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Abstract: The objective of image super-resolution is to reconstruct a high-resolution (HR) image
with the prior knowledge from one or several low-resolution (LR) images. However, in the real
world, due to the limited complementary information, the performance of both single-frame and
multi-frame super-resolution reconstruction degrades rapidly as the magnification increases. In this
paper, we propose a novel two-step image super resolution method concatenating multi-frame
super-resolution (MFSR) with single-frame super-resolution (SFSR), to progressively upsample
images to the desired resolution. The proposed method consisting of an LO-norm constrained
reconstruction scheme and an enhanced residual back-projection network, integrating the flexibility
of the variational model-based method and the feature learning capacity of the deep learning-based
method. To verify the effectiveness of the proposed algorithm, extensive experiments with both
simulated and real world sequences were implemented. The experimental results show that the
proposed method yields superior performance in both objective and perceptual quality
measurements, compared to the baseline super-resolution algorithms in the cascade model. In
addition, the experiment indicates that this cascade model can be robustly applied to different SFSR
and MFSR methods.

Keywords: super-resolution; deep learning; cascade model; resolution enhancement; regularized
framework

1. Introduction

High-resolution (HR) images with high perceptual quality are often required in applications
such as video surveillance [1,2], face recognition [3], medical diagnosis [4], and remote sensing [5-7].
However, due to the different capabilities of sensors, the quality of captured images can vary greatly
and fail to meet the requirements of subsequent applications. Super-resolution technology is an
effective way to overcome the inherent resolution limitation of the current sensor imaging systems
[8]. The object of super-resolution technique is to reconstruct a HR image from single or multiple LR
observation frames captured at different perspectives of the same scene. In general, the observed LR
image can be modeled as a degraded representation of the HR image, which are degraded by warp,
blur, noise and decimation [5]. According to the number of input LR images, the conventional super-
resolution approaches can be roughly categorized into single-frame super-resolution (SFSR) [9-15]
and multi-frame super-resolution (MFSR) [16-20].

Multi-frame super-resolution reconstruction aims to merge the complementary information
from different images to generate a higher spatial resolution image. The problem was first formulated
by Tsai and Huang [16] in the frequency domain to improve the spatial resolution of Landsat
Thematic Mapper (TM) images. Over the past few decades, the research work has been presented
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and studied in the spatial domain to improve the multi-frame super-resolution techniques [17,18].
The SR problem is considered as an ill-posed inverse problem, as for each LR image, the space of its
plausible corresponding HR images is huge and scales up quadratically with the magnification factor
[21]. Owing to its effectiveness and flexibility, most research have focused on regularized frameworks
which impose some constraints on the solution space [22]. The maximum a posteriori estimation
(MAP) method transforms the super-resolution reconstruction into an energy function optimization
problem. Generally, the energy function consists of a data fidelity term which measures the model
error between the degraded observations and the ideal image, and a regularization term that imposes
some prior knowledge to constrain the model to achieve a robust solution. However, the priors of
these methods are hand-crafted based on limited observations of specific image statistics, which may
restore unsatisfactory results, as the real constraint often deviates from the predefined priors. On the
one hand, the ill-posed nature is particularly evident for large magnification factors which increases
the problem of sub-pixel alignment and leads to the absence of texture details in the reconstructed
images. On the other hand, it is difficult to obtain sufficient LR images with non-redundant
information to recover the aliasing high frequencies components. Therefore, the performance of
MEFSR algorithms decreases rapidly with increasing magnification.

The mainstream algorithms of SFSR involve reconstruction-based [9], example-based [23],
sparse representation-based [24], regression-based [11], and deep learning-based approaches [13—
15,25], etc. With the rapid development of deep learning, the convolutional neural network (CNN)
dominated the research of SR due to their promising performance in terms of effectiveness and
efficiency [26]. This pioneering work of SRCNN [12] applied a three-layer network to learn non-linear
mapping relationships between the HR patches and the corresponding LR patches. Since then,
considering the excellent learning capacity of convolutional neural network (CNN), the deep
learning-based methods have has been developed in various ways by using new architectures or
proper loss functions. The improved network [13] exploited residual learning (VDSR) [27] and
recursive structures layers (DRCN) [28] to achieve an outstanding performance for SFSR. The
residual dense network (RDN) [14] innovatively combined residual learning and dense connection
to fully utilize both the shallow features and deep features together with over 100 layers. Recently,
the network of channel attention (RCAN) [29] and second-order channel attention (SAN) [15] are
introduced to exploit feature correlation for superiority performance. These end-to-end networks
compute a series of feature maps from the LR image, culminating with one or more up-sampling
layers to construct the HR image. Therefore, it's convenient to automatically learn good features from
massive data without much expertise and manual feature learning. Nevertheless, many deep
learning approaches hypothesize that the training and test dataset are drawn from the same feature
space with the similar distribution. Hence, the SR performance is heavily bound to the consistency
between testing data and training data [8]. Meanwhile, the learning based methods directly generate
high resolution details according to the learned mapping functions and low resolution input, and
some unexpected artifacts may be produced in the reconstructed results, especially for large
magnification factors. Furthermore, the difficulty of estimating missing high-frequency details
increases with the scale factor due to the increment of the ambiguities between LR and HR.

Briefly speaking, the SR performance at a large scale factor remains a challenging problem for
both the MFSR and SFSR approaches. On the one hand, the model-based MFSR algorithms are
difficult to recover the missing high-frequency details with the limited complementary information.
On the other hand, at large upsampling scales, since insufficient information is available to recover
such high frequencies components, the deep learning-based SFSR methods may “hallucinate” the
fine detail structure. Particularly, the hallucination can be very problematic in some critical
applications. To deal with this challenge, some researchers [30,31] have proposed to exploit the
complementary advantages of external and internal information to improve SR performance and
perceptual visual quality. However, most deep learning based video and multi-frame super
resolution methods cannot fully exploit the temporal and spatial correlations among multiple images.
Their fusion modules does not adapt well to image sequences with weak temporal correlations [32].
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These methods cannot satisfy our everyday requirements, because of the limited information
involved in the reconstruction model.

