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Abstract: The objective of image super-resolution is to reconstruct a high-resolution (HR) image 
with the prior knowledge from one or several low-resolution (LR) images. However, in the real 
world, due to the limited complementary information, the performance of both single-frame and 
multi-frame super-resolution reconstruction degrades rapidly as the magnification increases. In this 
paper, we propose a novel two-step image super resolution method concatenating multi-frame 
super-resolution (MFSR) with single-frame super-resolution (SFSR), to progressively upsample 
images to the desired resolution. The proposed method consisting of an L0-norm constrained 
reconstruction scheme and an enhanced residual back-projection network, integrating the flexibility 
of the variational model-based method and the feature learning capacity of the deep learning-based 
method. To verify the effectiveness of the proposed algorithm, extensive experiments with both 
simulated and real world sequences were implemented. The experimental results show that the 
proposed method yields superior performance in both objective and perceptual quality 
measurements, compared to the baseline super-resolution algorithms in the cascade model. In 
addition, the experiment indicates that this cascade model can be robustly applied to different SFSR 
and MFSR methods. 

Keywords: super-resolution; deep learning; cascade model; resolution enhancement; regularized 
framework 

 

1. Introduction 

High-resolution (HR) images with high perceptual quality are often required in applications 
such as video surveillance [1,2], face recognition [3], medical diagnosis [4], and remote sensing [5–7]. 
However, due to the different capabilities of sensors, the quality of captured images can vary greatly 
and fail to meet the requirements of subsequent applications. Super-resolution technology is an 
effective way to overcome the inherent resolution limitation of the current sensor imaging systems 
[8]. The object of super-resolution technique is to reconstruct a HR image from single or multiple LR 
observation frames captured at different perspectives of the same scene. In general, the observed LR 
image can be modeled as a degraded representation of the HR image, which are degraded by warp, 
blur, noise and decimation [5]. According to the number of input LR images, the conventional super-
resolution approaches can be roughly categorized into single-frame super-resolution (SFSR) [9–15] 
and multi-frame super-resolution (MFSR) [16–20].  

Multi-frame super-resolution reconstruction aims to merge the complementary information 
from different images to generate a higher spatial resolution image. The problem was first formulated 
by Tsai and Huang [16] in the frequency domain to improve the spatial resolution of Landsat 
Thematic Mapper (TM) images. Over the past few decades, the research work has been presented 
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and studied in the spatial domain to improve the multi-frame super-resolution techniques [17,18]. 
The SR problem is considered as an ill-posed inverse problem, as for each LR image, the space of its 
plausible corresponding HR images is huge and scales up quadratically with the magnification factor 
[21]. Owing to its effectiveness and flexibility, most research have focused on regularized frameworks 
which impose some constraints on the solution space [22]. The maximum a posteriori estimation 
(MAP) method transforms the super-resolution reconstruction into an energy function optimization 
problem. Generally, the energy function consists of a data fidelity term which measures the model 
error between the degraded observations and the ideal image, and a regularization term that imposes 
some prior knowledge to constrain the model to achieve a robust solution. However, the priors of 
these methods are hand-crafted based on limited observations of specific image statistics, which may 
restore unsatisfactory results, as the real constraint often deviates from the predefined priors. On the 
one hand, the ill-posed nature is particularly evident for large magnification factors which increases 
the problem of sub-pixel alignment and leads to the absence of texture details in the reconstructed 
images. On the other hand, it is difficult to obtain sufficient LR images with non-redundant 
information to recover the aliasing high frequencies components. Therefore, the performance of 
MFSR algorithms decreases rapidly with increasing magnification. 

The mainstream algorithms of SFSR involve reconstruction-based [9], example-based [23], 
sparse representation-based [24], regression-based [11], and deep learning-based approaches [13–
15,25], etc. With the rapid development of deep learning, the convolutional neural network (CNN) 
dominated the research of SR due to their promising performance in terms of effectiveness and 
efficiency [26]. This pioneering work of SRCNN [12] applied a three-layer network to learn non-linear 
mapping relationships between the HR patches and the corresponding LR patches. Since then, 
considering the excellent learning capacity of convolutional neural network (CNN), the deep 
learning-based methods have has been developed in various ways by using new architectures or 
proper loss functions. The improved network [13] exploited residual learning (VDSR) [27] and 
recursive structures layers (DRCN) [28] to achieve an outstanding performance for SFSR. The 
residual dense network (RDN) [14] innovatively combined residual learning and dense connection 
to fully utilize both the shallow features and deep features together with over 100 layers. Recently, 
the network of channel attention (RCAN) [29] and second-order channel attention (SAN) [15] are 
introduced to exploit feature correlation for superiority performance. These end-to-end networks 
compute a series of feature maps from the LR image, culminating with one or more up-sampling 
layers to construct the HR image. Therefore, it’s convenient to automatically learn good features from 
massive data without much expertise and manual feature learning. Nevertheless, many deep 
learning approaches hypothesize that the training and test dataset are drawn from the same feature 
space with the similar distribution. Hence, the SR performance is heavily bound to the consistency 
between testing data and training data [8]. Meanwhile, the learning based methods directly generate 
high resolution details according to the learned mapping functions and low resolution input, and 
some unexpected artifacts may be produced in the reconstructed results, especially for large 
magnification factors. Furthermore, the difficulty of estimating missing high-frequency details 
increases with the scale factor due to the increment of the ambiguities between LR and HR. 

Briefly speaking, the SR performance at a large scale factor remains a challenging problem for 
both the MFSR and SFSR approaches. On the one hand, the model-based MFSR algorithms are 
difficult to recover the missing high-frequency details with the limited complementary information. 
On the other hand, at large upsampling scales, since insufficient information is available to recover 
such high frequencies components, the deep learning-based SFSR methods may “hallucinate” the 
fine detail structure. Particularly, the hallucination can be very problematic in some critical 
applications. To deal with this challenge, some researchers [30,31] have proposed to exploit the 
complementary advantages of external and internal information to improve SR performance and 
perceptual visual quality. However, most deep learning based video and multi-frame super 
resolution methods cannot fully exploit the temporal and spatial correlations among multiple images. 
Their fusion modules does not adapt well to image sequences with weak temporal correlations [32]. 
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These methods cannot satisfy our everyday requirements, because of the limited information 
involved in the reconstruction model.  

