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Abstract: The  composition  of  the  gut microbiota  varies  among  end‐stage  renal disease  (ESRD) 

patients  on  the  basis  of  their  mode  of  renal  replacement  therapy  (RRT),  with  notably  more 

pronounced  dysbiosis  in  those  undergoing  hemodialysis  (HD).  Interventions  such  as  dialysis 

catheters, unstable hemodynamics,  strict dietary  restrictions, and pharmacotherapy  significantly 

alter  the  intestinal microenvironment,  thus  disrupting  the  gut microbiota  composition  in HD 

patients. The gut microbiota may  influence HD‐related  complications,  including  cardiovascular 

disease  (CVD),  infections,  anemia,  and  malnutrition,  through  mechanisms  such  as  bacterial 

translocation, immune regulation, and the production of gut bacterial metabolites, thereby affecting 

both the quality of life and the prognosis of patients. This review focuses on alterations in the gut 

microbiota and its metabolites in HD patients. Additionally, understanding the impact of the gut 

microbiota  on  the  complications  of HD  could  provide  insights  into  the  development  of  novel 

treatment strategies to prevent or alleviate complications in HD patients. 
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Introduction 

The  number  of  patients  with  chronic  kidney  disease  (CKD)  continues  to  increase,  with 

approximately 10% of  the world’s adult population  suffering  from CKD and  causing 1.2 million 

deaths  each  year  [1].  Some CKD  patients  experience  end‐stage  renal  disease  (ESRD),  and  these 

patients often need renal replacement therapy (RRT) to maintain life. By 2030, the global use of RRT 

is expected to reach 5.439 billion people [2]. Hemodialysis (HD) remains the most commonly used 

RRT [3]. HD patients face a series of challenges, such as cardiovascular disease  (CVD), infections, 

anemia, and protein‐caloric malnutrition [4]. As these complications are often not effectively solved, 

the mortality of HD patients remains high [5]. 

The human microbiome includes bacteria, fungi, and viruses, which form a large and complex 

ecosystem  [6].  The  gut  microbiota  directly  or  indirectly  affects  human  health,  and  a  complex 

bidirectional  relationship between  the gut microbiota  and  the heart, brain,  and kidney has been 

confirmed  [7–9].  The  gut  microbiota  and  kidney  can  interact  through  metabolic  and  immune 

mechanisms to form a bidirectional regulatory axis known as the gut‒kidney axis [10]. On the one 

hand,  uremia  can  change  the  composition  of  the  gut  microbiota  and  function  (known  as  gut 
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microbiota dysbiosis)  [11]. On  the other hand, gut microbiota dysbiosis can disrupt  the  intestinal 

barrier,  resulting  in  increased  translocation  of  endotoxins  and  gut‐derived  uremic  toxins  and 

activation of inflammatory responses, leading to various complications [12,13]. 

This review discusses the changes in the gut microbiota and its metabolites in HD patients, as 

well as the effects of the gut microbiota on HD complications, to provide insight into treatment and 

diagnosis from the perspective of the gut microbiota. 

The Gut Microbiota and HD 

The  gut microbiota  plays  a  crucial  role  in  helping  the  host  resist  exogenous  bacteria  and 

maintaining the integrity of the intestinal barrier and immune homeostasis [14–16]. In healthy people, 

Firmicutes  and  Bacteroidetes  account  for  approximately  90%  of  the  microbiome,  followed  by 

Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia [17]. 

The  gut  microbiota  of  ESRD  patients  (predialysis  and  postdialysis)  undergoes  profound 

changes[18]. This is related to the rapid decline in renal function in ESRD patients, the accumulation 

of toxins in the body, the large amount of urea circulating into the gut lumen, and the stimulation of 

the overproduction of urease‐containing bacteria [19,20]. Special dietary restrictions (reduced intake 

of  fruits,  vegetables,  and  dairy  products),  comorbidities  (diabetes,  hypertension,  etc.),  and 

medications  (phosphate  binders,  iron,  and  antibiotics)  can  also  lead  to  gut microbiota  dysbiosis 

[11,21–23].  In HD,  some waste  products  in  the  blood  are  removed  through  the  semipermeable 

membrane, which means that there are vascular access interventions (arteriovenous fistula/graft or 

venous  catheter),  inadequate  dialysis,  and  low  immunity,  which  may  further  aggravate  gut 

microbiota  disorders  [24,25].  In  addition,  during  the  process  of  dialysis,  ultrafiltration  or  the 

administration of anticoagulants may induce hemodynamic instability in the gastrointestinal tract, 

which can cause intestinal barrier disturbances [26,27]. Damage to the intestinal barrier can result in 

increased translocation of the gut microbiota and toxic metabolites, leading to microinflammation in 

HD patients [25]. 

