
Article Not peer-reviewed version

Next-Generation Block Modeling for

Complex Networks

Lekshmi S Nair * , Jo Cheriyan , Swaminathan J , Barna Cornel

Posted Date: 6 August 2024

doi: 10.20944/preprints202408.0352.v1

Keywords: Block formation; Multilayer Networks; Network Analysis; Link prediction; Information

dissemination

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2607801


Article

Next-Generation Block Modeling for Complex Networks

Lekshmi S Nair 1,*,† , Jo Cheriyan 2,† , Swaminathan J 1,† and Barna Cornel 3,†

1 Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham,
Amritapuri, India

2 Saintgits College of Engineering, Kottayam, India
3 Faculty of Exact Sciences, Aurel Vlaicu University of Arad, 310130, Arad, Romania
* Correspondence: lekshmisn@am.amrita.edu
† These authors contributed equally to this work.

Abstract: Research in complex network analysis, including tasks such as information dissemination and link

prediction, has traditionally advanced by examining groups of nodes with similar characteristics. In multilayer

complex networks, these analyses are performed layer-wise, with each layer representing a distinct feature.

However, this approach often neglects interlayer interactions, leading to limited predictive power, underestimation

of network resilience, and incomplete identification of influential nodes. This article introduces a novel block

modeling technique that integrates dominant features from multiple layers, addressing these shortcomings. Our

approach introduces a new centrality metric that combines layer weight and PageRank centrality to identify

influential nodes within multilayer networks. Nodes are aggregated into blocks centered around these influencers,

accounting for both intra- and interlayer connections. Empirical evaluation of various datasets demonstrates

that our method effectively identifies influential nodes, thereby enhancing information dissemination and link

prediction across diverse multilayer network structures. This technique offers significant potential for improving

decision-making processes in various fields, including social network analysis, transportation systems, and

biological networks.

Keywords: block formation; multilayer networks; network analysis; link prediction; information dissemination

1. Introduction

Complex networks serve as a model for various real-world systems, including social networks,
biological entities, ecological systems, and communication networks. These networks can take many
forms, such as citation networks, friendship networks, airline networks, mobile communication
networks, and protein-protein interaction networks. One key aspect of these systems is their size, and
ranges from thousands to millions of entities. Additionally, entities within these networks interact and
evolve in ways that are hard to anticipate, exhibit multiple behaviors, and share multiple relationships.

Multilayer networks capture the intricate interplay of interactions and relationships that exist in
real-world systems by representing them as a collection of interconnected layers, each corresponding
to a distinct type of interaction or relationship. The traditional single-layer network representation
may not be sufficient to fully capture the complex interactions and inter-dependencies that exist within
Growing Network Models. For instance, in a transportation network, nodes represented as cities can
be connected via road and rail networks, resulting in two different interactions between nodes as
shown in Figure 1.i and 1.ii. Some of the cities are common to both networks, while others are not. For
analyzing both interactions together, such independent representation is insufficient. The emergence
of multilayer models was a response to capture such interactions. Each layer represents the interaction
within a single network (road or rail), while the link between common nodes of two layers represents
that such nodes are part of both networks. Thus, multiple dimensions of the nodes are captured by the
multiple layers, each representing distinct types of relationships or attributes. Each layer contributes to
the overall structure of the network, and interlayer connections enable the examination of interactions
and dependencies between layers, as depicted in figure 1.iii.

Towards this end, the multilayer network defined by [1] is as given below:
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A Multilayer network GM = (VM, EM, V, L), is a collection of elementary layers stacked together
where each layer denotes an aspect such that L = {L1, L2 . . . Ln} are the layers, V represents all the
vertices of the network. VM is a set of nodes specific to a particular layer. It represents the nodes
present in a given layer of the multilayer network such that Vα

M = {vα
1 , vα

2 , .., vα
m}, and VM ⊆ V × Lα,

and EM represents the edges between a pair of vertices, EM ⊆ VM ×VM, the edge (vα
i , vβ

j ), denotes the
intra layer edge when α = β and denotes the inter-layer edge when α ̸= β.

Several problems in various application domains are of interest to the multilayer network research
community. Prominent among them are Information Diffusion, Community detection [2], Link Prediction.
Link prediction is used to predict missing or future connections between nodes in a network. It
has applications like identifying friendships or connections between users in Social networks and
product recommendations [3], [4]. In such cases, the existing state-of-the-art is insufficient as they
do not consider (i) similarity/dissimilarity between the layers, (ii) the interplay between the layers,
and (iii) the evolving interlayer dependencies between the layers. These factors are relevant for
capturing heterogeneity, understanding interactions that reflect the intricate web of interactions, and
evolving dynamics in complex networks. The state-of-the-art has limitations in addressing the interplay
between the layers. Hence we formulate an approach for the heterogeneous multilayer network,
having an ability to capture the inherent modular organization present in many real-world networks.
The research goals addressed in this article are as follows:

- Identify the prominent nodes influencers in a directed multilayered heterogeneous network.
- The formulation of novel block modeling technique that considers the interplay between the layers

and the evolving inter-dependencies around the prominent nodes in the multilayer network.
- Efficacy of block modeling in the analysis of the complex network especially for Information

diffusion and Link Prediction.

The advantage of block formation is that each block is formed based on a different set of characteristics
shared between the nodes. This helps in integrating the information from various layers, thereby
enabling the information diffusion or link prediction application to a better accuracy. The section 3.1
discusses the identification of influencers across the network. The block formation process around the
influencers is elucidated in Section 3.2. We propose the link prediction between the blocks and the
information diffusion with the blocks in Section 3.3 and Section 3.4 respectively. The experimental
setup and analysis are discussed in Section 5. The observations, findings, and conclusions are discussed
in Section 6.