To our knowledge, the MFSR and SFSR methods extract missing details from different sources. 
SFSR extracts various feature maps representing the details of a target image. MFSR provides 
multiple sets of feature maps from other images. The model-based MFSR methods and the deep 
learning-based SFSR procedures are complementary, to a large extent [33]. Combining the feature 
learning capacity of SFSR with the information fusion brought by MFSR, a few pieces of research 
proposed a combination of single-frame and multi-frame SR such as [34,35]. In [34] the input LR 
images are first magnified and recovered by a conventional MFSR method with a 4× scaling factor, 
then a SFSR network is applied to the previous recovered result for artifacts removal without 
magnification. Method of [35] done the process in the inverse order of [34] where the input LR images 
separately through the SFSR network and then a conventional MFSR is applied on the resulting 
image. In contrast, the SFSR network among the previous framework is only used as a filter to fine-
tune the output of the MFSR method, while the SFSR network is to initialize the input of the MFSR 
method in the latter research. Compared with traditional methods, the cascade model can 
simultaneously capitalize on both inter-frame aliasing information and external learned feature 
information, which notably improves the utilization of multiple images and external example data. 

In this paper, we propose a novel two-step super-resolution reconstruction method 
concatenating the L0-norm constrained reconstruction with an enhanced residual back-projection 
network. Such a cascade model property induces considerable advantages for image SR, which 
integrates the flexibility of model-based method and the feature learning capacity of learning-based 
method. Specifically, the L0-norm constrained reconstruction method takes multiple images as input 
to obtain an initial high-resolution image, and then an enhanced residual back-projection network is 
further applied to the initial image for recovering a more accurate result. The proposed cascade model 
leverages the information learned from multiple low-resolution inputs and neural networks, 
outperforming the existing baseline SR methods in the cascade model in both objective and 
perceptual quality measurements.   

The rest of this paper is organized as follows. Section 2 introduces the variational model-based 
MFSR algorithm and the deep learning-based SFSR algorithm that are concatenated in the cascade 
model. We present the detailed experimental results for this multi/single-frame super-resolution 
cascade model in Section 3, followed with a discussion of the strategy for cascade model in Section 4. 
Finally, our conclusions are drawn in Section 5. 

2. The Cascade Model for Image Super-Resolution 

Most methods reconstruct HR images in one upsampling step, which increases the difficulty of 
reconstructing at large scaling factors. A Laplacian pyramid framework (LapSRN) [36] is proposed 
to progressively reconstructs the multiple images with different scales in one feed-forward. However, 
this network relies only on the limited features available in the LR space with a stack of single up-
sampling networks. Because of the insufficient information available to restore such high frequencies, 
it is unrealistic to generate sharp HR images with fine detail at large scale factors.  

The cascade model of MFSR and SFSR is proposed to obtain high performance results for image 
super-resolution at large scaling factors. There are four structures for performing SR using MFSR, 
SFSR, or combinations of them when the up-scaling factor is a divisible integer such as 4 as shown in 
Figure 1. To the best of our knowledge, the question of how to best combine SFSR and MFSR has not 
been answered theoretically. Since the actual degradation is more complex and varying, the learning 
based SFSR cannot fully simulate the image degradation process, which may cause incorrect results 
in actual reconstruction. In order to reduce the error transmission, we suggest using the multi-frame 
first and then single-frame cascade method for super-resolution (MFSF-SR), while the opposite 
method by applying SFSR first and MFSR after (SFMF-SR) will be analyzed in detail in the subsequent 
discussion section. 
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Figure 1. Various structures of the super-resolution cascade model. 

The proposed cascade method consists of two main parts: the variational model-based MFSR 
and the deep learning-based SFSR. We aim to concatenate the MFSR method with the SFSR method 
to progressively up-sample images to the desired resolution. Regarding the choice of the MFSR and 
SFSR methods, we employ the MFSR approach via L0-norm regularized intensity and gradient 
combined prior (L0RIG) and the SFSR approach using enhanced residual back-projection networks 
(ERBPN), respectively, which are introduced in the following subsection. 

2.1. Multi-Frame Super-Resolution via the L0-Norm Regularized Intensity and Gradient Combined Prior 

In image super-resolution reconstruction, as a typical inverse problem, SR is highly coupled with 
the degradation model. Generally speaking, the HR image is inevitably corrupted by many factors in 
the acquisition process, including warping, blurring, subsampling operators, and additive noise [5]. 
It allows us to reconstruct an output image above the Nyquist Limit of the original imaging device. 
Super-resolution turns out to be an inherently ill-posed inverse problem because the information 
contained in the observed LR images is not sufficient to solve the HR image. Therefore, it is necessary 
to impose a specific regularization in order to obtain a stable solution. The model-based methods 
incorporate prior constraints to estimate the desired HR image by minimizing an objective function 
of the posterior probability.  

