Submitted:
01 August 2024
Posted:
02 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Methodology for Calculation of Emission Inventories
2.1.1. Calculation of CO2 Emissions
2.1.2. Calculation of NOX Emissions
2.2. Driver Decomposition Methods
2.3. Data Acquisition
3. Results
3.1. Trends in CO2 and NOX Emissions
3.2. Analysis of CO2 and NOx Emission Drivers
3.3. Analysis of Synergistic Drivers of CO2 and NOx Emissions
4. Conclusions
References
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K. Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020. Nature Communications 2022, 13(1), 5061. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zhao, J.; Liu, Y.; Huang, X.; Zhang, Y.; Zhou, D.; Ding, A.; Nielsen, C.P.; Wang, H. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nature communications 2022, 13(1), 1008. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B.A. Stronger policy required to substantially reduce deaths from PM2. 5 pollution in China. Nature Communications 2020, 11(1), 1462. [Google Scholar]
- Davidson, M.R.; Zhang, D.; Xiong, W.; Zhang, X.; Karplus, V.J. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid. Nature Energy 2016, 1(7), 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Nielsen, C. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmospheric Chemistry and Physics 2013, 13(2), 487–508. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Duan, L.; Lei, Y.; Cao, P.; Hao, J. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment 2008, 42(36), 8442–8452. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Q.; Tong, D.; Zheng, B.; Li, M.; Huo, H.; He, K. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010. Atmospheric Chemistry and Physics 2015, 15(23), 13299–13317. [Google Scholar] [CrossRef]
- Zhang, Q.; He, K.; Huo, H. Cleaning China’s air. Nature 2012, 484(7393), 161–162. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Streets, D.; He, K.; Martin, R.; Lamsal, L.; Chen, D.; Lei, Y.; Lu, Z. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations. Atmospheric Chemistry and Physics 2012, 12(10), 4429–4447. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, Y.; Xue, W.; Liu, X.; Jiang, Y.; Shi, X.; Zheng, Y.; Zhang, Q.; Wang, J. Mitigating China’s ozone pollution with more balanced health benefits. Environmental Science & Technology 2022, 56 (12), 7647-7656.
- Yang, Y.; Liu, X.; Zheng, J.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Cheng, N. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. Journal of environmental Sciences 2019, 79, 297–310. [Google Scholar] [CrossRef]
- Song, Z.; Yu, S.; Chen, X.; Li, M.; Li, P.; Hu, K.; Liang, S.; Chen, J.; Rosenfeld, D.; Seinfeld, J.H. Significant reductions of urban daytime ozone by extremely high concentration NOX from ship’s emissions: A case study. Atmospheric Pollution Research 2024, 15(7), 102142. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, J.; Zhang, Z.; Liu, M.; Li, R.; Xue, W.; Xing, J.; Cai, B.; Jiang, L.; Zhang, J. The economy–employment–environmental health transfer and embedded inequities of China’s capital metropolitan area: a mixed-methods study. The Lancet Planetary Health 2023, 7(11), e912–e924. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci Data 5: 170201. 2017.
- Min, B.S. Regional cooperation for control of transboundary air pollution in East Asia. Journal of Asian Economics 2001, 12(1), 137–153. [Google Scholar]
- Chang, K.M.; Hess, J.J.; Balbus, J.M.; Buonocore, J.J.; Cleveland, D.A.; Grabow, M.L.; Neff, R.; Saari, R.K.; Tessum, C.W.; Wilkinson, P. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies. Environmental research letters 2017, 12(11), 113001. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lin, C.-K.; Wang, Y.; Liu, D.; Song, D.; Wu, T. Location-specific co-benefits of carbon emissions reduction from coal-fired power plants in China. Nature communications 2021, 12(1), 6948. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Zhang, Q.; Liu, F.; Geng, G.; Zheng, Y.; Xue, T.; Hong, C.; Wu, R.; Qin, Y.; Zhao, H. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environmental science & technology 2018, 52 (21), 12905-12914.