To our knowledge, the MFSR and SFSR methods extract missing details from different sources.
SFSR extracts various feature maps representing the details of a target image. MFSR provides
multiple sets of feature maps from other images. The model-based MFSR methods and the deep
learning-based SFSR procedures are complementary, to a large extent [33]. Combining the feature
learning capacity of SFSR with the information fusion brought by MFSR, a few pieces of research
proposed a combination of single-frame and multi-frame SR such as [34,35]. In [34] the input LR
images are first magnified and recovered by a conventional MFSR method with a 4X scaling factor,
then a SFSR network is applied to the previous recovered result for artifacts removal without
magnification. Method of [35] done the process in the inverse order of [34] where the input LR images
separately through the SFSR network and then a conventional MFSR is applied on the resulting
image. In contrast, the SFSR network among the previous framework is only used as a filter to fine-
tune the output of the MFSR method, while the SFSR network is to initialize the input of the MFSR
method in the latter research. Compared with traditional methods, the cascade model can
simultaneously capitalize on both inter-frame aliasing information and external learned feature
information, which notably improves the utilization of multiple images and external example data.

In this paper, we propose a novel two-step super-resolution reconstruction method
concatenating the LO-norm constrained reconstruction with an enhanced residual back-projection
network. Such a cascade model property induces considerable advantages for image SR, which
integrates the flexibility of model-based method and the feature learning capacity of learning-based
method. Specifically, the LO-norm constrained reconstruction method takes multiple images as input
to obtain an initial high-resolution image, and then an enhanced residual back-projection network is
further applied to the initial image for recovering a more accurate result. The proposed cascade model
leverages the information learned from multiple low-resolution inputs and neural networks,
outperforming the existing baseline SR methods in the cascade model in both objective and
perceptual quality measurements.

The rest of this paper is organized as follows. Section 2 introduces the variational model-based
MEFSR algorithm and the deep learning-based SFSR algorithm that are concatenated in the cascade
model. We present the detailed experimental results for this multi/single-frame super-resolution
cascade model in Section 3, followed with a discussion of the strategy for cascade model in Section 4.
Finally, our conclusions are drawn in Section 5.

2. The Cascade Model for Image Super-Resolution

Most methods reconstruct HR images in one upsampling step, which increases the difficulty of
reconstructing at large scaling factors. A Laplacian pyramid framework (LapSRN) [36] is proposed
to progressively reconstructs the multiple images with different scales in one feed-forward. However,
this network relies only on the limited features available in the LR space with a stack of single up-
sampling networks. Because of the insufficient information available to restore such high frequencies,
it is unrealistic to generate sharp HR images with fine detail at large scale factors.

The cascade model of MFSR and SFSR is proposed to obtain high performance results for image
super-resolution at large scaling factors. There are four structures for performing SR using MFSR,
SESR, or combinations of them when the up-scaling factor is a divisible integer such as 4 as shown in
Figure 1. To the best of our knowledge, the question of how to best combine SFSR and MFSR has not
been answered theoretically. Since the actual degradation is more complex and varying, the learning
based SFSR cannot fully simulate the image degradation process, which may cause incorrect results
in actual reconstruction. In order to reduce the error transmission, we suggest using the multi-frame
first and then single-frame cascade method for super-resolution (MFSE-SR), while the opposite
method by applying SFSR first and MFSR after (SFMF-SR) will be analyzed in detail in the subsequent
discussion section.
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Figure 1. Various structures of the super-resolution cascade model.

The proposed cascade method consists of two main parts: the variational model-based MFSR
and the deep learning-based SFSR. We aim to concatenate the MFSR method with the SESR method
to progressively up-sample images to the desired resolution. Regarding the choice of the MFSR and
SFSR methods, we employ the MFSR approach via LO-norm regularized intensity and gradient
combined prior (LORIG) and the SFSR approach using enhanced residual back-projection networks
(ERBPN), respectively, which are introduced in the following subsection.

2.1. Multi-Frame Super-Resolution via the LO-Norm Regularized Intensity and Gradient Combined Prior

In image super-resolution reconstruction, as a typical inverse problem, SR is highly coupled with
the degradation model. Generally speaking, the HR image is inevitably corrupted by many factors in
the acquisition process, including warping, blurring, subsampling operators, and additive noise [5].
It allows us to reconstruct an output image above the Nyquist Limit of the original imaging device.
Super-resolution turns out to be an inherently ill-posed inverse problem because the information
contained in the observed LR images is not sufficient to solve the HR image. Therefore, it is necessary
to impose a specific regularization in order to obtain a stable solution. The model-based methods
incorporate prior constraints to estimate the desired HR image by minimizing an objective function
of the posterior probability.

M,

We denote the ideal HR image required to be reconstructed as z€ R , the observed LR

. s? . . MNXMNs? . .
images as {g, };:1 € R, the down-sampling matrix as D& R"" ™™ the motion matrix as

52 2 2 .. . .
{M A };c:l e RN s XA ,and Be RMNMNS™ o6 the blur matrix including the sensor blur, optical blur,

and atmospheric turbulence, where we assume that the blur of multiple images obtained under the
same scene is consistent. The additive noise of the image observation model is usually assumed to be

white Gaussian noise. Thus, the size of the LR image &, is M XV, and the scaling factoris s, the

size of the HR image is M X N . By changing the number of LR images, they can be applied to the

MESR or SFSR tasks. The MAP-based solution model for the super-resolution problem can be
represented by a generalized minimization cost function as follow:
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Z=argmin {ﬁ; ||gk - DBMkz”z + /1U(z)} (1)

The first term of the cost function is the data fidelity term, which measures the reconstruction
error to ensure that pixels in the reconstructed HR image are close to real values; the second term
U(z) is the regularization term associated with the general prior information about the desirable

HR image to obtain a robust solution; and A is the regularization parameter, which provides a
tradeoff between the data fidelity term and the regularization term.