We denote the ideal HR image required to be reconstructed as s sM Nz R ×∈ , the observed LR 

images as { }
2

1

s M N
k k

g R ×
=

∈ , the down-sampling matrix as 
2MN MNsD R ×∈  ,the motion matrix as 

{ }
2 2 2

1

s MNs MNs
k k

M R ×
=

∈ , and 
2 2MNs MNsB R ×∈ as the blur matrix including the sensor blur, optical blur, 

and atmospheric turbulence, where we assume that the blur of multiple images obtained under the 
same scene is consistent. The additive noise of the image observation model is usually assumed to be 
white Gaussian noise. Thus, the size of the LR image kg  is M N× , and the scaling factor is s , the 

size of the HR image is s sM N× . By changing the number of LR images, they can be applied to the 
MFSR or SFSR tasks. The MAP-based solution model for the super-resolution problem can be 
represented by a generalized minimization cost function as follow:  
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{ }2

2z
ˆ= arg min ( )

K

k k
k

z g DBM z U zλ − +             (1) 

The first term of the cost function is the data fidelity term, which measures the reconstruction 
error to ensure that pixels in the reconstructed HR image are close to real values; the second term 

( )U z  is the regularization term associated with the general prior information about the desirable 

HR image to obtain a robust solution; and λ  is the regularization parameter, which provides a 
tradeoff between the data fidelity term and the regularization term.  

In the image processing field, Gaussian-type noise is the most commonly assumed because the 
noise generated in image acquisition usually satisfies a Gaussian distribution [22]. We assume the 
noise to be additive white Gaussian noise, so the fidelity term can be characterized by the L2-norm. 
For the regularization term, Laplacian [37], total variation (TV) [20]and Huber–Markov random field 
(HMRF) [38] regularization are first considered, due to their simplicity and efficiency. Based on the 
advantages of the TV regularization, a combined image prior based on intensity and gradient is 
proposed for natural images [39], which describes the two-tone distribution characteristics of the 
gradient statistics. This expression is written as 

0 0( )U z z z= + ∇
                         (2) 

where ∇  is the gradient operator. As the intensity prior is based on independent pixels instead of 
the disparities of neighboring pixels, it introduces significant noise and artifacts in the image 
restoration. In contrast, the gradient prior is based on the disparities of neighboring pixels, and thus 
enforces smooth results with fewer artifacts. Prior knowledge for constraining the intensity and 
gradient can sufficiently exploit the statistical properties of natural images. To effectively preserve 
the detailed texture information and enhance the reconstructed image quality, the intensity and 
gradient combined prior is employed in the super-resolution reconstruction [40]. We propose an 
MFSR algorithm via an L0-norm regularized intensity and gradient combined prior (L0RIG) to 
integrate into the cascade model.  

Typically, geometric registrations and the blur can be estimated from the input data, and used 
with the generative model to reconstruct the super-resolution image. The super-resolution becomes 
very limited without a good estimation of the blur and motion between the LR sequences. In this 
work, we compute the warping matrix M  and blur matrix B  with the optical flow approach [41] 
and the blind blur kernel estimation method [39], respectively. In order to simplify Equation (1), 

kDBM  can be regarded as a system matrix kW . By substituting Equation (2) into Equation (1), the 
following minimization function for solving the MFSR model can be obtained 

{ }2

2 0 0z
ˆ= arg min ( )

K

k k
k

z g W z z zλ − + + ∇
           (3) 

Due to the L0 regularization term in Equation (3), it is difficult to solve the super-resolution 
model since it is a nonconvex function. As known, variable splitting and alternate iterative 
optimization algorithms are typically used for optimizing the solutions of the variational model. 
Based on the variable splitting L0 minimization approach, we adopt the alternating direction method 
of multipliers (ADMM) algorithm [42] to solve the model. We introduce the auxiliary variables u
and v , representing z  and z∇ , respectively, to move a few terms out of the non-differentiable L0 
norm expression. The objective function can be rewritten as 

{ }2

2 0 0z
ˆ= arg min ( ) . . ,

K

k k
k

z g W z u v s t u z v zλ − + + = = ∇
    (4) 

By transforming Equation (4) to generate an unconstrained problem with the augmented 
Lagrangian algorithm, it can be rewritten as 
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2 2 2

2 2 2 0 0z
ˆ= arg min ( )

2 2

K

k k
k

z g W z z u z v u vβ μ λ  − + − + ∇ − + + 
   (5) 

where β  and μ  are penalty parameters, and are set to be 0.001 initially, that times 0.9 after each 
iteration to accelerate the convergence. Equation (5) can be efficiently solved through alternately 
minimizing z , u  and v independently, by fixing the other variables. The flowchart of the MFSR via 
L0-norm regularized intensity and gradient combined prior (L0RIG) algorithm is illustrated in Figure 
2. 

 
Figure 2. Flowchart of L0RIG. 

2.2. Single-Frame Super-Resolution Using Enhanced Residual Back-Projection Network 

Inspired by the idea of iterative back-projection framework, Haris et al. [43] proposed deep back-
projection network (DBPN) to iteratively use error feedbacks from the multiple up- and down-scaling 
steps, which achieves the state-of-the-art SR performance with large scale factors. Since the iterative 
up-down sampling framework has the advantage of capturing the deep relationships between LR 
and corresponding HR images, it has become a promising framework in the field of SFSR [44]. Figure 
3 illustrates the schematic pipeline of the proposed enhanced residual back-projection network 
(ERBPN), which is designed on the basic architecture of the original DBPN [43]. The architecture of 
ERBPN consists of three parts, namely, initial feature extract module, projection unit, and SR 
reconstruction module, as described below. Some modifications have been made for the projection 
unit : 1) replace the down-projection unit with the down-sampling unit; 2) replace the concatenation 
operation with a sequential feature fusion (SFF) operation. In the following, the major improvements 
are further explained. 

 

Figure 3. Architecture of ERBPN. 

The first part extracts the shallow feature 0L from the input LR image LRI  and can be 

formulated by 0 ( )init LRL f I= , where initf  denotes a convolution operation with

(3, , )l fConv n n  and ln , fn  are the number of input LR image channel and the feature maps, 
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respectively. Then 1×1 convolution layer is used as feature pooling and dimension reduction before 
entering the projection unit. 