Figure 1. (i) Network representing the road network (ii) Network Rail Network (iii) Layered Network
representing the transportation network (road and rail)

2. Background Study

Complex networks have permeated every aspect of our daily lives, manifesting in various forms
such as the World Wide Web [5], the Internet [6], and social friendship networks [7]. A real-world
network, modeled as a multilayer network, consists of different layers that represent the diverse
types of interactions or relationships. For example, one layer could represent social connections,
while another represents professional collaborations. Each layer contributes to the overall structure
of the network. Nodes in a multilayer network may have connections across layers. This interlayer
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connectivity introduces the need to consider not only the within-layer interactions but also the influence
of nodes that bridge different layers. Nodes in a multilayer network may have different roles in
different layers [8]. Some nodes may be hubs in one layer but less influential in another. Identifying
and quantifying these roles are crucial for understanding the multifaceted nature of node centrality.

Centrality is the fundamental metric in network science and finds application in various fields.
Centrality aims to identify the most influential nodes in the network by considering various factors.
Centrality metrics provide a way to quantify the relative significance of nodes by analyzing their
connectivity patterns. Influencers have a significant reach and disseminate information rapidly within
a network, and hence are of interest in the context of network analysis.

Different centrality measures, such as degree centrality [9,10], random-walk occupation centrality,
betweenness centrality [11], and closeness centrality[12,13], eigenvector centrality [14,15], Katz centrality,
and PageRank [16,17], have been developed for monoplex networks [18–21]. These measures take into
account the network’s structure or dynamic processes to evaluate the importance of nodes. By utilizing
these centrality metrics, highly connected nodes, strategically positioned nodes, and influential nodes
within the network can be identified [22].

All of the aforementioned centrality metrics play a crucial role in evaluating the importance of
nodes in single-layer networks, and efforts have been made to extend their applicability to multilayer
networks by incorporating interconnections across all layers. Research has been progressing in
formulating centrality metrics tailored for multilayer networks. We now discuss the centrality metrics
tailored for the multilayer network, also summarised in a Table, 1, for a quick review.

Table 1. Literature review of centrality metrics for multilayer networks.

Centrality metric Method Limitations

Random walk centrality2016 Mean First Limited to Technology Networks,
Random-walk BC Passage Time (MFPT) and static networks
Random-walk CC

Power Community Index(PCI)2017 Centrality Perspective Refrains from considering
µ-PCI, al-PCI using connection the entire network topology
ml-PCI, ls-PCI (Degree of node) Limited to scaling

Multiplex PageRank2018 All layers treated as Applied to
(additive PR(addPR) single layer logically Multiplex Networks

multiplicative PR(mulPR) (Individual Ranks add/mul together) with duplex mode

PageRank versatility2019 Personalized Vector added Defined for
Versatile BC ( vector formation Multiplex Networks

depends on type of networks) (Technology Networks)

- Multilayer Degree Centrality: considers the node’s degree in each layer and computes a weighted
average to determine its centrality. Nodes with high degrees across multiple layers are considered
more central [23,24]. The limitation includes the focus on the node’s degree in each layer without
considering other network properties. Also, the method assumes that all layers contribute equally
to the node’s centrality, which may not always hold true in real-world scenarios where layers
have varying degrees of relevance or significance. Consequently, Multilayer Degree Centrality
may not fully capture the complexity and nuances of the multilayer network [25].

- Multilayer Betweenness Centrality: identifies the nodes that act as bridges or intermediaries
between different layers. Nodes with high betweenness centrality facilitate communication
and information flow across the multilayer network [26,27]. Since the computation of the exact
betweenness centrality for a single layer is already computationally intensive, and extending it
to multilayer networks further increases the computational complexity thereby making it unfit
for the multilayer network structure [28,29].
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- RandomWalk Closeness centrality: measures how easily and efficiently the information can flow
from a node to other nodes in a network [30]. In the context of multilayer networks, RandomWalk
Closeness centrality considers the interconnected nature of layers and captures the accessibility
of a node across multiple layers. Unlike traditional Closeness centrality, which considers only
the shortest paths, RandomWalk Closeness centrality accounts for the possibility of traversing
different layers to reach distant nodes [31]. Randomwalk Closeness centrality for multilayer
networks has drawbacks including sensitivity to random walk parameters, an assumption of
homogeneous transition probabilities between layers, and limited capture of other important
structural characteristics of the multilayer network [32,33].

- Power Community Index (PCI): analyzes the community structure in multilayer networks [25] by
identifying group nodes that exhibit strong connections within their respective layers, significant
inter-layer interactions and facilitates exploring the modular organization and functional dynamics
of complex multilayer systems [34]. The PCI assumes that nodes in a network belong to non-
overlapping communities, but real-world networks often have nodes that belong to multiple
communities simultaneously. Community assignments in the PCI are determined by parameter
choices, such as the coupling strength between layers, and different parameter values can lead to
varying community structures, making the results sensitive to parameter selection [35].

- Multiplex PageRank: a modification to the classical PageRank algorithm, this approach calculates
the importance scores to nodes based on their connectivity across layers. Nodes that are
connected to other influential nodes are deemed more important [36]. The metric finds the
connectivity and influence of nodes for both single layer and across different layers taking into
account the interplay between these layers and assigns scores to nodes based on their influence
across multiple layers [37]. However, the limitations include the assumption that all layers have
equal importance, which might only sometimes reflect the actual dynamics of the network.

Therefore there is a need for a PageRank metric that could handle the limitations thereby
preserving the following vital properties:

1. Impact of layer importance: The metric must capture and incorporate layer-specific variations
during the ranking process. This involves assigning appropriate weights to edges originating
from different layer, taking into account edge significance within a particular layer.

2. Interplay between the layers: The algorithm should effectively handle and utilize the interlayer
connections that exist between nodes in different layers of the multilayer network. This means
considering the influence and impact of connections across layers, allowing the metric to
propagate importance scores between interconnected nodes.

