-0-0-0-06-0-0-0]

v _U_0U_U_U_ U _ U _U_ U _U_U, 0T

,
° s
»

Figure 2. Total Annual Dioxin Emission in Each Province over 2016 —2022.

In this emissions inventory, there are several factors that might influence uncertainty: emission
factor, activity rate and model for prediction. Unfortunately, the study of dioxin emission factors
remains limited in Indonesia and Southeast Asia. To address this gap, we compare the emission
results using factors from several field simulation studies conducted in the USA [31] and Australia
[10]. Table 3 presents a comparison of PCDD/Fs emissions (in picograms per year) from sugarcane


https://doi.org/10.20944/preprints202408.0121.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2024 d0i:10.20944/preprints202408.0121.v1

8

open burning in Indonesia, utilizing emission factors derived from these field measurements. This
approach allows us to utilize established and peer-reviewed emission factors to estimate emissions
more accurately, despite the regional limitations of direct local studies.

Table 3. Comparison Of PCDD/Fs Emission (Pg/Yr) By Different Emission Factors.

UNEP USA Australia

Year (4pg TEQ/t material burned) (1.39ug TEQ/t fuel)  (0.95pg TEQ/t fuel)
2016 5311 1883 1644

2017 4836 1095 749

2018 5010 1057 723

2019 4955 1686 1152

2020 5018 1108 757

2021 4998 1229 840

2022 4838 1119 765

From the table, it is evident that there are significant differences when using different emission
factors. Markly, emissions based on the UNEP factor tend to be higher compared to the other two
factors. The UNEP factor, more generic nature, and lack of regional specificity. While The USA and
Australia factors might be more accurate for their respective contexts. Sugarcane burning conditions
(e.g., temperature, moisture content, combustion efficiency) impact dioxin formation. Variations in
field practices, such as pre-harvest burning versus post-harvest burning, contribute to differences.
Sugarcane composition varies globally. Factors like sugarcane variety, soil nutrients, and growth
conditions affect the chemical makeup. Different compositions lead to varying dioxin emissions.
Regarding activity-related uncertainty, it may also stem from the ratio of produced sugarcane to
burning residue. In this study, we assume a uniform 33% residue ratio [43] across all provinces, which
is higher than the ratio observed in India (20%) according to S. Bhuvaneshwari, et al. [44]. However,
variations in this ratio are likely due to different sugarcane varieties and harvest conditions.
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PCDD/Fs (pg/m?)

Figure 4. Spatial Distribution Dioxin Emission in Each Province over 2016 — 2022.

Spatially, certain regions in Indonesia consistently exhibit higher PCDD/Fs emissions. Provinces
such as Lampung and South Sumatra, known for their extensive sugarcane agriculture, show
persistently elevated levels of PCDD/Fs emissions. This trend is likely driven by intensive
agricultural activities and the widespread practice of crop residue burning, which releases significant
quantities of dioxins. This trend is likely driven by the intensive agricultural activities and the
prevalent practice of crop residue burning as a cost-effective method to prepare land for new
plantings. Such practices, while economically beneficial in the short term [45,46], release significant
quantities of dioxins, which are known for their persistence in the environment and potential to
bioaccumulate. High PCDD/Fs emissions are predominantly observed in agricultural regions. For
example, South Sumatra and East Jawa have shown consistently high emissions, often exceeding 400
pg/m2.

This pattern is influenced by the extensive cultivation and agricultural practices in these regions.
In contrast, while East Jawa and Central Jawa also engage in substantial sugarcane cultivation, their
emission profiles vary, with some regions showing spikes in certain periods followed by reductions.
Regions like North Sumatra and West Jawa consistently exhibit high emission levels, reflecting the
spatial distribution of intensive agricultural activities. However, new regions such as Gorontalo have
begun to show increased emissions, reaching higher levels in recent years. This indicates a spatial
expansion of high emission areas beyond the traditional agricultural hubs. The spatial distribution
maps for 2020 and 2021 reveal continued high emissions in key areas, with some fluctuations.
Notably, East Nusa Tenggara exhibited significant emission levels despite fewer data points,
suggesting sporadic yet high-intensity emission events. By 2022, there was a noticeable decrease in
emission levels across most provinces, except for Gorontalo and parts of East Jawa, which remained
hotspots for PCDD/Fs emissions. However, higher emission intensity over the areas cultivated with
sugarcane showed in spatial distributions of annual emissions (0.1° x 0.1°) specifically monthly
emissions in the dry season [12]. Yearly trends on the maps also reveal sporadic peaks in emissions
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in certain years could be linked to less stringent enforcement of environmental policies or temporary
increases in agricultural production demands.