Then, the initial feature extraction is followed by a sequence of projection units, alternating 
between construction of the LR and HR feature maps tL , tH . The projection units in our proposed 
framework include the up-projection unit and the down-sampling unit. Iterative error feedback 
mechanism is proposed by iteratively estimating and applying a correction to the current estimation 
of the LR and HR feature maps. Here, the projection errors are used to characterize or constraint the 
features in early layers. The up-projection unit is utilized to map the LR feature maps to the HR 
feature maps, which is shown in Figure 4(a). However, it’s intuitive that obtaining LR feature maps 
from HR feature maps is simple and does not require projection unit based on iterative error feedback 
mechanism. Therefore, we simplify the back-projection network with a down-sampling unit for faster 
computation, which has a very simple structure with a convolution layer as is shown in Figure 4(b). 
Note that each input feature map is concatenated and fused through the sequential feature fusion 
(SFF) operation before entering the projection unit. 

 
(a) (b) 

Figure 4. Architecture of the dense up-projection unit (a) and down-sampling unit (b). 

The up-projection and down-sampling unit are densely connected to alleviate the vanishing 
gradient problem, produce improved feature, and encourage feature reuse [14]. The input for each 
unit is the concatenation of the outputs from all previous units to generate the feature maps 
effectively. Generally speaking, the feature maps generated by different projection units have 
different types of HR and LR components with different impacts on the quality of the results. 
Therefore, it is necessary to discriminate these feature maps with a feature fusion module [45]. In our 
framework, the sequential feature fusion operation (SFF) is employed to deal with the feature maps 
discriminatorily, integrating these feature maps in a sequential manner. Figure 5 shows the 

illustration of the SFF. Suppose that tm  represents the tht input LR/HR feature map, 
ty  denotes 

the output of the tht convolutional layer. Next, we obtain the following equation: 

1([ ; ])t t ty f m y −=                        (6) 

where 0= 1,2, , 0t n, y = . n  denotes the number of projection units, [ ; ]⋅ ⋅ represents the 

concatenation operation and f  denotes a convolution operation with 3×3 convolutional layer. It 
is worth pointing out that the SFF has discriminative ability because the feature maps generated by 
different projection units are processed at different depths of the network. Different from other 
networks, our reconstruction directly exploits different types of LR-to-HR features without 
propagating through up- projection layers.  

 
Figure 5. Architecture of the SFF. 
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Finally, we employ a global residual back-projection block structure. Residual learning helps the 
network converge faster and makes it easier for the network to generate only the difference between 
the HR and interpolated LR images [29], which can address the performance degradation problem 
caused by the details loss after so many layers in deep networks. In our ERBPN framework, the LR 
image is taken as the input to reduce the computation time. At the last stage, all HR feature maps 
from the up-projection step are deeply concatenated and fused with the SFF, then added to the 
interpolated LR image to generate the final super-solved image.  

The last convolution layer is used for image reconstruction with filter size of 3×3. The network 
takes the reconstructed results, denoted as z′ , as the output. Loss functions help us estimate the 
difference between the recovered SR images and the corresponding ground-truth HR images. MSE 
loss between the ground-truth HR image and the reconstructed HR image is used as the objective 
function, which can be written as follows: 

 2
2

1

1 N

i i
i

Loss z z
N =

′= −                            (7) 

where N is the number of the training images. 

2.3. Summary of the Proposed Cascade Model for Super-Resolution 

In our work, the two-step super-resolution reconstruction method cascades the model-based 
MFSR and the deep learning based SFSR method abovementioned. The MFSR with L0-norm 
regularized intensity and gradient combination prior (L0RIG) and the SFSR via enhanced residual 
back projection network (ERBPN) are employed to reconstruct a more accurate result. Specifically, 
first, we take 16 low-resolution images as the input of the L0RIG method to reconstruct one 
intermediate super-resolved image denoted as lz , whose dimensions are 2× larger than the input LR 
images. Then, the intermediate super-resolved image lz  is fed into the ERBPN framework to obtain 
a high-resolution result l+z  with better quality. The high-resolution result l+z  are 2× larger than 

lz , hence 4× larger than the input LR images. Even though we exemplify our super resolution 
reconstruction method using 4× scaling factor, it can be directly extended to other SR scaling factors. 
The schematic diagram for the proposed cascade method is illustrated in Figure 6.   

 

Figure 6. Flowchart of the super-resolution cascade model. 
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3. Experiments 

To validly confirm the effectiveness of the proposed cascade model of MFSF-SR, this section 
presents the experimental results on both synthesized and real images. We combine the multi-frame 
based L0RIG method with the single-frame based ERBPN method, to up sampling images 
progressively at the 4× scale factor. The proposed cascade method applies ERBPN directly on the 
output of L0RIG in a sequential manner, where the L0RIG method reconstructs the LR images first, 
and then the resulting image is independently enhanced using the ERBPN method to obtain a higher-
quality output. At the same time, the two baseline super-resolution reconstruct methods of L0RIG 
and ERBPN are also implemented to compare with the cascade method. In the simulation 
experiments, the effect of the proposed method under different noise levels is further investigated to 
verify the robustness to noise. The detailed steps are presented in the following sections. 

3.1. Data and Training Details 

The five grayscale HR images shown in Figure 7 were selected as the test images in the 
simulation experiments. For each image from these test sets, we generated a set of N = 16 images with 
different subpixel shifts applied before further degradation. Synthetic sequences of 16 LR images 
were generated by applying isotropic Gaussian blur to the sequential subpixel shifts HR image, then 
down-sampling the row and column of the image by a factor of 4. 

Cameraman House Baby Butterfly Parrot 

Figure 7. The five test images for image super-resolution. 

 In the reconstruction stage of the L0RIG, the central frame of LR sequence is chosen as our 
reference frame and the initial HR image is obtained by bicubic interpolation method. The 
regularization parameter λ is determined empirically based on numerous experiments to produce 
the best performance. Since minimizing the objective function by preconditioned conjugate gradient 
method usually converges within 30 iterations, the maximum iteration number is set to TS = 30. 