3. Scalability: It is essential for the metric to be scalable to handle any number of layers in the
network.

4. Edge weights and attributes: The metric considers the edge weights or attributes within the
multilayer network. Edge weights can represent the strength or significance of connections,
while attributes can provide additional information about nodes or edges. By incorporating this
information, the algorithm can better capture the nuances and characteristics of the network,
leading to more accurate rankings.

5. Adaptability: The algorithm must be flexible and adaptable to different types of multilayer
networks.

Global similarity-based metrics such as Pagerank consider the topological information for capturing
the similarity between the nodes in the network or the sub-network. The information includes the
nodes’s connections and network structure. This is effective for link prediction and information
dissemination. We formulate a PageRank centrality for a multilayer network that can form the basis
of identifying and grouping the nodes that have similarities among them. This is to incorporate the
interlayer similarities observed in multilayer networks while formulating the PageRank centrality.

Identifying influential spreaders in complex networks is paramount to understanding the dynamics
of information, diseases, or opinions [38]. These nodes possess specific characteristics that significantly
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influence the spread of such phenomena throughout the network [39]. Identifying influential spreaders
is significant across diverse fields of network analysis such as epidemiology, link prediction, and viral
marketing [40]. Focusing on these critical nodes can effectively enhance the efficiency of spreading
information, mitigate the spread of diseases, or optimize marketing campaigns [41]. Targeting
influential spreaders enables the strategic allocation of resources and efforts, as these nodes have
the potential to reach a large number of individuals or have a substantial impact on the network’s
dynamics [38]. Understanding and harnessing the power of influential spreaders can lead to more
effective and efficient interventions in various domains [42].

Thus, the goal of this article will be the formulation of a centrality metric suitable for the multilayer
network, considering the aforementioned properties to rank the nodes. Next, we form the blocks
around the influencers, wherein the nodes having an affinity towards the influencer form blocks. The
blocks are analyzed to determine the efficacy of information diffusion and link prediction tasks.

3. Proposed Approach

The proposed approach begins with the formulation of a novel block formation approach centered
around the influencers in a heterogeneous network. The first task is to formulate a metric to identify
the prominent nodes in the multilayer network. Let the incoming links from active layers be given
more weight. Therefore, our metric incorporates both the structural properties of the network and the
node’s importance in each layer (node degree). The iterative process calculates the node scores for
each node by propagating influence across layers until convergence is achieved. The blocks are built
around the identified influential nodes to preserve the interlayer dependencies. These blocks are used
for further research involving link prediction or information diffusion.

3.1. Identify the Influencers in the Directed Heterogeneous Networks

In complex networks, there are two types of nodes: influencers and non-influencers. Influencers
typically have more connections than non-influencers. An influencer in a network refers to a central
node that has a higher number of incoming edges. These nodes play a crucial role in shaping the
dynamics of the complex network. The identification of the influencers indicates the directions of the
edges. Formally, an influencer is defined as follows:

Definition 1. Let GM = (VM, EM, V, L) be the multilayer network, an influencer node I ∈ V exhibits the
maximum centrality value among all nodes of the layer V l

i , where 1 ≤ i ≤ |V| and 1 ≤ l ≤ L, where L is the
total number of layers.

The presence or absence of influencers in the network can provide valuable information about
the likelihood of link formation. For example, if two nodes have a common influencer, they may be
more likely to form a link. Influencers are located in densely connected blocks and exhibit cohesive
internal structures. Influencers act as bridges between different communities or clusters in the network,
facilitating link formation between nodes that would otherwise be disconnected.

Influencers impact the link prediction by affecting the growth of the network. Influencers attract
new nodes to the network, leading to the formation of new links. In social networks that exhibit a
follower-followee relationship, nodes tend to establish links with highly influential nodes [43]. In such
networks, the node with more incoming edges represents an influencer, as it corresponds to an entity
with more followers, such as a person, product, or web page.

The identification process considers the node-to-node connections [44] and the weights assigned
to different layers in the network. To proceed with the node-rank computation, The layer weight for
the incoming edges evolving from the different layers are considered. The layer weight increases as
the number of active nodes increases.

Definition 2. An active node v belonging to a layer lj, has higher number of incoming edges e[li ,lj ] ∈ EM from
other layers li, 1 ≤ i ≤ |L|.
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A layer containing more active nodes becomes active layer.

Definition 3. An active layer lj ∈ L, has a higher number of incoming edges e[li ,lj ] ∈ EM from other layers li,
1 ≤ i ≤ |L|.

More weight is given to the active layers. The active nodes, along with the active layers, contribute
to information flow and interactions within the network at a given point of time and therefore are
of interest for rank computation. It is assumed that initially, all the layers have equal weightage or
otherwise based on the ground truth of the dataset. The iterative process of computing the rank of a
node progresses with,

(1) Computing the rank of all nodes by considering only the incoming edges from the same layer.
Let PRv be the rank of node v. PRv is the ratio of incoming edges of v to the total number of
edges. Initialize the rank of all nodes to 1

N , where N is the total number of nodes in the network.
(2) Next, consider the layer weight Ll

v, computed by the cumulative weight of the nodes in an
individual layer. Initialize the weight of all the layers to 1. The weight of the layer increases with
more active nodes in the layer.

(a) The computed rank is used to re-compute the layer weights. The rank of node v in the
lth layer, PRl

v, is computed as the product of the layer weight Ll
v (weight of the lth layer

containing the node v) and the rank of v in the lth layer, i.e., [Ll
v × PRl

v].

(3) To retain the interplay in a multilayer network, consider the inter-layer adjacency matrix for all
V. The inter-layer adjacency matrix captures the interactions between nodes across different
layers of the network, thus quantifying how nodes in one layer affect nodes in another layer,
thereby increasing the accuracy of the computation of ranks. The inter-layer adjacency matrix is
computed as:

aL
ij =

L

∑
l=1

a[l]ij (1)

(4) The iterative approach to computation needs to converge. The damping factor is used in this
context. The damping factor d is the probability that a vertex vi will randomly follow another
vertex vj. The optimal value established for the damping factor is 0.85.