In the image processing field, Gaussian-type noise is the most commonly assumed because the
noise generated in image acquisition usually satisfies a Gaussian distribution [22]. We assume the
noise to be additive white Gaussian noise, so the fidelity term can be characterized by the L2-norm.
For the regularization term, Laplacian [37], total variation (TV) [20]Jand Huber—-Markov random field
(HMREF) [38] regularization are first considered, due to their simplicity and efficiency. Based on the
advantages of the TV regularization, a combined image prior based on intensity and gradient is
proposed for natural images [39], which describes the two-tone distribution characteristics of the
gradient statistics. This expression is written as

U@ =, V-, 2
where V is the gradient operator. As the intensity prior is based on independent pixels instead of
the disparities of neighboring pixels, it introduces significant noise and artifacts in the image
restoration. In contrast, the gradient prior is based on the disparities of neighboring pixels, and thus
enforces smooth results with fewer artifacts. Prior knowledge for constraining the intensity and
gradient can sufficiently exploit the statistical properties of natural images. To effectively preserve
the detailed texture information and enhance the reconstructed image quality, the intensity and
gradient combined prior is employed in the super-resolution reconstruction [40]. We propose an
MEFSR algorithm via an LO-norm regularized intensity and gradient combined prior (LORIG) to
integrate into the cascade model.

Typically, geometric registrations and the blur can be estimated from the input data, and used
with the generative model to reconstruct the super-resolution image. The super-resolution becomes
very limited without a good estimation of the blur and motion between the LR sequences. In this
work, we compute the warping matrix M and blur matrix B with the optical flow approach [41]
and the blind blur kernel estimation method [39], respectively. In order to simplify Equation (1),

DBM, can be regarded as a system matrix W, . By substituting Equation (2) into Equation (1), the

following minimization function for solving the MFSR model can be obtained

K
z=argmini e, W+ A(z), +[v2),)
)

Due to the L0 regularization term in Equation (3), it is difficult to solve the super-resolution
model since it is a nonconvex function. As known, variable splitting and alternate iterative
optimization algorithms are typically used for optimizing the solutions of the variational model.
Based on the variable splitting LO minimization approach, we adopt the alternating direction method
of multipliers (ADMM) algorithm [42] to solve the model. We introduce the auxiliary variables u

and v, representing z and Vz, respectively, to move a few terms out of the non-differentiable LO
norm expression. The objective function can be rewritten as

. RS 2
Z=argmin {%”g,{ - WkZ”2 + /1(||u||O + ||v||0 )} st.u=z,v=Vz
)
By transforming Equation (4) to generate an unconstrained problem with the augmented
Lagrangian algorithm, it can be rewritten as
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K
seargmin g, 2L+ e+ 2[5z il ] |
©)
where f and u are penalty parameters, and are set to be 0.001 initially, that times 0.9 after each

iteration to accelerate the convergence. Equation (5) can be efficiently solved through alternately
minimizing z,u and v independently, by fixing the other variables. The flowchart of the MFSR via
LO-norm regularized intensity and gradient combined prior (LORIG) algorithm is illustrated in Figure

2.
Estimate HR image
—
. . tep: u, v fixed, estimati
Optical flow estimation Z S15p: T, ¥ HXEE, eSimating 2
— SR image
o
LR images 3
— =
o Convergence
=
= Judyment
Prior Optimization
Bicubic interpolation . )
u, v step: z fixed, estimating u, z
. B
Blur kernel estimation
Parameter estimation ADMM framework

Figure 2. Flowchart of LORIG.

2.2. Single-Frame Super-Resolution Using Enhanced Residual Back-Projection Network

Inspired by the idea of iterative back-projection framework, Haris et al. [43] proposed deep back-
projection network (DBPN) to iteratively use error feedbacks from the multiple up- and down-scaling
steps, which achieves the state-of-the-art SR performance with large scale factors. Since the iterative
up-down sampling framework has the advantage of capturing the deep relationships between LR
and corresponding HR images, it has become a promising framework in the field of SFSR [44]. Figure
3 illustrates the schematic pipeline of the proposed enhanced residual back-projection network
(ERBPN), which is designed on the basic architecture of the original DBPN [43]. The architecture of
ERBPN consists of three parts, namely, initial feature extract module, projection unit, and SR
reconstruction module, as described below. Some modifications have been made for the projection
unit : 1) replace the down-projection unit with the down-sampling unit; 2) replace the concatenation
operation with a sequential feature fusion (SFF) operation. In the following, the major improvements
are further explained.

]
SFF <«—

)
g £ g g
3 g 8 3
g—»;—»g—»%—» g—»%—»---—»g—»g—» —>€
o o o

5]

=) R =) j =)

LR Interpolation Global Residual Learning

Figure 3. Architecture of ERBPN.