Proteobacteria and Firmicutes were increased in HD patients compared with healthy controls [11]. 

This  observation  is  consistent with  recent  findings  reported  by Wu  et  al.  [28]. However,  some 

investigators have shown that the abundance of Firmicutes  is significantly reduced in HD patients 

[25,28]. The abundance of Bacteroidetes shows different  trends  in adult and pediatric HD patients 

[28,29]. The differences in these research results may be due to variations in the subjects’ age, genetic 

history, diet, lifestyle, and dialysis adequacy. Owing to the lack of comparative studies before and 

after  dialysis  in  patients with  ESRD, we  cannot  accurately  determine  the  specific  causes  of  the 

microbiome changes mentioned above. These changes may be caused by dialysis treatment itself, by 

ESRD itself, or even by the combined effects of both. To gain a deeper understanding of these changes, 

Lou et al. specifically selected ESRD patients who had not yet started dialysis, peritoneal dialysis 

(PD) patients, and HD  treatment patients  for a detailed  comparative analysis, and  their  findings 

indicated that HD treatment had a more significant effect on the gut microbiota of ESRD patients. 

Their  study  revealed  that HD  significantly  increased  the proportion  of  beneficial  bacteria  in  the 

microbial  community  but  also  stimulated  the  growth  and  reproduction  of  certain  potentially 

pathogenic bacteria, which may introduce new risks to the stability of ecosystems [30]. At the phylum 

level, HD patients presented  the  lowest  levels of Bacteroidetes[30]. At  the genus  level,  there was a 

decrease  in  the  abundance  of  Prevotella  and  Paraprevotella  and  an  increase  in  the  abundance  of 

Akkermansia, Coprococcus, Acinetobacter, Proteus, and Pseudomonas  [30]. Prevotella and Paraprevotella, 

two anaerobic gram‐negative rods associated with infections of the gastrointestinal, respiratory and 

urinary  tracts,  are  rich  in peptidases[31], which degrade proteins  and produce  large  amounts of 

ammonia [32]. A high concentration of ammonia destroys intestinal epithelial tight junctions, leading 

to intestinal mucosal injury [33]. Akkermansia and Coprococcus are associated with the production of 

short‐chain fatty acids (SCFAs). Akkermansia is a promising probiotic resident in the mucus layer that 

reduces inflammation and improves host metabolism [34]. Studies have shown that increasing the 

abundance  of  Akkermansia  may  reduce  the  chronic  inflammatory  state  of  CKD  patients  [35]. 

Acinetobacter is an important opportunistic pathogen in hospitalized patients [36]. Proteus, a family of 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2024                   doi:10.20944/preprints202408.0153.v1

https://doi.org/10.20944/preprints202408.0153.v1


  3 

 

Enterobacteriaceae,  is  a  common  commensal  bacterium  in  the  gastrointestinal  tract  that  secretes 

virulence  factors  such  as  the  protease  ZapA  and  is  therefore  potentially  pathogenic  [37].  The 

abundance of Pseudomonas was positively correlated with plasma tryptophan levels [38]. Pseudomonas 

is  found  in  the  blood  of ESRD patients  and  is  associated with  increased  levels  of  inflammatory 

markers (high‐sensitivity C‐reactive protein (CRP) and IL‐6) [39]. He et al. reported that HD increased 

the abundance of the beneficial bacteria Bifidobacterium and Lactobacillus acidophilus and reduced the 

abundance of the pathogenic bacteria Escherichia coli and Enterococcus faecalis compared with those in 

ESRD patients who did not undergo dialysis[40]. 