- Zhang, H.; Chen, B.; Deng, H.; Du, H.; Yang, R.; Ju, L.; Liu, S. Analysis on the evolution law and influencing factors of Beijing’s power generation carbon emissions. Energy Reports 2022, 8, 1689–1697. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy policy 2017, 107, 585–599. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, P.; Yao, M.; Xue, M.; Miao, J.; Liu, B.; Wang, F. Multi-scope electricity-related carbon emissions accounting: A case study of Shanghai. Journal of Cleaner Production 2020, 252, 119789. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B. Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach. Applied Energy 2018, 218, 146–158. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Li, L.; Liu, Z.; Liang, S. Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. Energy Policy 2013, 58, 312–318. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: a practical guide. Energy policy 2005, 33(7), 867–871. [Google Scholar] [CrossRef]
- Inventory of emissions from the fusion of air pollutants and greenhouse gases Preparation of technical guidelines (for trial implementation) 2024.01.
- Miao, Y.; Lu, H.; Cui, S.; Zhang, X.; Zhang, Y.; Song, X.; Cheng, H. CO2 emissions change in Tianjin: The driving factors and the role of CCS. Applied Energy 2024, 353, 122122. [Google Scholar] [CrossRef]
- Statistical Yearbook (2010-2020). (2020) In. Beijing.
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China. Applied Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- “Beijing Electricity Development Plan for the Eleventh Five-Year Plan Period”.
- Zhang, X. The application prospect of CCUS in China under the target of carbon neutrality. China Sustainability Tribune 2020, 12, 22–24. [Google Scholar]
- the 12th Five-Year Plan.
- “Upgrading and Action Plan for Energy Saving and Emission Reduction of Coal Power (2014-2020)”.
- Qu, J.-B.; Wang, P.; Bo, X.; Xue, X.; Dong, G.; Cui, L.; Kang, M.; Wang, T.; Tang, L.; Zhu, F. Inventory and distribution characteristics of China’s thermal power emissions under ultra-low reconstruction. Huan Jing ke Xue= Huanjing Kexue 2020, 41 (9), 3969-3975.
- Bianchi, P.; De Propris, L.; Labory, S. People-centred policies for a just transition (digital, green and skills). Contemporary Social Science 2024, 1–21. [Google Scholar] [CrossRef]
- Lu, J.; Wang, X.; Liu, L. Industrial structure upgrading effect of low carbon city policy: quasi-natural experimental research based on low-carbon city pilot. Journal of Xi’an Jiaotong University (Social Sciences) 2020, 40 (2), 104-115.
- Forsten, K.R. Transmission efficiency initiative: Contributing to a lower carbon future. In IEEE PES T&D 2010, 2010; IEEE: pp 1-6.









| Type of energy | Average low level heat generation | Carbon emission factors | Carbon content per unit calorific value | Carbon oxidation rate |
| GJ/t (GJ/m3) | t C/GJ | t C/GJ | ||
| raw coal | 20.934 | 0.091 | 0.026 | 0.94 |
| Other coal washing | 8.363 | 0.084 | 0.025 | 0.9 |