 In the ERBPN, the filter size in the up-projection unit varies with respect to the scaling factor. 
For the 2× enlargement, we used a 6 × 6 convolutional layer with two striding and two padding. The 
4× enlargement then used an 8 × 8 convolutional layer with four striding and two padding. In the 
training phase, we augmented the training data from the DIV2K dataset [46] by randomly employing 
90°, 180°, and 270° rotation and horizontal and vertical flipping [44]. In each mini-batch, 128 degraded 
LR images with a patch size of 64 × 64 were provided as inputs for the model, and the corresponding 
HR image served as the ground truth for calculating the loss. The models were optimized using the 
ADAM optimizer [47] with β1 = 0.9, β2 = 0.999, and ε = 10-8. The initial learning rate was set to 10-4 
and then decreased by half every 100 epochs. A total of 1000 epochs were used for training the models 
since more epochs did not bring further improvements. All experiments were implemented using 
Caffe framework and the Matlab R2022a on an Nvidia RTX GPU. 

Image enhancement or visual quality improvement can be subjective because the perception of 
better image quality can vary from person to person. For this reason, it is necessary to establish 
quantitative measures for the comparison of image enhancement algorithms. To assess the image 
quality of the super-resolution reconstructed results, two classical evaluation criteria—the peak 
signal-to-noise ratio (PSNR/dB) and the structural similarity index measure (SSIM)—were chosen to 
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measure the performance of the different super-resolution methods [48]. The higher the quantitative 
measure, the better the quality of the reconstructed image. 

3.2. Experiments on Synthetic Data 

L0RIG and ERBPN are the baseline methods of the proposed MFSF-SR, which only reconstruct 
by upsampling one step instead of step-by-step reconstruction under an upscaling factor of 4, for 
comparison with the cascade model. For a fair comparison, we run SFSR method for all 16 simulated 
LR images, and compute the mean metric from the reconstruction outcomes—this way, the method 
is fed with the same data as those for MFSR. Besides, a bicubic interpolation of the LR reference frame 
is also constructed for comparison.  

Table 1 shows the quantitative performance comparison in terms of PSNR and SSIM for the five 
simulated images presented in Figure 7 with the different methods. For the sake of comparison, the 
two types of L0RIG and ERBPN algorithm directly reconstructed on 4× enlargement. The output of 
the cascade model is a super-resolved central frame with four times the size of the original LR images. 

Table 1. Quantitative results (PSNR(dB) and SSIM) of the simulation experiments for 4× SR. The 
bold portion indicates the best performance. 

Data Metric Bicubic L0RIG ERBPN MFSF-SR 

Cameraman 
PSNR 21.120 24.004 24.787 25.642 
SSIM 0.726 0.823 0.832 0.866 

House 
PSNR 24.228 29.572 30.549 31.391 
SSIM 0.772 0.868 0.881 0.896 

Baby 
PSNR 28.685 31.653 32.352 32.744 
SSIM 0.798 0.898 0.915 0.922 

Butterfly 
PSNR 19.348 23.073 24.006 24.863 
SSIM 0.701 0.866 0.874 0.884 

Parrot 
PSNR 22.724 26.74 27.905 28.636 
SSIM 0.854 0.916 0.935 0.941 

For the sake of comparison, we analyze the simulated experimental results from both subjective 
and objective perspectives. Quantitatively, as displayed in Table 1, the proposed cascade model 
yields the best scores in the evaluation metrics among all the compared methods. In the experiment 
with the Butterfly image, the PSNR values are 23.073 dB for L0RIG, 24.006 dB for ERBPN, 24.863 dB 
for MFSF-SR. These quantitative results confirm the effectiveness of the MFSF-SR cascade model. 
From a subjective perspective, the red rectangles show zoomed regions of the restored images, to 
compare the qualitative performance of the different methods. L0RIG shows the preferable 
performance, but some edge is over-smoothed. ERBPN can produce good contrast through the up- 
and down projection unit, but there are some unnatural artifacts around the slight edge. The result 
of the proposed MFSF-SR method contains more details and fewer blurred contours than L0RIG and 
ERBPN. 

Furthermore, in the experiment with the Parrot image, the PSNR value for the proposed MFSF-
SR is 28.636 dB, which is 1.896 dB and 0.731 dB better than L0RIG and ERBPN, respectively. As 
displayed in Figure 8, images reconstructed with the MFSF-SR cascade model are able to preserve 
the HR components which contain more details, with rare additional artifacts. As a simple 
comparison, in the bottom line of Figure 8, the enlarged image in the result of L0RIG shows the 
misinterpreted area of the diagonal stripe due to the ringing artifact effect. It shows that the MFSF-
SR can preserve the low-frequency content, and reliably restore the high-frequency details with the 
combination of the inter-frame information and external learning prior. From both the qualitative 
and quantitative analyses, most of the results show that the MFSF-SR with a two-step reconstruction 
creates more high-frequency information than the baseline methods at a large magnification factors. 
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PSNR/SSIM 19.348/0.701 23.073/0.866 24.006/0.874 24.863/0.884 

     
PSNR/SSIM 22.724/0.854 26.740/0.916 27.905/0.935 28.636/0.941 

HR Bicubic L0RIG ERBPN MFSF-SR 

Figure 8. Qualitative comparison of the Butterfly and Parrot images on 4× SR. 

To further assess the robustness of the proposed method with regard to different noise levels, 
the Zebra image from the BSD68 dataset [49] was also selected as a synthesized test image with 
warping, blurring, down-sampling, and different noise levels of additive white Gaussian noise 
(AWGN) added. For the color image sequence of the synthesized Zebra image, we first convert the 
color input to YCbCr space, and then reconstructed the luminance component with the super-
resolution algorithm. 