(5) Thus, the rank of all nodes in a multilayer network χ
[L]
m (v) is computed iteratively considering

the initial rank of all the vertices in the network cumulate with the product of the layer weight to
the rank of every vertex and normalized by the damping factor as:

PRl
v = PRv + (1− d)

N

∑
v=1

M

∑
l=1

a[L]ij [Ll
v × PRl

v] (2)

(6) The layer weight is updated with the update to the rank score as:

Ll
v =

1
N

m

∑
l=1

al
ijPRv

l (3)

The equation computes the updated layer weight for a layer l by normalizing the sum of its
PageRank scores. The updated layer weight Ll

v is calculated by taking the weighted average of
the PageRank scores of the nodes in layer l, where the weights are the relative rank scores of each
node in that layer.

This normalization ensures that the layer weights collectively form a valid probability distribution,
reflecting the influence or importance of nodes within the layer l. The goal is to maintain the probability
interpretation of rank, where the sum of probabilities within a layer equals 1. This iterative process
is continued for all layers and nodes until the rank values converge. The nodes with higher rank
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scores are considered more influential in the network. Based on a user-specified threshold, the top
influencers are selected. For referral convenience, from here on, the proposed approach of influencer
identification is referred to as mpr. As a case study, apply the algorithm on the Florentine Family
Marriage and Business Ties Data [45], a multilayer network formed with 16 nodes as shown in Figure 3.
The Algorithm 1 illustrates the computation of the node rank in a multilayer network. The node ranks
are computed for each node. Comparing the ground truth (VerPR), the ranking has improved, and the
following observations were made:

• Since node 12 is not linked to any other family in the layer, the computation is performed by
taking out this node from the whole network.

• The most important node is node 9, corresponding to the Medici family (shown in Figure 3).
• The effective choice of individualization factors for each layer greatly improves ranking optimization,

thus affirming the credibility of m-PageRank (shown in Figure 3).

Iterative convergence of rank value involves comparing the new PageRank scores with the previous
ones that considered connections from the same layer V(V − 1) ≈ V2 connections and from different
layers V × L connections. Thus, the update phase involves V2 connections and O(V2 × L) time for
convergence checking.

Algorithm 1 Influencers’ Identification in Multilayer Network

Input: G = (VM, EM, V, L), Threshold : Tp
Output: In f luencers : I

1: Initialize PRl
v ← 1, ∀ łi ∈ L, ∀ v ∈ l

2: converged← false
3: while not converged do
4: converged← true
5: for each vi ∈ VM do
6: PR[L]

i ← PRi + (1− d)∑N
V=1 ∑M

l=1 a[L]ij [Lli
j XPRl

v]
7: end for
8: for li ∈ L do
9: for each vj ∈ Vi do

10: PRli
vj ← χ

[L]
m (vj)

11: end for
12: Lli

j ←
1
N ∑m

l=1 ∑n
j=0 al

ijPRl
v(j)

13: end for
14: for each li ∈ L do
15: if ∃ V l

j ∈ l such that PRl
Vj

< Tp then
16: converged← false
17: end if
18: end for
19: end while
20: I ← { V l

j | ∀ Vj ∈ l, PRl
Vj
≥ Tp}

21: return I

Figure 2. Layers of Florentine family business (left) and family marriage relations (right).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2024                   doi:10.20944/preprints202408.0352.v1

https://doi.org/10.20944/preprints202408.0352.v1


8 of 21

Figure 3. Tabulation of ranks of nodes using Ver-PR and m-PR.

3.2. Formation of Block around the Influencer

Once the influencers are identified, the next goal is to build blocks around each of them. The
nodes within the blocks are determined by their affinity for the influencers. The affinity is computed
based on the strongest properties that the nodes share with the influencers. A node may thus become
part of one or more blocks, resulting in overlapping blocks. Nodes with no affinity for the influencer
may not be part of any block. This means that these nodes may not contribute to link prediction at this
time. Since the influencers were identified across the layers, the distinguishing aspect of our block
formation technique centred around the influencer captures and preserves the interplay between the
layers.

1. How strongly the node is connected to its neighbors in the network. Through this, the local
importance of the network is uncovered.

2. How similar are the nodes based on attributes and interactions, thereby uncovering the network’s
structure.

These blocks offer a higher level of abstraction than individual nodes, as they group together
nodes with similar connectivity patterns. By considering these blocks alongside individual nodes, link
prediction algorithms can better capture the underlying structure of the network and achieve more
accurate predictions.

Let v be a neighbor of an influencer I. We want to know if v should be added in the block around
I. The more strongly v is connected to its neighbors, the stronger is its local importance. This local
importance is defined in terms of the connections that v has with its neighbors. Let neigh(v) denote the
set of neighbors {u1, u2, ...} of v. It is easy to see that the strongest connection exists if {u1, u2, ...} ∪
{v} is maximally connected. In other words, the nodes form a complete subgraph, which essentially
works out to Dv(Dv − 1)/2 edges between them. However, the actual number of connections between
{u1, u2, ...} ∪ {v} need not reach this maximum. The ratio of the actual number of connections to the
maximum number of connections provides a measure of v’s local importance. Let Ev denote the actual
connections that {u1, u2, ...} share among themselves, and Dv is the degree of v. Thus, the ratio is the
clustering coefficient, given by the formula

CCv =
Ev

Dv(Dv − 1)/2
(4)

The algorithm for computing the correlation is elaborated in Algorithm 2.
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Algorithm 2 Compute Correlation

Input: v, Neigh(v), PCv, Dv, α, β
Output: Correlation Sv,u for each u ∈ Neigh(v)