The immune system, including adaptive and innate immunity, plays a crucial role in the gut‒

kidney axis. HD can induce T‐cell‐mediated immunodeficiency, thereby impairing the host immune 

system  [41].  HD‐related  factors  (such  as  the  dialysis  process,  frequency,  ultrafiltration,  and 

intradialytic  exercise)  and  non‐HD‐related  factors  (uremia  and  medication)  can  both  alter  the 

intestinal  barrier  [42]. Additionally,  gut microbiota dysbiosis  also plays  a  role  in disrupting  the 

intestinal barrier, further increasing the translocation of bacterial components and toxic metabolites, 

which may  activate  the  innate  immune  system  and  systemic  inflammation  [43]. After  intestinal 

barrier integrity is compromised, there is a substantial influx of lipopolysaccharide (LPS) from the 

intestines  into  the  circulatory  system  through  the  compromised  intestinal  wall  [44].  LPS  is  a 

component of  the cell wall of Escherichia  coli and Enterococcus  faecalis, which can bind  to Toll‐like 

receptors (TLRs), activate the immune system, increase the production of inflammatory cytokines, 

and thus exacerbate inflammatory responses [45,46]. 

Gut microbiota dysbiosis can also result in alterations in microbial metabolites. On the one hand, 

the production of beneficial SCFAs in HD patients is reduced, which may be related to the reduction 

in SCFA‐producing bacteria such as Lactobacillus, Prevotellaceae and Ruminococcus [47,48]. The plasma 

SCFA  levels  are  linked  to  the  host’s  energy  homeostasis  and  immune  system  [49,50].  SCFAs, 

including acetate, propionate and butyrate, serve as major sources of nutrients for colon cells[49] and 

can be absorbed into the bloodstream through the intestinal lumen for transport to distant organs, 

such as the heart, kidney, muscle and adipose tissue, where they provide a source of energy for host 

metabolism[51–53].  In addition, SCFAs also have anti‐inflammatory effects  [54,55]. Among  them, 

butyrate has potent anti‐inflammatory  effects  and  reduces  the  levels of  the  inflammatory  factors 

tumor necrosis factor‐α (TNF‐α) and IL‐6 by inhibiting the activation of the nuclear factor kappa B 

(NF‐κB) cell signaling pathway[50]. On the other hand, the levels of uremic toxins such as p‐cresyl 

sulfate (pCS) and indoxyl sulfate (IS) in the plasma of HD patients are elevated [56], which is linked 

to  the  proliferation  of  bacteria  that  produce  urease,  uricase,  p‐cresol,  and  indoles  (specifically, 

Clostriadiaceae and Enterobacteriaceae) [47]. p‐Cresol is a byproduct of the putrefactive metabolism of 

tyrosine.  Indole  is a compound produced by  the  fermentation of  tryptophan. When p‐cresol and 

indole are absorbed by  the body, most of  them are  further metabolized by  the  liver. p‐Cresol  is 

oxidized  into pCS, while  indole  is oxidized  into  IS.  In normal  renal  function,  these  two kinds of 

metabolites are excreted from the urine [57]. The protein binding rate of pCS and IS is as high as 95%, 

which  leads  to  limited  clearance of HD  and  is  significantly  associated with poor prognosis  [58]. 

Furthermore,  elevated  levels  of  the  gut‐derived  microbial  metabolite  trimethylamine  N‐oxide 

(TMAO) are closely associated with cardiovascular and all‐cause mortality [59,60]. TMAO is a small‐

molecule,  water‐soluble  poison  metabolized  by  quaternary  amines  (choline  and  L‐carnitine). 

Quaternary amine metabolism produces  trimethylamine  (TMA), which  is converted  to TMAO by 

flavin‐containing monooxygenase 3 (FMO3) [61]. The plasma TMAO concentration in HD patients is 

more than 20 times greater than that in patients with normal kidney function [62,63]. In conclusion, 

higher levels of uremic toxins can have harmful effects on HD patients [64,65]. 

