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Abstract: This paper thoroughly assesses the ARM and RISC-V architectures in the context of High-
Performance Computing (HPC). It includes an analysis of Docker, Kubernetes, and KVM virtualization
integration. Our study aims to evaluate and compare these systems’ performance, scalability, and practicality
in a general context and then assess the impact that might have on special use cases, like HPC. ARM-based
systems exhibited better performance and seamless integration with Docker and Kubernetes, underscoring
their advanced development and effectiveness in managing high-performance computing workloads. On the
other hand, despite their open-source architecture, RISC-V platforms presented considerable intricacy and
difficulties in coordinating with Kubernetes, which hurt their overall effectiveness and ease of management.
The results of our study offer valuable insights into the practical consequences of implementing these
architectures for HPC, highlighting ARM’s preparedness and the potential of RISC-V while acknowledging the
increased complexity involved and significant trade-offs at this point.
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1. Introduction

HPC has played a leading role in pushing technological improvements, particularly in scientific
research, weather forecasting, financial modeling, and other sectors that rely on extensive
computational capabilities. Throughout history, the x86 architecture, introduced by Intel and AMD,
has been the prevailing force in the field of HPC. The advancement of this design, characterized by
ongoing enhancements in computational capability, parallel processing, and energy efficiency, has
facilitated the creation of some of the most formidable supercomputers globally. The Summit
supercomputer at Oak Ridge National Laboratory and the Frontera at Texas Advanced Computing
Center illustrate the exceptional performance of x86 architecture in HPC.

Nevertheless, the increasing need for computational capacity, along with the necessity for
energy-saving solutions, have stimulated interest in alternate architectures. ARM, initially developed
for energy-efficient use in mobile devices, has gained attention in HPC due to its energy efficiency
and expanding processing capabilities. ARM debuted in the HPC field by introducing the Fujitsu
A64FX processor in the Fugaku supercomputer. This processor has achieved remarkable success in
terms of both performance and power efficiency, leading it to secure the top position on the TOP500
list of the world’s most powerful supercomputers.

In addition to ARM'’s increasing popularity, RISC-V, an open-source instruction set architecture
(ISA), has emerged as a highly attractive option for HPC applications. RISC-V was created for
academic and research reasons. It provides the advantage of customization and innovation, enabling
developers to adapt the architecture to meet specific HPC requirements. The HPC community has
shown great interest in the possibilities for customization and the advantages of an open-source
paradigm. Nevertheless, the intricate nature of incorporating RISC-V into contemporary software
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ecosystems, including containerization technologies such as Docker and orchestration tools like
Kubernetes, poses distinct difficulties.

The introduction of containerization technologies like Docker and Kubernetes is fundamentally
transforming the management and deployment of HPC workloads. These technologies provide the
capacity to quickly move and adapt applications to different computer environments while
improving efficiency. By integrating these technologies with ARM and RISC-V platforms, HPC can
achieve higher levels of performance and efficiency. However, combining these systems has
challenges, mainly due to the variances in architecture and varied levels of software support.

Bruhn et al. (2015) present a low-power, fault-tolerant heterogeneous computer featuring multi-
core CPUs, GPUs, and FPGAs for small satellite applications. The system’s x86 CPU allows for
extensive software compatibility in space environments. Integrating GPU and FPGA enhances
computational performance, achieving TFLOP-level processing power. Challenges include ensuring
radiation tolerance and safety-critical operations, previously unaddressed for x86 processors in space.
Future research could focus on further improving radiation tolerance and developing more robust
software ecosystems for space applications [1].

Reichenbach et al. (2018) explore the integration of FPGAs into Heterogeneous System
Architecture (HSA) compliant systems, addressing the challenge of interfacing FPGAs with CPUs.
The LibHSA 1P library simplifies this integration, allowing FPGA accelerators to utilize high-level
language toolchains. Demonstrations with image processors show significant performance
improvements. Problems include the lack of FPGA models in HSA standards and the complexities of
interfacing. Future work could aim to standardize FPGA models in HSA and further simplify FPGA-
CPU integration [2].