To further compare the performance of the proposed method, a simulation experiment with the 
Zebra image was implemented under different noise levels. The quantitative reconstruction results 
of the different methods with the color Zebra image are shown in Table 2, where the proposed MFSF-
SR methods achieves very pleasing PSNR and SSIM results at all the noise levels. Figure 9 shows the 
quantitative performance comparison in terms of PSNR and SSIM for the Zebra images under 
different noise levels. To be specific, in the experiment with a noise variance of 0.005, the proposed 
method outperforms all the compared methods with a result of 29.22 dB, which is 0.907 dB and 
1.325 dB better than L0RIG and ERBPN, respectively. Furthermore, it can be observed that the 
performance advantage is more obvious for the high noise levels, and the proposed method turns 
out to be effectively adapted to different noise characteristics.  

Table 2. Quantitative results of the simulation experiment with different noise levels for 4× SR. The 
bold portion indicates the best performance. 

Noise variance Metric Bicubic L0RIG ERBPN MFSF-SR 

0.001 
PSNR 19.698 22.538 22.518 23.206 
SSIM 0.783 0.901 0.899 0.917 

0.002 
PSNR 19.681 22.151 22.036 22.703 
SSIM 0.782 0.892 0.889 0.906 

0.003 
PSNR 19.666 21.825 21.673 22.341 
SSIM 0.781 0.884 0.881 0.896 

0.004 
PSNR 19.651 21.549 21.379 22.002 
SSIM 0.779 0.877 0.873 0.887 

0.005 
PSNR 19.638 21.313 21.095 21.822 
SSIM 0.778 0.872 0.866 0.881 
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For these simulation experiments, Figure 10 shows the HR reconstruction results for the different 
methods at a scale factor of 4×. The green boxes show the zoomed regions to compare the performance 
of different methods. As the partial enlargement shows, the L0RIG method shows a better trade-off 
between removing noise and preserving the edges, but it is not able to recover the lost fine details. 
Undesired edge artifacts can be found in the results of the ERBPN method, which produces artificial 
edges in the flat surfaces and fails to suppress the noise in the details of the image. In Figure 10, the 
result of the proposed method shows a very good performance, with clear details and fewer ringing 
effects. Specifically, the distorted content, e.g., the stripes on the zebra, can be finely restored in the 
proposed two-step cascade model. Overall, the MFSF-SR cascade model performs favorably when 
compared to the baseline methods in this comparison experiment. It demonstrated that cascading 
L0RIG and ERBPN to enhance each individual baseline methods can substantially improve the final 
super-resolved image. 

 
Figure 9. Quantitative comparison for reconstruction results under different Gaussian noise levels. 

   
HR LR Bicubic 

PSNR/SSIM  19.698/0.783 

   
L0RIG ERBPN MFSF-SR 

22.538/0.901 22.518/0.899 23.206/0.917 

Figure 10. Qualitative comparison of the Zebra image under Gaussian noise with σ=0.001. 

In conclusion, with the qualitative and quantitative analysis, most of the results show that the 
cascade model creates more high-frequency information than the L0RIG and ERBPN methods. The 
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MFSF-SR method works better in either noisy or noise-free case. It can reliably recover high-
frequency details with higher consistency and contrast loss, while preserving strong edges and 
contours with few additional artifacts. The results were perceived as most informative and natural. 

3.3. Experiments on Real Data 

Besides the above experiments on synthetic test images, we also conduct experiments on real 
images to demonstrate the effectiveness of the proposed MFSF-SR cascade model. The real image 
grayscale sequences of Car and Eia are part of the Multi-Dimensional Signal Processing Research 
Group (MDSP) benchmark dataset [50], which is the most widely used dataset to test the performance 
of multi-frame super-resolution methods. In our experiment, 16 frames from these two image 
sequences were used as the low-resolution input image. The central frame in the sequence was set as 
the reference frame in this reconstruction.  

Since no ground-truth HR image is available for the real sequence, we introduce no-reference 
image evaluation metrics the natural image quality evaluator (NIQE) [51] and the perception-based 
image quality evaluator (PIQE) [52] to further evaluate the quality of the real image SR results. 
Smaller values of NIQE and PIQE indicate better SR results. Figure 11 provides a visual comparison 
of the super-resolved results for the Car and Eia images with magnification factor 4. The red 
rectangles show zoomed regions of the restored images to compare the qualitative performance of 
the different methods. Experimental results on real image sequences show that our method yields a 
boosted performance in both objective metrics and visual quality. The MFSF-SR method achieves 
comparable or even better performance than the baseline methods in terms of quantitative 
evaluations. For a real-world image, the down-sampling kernel is unknown and complicated, thus 
performance of the non-blind SR methods are severely affected. Nevertheless, our method can 
produce visual pleasant images and effectively suppress the errors caused by noise, registration, and 
bad estimation of unknown PSF kernels. 

    
PIQE/NIQE 7.410/83.316 5.536/65.562 6.290/70.562 3.913/53.596 

    
PIQE/NIQE 29.801/67.148 24.798/47.695 23.829/58.106 19.723/33.402 

 Bicubic L0RIG ERBPN MFSF-SR 

Figure 11. Qualitative comparison of the Car and Eia images on 4× SR. 

From the top line of Figure 11, we can observe that the experiment with the Car sequence can be 
considered as a challenging example because the LR Car images are severely degraded by blur and 
noise, with a complicated noise model. It was observed that the bicubic interpolation method is too 
blurry to be recognized, while the L0RIG and ERBPN algorithms can produce better visual effects 
than the bicubic interpolation method. Compared with the bicubic interpolation method, other 
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methods are more efficient in improving spatial resolution due to the use of LR frame sequences or 
external prior knowledge in the reconstruction. With a L0-norm regularized constrain, L0RIG 
algorithm prefers a smooth result, but important edges and texture are also over-smoothed. As a 
contrast, the result of ERBPN suffers from visible ghosting artifacts and is seriously affected by the 
stair effects. As expected, the MFSF-SR algorithm has the best visual performance with clear edges 
and less influence of artifacts, and can effectively remove noise in the smoothing area of the image. 
Meanwhile, as shown in the bottom line of Figure 11, the proposed method gives rise to the most 
visually pleasing results with both sharpness and naturalness. The L0RIG algorithm has a good noise 
suppression effect, but it over-smooths the image, resulting in the loss of edge information. In 
contrast, ERBPN produce result with sharp edges, but it lacks the ability to recover clean HR image 
because of the effect of artifacts. In summary, the proposed MFSF-SR cascade model is capable of 
generating clean and sharp HR images at a large scale factor without any hallucination of fine details. 
It consistently demonstrated the effectiveness and superiority in the thorough experiments 
conducted in this study. 