1: Ev ← number of edges within Neigh(v)
2: Dv ← |Neigh(v)|
3: CCv ← Ev

Dv×(Dv−1)/2
4: Svu ← 0
5: for u ∈ Neigh(v) do
6: Eu ← number of edges within Neigh(u)
7: Du ← |Neigh(u)|
8: CCu ← Eu

Du×(Du−1)/2
9: PCu ← Centrality(u)

10: Svu ← Svu + α× CCv
Dv

+ β× PCv×PCu
Dv

11: end for
12: return Svu

The node centrality, degree, and clustering coefficient to select similar nodes based on the
attributes are considered. Nodes with high centrality act as bridges, connecting different parts of
the network, and serve as hubs with many connections. This structural importance helps identify
the similarity with the influencer. The degree of the node quantifies the number of edges incident
to a node, indicating local prominence within the network. Thus, selecting similar nodes based on
attributes (correlation) is a cumulative measure of the degree of node Dv, centrality PCv, clustering
coefficients CCv, and α and β as normalizing factors. The correlation is computed as:

Sv,u = ∑
u∈Neigh(v)

(α
CCv

Dv
+ β

PCvPCu

Dv
) (5)

Thus, A block is defined as followed:

Definition 4. Let GM = (VM, EM, V, L) be the multilayer network. A block B consisting of nodes V1, V2 . . . Vn

such that V1, V2 . . . Vn ∈ V is built around the influencer I, and Vi has a high clustering coefficient with I and
shares similar connectivity patterns within the network.

Thus, block formation is summarized as a three-step process:

1. Pick an influencer, I.
2. Among all the neighboring nodes of I, we determined a node v that exhibits the strongest local

property
3. Next, for all neighbors of v, compute the correlation with I.

The formation of blocks surrounding the influential nodes enables the capture of the influence
on the overall network structure and modularity. Each block is distinguished by a unique property.
Thus, the nodes within a block exhibit more similar properties. Such blocks effectively capture the
directed relationships. Since a block consists of nodes distributed across the layers, the interlayer
dependency is well preserved by considering the layer information [46]. The blocks ensure the capture
of both global and local information relevant to link prediction and information diffusion. Therefore
the link prediction between the blocks represents the prediction of the future links between the nodes
that exhibit dissimilar characteristics. The information spread in the blocks evaluates how the spread
of rumors can be regulated within blocks. The blocks, centered on influencers, also account for the
information flow from influential nodes to their neighbors, which is used for both link prediction and
information diffusion. This process is elaborated in Algorithm 3.
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Algorithm 3 Block Formation around Influencers

Input: G = (VM, EM, V, L), I (Set of Influencers), Desired Number of Blocks: N
Output: Block Set B

1: Initialize Block set, B← { }
2: Initialize Block b← { }
3: for each u ∈ I do
4: b← b ∪ {u}
5: indegree← 0
6: for each v ∈ Neighbor(u) do
7: if Indegree(v) ≥ indegree then
8: indegree← Indegree(v)
9: j← v

10: b← b ∪ {j}
11: end if
12: end for
13: for each k ∈ Neighbor(j) do
14: if ComputeCorrelation(k, I) > Threshold then
15: b← b ∪ {k}
16: end if
17: end for
18: end for
19: B← B ∪ b
20: return B

3.3. Link Prediction between the Blocks

The future links between two blocks depends on the strength of the interconnections between the
overall nodes of one block and the overall nodes of another block. The strength is highest when every
node of one block connects to every node of the other block. Since the underlying network is a directed
network, the strength of the interconnection has both magnitude and direction.

Once the blocks are formed, we use the binomial distribution for likelihood estimation in link
prediction, which is rooted in the assumption that the presence or absence of links between nodes
follows a binary outcome (link or no link) and that these outcomes are independent across different
pairs of nodes. Therefore, the Probability Mass Function (PMF) gives the

P(X = lij) =
(

ηij

lij

)
ρ

li,j
i,j (1− ρi,j)

ηi,j−li,j (6)

where:

- X is the number of observed links between nodes in different blocks,
- ηij is the total number of possible links between nodes in different block i and block j,
- lij is the number of observed links,
- ρij is the probability of a link between nodes in different block i and block j, calculated based on

the likelihood.

Now compute the maximum likelihood with every pair of blocks using the probability mass function
(PMF) equation as

L(ρij|lij, ηij) =
n

∏
i=1

n

∏
j=1,j ̸=i

P(X = lij) (7)

where: L(ρij|lij, ηij) is the combined likelihood,
lij and ηij is the observed and total possible connections,
ρij is the strength of the connections, and P(X = lij) is the probability mass function. Algorithm 4
elaborates the link prediction process using maximum likelihood estimation.
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Algorithm 4 Link prediction between the blocks

Input: Blocks B = {b1 ∪ b2 ∪ . . . bn}; B ∈ GM; threshold: Tm;
Output: probability values;

1: for all bi and bj do
2: L(ρij|lij, ηij) = ∏n

i=1 ∏n
j=1,j ̸=i P(X = lij)

3: end for
4: if L(ρij|lij, ηij) >= Tm then
5: Return values
6: end if

Section 5.1 will demonstrate experimental proof for the block formation and the link prediction
process between the blocks on three different dataset.

3.4. Information Dissemination

For the spread of information across the network, the Linear Threshold Model (LTM) is considered
as the underlying diffusion model. In LTM, individuals have a specific threshold or required number
of neighbors that need to adopt the behavior or innovation before they adopt it. The model assumes
that individuals are influenced by their social connections and the behavior of their neighbors, and
the adoption process takes place gradually over time [47],[48]. In the Linear Threshold Model, the
adoption of threshold remains fixed for each individual. This means the model doesn’t account for the
individual’s evolving beliefs or changing social context. Once the threshold is crossed, the individual
adopts the information, and this decision remains constant throughout the simulation. In reality,
the individual’s threshold may dynamically adjust. For instance, exposure to multiple sources of
information demands alignment with their evolving beliefs, or changes in the opinions of their social
connections could lead to a change in threshold. Thus a node becomes active if the fraction of its active
neighbors exceeds a certain threshold.