Feng et al. (2016) introduce HeteroSim, a simulator for heterogeneous CPU-FPGA systems. It
supports architectural exploration by simulating x86 multi-cores connected to FPGAs, allowing for
performance analysis and optimization of memory hierarchies. Challenges include the absence of
integrated simulators for system-level architectural exploration. Future research may enhance
simulation accuracy and extend the tool to support a broader range of architectures and applications
[3].

Chang et al. (2017) survey integrated heterogeneous systems and collaborative computing
techniques, focusing on CPU-GPU and CPU-FPGA systems. The paper evaluates OpenCL’s
effectiveness for programming these systems, highlighting limitations and suggesting future
programming languages. Problems include inadequate support for memory coherence and shared
virtual memory in current programming interfaces. Future research could improve programming
models to enhance collaboration between heterogeneous devices [4].

Mittal and Vetter (2015) review CPU-GPU heterogeneous computing techniques, discussing
workload partitioning and the design of CPU-GPU systems. They address performance and energy
efficiency challenges and review benchmark suites for evaluating such systems. Critical problems
include the complexity of optimizing workload distribution and the need for better performance
models. Future research may focus on developing more effective optimization techniques and
comprehensive benchmark suites [5].

Prongnuch and Wiangtong (2016) propose a performance evaluation of APIs and partially
reconfigurable hardware accelerators on heterogeneous computing platforms. The authors use the
Parallella single-board computer to compare matrix-vector multiplication performance across
different accelerators. They find PR hardware accelerators the most efficient for increasing data
processing. Challenges include optimizing API performance and managing hardware
reconfiguration. Future work could improve API efficiency and explore new applications for PR
hardware accelerators [6].

Rethinagiri et al. (2015) present platforms combining CPUs, GPUs, and FPGAs for high-
performance and embedded systems. These platforms achieve significant speed-ups and energy
savings compared to dual-device systems. Challenges include managing data transfers and
maximizing parallelism. Future research could optimize workload distribution and explore new
high-performance applications for trigeneous platforms [7].
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Kurth et al. (2017) introduce HERO (The Open Heterogenous Research Platform), a research
platform combining RISC-V cores on FPGAs with ARM host processors. HERO includes a
comprehensive software stack supporting OpenMP and enabling rapid exploration of heterogeneous
systems. Key challenges involve integrating and scaling PMCA (Programmable ManyCore
Accelerators) architectures. Future research could expand HERO's capabilities and apply it to more
diverse application domains [8].

Parnassos et al. (2017) propose a programming model that supports approximation semantics in
heterogeneous architectures comprising CPUs, GPUs, and FPGAs. The model allows for dynamic
performance-quality trade-offs. Challenges include ensuring seamless execution and effective
approximation control. Future research may refine the approximation model and expand its
application to other domains [9].

Lopez-Novoa et al. (2015) review performance tools for heterogeneous systems, focusing on
GPUs and Intel’s Xeon Phi. They describe development frameworks and performance models for
accelerator-based systems. Key issues include the need for more accurate simulators and
comprehensive performance tools. Future research could enhance performance modeling techniques
and develop more robust simulation tools for heterogeneous computing [10].

A notable study introduces a synergistic computing framework built on the Halide
programming model, designed to enhance performance in heterogeneous systems by leveraging both
CPUs and GPUs. The framework addresses critical issues like data coherence, workload partitioning,
and job dispatching. Despite significant performance gains, the complexity of writing cooperative
Halide programs remains challenging, necessitating further simplifications and optimizations in
future research [11]. FPGA implementations have shown significant potential in portable and energy-
efficient applications. An innovative solution for portable DNA sequencing using a base calling
hardware architecture based on RISC-V demonstrated a 1.95x energy efficiency improvement over
x86 and 38% over ARM. Despite these advancements, further miniaturization and computational
load reduction are required for broader adoption [12].