4. Discussion 

4.1. Effectiveness of the Two Different Cascade Models 

The validity and reliability of the proposed MFSF-SR method was proven by the experiments 
described in Sections 3.2 and 3.3. To further investigate the effectiveness of the two different cascade 
models, we tested the two cascade models of MFSF-SR and SFMF-SR. The two kinds of cascade 
models combine the multi-frame based L0RIG method with the single-frame based ERBPN method 
in opposite order, compared with the two kinds of baseline methods with only one up-sampling step 
at the 4× magnification factor. The SFMF-SR method reconstructed with ERBPN+L0RIG. Each LR 
image is independently enhanced using SFSR to obtain a higher-quality output. Then the multi-frame 
based L0RIG method is applied to the reconstructed images to obtain the final result for the reference 
image with a 2× scaling factor. 

Table 3 shows the quantitative performance comparison in terms of the mean of PSNR and SSIM 
with the different cascade models on the Set5 [53] and Set14 [54]. On 4× enlargement, the cascade 
model, MFSF-SR, gains 0.339 dB and 0.364 dB higher than SFMF-SR on the Set5 and Set14, 
respectively. It demonstrates that the cascade model by applying MFSR first and SFSR after 
outperforms the cascade model in the opposite order. Meanwhile, both of the two cascade models 
improve the quantitative performance compared to the two baseline methods of L0RIG and ERBPN. 
Figure 12 provides a visual comparison of simulation experiment results for the Cameraman image 
with magnification factor 4. The images enclosed in red box show zoomed regions of the restored 
images to compare the qualitative performance of the different algorithms. As one can see, the 
cascade model of ERBPN+L0RIG tends to generate unexpected artifacts and seriously affected by the 
ringing effects. In fact, the MFSF-SR generates softer patterns containing more details and fewer 
blurred contours which subjectively closer to the ground truth. It produces superior results compared 
to the other cascade model in both objective and perceptual quality measurements. Besides, the 
MFSF-SR approach also has significantly lower computational complexity than the SFMF-SR method 
that first applies SFSR to all the input LR images. 

Table 3. Average PSNR/SSIM results for 4× SR on datasets Set5, Set14. Best and second best results 
are highlighted and underlined. 

Datase

t 

Metri

c 

MFSR(L0RI

G) 

SFSR(ERBP

N) 

SFMF-

SR(ERBPN+L0RIG) 

MFSF-

SR(L0RIG+ERBPN) 

Set5 
PSNR 30.985 31.521 33.075 33.413 

SSIM 0.865 0.878 0.910 0.917 

Set14 PSNR 27.703 28.263 29.294 29.658 
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SSIM 0.757 0.774 0.821 0.828 

Authors should discuss the results and how they can be interpreted from the perspective of 
previous studies and of the working hypotheses. The findings and their implications should be 
discussed in the broadest context possible. Future research directions may also be highlighted. 

     
HR MFSR SFSR SFMF-SR MFSF-SR 

PSNR/SSIM 24.004/0.823 24.787/0.832 24.987/0.841 25.642/0.866 

Figure 12. Qualitative comparison of different methods for the Cameraman image on 4× SR. 

4.2. Exploring the Robustness of Cascading Model 

In this section, we further discuss the generalization performance and limitations of the 
proposed cascade model. According to the above discussion, the MFSF-SR approach was selected as 
the proposed cascade model due to its better performance than the SFMF-SR approach. Another 
group of the state-of-the-art MFSR and SFSR methods were selected as the baseline methods, such as 
the MFSR based on spatially weighted bilateral total variation regularization model (SWBTV) [19] 
and the SFSR method with the inaccurate kernel progressively correction (IKC) [55]. These two 
approaches were embedded into our MFSF-SR framework to verify the robustness of the cascade 
model. 

There are four groups cascade methods with the combination of the four methods in a cascade 
manner of multiple first and single later. The simulation experiments include 8 sets of comparative 
algorithms in addition to bicubic interpolation. The 8 sets of comparison algorithms are single-frame 
and multi-frame based methods, as well as cascade methods: 1) the MFSR method of SWBTV [19] 
(denoted by M1); 2) the MFSR method of L0RIG(denoted by M2); 3) the SFSR method of IKC 
[55](denoted by S1); 4) the SFSR method of ERBPN(denoted by S2); 5) the MFSF-SR method of 
SWBTV+IKC (denoted by M1S1); 6) the MFSF-SR method of SWBTV+ERBPN (denoted by M1S2); 7) 
the MFSF-SR method of L0RIG+IKC (denoted by M2S1); 8) the MFSF-SR method of L0RIG+ERBPN 
(denoted by M2S2);  

Table 4 shows the quantitative performance comparison in terms of the mean of PSNR and SSIM 
with the different methods on the three public benchmark datasets: Set5 [53], Set14 [54] and Urban100 
[56]. The SET5, SET14 datasets consist of natural scenes; the URBAN100 set contains challenging 
urban scenes images with details in different frequency bands. We can draw some conclusion from 
the quantitative comparison. Firstly, all four groups of cascade methods are superior to their 
constituent single-frame and multi-frame super resolution methods by a large margin. Therefore, it 
can be concluded that the proposed cascade model performs successfully and is robust to different 
SFSR and MFSR methods. Secondly, with the significant progress of image super resolution achieved 
by deep learning, the deep learning-based SFSR approaches have greatly improved the SR 
performance on synthetic LR images. Finally, as the initial input images of the learning based SFSR 
method, the results of the model-based MFSR are complex and varied. Nevertheless, IKC can handle 
complex degraded images through iterative correction of blur kernels, so it is more robust in the 
cascade model. 
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Table 4. Average PSNR/SSIM results for 4× SR on datasets Set5, Set14, and Urban100. Best and 
second best results are highlighted and underlined. M1, M2, S1 and S2 represent the SR methods of 
L0RIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S2 represent the 
cascade methods of SWBTV+IKC, SWBTV+ERBPN, L0RIG+IKC and L0RIG+ERBPN, respectively. 