Let {B1, B2 · · · Bn} be the different blocks formed around the influencers. Let AP(n, Bi) be the
activation probability function for a node n within a block Bi formed. The activation probability can be
represented as,

AP(n, Bi) = f (X, Y, Zn) (8)

AP(n, Bi) =
NodeCentrality× AwarenessLevel × BlockSize

NormalizationFactor
(9)

where X denotes the node being in the aware state, Y denotes the size of the cluster, Zn denotes the
centrality of the node. The activation probability increases with node centrality and awareness.

Each node in the network is associated with an awareness level, representing the amount of
information they have acquired about the topic being spread. This awareness level can vary from
node to node. The spread of information occurs through interactions between nodes in the network.
Nodes with higher awareness levels are more likely to influence their neighbors and propagate the
information further. Nodes may have different thresholds for adopting or transmitting information
based on their awareness levels. For example, a node with low awareness may require more exposure
to the information before adopting it, while a node with high awareness may quickly adopt and
transmit the information.

The normalization factors ensure that the result is in a meaningful range of {0, 1} [49]. The
generating function for activation probability within a block represents the probability distribution of
the number of nodes activated within the block. Let zk

i be a variable related to the activation probability
of kth node within block Bi. The generating function F(zi) for diffusion within block Bi is computed as
[50],

F(zi) =
∞

∑
k=0

AP(k,Ci)
× zk

i (10)
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where AP(k,Bi)
represents the probability that there are k activated nodes within block Ci and zk

i variable
capturing the activation probability within block Bi.

Considering the {B1, B2 · · · Bn} be the different blocks formed around the set of influencers
nodes, we can extend this approach to define activation probabilities and generate functions for each
block. The overall generating function for the entire multilayer network can then be expressed as a
combination of the individual generating functions for each block as,

FGm(z) = F1(z1)× F2(z2)× · · · Fl(zl) (11)

By focusing on each block individually, we compute the activation probability function according
to the specific characteristics and dynamics within the block. Modeling diffusion within each
block individually recognizes and accounts for the variations in activation probability across blocks.
Considering each block in isolation enables the inclusion of block-specific factors in the activation
probability function. The Algorithm 5 illustrates the same.

Algorithm 5 Activation Probability and Generating Function for Blocks in a Multilayer Network

1: Input: Multilayer network (Gm) with blocks b1, b2, . . . , bl
2: Output: Activation probability and generating function for each block
3: for i = 1 to l do
4: Initialize block-specific parameters
5: Calculate intrinsic node characteristics X for each node in bi
6: Calculate block-specific properties Y for bi
7: Calculate social influence and connectivity features ZN for each node in bi
8: Activation Probability:
9: Calculate activation probability function APactivation(n, bi) = f (X, Y, ZN)

10: Generating Function:
11: Parameterize the activation probability as zi = α · APactivation(N, bi)
12: Calculate generating function Fi(zi) = ∑∞

k=0 APk,bi
zk

i
13: Store Fi(zi) for blocks bi
14: end for
15: Overall Multilayer Diffusion:
16: Combine individual generating functions for all clusters
17: FGm(z) = F1(z1)× F2(z2)× · · · × Fn(zn)
18: return Activation probabilities and generating functions for all blocks, FGm(z)

The analysis of the speed and extent of information dissemination in a network is contingent
upon understanding of the spread rate. The spread rate is defined as the rate at which the influence
propagates through the network, measured as the number of new activations per unit of time. Thus,
we calculate the spread rate through the nodes within the block using the activation probability as

SpreadRate, R(t) =
n

∑
i=1

APactivation(n, bi)× Fbi
(z) (12)

4. Experimental Study and Discussion

The experimental setup progresses with identifying the influencers from the heterogeneous
networks and the formation of blocks around the influencers. As discussed, the experimentation
progresses with validation of the block formation in two major contexts of research, namely Information
spread and Link prediction. We demonstrate two case studies, each related to information spread
using block formulation and Link prediction among blocks in heterogeneous complex networks, to
validate

1. The link prediction between the blocks compared to the current state-of-the-art.
2. The information spreads within a block compared against the non-block network, especially during

the spread of rumors.
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4.1. Analysis of Link Prediction between the Blocks

The future links between two blocks depend on the strength of the interconnections between
the overall nodes of one block and the overall nodes of another block. The strength is highest when
every node of one block connects to every node of the other block. Since the underlying network is a
directed network, the strength of the interconnection has both magnitude and direction. The analysis
of the speed and extent of information dissemination in a network is contingent upon understanding
of the spread rate. The spread rate is defined as the rate at which the influence propagates through the
network, measured as the number of new activations per unit of time. Thus, we calculate the spread
rate through the nodes within the block using the activation probability as

SpreadRate, R(t) =
n

∑
i=1

APactivation(n, bi)× Fbi
(z) (13)

5. Experimental Study and Discussion

The experimental setup progresses with identifying the influencers from the heterogeneous
networks and the formation of blocks around the influencers. As discussed, the experimentation
progresses with validation of the block formation in two major contexts of research, namely Information
spread and Link prediction. We demonstrate two case studies, each related to information spread
using block formulation and Link prediction among blocks in heterogeneous complex networks, to
validate

1. The link prediction between the blocks compared to the current state-of-the-art.
2. The information spreads within a block compared against the non-block network, especially during

the spread of rumors.

5.1. Analysis of Link Prediction between the Blocks

The future links between two blocks depend on the strength of the interconnections between the
overall nodes of one block and the overall nodes of another block. The strength is highest when every
node of one block connects to every node of the other block. Since the underlying network is a directed
network, the strength of the interconnection has both magnitude and direction. The different flavors of
complex network datasets from the social, biological, and ecological domains to cover different sets of
characteristics are considered. Social datasets usually exhibit dense and balanced characteristics. The
Biological dataset, on the other hand, is less dense and slightly imbalanced. The Ecological dataset
often exhibits sparse and imbalanced characteristics. Density indicates more information flow and
balance implies even density across the network. Both these characteristics affect the link prediction.
Table 6 summarises the datasets’ details.