Another study explores the integration of novel computing architectures, including ARM and
RISC-V CPUs and FPGAs, into HPC education at Georgia Tech. The collaborative workflow
highlighted the benefits and challenges of integrating these architectures into educational curricula.
Key sticking points included the complexity of managing diverse hardware and software
environments. Future research should develop more streamlined tools and methodologies to
facilitate the integration of heterogeneous computing architectures in educational settings [13]. An
FPGA-based research platform, HEROv2, combines RISC-V cores with ARMv8 or RV64 host
processors, enabling significant application speedups. HEROv2’s complexity suggests a need for
further simplifications in hardware-software integration. Future research could enhance the
platform’s compiler capabilities and expand its application range [14].

PCS, a productive computational science platform, aims to unify multiple programming models
for cluster-scale heterogeneous computing, emphasizing FPGA acceleration for graph-centric
workloads. The platform presents significant advancements but faces challenges in optimizing FPGA
designs for specific applications and ensuring compatibility with diverse hardware. Future research
should focus on developing more adaptable FPGA models and enhancing integration [15].
Combining multiple CPU and CGRA cores is explored, presenting implementation results for digital
audio and machine learning applications. Despite the promising results, the absence of commercial
CGRAs poses challenges regarding widespread adoption. Future research should aim at improving
performance metrics and exploring commercial applications of CGRA-based architectures to validate
their practical viability [16].

Heterogeneous computing utilizing FPGAs has been demonstrated to significantly reduce the
effort required to integrate FPGAs into existing systems. The IP library, LibHSA, simplifies FPGA
integration into HSA-compliant systems, enabling user-space memory access and low-latency task
dispatch. Challenges remain in optimizing FPGA designs for specific applications and ensuring
compatibility with diverse hardware [17]. The study on accelerating elliptic curve cryptography on
NVIDIA Tegra X2 embedded GPU platforms achieved significant speedups in cryptographic
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operations, outperforming ARM CPUs and FPGA implementations in terms of power efficiency. The
reliance on specific hardware platforms limits the generalizability of the results, suggesting future
research should explore broader hardware compatibility and further optimization techniques [18].

Heterogeneous computing is crucial in Al and Big Data applications within high-energy physics.
Integrating GPUs, FPGAs, and other specialized processors presents challenges in performance
optimization and energy efficiency. Future research should focus on developing unified frameworks
and tools to manage heterogeneous systems effectively, ensuring seamless integration and optimal
resource utilization across various computational tasks [19]. The FLIA architecture abstracts
heterogeneous computing for mobile GPUs and FPGAs, supporting task partition, communication,
and synchronization. Despite impressive performance gains, challenges include the complexity of
developing applications for heterogeneous architectures and managing inter-processor
communication. Future research should simplify the development process and enhance the proposed
architecture’s scalability for broader applications [20].

Another significant contribution is the development of Molecule, a serverless computing system
utilizing heterogeneous computers, including general-purpose devices like Nvidia DPUs and
domain-specific accelerators such as FPGAs and GPUs. By leveraging heterogeneous hardware,
Molecule significantly improves function density and application performance. Key innovations
include the XPU-Shim for multi-OS systems and vectorized sandbox for hardware abstraction.
Despite the performance improvements, challenges remain in optimizing startup and
communication latency. Future research should refine these optimizations and expand the system’s
compatibility with additional hardware types [21].

Energy efficiency is another critical focus area. A Xilinx Zynq MPSoC device approach
demonstrates significant energy savings and performance improvements by simultaneously
executing tasks and applying adaptive voltage scaling. Integrating GPUs and FPGAs as specialized
hardware units showcases the potential of heterogeneous computing for energy-efficient
applications. However, optimizing the balance between performance and energy consumption across
different tasks remains challenging. Future research should enhance the adaptability of voltage
scaling techniques and explore additional use cases for reconfigurable MPSoCs [22].