The first part extracts the shallow feature L from the input LR image /;p and can be
formulated by Ly=f;,;;({;p) , where f;,; denotes a convolution operation with

Conv(3,m,ny) and ny, ny are the number of input LR image channel and the feature maps,
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respectively. Then 1 X1 convolution layer is used as feature pooling and dimension reduction before
entering the projection unit.
Then, the initial feature extraction is followed by a sequence of projection units, alternating

between construction of the LR and HR feature maps L;, H,.The projection units in our proposed

framework include the up-projection unit and the down-sampling unit. Iterative error feedback
mechanism is proposed by iteratively estimating and applying a correction to the current estimation
of the LR and HR feature maps. Here, the projection errors are used to characterize or constraint the
features in early layers. The up-projection unit is utilized to map the LR feature maps to the HR
feature maps, which is shown in Figure 4(a). However, it’s intuitive that obtaining LR feature maps
from HR feature maps is simple and does not require projection unit based on iterative error feedback
mechanism. Therefore, we simplify the back-projection network with a down-sampling unit for faster
computation, which has a very simple structure with a convolution layer as is shown in Figure 4(b).
Note that each input feature map is concatenated and fused through the sequential feature fusion
(SFF) operation before entering the projection unit.

Dense Up-Projection Unit Dense Down-Sampling Unit
> H 10
62 g ) 4
(L, s Loy 1 g8 —~D—H,| |[H. .H]1— L
@)
Ly

(a) (b)

Figure 4. Architecture of the dense up-projection unit (a) and down-sampling unit (b).

Deconv —
!
}
SFF

The up-projection and down-sampling unit are densely connected to alleviate the vanishing
gradient problem, produce improved feature, and encourage feature reuse [14]. The input for each
unit is the concatenation of the outputs from all previous units to generate the feature maps
effectively. Generally speaking, the feature maps generated by different projection units have
different types of HR and LR components with different impacts on the quality of the results.
Therefore, it is necessary to discriminate these feature maps with a feature fusion module [45]. In our
framework, the sequential feature fusion operation (SFF) is employed to deal with the feature maps
discriminatorily, integrating these feature maps in a sequential manner. Figure 5 shows the

illustration of the SFF. Suppose that m' represents the #th input LR/HR feature map, y’ denotes

the output of the 7th convolutional layer. Next, we obtain the following equation:
t S|

where t=1,2,...,n, yo =0. n denotes the number of projection units, [-;-] represents the

concatenation operation and f  denotes a convolution operation with 33 convolutional layer. It
is worth pointing out that the SFF has discriminative ability because the feature maps generated by
different projection units are processed at different depths of the network. Different from other
networks, our reconstruction directly exploits different types of LR-to-HR features without
propagating through up- projection layers.

Mg Mg—y My 1 1 Yd—-2 Mq-1 Yd-1 Mg Yd

Input feature maps Output feature maps

Figure 5. Architecture of the SFF.
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Finally, we employ a global residual back-projection block structure. Residual learning helps the
network converge faster and makes it easier for the network to generate only the difference between
the HR and interpolated LR images [29], which can address the performance degradation problem
caused by the details loss after so many layers in deep networks. In our ERBPN framework, the LR
image is taken as the input to reduce the computation time. At the last stage, all HR feature maps
from the up-projection step are deeply concatenated and fused with the SFF, then added to the
interpolated LR image to generate the final super-solved image.

The last convolution layer is used for image reconstruction with filter size of 3X3. The network
takes the reconstructed results, denoted as Z, as the output. Loss functions help us estimate the
difference between the recovered SR images and the corresponding ground-truth HR images. MSE
loss between the ground-truth HR image and the reconstructed HR image is used as the objective
function, which can be written as follows:

2
; 7)

L L !
0ss = WIZ:;”ZI -z

where N is the number of the training images.

2.3. Summary of the Proposed Cascade Model for Super-Resolution

In our work, the two-step super-resolution reconstruction method cascades the model-based
MFSR and the deep learning based SFSR method abovementioned. The MFSR with LO-norm
regularized intensity and gradient combination prior (LORIG) and the SFSR via enhanced residual
back projection network (ERBPN) are employed to reconstruct a more accurate result. Specifically,
first, we take 16 low-resolution images as the input of the LORIG method to reconstruct one
intermediate super-resolved image denoted as 7', whose dimensions are 2x larger than the input LR
images. Then, the intermediate super-resolved image 7' is fed into the ERBPN framework to obtain
a high-resolution result z'* with better quality. The high-resolution result 7" are 2x larger than
7', hence 4x larger than the input LR images. Even though we exemplify our super resolution
reconstruction method using 4x scaling factor, it can be directly extended to other SR scaling factors.
The schematic diagram for the proposed cascade method is illustrated in Figure 6.

MFSR

Initialization

Computing Z

Ao+ )

s.t. u=z,v=V:z

Motion matrices A,

argmini ||DBMk: -g:
=

v

Blurring matrix B

Sample matrix D

LR images &k

2X SR image Feature

- :
Image 4x SR image
7 ! Extraction

Reconstruction I+

z

Projection Unit

SFSR

Figure 6. Flowchart of the super-resolution cascade model.
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3. Experiments

To validly confirm the effectiveness of the proposed cascade model of MFSF-SR, this section
presents the experimental results on both synthesized and real images. We combine the multi-frame
based LORIG method with the single-frame based ERBPN method, to up sampling images
progressively at the 4x scale factor. The proposed cascade method applies ERBPN directly on the
output of LORIG in a sequential manner, where the LORIG method reconstructs the LR images first,
and then the resulting image is independently enhanced using the ERBPN method to obtain a higher-
quality output. At the same time, the two baseline super-resolution reconstruct methods of LORIG
and ERBPN are also implemented to compare with the cascade method. In the simulation
experiments, the effect of the proposed method under different noise levels is further investigated to
verify the robustness to noise. The detailed steps are presented in the following sections.

3.1. Data and Training Details

The five grayscale HR images shown in Figure 7 were selected as the test images in the
simulation experiments. For each image from these test sets, we generated a set of N =16 images with
different subpixel shifts applied before further degradation. Synthetic sequences of 16 LR images
were generated by applying isotropic Gaussian blur to the sequential subpixel shifts HR image, then
down-sampling the row and column of the image by a factor of 4.