The Gut Microbiota and CVD 

CVD has a high mortality rate among HD patients [66]. Research has revealed that the relative 

risk of CVD mortality in HD patients is 20 times greater than that in the general population [67]. This 

is mainly because HD patients are usually accompanied by a series of metabolic disorders, including 

hypertension,  hyperglycemia,  and  hyperlipidemia.  In  addition,  the  chronic  inflammatory  state, 
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oxidative stress, and uremic  toxins, among other nontraditional risk  factors, play key roles  in  the 

development of CVD in HD patients [68]. After HD treatment, the increase in intestinal permeability 

leads to the migration of the gut microbiota and metabolites into the bloodstream, resulting in an 

increase  in  inflammatory  cytokines.  Systemic  inflammation  can  promote  the  development  and 

progression of CVD [69,70] (Error! Reference source not found.). 

 

Figure 1. Roles of gut microbiota dysbiosis in the development of cardiovascular disease (CVD) in 

hemodialysis (HD) patients. Disruption of the gut microbiota in HD patients leads to increased levels 

of  uremic  toxins  produced  in  the  liver,  such  as  p‐cresol  sulfate  (pCS),  indole  sulfate  (IS),  and 

trimethylamine N‐oxide (TMAO), while beneficial SCFA metabolites are reduced. Additionally, gut 

microbiota dysbiosis  causes damage  to  the  integrity  of  the  intestinal  barrier,  increasing  bacterial 

translocation. This allows lipopolysaccharide (LPS) and uremic toxins to accumulate in the systemic 

circulation,  leading  to  an  increased  release  of  inflammatory  factors  and  triggering  a  series  of 

pathophysiological changes. These changes include the development of atherosclerosis, endothelial 

dysfunction, oxidative stress, and chronic inflammation. Ultimately, this increases the risk of CVD. 

Several studies have revealed a significant correlation between the gut microbiota composition 

and  CVD  incidence.  Among  them,  Sumida  et  al.  studied  the  composition  of  circulating 

microorganisms  in  HD  patients  who  died  from  cardiovascular  events  and  reported  that  the 

abundance of Actinobacteria  increased while  that of Proteobacteria decreased  [71]. Similar  findings 

have also been documented  in  comparative  studies  involving  cohorts of healthy  individuals and 

those diagnosed with CVD  [72]. The proportions of  the Actinobacteria and Proteobacteria phyla are 

significantly correlated with the levels of nuclear factor erythroid 2‐related factor 2 (Nrf2) in the blood 

[71]. Nrf2 is a key regulator of the antioxidant response and plays a crucial role in immune regulation. 

Dysregulation of Nrf2 activation is associated with the occurrence and progression of CVD [73]. In 

ESRD  patients,  analysis  of  CVD  mortality  data  revealed  a  decrease  in  Bacteroides  and 

Phascolarctobacterium, suggesting that these two bacterial communities may have a protective effect 
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on  CVD  [30].  It  has  been  demonstrated  that  Bacteroides  can  prevent  atherosclerosis  through  a 

reduction in LPS production [74]. Phascolarctobacterium, a genus of SCFA‐producing bacteria, inhibits 

the growth of Clostridium difficile and holds promise as a therapeutic option for patients afflicted with 

this pathogen [75]. However, in psoriatic patients, Phascolarctobacterium is considered a risk factor for 

CVD  [76].  Further  investigations  are  warranted  to  explore  the  impact  of  diverse  microbial 

communities on the prognosis of HD patients. 

The uremic toxins (TMAO, pCS, and IS) are associated with increased CVD risk. Several studies 

have demonstrated that elevated TMAO levels represent an independent and significant risk factor 

for  cardiovascular  events  in HD patients  [60,77,78]. TMAO  is associated with  the progression of 

atherosclerosis, and its mechanisms include affecting cholesterol metabolism, promoting thrombosis, 

activating inflammation, and damaging endothelial cells [79,80]. TMAO increases the expression of 

receptor  cluster  of  differentiation  (CD)  36  and  scavenger  receptor  A  on macrophages,  thereby 

inhibiting reverse cholesterol transport (RCT) and promoting the formation of foam cells [81]. TMAO 

induces  mitogen‐activated  protein  kinase  and  NF‐κB  signaling,  thereby  promoting  vascular 

inflammation  [82,83]. TMAO  induces  inflammation and endothelial dysfunction by activating  the 