Given that Indonesia contributes 72.81% of the total PCDDs/PCDFs emissions in the air across
all inventories in Southeast Asia, trends analyse from 2003 to 2019 [47]. By examining changes over
time (from 2016 to 2022), we can identify patterns, such as increasing or decreasing emissions.
Furthermore, regions with consistently high emissions emerge as ‘hotspots,” which may require
targeted interventions. Moreover, the broader environmental impact of these emissions cannot be
overstated.

3.2. Uncertainty

The mean values reported for each year represent the expected average quantity of PCDD/Fs
emissions in kilograms of toxic equivalents (TEQ). These values are quite low, all around 0.003 to
0.004 ug TEQ per year. This suggests that the typical emission load of PCDD/Fs from sugarcane
residue burning is minimal on an annual basis. The standard deviation values range from
approximately 0.0107 to 0.0128 ug TEQ, which are significantly larger than the mean values. This
high standard deviation relative to the mean indicates a large variability in the estimated emissions.
Such variability could be due to several factors. Differences in annual sugarcane yield can cause
significant fluctuations in the quantity of available biomass for burning, directly affecting emissions.
Changes in the harvested area impact the amount of residue burned and thus influence emissions.
Meanwhile variability in how completely the biomass burns (combustion efficiency) and the specific
amount of PCDD/Fs produced per ton of burned material (emission factor) can also introduce
considerable uncertainty into the emissions estimate.

3.3. Emission Prediction

Table 4 offers a compelling predicted emission from 2023 — 2028, presenting an upward trend in
some areas, while others show fluctuating or stable patterns. The Grey Model GM(1,1) is particularly
suited due to often the case with environmental data collected from diverse geographical locations
like Indonesia. North Sumatra, regions traditionally intensive in sugarcane cultivation, is predicted
to experience a steady increase in PCDD/Fs emissions unlike South Sumatra and Lampung with a
slight decline. This trend may be attributed to expanding agricultural activities and possibly stagnant
technological advancements in crop residue management. The sustained increase underscores the
urgent need for implementing more robust sustainable agricultural practices in these regions. Most
region in Jawa Island show gradually increase in their emission projections except for East Jawa that
has slight decline from 416 pg/yr in 2023 to 397 pg/yr in 2028. These variations could reflect
intermittent enforcement of agricultural burning regulations or periodic shifts in agricultural
practices. Such data suggests that policy interventions need to be adaptable and responsive to the
changing dynamics of agricultural practices in these provinces. West Nusa Tengggara indicate a
substantial increase from 296 pg/yr in 2023 to 381 pg/ year in 2028. East Nusa Tengggara that start to
plant sugarcane in 2021 has a gradual decrease. This might be indicating the lack of data as input in
grey model also that can be seen from the higher MAPE and MAE. South Sulawesi, experience a
significant decline emission in all projected years. While Gorontalo with the highest emissions still
projected to have highest increase emission. The grey model resulted varying performance across
regions (as shown in Table 6), with certain areas, particularly Jawa Island, demonstrating more
accurate predictions than others. Factors such as data availability (including the lack of data in East
Nusa Tenggara), model complexity, and local characteristics might influence these results.

Table 4. Annual PCDD/Fs Emission Prediction in Each Province over 2023 — 2028 (pg/yr).

2023 2024 2025 2026 2027 2028

North Sumatra 260 271 282 293 305 317
South Sumatra 242 232 222 213 204 195
Lampung 413 411 409 407 405 402
West Jawa 306 308 310 312 314 316
Central Jawa 351 356 362 367 372 378

D.I. Yogyakarta 270 279 288 298 307 318
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2023 2024 2025 2026 2027 2028

East Jawa 416 412 408 405 401 397
West Nusa Tenggara 296 311 327 344 362 381
East Nusa Tenggara 180 178 176 174 172 170

South Sulawesi 216 201 187 173 161 150

Gorontalo 505 534 564 595 629 664

Such data suggests that policy interventions need to be adaptable and responsive to the changing
dynamics of agricultural practices in these provinces. West Nusa Tengggara indicate a substantial
increase from 296 pg/yr in 2023 to 381 pg/ year in 2028. East Nusa Tengggara that start to plant
sugarcane in 2021 has a gradual decrease. This might be indicating the lack of data as input in grey
model also that can be seen from the higher MAPE and MAE. South Sulawesi, experience a significant
decline emission in all projected years. While Gorontalo with the highest emissions still projected to
have highest increase emission. The grey model resulted varying performance across regions (as
shown in Table 6), with certain areas, particularly Jawa Island, demonstrating more accurate
predictions than others. Factors such as data availability (including the lack of data in East Nusa
Tenggara), model complexity, and local characteristics might influence these results.