5.1.1. Identifying Influencers

The experimentation is initiated by identifying the influencers and forming the block around
them. We start by identifying the rank of the nodes from the multilayer networks. The average rank
value for the nodes in a network converges to 1. We pick those nodes exhibiting higher rank value
manually until there is a sudden dip in their value, and categorize them as influencers. This is done
using the Steps 4, 5, 6 of Algorithm 1. Table 2 shows top influencers along with the rank values of the
nodes and the layers computed out of the dataset.
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Table 2. Snapshots of a few influencers identified from the datasets.

Coll-Msg Arabidopsis Venetie Wainwright Kaktovi
57.901003 301.720895 2.36527 6.432528 4.2054
57.835896 52.246835 2.287706 5.601206 3.373879
48.207632 50.270275 2.228333 5.066489 3.298377
41.603781 46.246756 2.160444 4.502255 3.014692
39.662304 42.390381 2.002166 4.274835 2.791716

5.1.2. Building the Blocks

For the block formation, we use the clustering coefficient CCv using the Equation 4 to find the
nodes v that have the strongest local property among all the influencers’ neighbors, Neigh(I). For all
Neigh(v), we compute the correlation with the influencers using the equation 5. For the experimental
setup, the adjustable parameters α, β were assigned values of 0.85 and 0.15, respectively. Using 0.85 as a
threshold focuses on strong positive relationships, while 0.15 filters out weak or negative relationships.
We continue the same process with other nodes that are neighbors of the influencers, thus forming the
blocks as discussed in steps 4, 5, 6 of Algorithm 3. Table 3 exhibits a snapshot of the blocks formed
around the influencers and their size, which forms the basis for interblock link prediction.

Table 3. Five blocks formed and its sizes in multilayer networks.

SNAP Arabidopsis Katkovi Wainwright Venetie
BlockID Size BlockID Size BlockID Size BlockID Size BlockID Size

42I 3227 33X 7779 73K 223 140A 129 123M 411
632A 54 2100X 16 94N 39 141T 23 149J 36
393G 128 402A 7 43K 55 133V 34 125T 119
402A 19 5X 171 79D 89 98L 3 153O 6
728A 62 1176X 160 55V 12 197D 6 86L 28

5.1.3. Link Prediction between the Blocks

Once the blocks are formed, the next step is to predict the links between the blocks using the
Algorithm 4. Table 4 exhibits the probability of future links. The block-based approach to predict
the links between the blocks exploited block structure and the strength of the relationships between
dissimilar block pairs by extracting insights into the network structures, nature of the links, and
heterogeneity information and aggregating them at the block level, thus reducing the computational
complexity to polynomial time, making it suitable to scale large networks. The higher the probability
values, the higher the chances of future link occurrences.

The proposed method of link prediction between the blocks is evaluated for its efficacy. To this
end, we removed 10% of the existing links arbitrarily from the network and assessed how the model
predicted these removed links. This is a standard approach adopted for link prediction in the literature.
Our first goal in measuring efficacy is the model’s correctness. Therefore, we use Accuracy as a metric.
However, accuracy fails for unbalanced datasets and is not sufficient for all scenarios. Precision focuses
on the positive predictions’ reliability and, hence, can handle imbalances in the dataset. The AUC-ROC
is used to distinguish between positive and negative links across various threshold settings. Our
approach is compared against non-block-based link prediction. Table 5 compares the results of the
accuracy of link prediction with our block-based approach over the non block approach.
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Table 4. Predicting the link between the blocks.

Dataset BlockID(b1) BlockID(b2) Probabilityo f Links

SNAP College MSG

494D 492D 0.857143
402A 400A 0.666667
402A 431A 0.5
402A 728A 0.5
402A 632A 0.5

Arabidopsis Genetic Layer

33X 5X 0.425
2100X 1577X 0.543
2100X 5360X 0.519
2100X 2305X 0.325
2100X 375X 0.225

Alaska Katkovi

73K 43K 0.5333
73K 94N 0.5033
73K 79b 0.335
73K 55V 0.3033
73K 45W 0.234

Alaska Wainwright

123I 133U 0.55556
141T 125V 0.45455
141T 69Z 0.27778
141T 198E 0.27778
141T 178P 0.27778

Alaska Venetie

123m 137U 0.5234
123m 86l 0.4142
123m 137d 0.3891
123m 175J 0.3185
123m 130J 0.2582

5.1.4. Observations

The block-to-block approach exploited the block structure and the strength of the relationships
between dissimilar block pairs by extracting insights into the network structures, nature of the
links, and heterogeneity information and aggregating them at the block level, thus reducing the
computational complexity to polynomial time, making it suitable to scale large networks. The results
demonstrate the capability to identify numerous potential links through block modeling that other
methods could not detect. It is observed that the network’s structure and dynamics are crucial in the
link prediction process.

5.1.5. Evaluation

The proposed approach is compared against the current state of the art using Accuracy, Precision
and AUC- ROC curve. It is observed that block-to-block link prediction could predict the links between
the dissimilar nodes nearly 30% more accurately compared to the link prediction approach that
considered the entire network. This is tabulated in Table 5. To summarize, a close connection between
the block-block link prediction and the likelihood estimation is established based on a binomial
distribution. This allowed us to draw upon the maximum likelihood estimation to predict future links.
The block model served as a strong foundation to build the probabilistic model for inter-block-based
link prediction. This approach is a hybrid approach, considering the global and local significance and
the directionality aspect of the network. Other hybrid approaches are restricted only to similarity-based
techniques, while our approach exploits network structures, directionality, heterogeneity and builds a
probabilistic model for predicting the directed links more accurately.
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Table 5. Comparison of block-to-block link prediction with non-block network.