ROS‐TXNIP‐NLRP3 inflammasome pathway [84]. Moreover, elevated TMAO levels can upregulate 

the expression of thrombin, ADP, and collagen and trigger intracellular calcium release and platelet 

hyperreactivity, thereby contributing to the modulation of platelet function and thrombosis in vivo 

[85]. Recent studies also suggest that TMAO is closely associated with increased arterial stiffness and 

vascular calcification in HD patients [86,87]. An increase in arterial stiffness may lead to increased 

blood  pressure  and  increased  heart  burden. Vascular  calcification may  cause  the  vessel wall  to 

become  fragile,  increasing  the  risk  of CVD. Cardiovascular  calcification  (CVC)  is  a well‐known 

cardiovascular risk factor in HD patients[88]. 

Unlike TMAO,  the protein‐bound molecules pCS and  IS  are  challenging  to  remove  through 

conventional dialysis. The pathophysiological mechanisms associated with cardiovascular injury in 

pCS and IS include the induction of endothelial dysfunction, inflammatory responses, and oxidative 

stress[89]. Clinical studies have revealed a close association between these metabolites and the overall 

mortality and cardiovascular event mortality of HD patients [90–94]. These studies provide strong 

evidence that abnormal changes in metabolites may have a significant impact on the prognosis of HD 

patients. However, not all researchers have observed this significant correlation[95–97]. Therefore, 

further research is needed to determine the relationship between these metabolites and the prognosis 

of HD patients and whether changes in these metabolites can serve as biomarkers or targets for HD 

treatment. 

The Gut Microbiota and Infection 

Infection  is  the second  leading cause of death among ESRD patients, and sepsis accounts  for 

more than 75% of all infection‐related deaths, posing a serious threat to their lives and health [98]. 

Owing  to  impaired  immune  system  function,  these patients are more  susceptible  to  infection by 

various pathogens, leading to infection and sepsis. In a 7‐year follow‐up of 4005 HD patients, 11.7% 

of HD patients had at least one episode of sepsis [99]. The mortality rate for sepsis in HD patients is 

significantly greater, ranging from 100–300 times greater than that of the general population [4]. The 

presence of an arteriovenous fistula/graft or a dialysis catheter, older age, malnutrition, diabetes, and 

the frequency of dialysis are predisposing factors for infections [100–103]. Immune dysfunction and 

dysbiosis of the gut microbiota also play critical roles in the occurrence and development of infections 

[104,105]. Elevated concentrations of free pCS in HD patients have been shown to increase the risk of 

infection‐related hospitalizations (IH) [106,107]. 

Infections  related  to vascular  access  represent  a  common  source of  infectious  complications 

[108]. Although only approximately 19% of HD patients utilize  central venous  catheters  (CVCs), 

catheter‐related bloodstream infections (CRBSIs) account for 70% of vascular access infections [109]. 

Staphylococcus aureus, enterococci and coagulase‐negative staphylococci are the most common causative 

microorganisms implicated in CRBSIs [110]. Moreover, the increasing resistance of HD patients to 

antibiotics  has  resulted  in  a  heightened  prevalence  of  infections  caused  by multidrug‐resistant 
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microorganisms  (MDROs)  [111]. Vancomycin‐resistant  enterococci  (VREs) and methicillin‐resistant 

Staphylococcus aureus (MRSA) are common pathogens associated with MDROs [112,113]. An increase 

in the genes encoding antibiotic resistance in HD patients may result in bacterial insusceptibility to 

conventional antibiotic therapies, consequently leading to a substantial reduction in the efficacy of 

antibiotics  [114]. Microbial  virulence  factors  are  a  class  of  molecules  produced  by  pathogenic 

microorganisms  that  have  a  toxic  effect  on  the  host.  They  play  crucial  roles  in  promoting  the 

proliferation, spread, and worsening of infection within the host organism [115]. In HD patients, 12 

virulence  factors  exhibited  significant  changes.  The  levels  and  activities  of  these  factors  differ 

between  patients  and  healthy  individuals, which may  have  a  negative  impact  on  the  health  of 

patients. Among them, pyridoxamine 5‐phosphate oxidase and streptothricin‐acetyl‐transferase are 

relatively highly abundant in HD patients and may affect the course of the disease and the treatment 

effect  to some extent  [114]. Further research  into  these  two enzymes may provide new  ideas and 

methods for the treatment of HD patients. 