Figure 5 complements these insights by visualizing the spatial distribution of emissions across
the provinces, emphasizing the diverse emission trajectories. For instance, Gorontalo is predicted to
maintain high emissions, highlighting it as a persistent hotspot. Conversely, regions like South
Sulawesi and East Nusa Tenggara exhibit high-emission events despite an overall downward trend,
suggesting that localized interventions are necessary to effectively mitigate emissions. This variation
across provinces highlights the necessity for targeted and adaptable policy interventions to support
sustainable sugarcane agriculture and effectively manage PCDD/Fs emissions in Indonesia.

22028 L w0 EUED 772024

0 100 200 300 400 500 600 700
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PCDD/Fs (pg/m?2)

Figure 5. Prediction Spatial Distribution Dioxin Emission in Each Province over 2023 —2028.

The forecast data provided by the Grey Model GM(1,1) serves as a valuable tool for policymakers
and environmental managers in Indonesia. However, model improvements might be necessary. The
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results of the model’s performance (Table 6) highlight varying degrees of prediction reliability.
Regions like East Jawa and Central Jawa, which demonstrate exceptional prediction accuracy, could
serve as benchmarks for refining the model’s accuracy in other regions with less precise predictions.
For instance, East Jawa shows highly precise model predictions with the lowest MAPE of 1.4% and
an MAE of 6. In contrast, East Nusa Tenggara, which has only two years of data, and South Sulawesi
exhibit the highest MAPE values at 100% and 83%, respectively, paired with substantial MAEs of 186
and 143.

Table 6. Grey Model Performance Evaluation of Dioxin Emission Prediction.

MAPE (%) MAE
North Sumatra 36 95
South Sumatra 9 27
Lampung 6 26
West Jawa 18 58
Central Jawa 3 12
D.I. Yogyakarta 78 177
East Jawa 14 6
West Nusa Tenggara 42 140
East Nusa Tenggara 100 186
South Sulawesi 83 143
Gorontalo 29 129

However, It is recommended to have monthly emissions profiles that can show local agricultural
practices (such as varying harvesting times for different crop types) and seasonal conditions (dry or
wet). The emission data generated in this study deliver spatially and temporally , holds valuable
potential for air quality modelling studies like several studies [48,49]. By leveraging this data,
researchers can assess the impact of current and future emissions on ambient air quality.

4. Conclusions

From 2016 to 2022 the average PCDD/Fs emission values exhibit significant variability among
the provinces, prominently. Gorontalo has the highest mean emission value at 414 pg/yr while East
Jawa displayed relatively stable emissions with less variability compared to other provinces.
Spatially, certain regions in Indonesia consistently exhibit higher PCDD/Fs emissions. Provinces such
as Lampung and South Sumatra. By 2022, there was a noticeable decrease in emission levels across
most provinces; however, Gorontalo and parts of East Jawa, which remained hotspots for PCDD/Fs
emissions. This regions with consistently high emissions emerge as ‘hotspots,” which may require
targeted interventions. Related with uncertainty, emissions based on the UNEP factor tend to be
higher compared to the previous studies. The Grey Model GM(1,1) predicts future emissions with an
upward trend in some areas, while others show fluctuating or stable patterns. However, It is
recommended to have monthly emissions profiles that can show local agricultural practices (such as
varying harvesting times for different crop types) and seasonal conditions (dry or wet). Further
research and refinement are crucial to improving our understanding of dioxin emissions in this
region. To enhance accuracy and reduce uncertainty in future research, it may be beneficial to use
localized emission factors obtained by conducting field studies and collecting combustion conditions
based on fuel types and sugarcane varieties. By identifying regions with increasing emission trends,
resources can be strategically allocated to develop and implement effective control measures. These
might include promoting non-burning agricultural residue methods, enhancing farmer education
and support programs, and investing in research and development for sustainable farming
technologies.

Supplementary Information: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Additional information, as noted in the text, is available in the supplementary
materials.
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