Block to Block Link prediction Without Block Model
# Datasets Accuracy Precision Recall Accuracy
1 SNAP College MSG 0.942 0.91 0.893 0.502

2 Arabidopsis Genetic 0.901 0.891 0.912 0.537
3 Alaska Venetie 0.743 0.886 0.897 0.352
4 Alaska Wainwright 0.758 0.876 0.896 0.302
5 Alaska Katkovi 0.713 0.884 0.892 0.283

5.2. Analysis of Information Diffusion Using Blocks

5.2.1. Dataset

Two different multilayer datasets, whose details are illustrated in Table 6 are used for analysis of
information spread in the network.

- Higgs multiplex: The Higgs dataset, built from Twitter by observing the spreading process on
4th July 2012 [51]. The spreading process is observed before, during, and after the diffusion.
The dataset contains 456626 nodes and 14855842 edges. It is a two-layer network. The layers
capture the interactions on Twitter and correspond to the different actions taking place in the
social networks. The data format is userA userB timestamp interaction, and both layers use the
same nodeID.

- Citation-network: The dataset consists of citation data from indexing databases such as DBLP,
ACM, MAG (Microsoft Academic Graph) [52]. The dataset consists of 629,814 articles and 632,752
citations.

Table 6. Summary of Dataset for Information Diffusion.

Networks Vertices Edges Layers
DBLP 12600 49700 4

HIGGS 302975 449827 2

5.2.2. Identifying the Influencers

As discussed, the influencers are identified from the network using the Algorithm 1 as shown in
Table 7. The blocks are formed around the influencers using the Algorithm 3. The nodes exhibiting
higher affinity towards the influencer are added into a block. The blocks thus formed along with the
size are illustrated in Table 8.

Table 7. The mPR computation to identify influencer node.

Dataset NodeID(vi) Layer(Li) mPR(vi)
24562 L1 1.456

125205 L1 1.42

Higgs 10030 L2 1.378
250010 L2 1.24

...
...

...
213 L1 0.00

354010 L1 1.895
302010 L1 1.72

Citation Networks 10028 L1 1.401
512 L1 1.400

...
...

...
5120 L2 0.002
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Table 8. Blocks formed and its sizes in multilayer networks.

Higgs Citation
BlockID Size BlockID Size

A12 108 A32 126
B3 84 B4A 89
H4 38 CD1 32

H15 102 F38 92
|r|F12 40 GH1 42

5.2.3. Observation

To measure the extent of information spreading, we tracked the number of influenced nodes,
observed the spread of influence over time. By calculating the spread rate, which involved dividing the
number of influenced nodes by the network volume, we could quantify the speed at which information
spread. The detailed spread rate, the speed at which information reaches the entire network, and
the time required for convergence for the selected network with different seed(k) are computed and
tabulated, and the same is shown in Table 9.
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Figure 4. The diffusion analysis corresponds to Single and Triangle Edge with in cluster. (a) Higgs
multiplex having Single Edge with in cluster, (b) Higgs multiplex having triangle Edge with in cluster,
(c) Citation Networks having Single Edge with in cluster, (d) Citation Networks having triangle Edge
with in cluster.
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Table 9. The spread rate and execution time(∆t) of the algorithm for different dataset with varying
seed volume for m-PageRank validation.

Networks Seed(K) Iteration Spreadrate Time,∆t
DBLP 25 100 0.6932 52msec
DBLP 50 88 0.7642 44msec
DBLP 80 71 0.7811 41msec
DBLP 120 54 0.84 36msec

HIGGS 25 100 0.5432 114msec
HIGGS 50 91 0.6420 90msec
HIGGS 80 74 0.7511 72msec
HIGGS 120 48 0.7601 65msec

The efficacy of the block model for information spread is compared against the network with
blocks (NB) and network without any blocks (NN). The presence of blocks significantly impacts
the pace of diffusion in networks, particularly concerning epidemic propagation. These coefficients
measure the level of clustering within a network and directly influence diffusion rates. Block formation
in network facilitates or hinders epidemic spread, depending on variables like transmission dynamics
and network configuration. Block formation across multiple layers affects diffusion by accounting
for interactions among these layers, wherein the formation of clusters of interconnected nodes plays
a pivotal role in shaping the speed and extent of diffusion across the network. Figure 5 exhibits the
diffusion rate in a network with blocks spread between layers and non-block networks. We observe
that the diffusion rate is higher in the non-block network for both datasets under comparison.
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Figure 5. The relationship between Block size and diffusion rate.

6. Conclusion and Future Scope

In this study, we presented a novel approach to identify the influencers in a directed heterogeneous
multilayer network. Our approach of identifying the influencers ensured interlayer similarity and
layer weightage, as opposed to the current state-of-the-art of finding the influencers in the network.
The influencers thus identified formed the basis for the novel block formation algorithm that resulted
in the blocks. The blocks took into account multiple characteristics, allowing us to seamlessly integrate
the information from various layers. We then progressed with the block analysis by addressing the
link prediction and the information dissemination through these blocks. Unlike other techniques that
use layer- or attribute-based metrics, the block-based approach is superior because it combines the
information from multiple layers, interplay between layers, and dominant attributes. The utilization of
the layer weight and the node rank information, enhanced the prospect of finding the "real" influencers
with a reduced computational complexity of O(|L| × |V|2). The ability of the block formation algorithm
to capture the heterogeneity of nodes at the edge and the layer level helped in predicting links that
otherwise could have gone unnoticed between the dissimilar nodes. The findings also reveal that the
blocks hinder information dissemination and reduce spread volume, particularly in the context of
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epidemic spread. These findings provide valuable insights into the complex dynamics of information
diffusion and link prediction in heterogeneous networks.
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