The Gut Microbiota and Anemia 

Anemia is a common complication in HD patients. According to data from the China Dialysis 

Outcomes and Practice Patterns Study (DOPPS), 21% of patients receiving HD treatment in China 

had hemoglobin  levels  less  than 9 g/dl  [116]. These data highlight  the widespread prevalence of 

anemia  among  dialysis  patients  in  China, which  significantly  impacts  their  quality  of  life  and 

prognosis.  Notably,  the  corresponding  figures  in  Japan  and  North  America  are  10%  and  3%, 

respectively [116]. This may be related to differences in the level of development of dialysis treatment, 

medical resource allocation, and patient education in various countries. 

There  are  many  causes  of  anemia  in  HD  patients,  including  altered  iron  homeostasis, 

erythropoietin  (EPO) deficiency, hyperparathyroidism, and chronic  inflammation  [117]. Several  in 

vitro experiments have shown that IS can inhibit the generation of EPO through a hypoxia‐inducible 

factor  (HIF)‐dependent oxygen‐sensing mechanism  [118–120]. HIF  is a  transcription  factor  that  is 

activated  in  low‐oxygen  environments  and  can  bind  to  the  promoter  of  the  EPO  gene,  thereby 

regulating EPO generation [121]. Additionally, IS can induce suicidal erythrocyte death or eryptosis, 

both of which are associated with a shortened lifespan of erythrocytes [122]. However, no significant 

correlation  between  IS  or  pCS  and  anemia  has  been  reported  in  clinical  studies  of HD patients 

[117,123]. The significant difference between the in vivo and in vitro experiments may be due to the 

significant differences in the experimental environments. The concentration of uremic toxins  in  in 

vitro experiments may be relatively high. Therefore, it is essential to fully consider this possibility 

when designing experiments to ensure the accuracy and reliability of the experimental results [117]. 

Iron supplementation and EPO‐stimulating agents (ESAs) are commonly used in HD patients. 

However, EPO  hyporesponsiveness  (EH)  occurs  in  10%  of patients  treated with ESAs  [124,125], 

which may be related to iron metabolism disorders and EPO receptor dysfunction [126]. In a study 

on  the  responsiveness  to EPO  treatment,  researchers  reported  that 9 bacteria  in HD patients had 

predictive value for EH, with Neisseria (area under the curve (AUC) = 0.9535 (95% CI, 90.2–100, P < 

0.0001)  showing  the highest predictive value  [127]. The author also  reported  that  the majority of 

enzymes related to butyrate synthesis were significantly enriched in HD patients with a good EH 

response,  which  may  contribute  to  improving  anemia  [127].  A  recent  study  has  shown  that 

supplementing dietary fiber (DF) can significantly improve anemia in HD patients. There are likely 

multiple mechanisms by which supplementing DF can improve renal anemia, one of which may be 

the  increased  production  of  butyrate  and  butyrate‐producing  bacteria  (such  as  Bifidobacterium, 

Lactobacillus,  and  Lactobacillaceae)  [126].  However,  this  discovery  provides  only  a  preliminary 

indication  of  this  possibility.  To  ensure  that  this  discovery  can  truly  benefit HD  patients,  it  is 

necessary to conduct multicenter, large‐sample, and long‐term clinical studies to comprehensively 

evaluate its clinical value. 
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The Gut Microbiota and Malnutrition 

HD patients are at high risk of malnutrition due to impaired kidney function, which makes them 

prone to sarcopenia and protein‐energy wasting (PEW). Under both of these conditions, the loss of 

muscle mass plays a crucial  role  in pathogenesis  [128]. However,  the concept of sarcopenia  is no 

longer limited to a decrease in muscle mass but also includes the loss of muscle strength [129]. Protein 

loss during dialysis, reduced physical activity, chronic inflammation, etc., can all contribute to the 

development of sarcopenia [130]. The gut‒muscle axis suggests that the gut microbiota plays a crucial 

role in maintaining skeletal muscle homeostasis [131]. A recent study demonstrated a decrease in gut 

microbiota  diversity  and  alterations  in microbial  structure  in HD  patients with  sarcopenia[132]. 