Dataset Metri
c 

Bicubi
c 

MFSR SFSR MFSF-SR 
M1 M2 S1 S2 M1S1 M1S2 M2S1 M2S2 

Set5 
PSNR 28.423 30.985 31.962 31.520 32.653 33.125 33.007 33.601 33.413 
SSIM 0.811 0.865 0.891 0.878 0.899 0.912 0.909 0.921 0.917 

Set14 
PSNR 26.101 27.703 28.354 28.263 29.037 29.349 29.258 29.813 29.658 
SSIM 0.704 0.757 0.779 0.774 0.791 0.824 0.818 0.837 0.828 

Urban10
0 

PSNR 23.152 24.614 25.683 25.334 26.086 26.858 26.672 27.163 27.072 
SSIM 0.659 0.729 0.773 0.759 0.803 0.815 0.812 0.830 0.827 

In Figure 13 and Figure 14, we show visual comparisons on Urban100 with a scale factor of 4× 
for the different comparative methods. Compare with the baseline methods, our cascade model more 
accurately reconstructs parallel straight lines, grid patterns such as windows. We obtain several 
observations from Figure 13. For image ‘img_074’ in Urban100, we can find that most baseline 
methods fail to recover edges and also suffer from blurring artifacts. Some of them even distort the 
horizontal lines and blur out the background. The results generated from IKC methods still contain 
noticeable artifacts caused by spatial aliasing. However, with an initialization reconstruction step by 
the model-based method of SWBTV or L0RIG, the cascade method SWBTV+IKC (M1S1) and 
L0RIG+IKC (M2S1) can effectively suppress such artifacts through progressive reconstruction. It 
significantly improves the performance of the resolved image with proper straight lines.  

 

     
HR M1 M2 S1 S2 

PSNR/SSIM 22.727/0.621 23.073/0.642 22.837/0.625 23.141/0.652 

     
Ground truth HR Bicubic M1S1 M1S2 M2S1 M2S2 

Urban100: img_074 22.161/0.562 23.992/0.723 23.417/0.675 24.583/0.761 24.129/0.736 

Figure 13. Visual comparison for 4× SR on the Urban100. M1, M2, S1 and S2 represent the SR 
methods of L0RIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S2 
represent the cascade methods of SWBTV+IKC, SWBTV+ERBPN, L0RIG+IKC and L0RIG+ERBPN, 
respectively. 

Similarly, in the second example, e.g. ‘img_099’ in Figure 14, the four baseline methods are 
unable to recover the rectangular shapes and blur out the boundaries representing the outlines of the 
windows. In contrast, the MFSF-SR cascade models show great abilities in producing accurate 
information from the LR image and removing the blur artifacts. Our method recovers the structures 
correctly with less distortion and more faithful to the ground-truth image. It was clearly 
demonstrated that the proposed cascade model can obtain a better tradeoff between recovering lost 
details and suppressing ringing artifacts. The above-mentioned phenomena prove the advantages 
and robustness of the proposed cascade model on super resolution reconstruction. 
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HR M1 M2 S1 S2 

PSNR/SSI
M 

23.192/0.6
55 

23.885/0.6
96 

23.617/0.6
71 

23.958/0.6
95 

     
Ground truth HR Bicubic M1S1 M1S2 M2S1 M2S2 

Urban100: img_099 22.433/0.5
93 

24.367/0.7
20 

24.256/0.7
03 

24.969/0.7
69 

24.681/0.7
47 

Figure 14. Visual comparison for 4× SR on the Urban100. M1, M2, S1 and S2 represent the SR 
methods of L0RIG, SWBTV [19], IKC [55] and ERBPN, respectively. M1S1, M1S2, M2S1 and M2S2 
represent the cascade methods of SWBTV+IKC, SWBTV+ERBPN, L0RIG+IKC and L0RIG+ERBPN, 
respectively. 

5. Conclusions 

In this paper, we proposed a novel multi-frame super resolution reconstruction concatenating 
the model-based MFSR method with the deep learning-based SFSR method. Our approach consists 
of a L0-norm constrained reconstruction scheme and an enhanced residual back-projection network 
in a concatenated fashion for image reconstruction. The proposed method first builds a MFSR method 
to obtain an initial result and apply SFSR method directly on the initial result. It takes both the sub-
pixel shift information and external learned feature information into consideration, integrating the 
flexibility of the model-based method and the feature learning capacity of the deep learning-based 
method.  

Extensive experiments on benchmark and real-world images illustrates that the proposed 
cascade model can significantly improve the performance of the super-resolution task. Superior 
results are produces compared to the other baseline methods in both qualitatively and quantitatively 
measurements. In addition, we have demonstrated that both the two kind of cascade methods 
perform better than the baseline methods and the proposed cascade model can be robustly applied 
to different MFSR and SFSR methods. It means that potential future advances in MFSR and SFSR can 
be easily exploited to further improve the reconstructed image. In our future work, we will further 
study the coupling of the model-based MFSR and the deep learning-based SFSR methods in order to 
bring out their respective advantages. 
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