Cameraman House Baby Butterfly Parrot

Figure 7. The five test images for image super-resolution.

In the reconstruction stage of the LORIG, the central frame of LR sequence is chosen as our
reference frame and the initial HR image is obtained by bicubic interpolation method. The
regularization parameter A is determined empirically based on numerous experiments to produce
the best performance. Since minimizing the objective function by preconditioned conjugate gradient
method usually converges within 30 iterations, the maximum iteration number is set to TS = 30.

In the ERBPN, the filter size in the up-projection unit varies with respect to the scaling factor.
For the 2x enlargement, we used a 6 x 6 convolutional layer with two striding and two padding. The
4x enlargement then used an 8 x 8 convolutional layer with four striding and two padding. In the
training phase, we augmented the training data from the DIV2K dataset [46] by randomly employing
90°, 180°, and 270° rotation and horizontal and vertical flipping [44]. In each mini-batch, 128 degraded
LR images with a patch size of 64 x 64 were provided as inputs for the model, and the corresponding
HR image served as the ground truth for calculating the loss. The models were optimized using the
ADAM optimizer [47] with 1 = 0.9, 32 = 0.999, and ¢ = 108. The initial learning rate was set to 10
and then decreased by half every 100 epochs. A total of 1000 epochs were used for training the models
since more epochs did not bring further improvements. All experiments were implemented using
Caffe framework and the Matlab R2022a on an Nvidia RTX GPU.

Image enhancement or visual quality improvement can be subjective because the perception of
better image quality can vary from person to person. For this reason, it is necessary to establish
quantitative measures for the comparison of image enhancement algorithms. To assess the image
quality of the super-resolution reconstructed results, two classical evaluation criteria—the peak
signal-to-noise ratio (PSNR/dB) and the structural similarity index measure (5SIM)—were chosen to
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measure the performance of the different super-resolution methods [48]. The higher the quantitative
measure, the better the quality of the reconstructed image.

3.2. Experiments on Synthetic Data

LORIG and ERBPN are the baseline methods of the proposed MFSF-SR, which only reconstruct
by upsampling one step instead of step-by-step reconstruction under an upscaling factor of 4, for
comparison with the cascade model. For a fair comparison, we run SESR method for all 16 simulated
LR images, and compute the mean metric from the reconstruction outcomes—this way, the method
is fed with the same data as those for MFSR. Besides, a bicubic interpolation of the LR reference frame
is also constructed for comparison.

Table 1 shows the quantitative performance comparison in terms of PSNR and SSIM for the five
simulated images presented in Figure 7 with the different methods. For the sake of comparison, the
two types of LORIG and ERBPN algorithm directly reconstructed on 4x enlargement. The output of
the cascade model is a super-resolved central frame with four times the size of the original LR images.

Table 1. Quantitative results (PSNR(dB) and SSIM) of the simulation experiments for 4X SR. The
bold portion indicates the best performance.

Data Metric Bicubic LORIG ERBPN MFSE-SR
- PSNR 21.120 24.004 24.787 25.642
meraman
amerarna SSIM 0.726 0.823 0.832 0.866
PSNR 24228 29,572 30.549 31.391
House
SSIM 0.772 0.868 0.881 0.896
- PSNR 28.685 31.653 32.352 32.744
y SSIM 0.798 0.898 0.915 0.922
Buttert] PSNR 19.348 23.073 24.006 24.863
uttertly SSIM 0.701 0.866 0.874 0.884
PSNR 22724 26.74 27.905 28.636
Parrot
SSIM 0.854 0.916 0.935 0.941

For the sake of comparison, we analyze the simulated experimental results from both subjective
and objective perspectives. Quantitatively, as displayed in Table 1, the proposed cascade model
yields the best scores in the evaluation metrics among all the compared methods. In the experiment
with the Butterfly image, the PSNR values are 23.073 dB for LORIG, 24.006 dB for ERBPN, 24.863 dB
for MFSF-SR. These quantitative results confirm the effectiveness of the MFSF-SR cascade model.
From a subjective perspective, the red rectangles show zoomed regions of the restored images, to
compare the qualitative performance of the different methods. LORIG shows the preferable
performance, but some edge is over-smoothed. ERBPN can produce good contrast through the up-
and down projection unit, but there are some unnatural artifacts around the slight edge. The result
of the proposed MFSF-SR method contains more details and fewer blurred contours than LORIG and
ERBPN.

Furthermore, in the experiment with the Parrot image, the PSNR value for the proposed MFSE-
SR is 28.636 dB, which is 1.896 dB and 0.731 dB better than LORIG and ERBPN, respectively. As
displayed in Figure 8, images reconstructed with the MESF-SR cascade model are able to preserve
the HR components which contain more details, with rare additional artifacts. As a simple
comparison, in the bottom line of Figure 8, the enlarged image in the result of LORIG shows the
misinterpreted area of the diagonal stripe due to the ringing artifact effect. It shows that the MFSE-
SR can preserve the low-frequency content, and reliably restore the high-frequency details with the
combination of the inter-frame information and external learning prior. From both the qualitative
and quantitative analyses, most of the results show that the MFSF-SR with a two-step reconstruction
creates more high-frequency information than the baseline methods at a large magnification factors.
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ﬁ
PSNR/SSIM 22.724/0.854 26.740/0.916 27.905/0.935 28.636/0.941
HR Bicubic LORIG ERBPN MFSF-5R

Figure 8. Qualitative comparison of the Butterfly and Parrot images on 4X SR.

To further assess the robustness of the proposed method with regard to different noise levels,
the Zebra image from the BSD68 dataset [49] was also selected as a synthesized test image with
warping, blurring, down-sampling, and different noise levels of additive white Gaussian noise
(AWGN) added. For the color image sequence of the synthesized Zebra image, we first convert the
color input to YCbCr space, and then reconstructed the luminance component with the super-
resolution algorithm.