| waste rock (in coal mining) | 8.374 | 0.096 | 0.027 | 0.98 |
| Other coking products | 37.634 | 0.101 | 0.030 | 0.93 |
| petroleum coke | 35.530 | 0.099 | 0.028 | 0.98 |
| crude oil | 41.816 | 0.072 | 0.020 | 0.98 |
| diesel fuel | 42.705 | 0.073 | 0.020 | 0.98 |
| fuel oil | 41.868 | 0.076 | 0.021 | 0.98 |
| gasoline | 43.070 | 0.070 | 0.020 | 0.98 |
| diesel | 43.070 | 0.068 | 0.019 | 0.98 |
| Other petroleum products | 41.031 | 0.072 | 0.020 | 0.98 |
| petroleum | 0.036 | 0.056 | 0.015 | 0.99 |
| coke oven gas | 0.017 | 0.044 | 0.012 | 0.99 |
| blast furnace gas | 0.003 | 0.257 | 0.071 | 0.99 |
| converter gas | 0.008 | 0.180 | 0.050 | 0.99 |
| refinery dry gas | 0.004 | 0.065 | 0.018 | 0.98 |
| Other gas | 0.005 | 0.044 | 0.012 | 0.99 |
| Year | Beijing | Tianjin | Hebei |
| 2010 | 7 | 21 | 182 |
| 2011 | 18 | 19 | 165 |
| 2012 | 11 | 20 | 197 |
| 2013 | 10 | 20 | 197 |
| 2014 | 10 | 24 | 194 |
| 2015 | 13 | 25 | 195 |
| 2016 | 14 | 24 | 169 |
| 2017 | 15 | 25 | 153 |
| 2018 | 17 | 20 | 147 |
| 2019 | 15 | 26 | 105 |
| 2020 | 15 | 26 | 86 |
| Year | Beijing | Tianjin | Hebei |
| 2010 | 22 | 65 | 385 |
| 2011 | 51 | 64 | 403 |
| 2012 | 31 | 66 | 448 |
| 2013 | 31 | 66 | 449 |
| 2014 | 37 | 63 | 441 |
| 2015 | 48 | 66 | 452 |
| 2016 | 54 | 61 | 395 |
| 2017 | 58 | 62 | 308 |
| 2018 | 78 | 51 | 321 |
| 2019 | 87 | 70 | 215 |
| 2020 | 87 | 71 | 170 |
| Year() | ΔC | ΔCEF | ΔCES | ΔCEI | ΔCA | ΔCP |
| 2010-2011 | 3696.27 | 0.00 | -14.22 | -4615.76 | 7563.11 | 763.14 |
| 2011-2012 | -1387.15 | 0.00 | -114.20 | -5517.02 | 3558.49 | 685.58 |
| 2012-2013 | 855.60 | 0.00 | -165.06 | -2360.83 | 3328.94 | 52.55 |
| 2013-2014 | -2901.10 | 0.00 | -366.00 | -4889.64 | 2024.38 | 330.16 |
| 2014-2015 | -2964.48 | 0.00 | -1188.03 | -2788.70 | 839.09 | 173.15 |
| 2015-2016 | 900.45 | 0.00 | -191.60 | -2034.23 | 2976.80 | 149.47 |
| 2016-2017 | -983.70 | 0.00 | -95.75 | -3198.49 | 2345.53 | -34.99 |
| 2017-2018 | 1234.25 | 0.00 | 599.97 | -1441.71 | 2164.51 | -88.53 |
| 2018-2019 | -4772.41 | 0.00 | -4.18 | -2435.86 | -2426.42 | 94.04 |
| 2019-2020 | -6600.54 | 0.00 | 3.26 | -7406.31 | 695.39 | 107.12 |
| Total | -12922.82 | 0.00 | -1535.80 | -36688.55 | 23069.83 | 2231.70 |
| Year () | ΔC | ΔCEF | ΔCES | ΔCEI | ΔCA | ΔCP |
| 2010-2011 | 4.757 | -3.356 | -0.000 | -9.647 | 16.113 | 1.647 |
| 2011-2012 | -7.152 | -4.408 | 0.029 | -11.448 | 7.275 | 1.400 |
| 2012-2013 | -13.086 | -14.768 | -0.002 | -4.472 | 6.106 | 0.051 |
| 2013-2014 | -23.672 | -19.793 | -0.219 | -7.039 | 2.910 | 0.469 |
| 2014-2015 | -21.999 | -19.899 | -0.162 | -2.847 | 0.747 | 0.163 |
| 2015-2016 | -5.197 | -6.056 | 0.002 | -1.337 | 2.081 | 0.112 |
| 2016-2017 | -10.148 | -9.651 | -0.003 | -1.692 | 1.193 | 0.005 |
| 2017-2018 | -2.481 | -2.782 | -0.003 | -0.486 | 0.805 | -0.015 |
| 2018-2019 | -0.842 | 0.944 | -0.003 | -0.997 | -0.820 | 0.035 |
| 2019-2020 | -0.508 | 2.432 | 0.003 | -3.295 | 0.318 | 0.033 |
| Total | -80.328 | -77.337 | -0.359 | -43.261 | 36.729 | 3.900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