Heterogeneous computing also plays a crucial role in deep learning. Combining FPGAs and
GPUs for accelerating deep neural networks in embedded systems demonstrates that direct hardware
mapping of CNNs on FPGAs outperforms GPU implementations regarding energy efficiency and
execution time. However, the resource-intensive nature of FPGA-based implementations necessitates
a hybrid approach. The study shows that heterogeneous FPGA-GPU acceleration reduces energy
consumption and latency compared to GPU-only solutions. Challenges include managing
communication overheads and optimizing the division of tasks between FPGAs and GPUs. Future
research should focus on refining hybrid acceleration techniques and expanding the range of
supported neural network architectures [23].

Security concerns in heterogeneous systems are also highlighted. A survey on electrical-level
attacks on CPUs, FPGAs, and GPUs discusses how vulnerabilities in individual components can
affect the overall security of heterogeneous architectures. Ensuring the security of multitenant
environments and developing robust defense mechanisms are vital challenges. Future research
should investigate the potential for cross-component attacks in heterogeneous systems and develop
comprehensive security frameworks to mitigate these risks [24].

The demand for computing power and the diversity of computational problems have led to
exploring the non-uniform decomposition of data domains to improve fluid flow simulation
performance on hybrid architectures. Evaluations of systems combining x86 CPUs with GPUs and
ARM CPUs with FPGAs show performance improvements of up to 15.15% with non-uniform
partitioning. Despite the benefits, challenges include managing the complexity of data decomposition
and optimizing the collaboration between different hardware components. Future research should
refine data partitioning techniques and expand the applicability of collaborative execution methods
to other computational problems [25].
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Scheduling frameworks for heterogeneous computing platforms combining CPU and FPGA
resources effectively increase performance and reduce energy consumption. Extending a high-level
C++ template-based scheduler to the Xeon+FPGA platform demonstrates performance improvements
of up to 8x compared to CPU-only solutions. Key challenges include optimizing the scheduler for
dynamic and adaptive task allocation. Future research should enhance the framework’s adaptability
to different application domains and explore additional HPC benchmarks to validate its effectiveness
[26]. The study on accelerating coupled-cluster calculations with GPUs presents an algorithm
adapted for heterogeneous computing platforms with multicore CPUs and GPUs. The authors
demonstrate significant speedups on pre-exascale and exascale supercomputers. Challenges include
managing the limited memory space of GPUs and minimizing CPU-GPU data transfers. Future
research should optimize data tiling strategies and expand the algorithm’s applicability to other
computational chemistry problems [27].

Another study reviews discussions from critical workshops on heterogeneous computing,
highlighting the integration of multicore CPUs with GPUs, FPGAs, and Intel Xeon Phis in HPC
clusters. The workshops emphasized challenges such as maximizing efficiency, resource utilization,
and energy optimization. Future research should aim to develop specialized programming
environments and tools to address these challenges and foster innovation in heterogeneous
computing [28]. The development of Xar-Trek, a compiler and runtime framework, allows execution
migration between heterogeneous ISA CPUs and FPGAs at run-time. By compiling applications for
multiple CPU ISAs and FPGA acceleration, Xar-Trek enables dynamic and transparent migration.
Challenges include optimizing scheduling policies and managing diverse hardware configurations.
Future research should focus on refining scheduling heuristics and expanding the framework’s
support to additional hardware architectures for broader applicability [29].

A historical perspective on heterogeneous computing highlights the complexity of integrating
diverse processors like RISC, GPUs, TPUs, and FPGAs. It emphasizes the need for advanced
compilers to map programming languages to various hardware platforms while ensuring optimal
performance. Key challenges include maintaining compatibility and efficiency across heterogeneous
systems. Future research should focus on developing robust compiler technologies and enhancing
the interoperability of different processing units to exploit the potential of heterogeneous computing
[30] entirely.