However, there have been few studies on HD patients, and most of them were observational studies 

with small sample sizes, which cannot prove a causal relationship between the gut microbiota and 

sarcopenia. Tang et al. reported significant reductions in muscle function and mass in mice colonized 

with gut microbiota from HD patients with sarcopenia, accompanied by a decrease in the abundance 

of Akkermansia, a producer of SCFAs [133]. Notably, SCFAs have been proven by multiple studies to 

have a positive effect on skeletal muscle mass [134,135]. Additionally, a study revealed that IS may 

cause metabolic disorders, further leading to impaired mitochondrial function [136]. Mitochondria 

are  energy  factories  in  cells  and  are  crucial  for  the  growth  and maintenance  of muscles.  The 

impairment of mitochondrial  function may ultimately  result  in a  reduction  in muscle mass  [136]. 

Additionally, IS can induce myotube atrophy by activating the ROS‐ERK and JNK‐MAFbx signaling 

pathways, thereby affecting muscle generation and maintenance [137]. However, many aspects of the 

pathogenesis of sarcopenia remain unknown, and future research will continue to explore these areas 

to provide more effective treatment options for HD patients. 

Similarly, PEW  is a disease  related  to malnutrition  that primarily occurs  in people who are 

unable to obtain sufficient food or nutrients, leading to severe deficiencies in body protein and energy 

[138]. The prevalence of PEW in HD patients is 30% to 75% [139]. Decreased nutrient intake, systemic 

inflammation, and inadequate dialysis are associated with the development of PEW [140,141]. The 

abundance  of  the  butyric  acid‐producing  bacteria  Faecalibacterium  prausnitzii  and  Roseburia was 

reportedly reduced in HD patients with PEW [140,142]. The gut microbiota may also be useful for 

predicting PEW in HD patients [143]. Another researcher reported a positive correlation between the 

levels of Actinobacteria and Bifidobacteriaceae and PEW indicators such as serum albumin levels, lean 

tissue mass (LTM), and the lean tissue index (LTI) [143]. The level of TMAO was significantly greater 

in HD patients with PEW [144]. These findings suggest that TMAO may play an important role in 

this  disease  process.  Further  research  revealed  that  circulating  TMAO  levels  are  significantly 

associated with the incidence of PEW in HD patients [144], which means that an increase in TMAO 

levels may increase the risk of PEW. To better understand this phenomenon, it is necessary to conduct 

in‐depth research on the causal relationship between TMAO and PEW. 

Strategies to Attenuate Gut Microbiota Dysbiosis in HD 

Research  on  probiotics,  prebiotics,  and  synbiotics  has  received  widespread  attention  from 

scholars at home and abroad in recent years. These three substances are believed to have significant 

effects on  the balance of  the gut microbiota and human health.  In  evaluating  the effects of  these 

supplements on diseases, most research currently uses indicators such as endotoxins, uremic toxins, 

inflammation,  and metabolic markers. Probiotics,  as  active microorganisms,  can not only  reduce 

inflammatory  responses  [145]  but  also  positively  impact  glucose  homeostasis,  oxidative  stress 

[146,147],  kidney  function  [147],  nutritional  status[148],  and  quality‐of‐life  indicators[149,150]. 

Moreover,  probiotics  have  been  shown  to  significantly  reduce  the  production  of  uremic  toxin 

precursors (such as phenol and p‐cresol) [151] but have no significant positive effect on IS or pCS in 

HD patients [152,153]. 