To further compare the performance of the proposed method, a simulation experiment with the
Zebra image was implemented under different noise levels. The quantitative reconstruction results
of the different methods with the color Zebra image are shown in Table 2, where the proposed MFSF-
SR methods achieves very pleasing PSNR and SSIM results at all the noise levels. Figure 9 shows the
quantitative performance comparison in terms of PSNR and SSIM for the Zebra images under
different noise levels. To be specific, in the experiment with a noise variance of 0.005, the proposed
method outperforms all the compared methods with a result of 29.22 dB, which is 0.907 dB and
1.325 dB better than LORIG and ERBPN, respectively. Furthermore, it can be observed that the
performance advantage is more obvious for the high noise levels, and the proposed method turns
out to be effectively adapted to different noise characteristics.

Table 2. Quantitative results of the simulation experiment with different noise levels for 4 X SR. The
bold portion indicates the best performance.

Noise variance Metric Bicubic LORIG ERBPN MESEF-SR
0,001 PSNR 19.698 22.538 22.518 23.206
SSIM 0.783 0.901 0.899 0.917
0,002 PSNR 19.681 22.151 22.036 22.703
SSIM 0.782 0.892 0.889 0.906
0,003 PSNR 19.666 21.825 21.673 22.341
SSIM 0.781 0.884 0.881 0.896
0.004 PSNR 19.651 21.549 21.379 22.002
SSIM 0.779 0.877 0.873 0.887
0.005 PSNR 19.638 21.313 21.095 21.822

SSIM 0.778 0.872 0.866 0.881
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For these simulation experiments, Figure 10 shows the HR reconstruction results for the different
methods at a scale factor of 4x. The green boxes show the zoomed regions to compare the performance
of different methods. As the partial enlargement shows, the LORIG method shows a better trade-off
between removing noise and preserving the edges, but it is not able to recover the lost fine details.
Undesired edge artifacts can be found in the results of the ERBPN method, which produces artificial
edges in the flat surfaces and fails to suppress the noise in the details of the image. In Figure 10, the
result of the proposed method shows a very good performance, with clear details and fewer ringing
effects. Specifically, the distorted content, e.g., the stripes on the zebra, can be finely restored in the
proposed two-step cascade model. Overall, the MFSE-SR cascade model performs favorably when
compared to the baseline methods in this comparison experiment. It demonstrated that cascading
LORIG and ERBPN to enhance each individual baseline methods can substantially improve the final
super-resolved image.

24 Changing curve of PSNR 0.94 Changing curve of SSIM
- —+— Bicubic ’ —+— Bicubic
[ —4—LORIG 0.92 —4&—LORIG A
23| —e—ERBPN ] —e— ERBPN
- —v— MFSF-SR 0.904 —v— MFSF-SR
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3
@
E = 0.86 -
172]
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20 L i 0.80 4
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Figure 9. Quantitative comparison for reconstruction results under different Gaussian noise levels.

Bicubic

19.698/0.783

LORIG ERBPN MFSF-SR
22.538/0.901 22.518/0.899 23.206/0.917

Figure 10. Qualitative comparison of the Zebra image under Gaussian noise with 0=0.001.

In conclusion, with the qualitative and quantitative analysis, most of the results show that the
cascade model creates more high-frequency information than the LORIG and ERBPN methods. The
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MEFSF-SR method works better in either noisy or noise-free case. It can reliably recover high-
frequency details with higher consistency and contrast loss, while preserving strong edges and
contours with few additional artifacts. The results were perceived as most informative and natural.

3.3. Experiments on Real Data

Besides the above experiments on synthetic test images, we also conduct experiments on real
images to demonstrate the effectiveness of the proposed MFSF-SR cascade model. The real image
grayscale sequences of Car and Eia are part of the Multi-Dimensional Signal Processing Research
Group (MDSP) benchmark dataset [50], which is the most widely used dataset to test the performance
of multi-frame super-resolution methods. In our experiment, 16 frames from these two image
sequences were used as the low-resolution input image. The central frame in the sequence was set as
the reference frame in this reconstruction.

Since no ground-truth HR image is available for the real sequence, we introduce no-reference
image evaluation metrics the natural image quality evaluator (NIQE) [51] and the perception-based
image quality evaluator (PIQE) [52] to further evaluate the quality of the real image SR results.
Smaller values of NIQE and PIQE indicate better SR results. Figure 11 provides a visual comparison
of the super-resolved results for the Car and Eia images with magnification factor 4. The red
rectangles show zoomed regions of the restored images to compare the qualitative performance of
the different methods. Experimental results on real image sequences show that our method yields a
boosted performance in both objective metrics and visual quality. The MFSF-SR method achieves
comparable or even better performance than the baseline methods in terms of quantitative
evaluations. For a real-world image, the down-sampling kernel is unknown and complicated, thus
performance of the non-blind SR methods are severely affected. Nevertheless, our method can
produce visual pleasant images and effectively suppress the errors caused by noise, registration, and
bad estimation of unknown PSF kernels.

PIQE/NIQE  29.801/67.148 24.798/47.695 23.829/58.106 19.723/33.402
Bicubic LORIG ERBPN MFSF-SR

Figure 11. Qualitative comparison of the Car and Eia images on 4X SR.