Prebiotics  are  nondigestible  food  ingredients  [154].  In  fourteen  HD  patients  who  were 

supplemented with curcumin for three months, curcumin significantly lowered plasma pCS levels 

[155].  Resistant  starch  (RS)  is  a  prebiotic  compound  that  promotes  the  proliferation  of  SCFA‐

producing groups (such as Roseburia and Ruminococcus gauvreauii) [156], increases the production of 
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SCFAs,  reduces  the  levels of pCS  and  IS  [157],  and  alleviates  inflammation  and oxidative  stress 

markers  [158,159]. However,  the  efficacy of RS has been  confirmed  in many but not  all  studies. 

Esgalhado et al. reported that RS only reduced plasma IS levels, with no significant effect on pCS 

levels  [158]. High‐amylose  resistant  starch  (HAM‐RS2)  can  reduce  serum  creatinine  and p‐cresol 

levels but has no significant effect on IS levels [160]. Moreover, RS does not seem to play a role in 

altering plasma TMAO levels, as it does not contribute to any significant changes in the concentration 

of this metabolite in the bloodstream[161]. 

Synbiotics are mixtures of prebiotics and probiotics. A trial investigating synbiotic ingestion for 

four weeks  in HD patients revealed that such therapy altered the fecal microbiota (Bifidobacterium 

enrichment) and significantly  increased  the  levels of acetic acid and butyric acid  [162].  In 58 HD 

subjects, a 7‐week synbiotic treatment decreased the serum IS, pCS and urea concentrations [163]. 

Probiotic  intervention has demonstrated potential benefits  in  reducing  the  levels of  serum high‐

sensitivity  C‐reactive  protein  (hs‐CRP),  IL6,  and  endotoxins  [164].  Furthermore,  the  combined 

administration of synbiotics and probiotics for 12 weeks has been shown to ameliorate anemia in HD 

patients [165]. 

Conclusions 

In general, HD  restored  the  abundance of beneficial microbes but  induced  some potentially 

pathogenic bacteria. The gut microbiota can play a crucial role  in post‐HD complications, such as 

cardiovascular events,  infections, anemia, and nutritional complications,  through metabolites and 

immune  regulation.  Studies  aimed  at  restoring  the  appropriate  gut microbiota  composition  and 

alleviating uremic  toxins  have  been  conducted.  It  seems  that  dietary  interventions  consisting  of 

probiotics, prebiotics, and synbiotics are promising strategies. These dietary supplements have been 

shown to restore the gut microbiota composition, reduce IS and pCS levels, and reduce inflammatory 

marker levels. However, there is a lack of clear guidelines to inform HD patients when to take these 

dietary supplements, as well as the types and doses that must be taken, which can confuse clinicians 

when  prescribing  them  for  patients.  All  of  these  measures  have  limited  effects.  They  do  not 

fundamentally solve the problem of gut microbiota imbalance. 

In addition, there are many limitations in the study of the gut microbiota and metabolites in HD 

patients. First, research on  the gut microbiota and metabolites  in HD patients  is mostly based on 

single‐center,  small‐sample  studies  at present. These  studies  largely  ignore  the  influence of diet, 

dialysis  duration,  and  drug  intake  on  the  gut  microbiota  and  metabolites,  leading  to  highly 

heterogeneous  conclusions  and  difficulty  in  forming  a  unified  scientific  understanding.  Second, 

research on the relationship between the gut microbiota and phenotype in HD patients is relatively 

limited. Most of the existing studies are observational studies and have not fully demonstrated the 

causal  relationship  between  the  gut  microbiota  and  phenotypes.  In  addition,  the  molecular 

mechanisms  by which metabolites  regulate HD  complications  remain  unclear, which  limits  our 

understanding and means of preventing and treating HD complications. Finally, reliable evidence 

from the gut microbiota perspective to guide clinical management strategies is challenging to obtain 

because of the complex relationships between hosts and microorganisms, individual differences, and 

susceptibility to multiple factors. This requires a deeper understanding of the diversity and dynamics 

of the gut microbiota, as well as further research on the relationship between the gut microbiota and 

HD  patient  phenotypes  to  reveal  the  underlying  biological mechanisms.  In  the  future, we  look 

forward  to gaining a deeper understanding of  the gut microbiota and metabolites of HD patients 

through large‐scale clinical trials, considering the effects of diet, dialysis duration, and drug intake, 

to provide a more comprehensive and scientific basis for clinical management strategies. 
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