From the top line of Figure 11, we can observe that the experiment with the Car sequence can be
considered as a challenging example because the LR Car images are severely degraded by blur and
noise, with a complicated noise model. It was observed that the bicubic interpolation method is too
blurry to be recognized, while the LORIG and ERBPN algorithms can produce better visual effects
than the bicubic interpolation method. Compared with the bicubic interpolation method, other
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methods are more efficient in improving spatial resolution due to the use of LR frame sequences or
external prior knowledge in the reconstruction. With a LO-norm regularized constrain, LORIG
algorithm prefers a smooth result, but important edges and texture are also over-smoothed. As a
contrast, the result of ERBPN suffers from visible ghosting artifacts and is seriously affected by the
stair effects. As expected, the MFSF-SR algorithm has the best visual performance with clear edges
and less influence of artifacts, and can effectively remove noise in the smoothing area of the image.
Meanwhile, as shown in the bottom line of Figure 11, the proposed method gives rise to the most
visually pleasing results with both sharpness and naturalness. The LORIG algorithm has a good noise
suppression effect, but it over-smooths the image, resulting in the loss of edge information. In
contrast, ERBPN produce result with sharp edges, but it lacks the ability to recover clean HR image
because of the effect of artifacts. In summary, the proposed MFSF-SR cascade model is capable of
generating clean and sharp HR images at a large scale factor without any hallucination of fine details.
It consistently demonstrated the effectiveness and superiority in the thorough experiments
conducted in this study.

4. Discussion

4.1. Effectiveness of the Two Different Cascade Models

The validity and reliability of the proposed MFSF-SR method was proven by the experiments
described in Sections 3.2 and 3.3. To further investigate the effectiveness of the two different cascade
models, we tested the two cascade models of MFSF-SR and SFMF-SR. The two kinds of cascade
models combine the multi-frame based LORIG method with the single-frame based ERBPN method
in opposite order, compared with the two kinds of baseline methods with only one up-sampling step
at the 4x magnification factor. The SFMF-SR method reconstructed with ERBPN+LORIG. Each LR
image is independently enhanced using SFSR to obtain a higher-quality output. Then the multi-frame
based LORIG method is applied to the reconstructed images to obtain the final result for the reference
image with a 2x scaling factor.

Table 3 shows the quantitative performance comparison in terms of the mean of PSNR and SSIM
with the different cascade models on the Set5 [53] and Set14 [54]. On 4X enlargement, the cascade
model, MFSF-SR, gains 0.339 dB and 0.364 dB higher than SFMF-SR on the Set5 and Setl4,
respectively. It demonstrates that the cascade model by applying MFSR first and SFSR after
outperforms the cascade model in the opposite order. Meanwhile, both of the two cascade models
improve the quantitative performance compared to the two baseline methods of LORIG and ERBPN.
Figure 12 provides a visual comparison of simulation experiment results for the Cameraman image
with magnification factor 4. The images enclosed in red box show zoomed regions of the restored
images to compare the qualitative performance of the different algorithms. As one can see, the
cascade model of ERBPN+LORIG tends to generate unexpected artifacts and seriously affected by the
ringing effects. In fact, the MFSF-SR generates softer patterns containing more details and fewer
blurred contours which subjectively closer to the ground truth. It produces superior results compared
to the other cascade model in both objective and perceptual quality measurements. Besides, the
MESEF-SR approach also has significantly lower computational complexity than the SFMF-SR method
that first applies SFSR to all the input LR images.

Table 3. Average PSNR/SSIM results for 4X SR on datasets Set5, Set14. Best and second best results
are highlighted and underlined.

Datase Metri MFSR(LORI ~ SFSR(ERBP SFMEF- MFSE-
t c G) N) SR(ERBPN+LORIG) SR(LORIG+ERBPN)

PSNR  30.985 31.521 33.075 33.413

> e 0.865 0.878 0.910 0.917

Setl4  PSNR 27.703 28.263 29.294 29.658
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SSIM 0.757 0.774 0.821 0.828

Authors should discuss the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications should be
discussed in the broadest context possible. Future research directions may also be highlighted.

d o d-1gl WS
MEFSR SFSR SFMEF-5R MFSF-SR
PSNR/SSIM 24.004/0.823 24.787/0.832 24.987/0.841 25.642/0.866

Figure 12. Qualitative comparison of different methods for the Cameraman image on 4X SR.

4.2. Exploring the Robustness of Cascading Model

In this section, we further discuss the generalization performance and limitations of the
proposed cascade model. According to the above discussion, the MFSF-SR approach was selected as
the proposed cascade model due to its better performance than the SEMF-SR approach. Another
group of the state-of-the-art MFSR and SFSR methods were selected as the baseline methods, such as
the MFSR based on spatially weighted bilateral total variation regularization model (SWBTV) [19]
and the SFSR method with the inaccurate kernel progressively correction (IKC) [55]. These two
approaches were embedded into our MFSF-SR framework to verify the robustness of the cascade
model.

There are four groups cascade methods with the combination of the four methods in a cascade
manner of multiple first and single later. The simulation experiments include 8 sets of comparative
algorithms in addition to bicubic interpolation. The 8 sets of comparison algorithms are single-frame
and multi-frame based methods, as well as cascade methods: 1) the MFSR method of SWBTV [19]
(denoted by M1); 2) the MFSR method of LORIG(denoted by M2); 3) the SFSR method of IKC
[55](denoted by S1); 4) the SFSR method of ERBPN(denoted by S2); 5) the MFSF-SR method of
SWBTV+IKC (denoted by M1S1); 6) the MFSF-SR method of SWBTV+ERBPN (denoted by M152); 7)
the MFSF-SR method of LORIG+IKC (denoted by M2S51); 8) the MFSF-SR method of LORIG+ERBPN
(denoted by M252);

Table 4 shows the quantitative performance comparison in terms of the mean of PSNR and SSIM
with the different methods on the three public benchmark datasets: Set5 [53], Set14 [54] and Urban100
[56]. The SET5, SET14 datasets consist of natural scenes; the URBAN100 set contains challenging
urban scenes images with details in different frequency bands. We can draw some conclusion from
the quantitative comparison. Firstly, all four groups of cascade methods are superior to their
constituent single-frame and multi-frame super resolution methods by a large margin. Therefore, it
can be concluded that the proposed cascade model performs successfully and is robust to different
SFSR and MFSR methods. Secondly, with the significant progress of image super resolution achieved
by deep learning, the deep learning-based SFSR approaches have greatly improved the SR
performance on synthetic LR images. Finally, as the initial input images of the learning based SFSR
method, the results of the model-based MFSR are complex and varied. Nevertheless, IKC can handle
complex degraded images through iterative correction of blur kernels, so it is more robust in the
cascade model.

d0i:10.20944/preprints202408.0253.v2
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Table 4. Average PSNR/SSIM results for 4 X SR on datasets Set5, Set14, and Urban100. Best and
second best results are highlighted and underlined. M1, M2, S1 and S2 represent the SR methods of
LORIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S52 represent the
cascade methods of SWBTV+IKC, SWBTV+ERBPN, LORIG+IKC and LORIG+ERBPN, respectively.
Dataset Metri  Bicubi MEFSR SFSR MESEF-SR

C C M1 M2 S1 52 M1S1 M1S2 M2S1 M2S2

Set5 PSNR 28423 30.985 31.962 31.520 32.653 33.125 33.007 33.601 33.413

SSIM  0.811 0.865 0.891 0.878 0.899 0.912 0.909 0921 0917

Set14 PSNR 26.101 27.703 28.354 28.263 29.037 29.349 29.258 29.813 29.658

SSIM 0704 0757 0779 0774 0.791 0.824 0.818 0.837 0.828
Urbanl0 PSNR 23.152 24.614 25.683 25.334 26.086 26.858 26.672 27.163 27.072
0 SSIM  0.659 0729 0.773 0759 0.803 0.815 0.812 0.830 0.827

In Figure 13 and Figure 14, we show visual comparisons on Urban100 with a scale factor of 4x
for the different comparative methods. Compare with the baseline methods, our cascade model more
accurately reconstructs parallel straight lines, grid patterns such as windows. We obtain several
observations from Figure 13. For image ‘img 074" in Urbanl00, we can find that most baseline
methods fail to recover edges and also suffer from blurring artifacts. Some of them even distort the
horizontal lines and blur out the background. The results generated from IKC methods still contain
noticeable artifacts caused by spatial aliasing. However, with an initialization reconstruction step by
the model-based method of SWBTV or LORIG, the cascade method SWBTV+IKC (M1S1) and
LORIG+IKC (M2S1) can effectively suppress such artifacts through progressive reconstruction. It
significantly improves the performance of the resolved image with proper straight lines.

HR M1 M2 S1 52

PSNR/SSIM  22.727/0.621  23.073/0.642 22.837/0.625 23.141/0.652

Ground truth HR Bicubic M1S1 M1S2 M2S1 M2S2
Urban100: img_074 22.161/0.562 23.992/0.723 23.417/0.675 24.583/0.761 24.129/0.736

Figure 13. Visual comparison for 4 X SR on the Urban100. M1, M2, S1 and S2 represent the SR
methods of LORIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S2
represent the cascade methods of SWBTV+IKC, SWBTV+ERBPN, LORIG+HIKC and LORIG+ERBPN,
respectively.

Similarly, in the second example, e.g. ‘img_099" in Figure 14, the four baseline methods are
unable to recover the rectangular shapes and blur out the boundaries representing the outlines of the
windows. In contrast, the MFSF-SR cascade models show great abilities in producing accurate
information from the LR image and removing the blur artifacts. Our method recovers the structures
correctly with less distortion and more faithful to the ground-truth image. It was clearly
demonstrated that the proposed cascade model can obtain a better tradeoff between recovering lost
details and suppressing ringing artifacts. The above-mentioned phenomena prove the advantages
and robustness of the proposed cascade model on super resolution reconstruction.
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HR M1 M2 S1 52

PSNR/SSI  23.192/0.6 23.885/0.6 23.617/0.6 23.958/0.6
95

Ground truth HR Bicubic M1S1 M2S1 M2S2
Urban100: img_099 22.433/0.5 24.367/0.7 24.256/0.7 24.969/0.7 24.681/0.7
93 20 03 69 47

Figure 14. Visual comparison for 4 X SR on the Urban100. M1, M2, S1 and S2 represent the SR
methods of LORIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S2
represent the cascade methods of SWBTV+IKC, SWBTV+ERBPN, LORIG+IKC and LORIG+ERBPN,
respectively.

5. Conclusions

In this paper, we proposed a novel multi-frame super resolution reconstruction concatenating
the model-based MFSR method with the deep learning-based SFSR method. Our approach consists
of a LO-norm constrained reconstruction scheme and an enhanced residual back-projection network
in a concatenated fashion for image reconstruction. The proposed method first builds a MFSR method
to obtain an initial result and apply SFSR method directly on the initial result. It takes both the sub-
pixel shift information and external learned feature information into consideration, integrating the
flexibility of the model-based method and the feature learning capacity of the deep learning-based
method.

Extensive experiments on benchmark and real-world images illustrates that the proposed
cascade model can significantly improve the performance of the super-resolution task. Superior
results are produces compared to the other baseline methods in both qualitatively and quantitatively
measurements. In addition, we have demonstrated that both the two kind of cascade methods
perform better than the baseline methods and the proposed cascade model can be robustly applied
to different MFSR and SFSR methods. It means that potential future advances in MFSR and SFSR can
be easily exploited to further improve the reconstructed image. In our future work, we will further
study the coupling of the model-based MFSR and the deep learning-based SFSR methods in order to
bring out their respective advantages.
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