Advancements in heterogeneous computing have revolutionized HPC platforms, with
significant developments in both hardware and software. In their paper, Wyrzykowski and Ciorba
(2022) present algorithmic and software development advancements, emphasizing the need for novel
programming environments to harness the potential of heterogeneous systems. They note the
increasing adoption of GPU accelerators and highlight the challenges in achieving performance
portability and energy efficiency across diverse architectures. Future research could explore further
integrating new accelerator technologies and improving programming models to enhance efficiency
and performance [31].

In their study, Hagleitner et al. (2021) discuss how heterogeneous computing systems are crucial
for complex scientific discovery workflows. They highlight the transition from homogeneous to
heterogeneous architectures as a response to the limits of Moore’s law, with a focus on sustainable
computing through domain-specific hardware. However, the increased complexity in system design
and the need for better integration of multidisciplinary workflows are significant challenges.
Potential future research could aim to optimize these systems’ design to balance performance and
energy efficiency [32].

Mavrogeorgis (2021) addresses the challenges of heterogeneous migration between x86 and
ARM machines, focusing on techniques to simplify the migration process. The research highlights
the significant overhead induced by transforming the execution state during migration, which offsets
the benefits. The goal is to create a uniform address space to simplify migration, but performance and
energy efficiency remain problematic. Future research could explore more efficient methods of state
transformation and address space unification [33].
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Thomadakis and Chrisochoides (2022) introduce a runtime framework for performance portable
programming on distributed heterogeneous systems. Their work demonstrates substantial
performance improvements and scalability by hiding hardware idiosyncrasies and optimizing
resource utilization. Despite these advancements, programming such architectures remains
challenging due to their increased complexity. Future research could focus on further reducing this
complexity and enhancing the portability of performance across diverse systems [34].

Nikov et al. (2020) present a methodology for simultaneous heterogeneous computing using a
quad-core ARM Cortex-A53 CPU and FPGA accelerator. They achieve significant performance
improvements through a heterogeneous scheduler that optimally distributes tasks. However,
integrating diverse computing units introduces task scheduling and synchronization complexity.
Future research could aim to develop more sophisticated scheduling algorithms to enhance
performance and energy efficiency further [35].

In their paper, Fuentes et al. (2022) discuss the introduction of heterogeneous computing in
undergraduate education using DPC++. They highlight the importance of teaching modern
computing architectures, including GPUs and FPGAs, to bridge the gap between academic
knowledge and industry requirements. The challenge lies in simplifying complex hardware concepts
for students. Future research could explore more effective teaching methods and tools to improve
student understanding and engagement in heterogeneous computing [36].

Thomadakis and Chrisochoides (2023) present a runtime support framework for performance
portability on heterogeneous distributed platforms. Their framework significantly improves
performance and scalability, particularly in distributed memory environments. However, achieving
efficient inter-node communication among diverse devices remains a challenge. Future research
could further focus on optimizing communication protocols and exploring new abstractions to
enhance performance portability [37].

Kavanagh et al. (2020) explore energy-aware self-adaptation for applications on heterogeneous
parallel architectures. They develop a framework that automates application configuration and
deployment to improve energy efficiency. Despite these advancements, managing the complexities
of heterogeneous devices and achieving consistent energy savings remains challenging. Future
research could investigate more adaptive algorithms and techniques to optimize energy usage
dynamically [38].

Yu etal. (2022) developed a methodology to characterize uncertainties in Earth system modeling
with heterogeneous many-core architectures. They address the challenges of non-bit-for-bit
reproducibility and numerical perturbations in simulations, which can blend with coding errors.
Their methodology provides a way to distinguish platform-induced perturbations from software
bugs, enhancing model reliability. Future research could focus on refining and applying this
methodology to a broader range of applications to ensure robust modeling on new architectures [39].

Cheng et al. (2022) describe constructing and applying a large-scale ARM computing cluster for
high-energy physics experiments. They highlight the cost-effectiveness of ARM processors compared
to traditional x86 processors. However, they also note the performance limitations of ARM
processors, especially in memory-bound operations. Future research could explore optimizing ARM-
based clusters for specific scientific applications and reducing reliance on single-chip architectures to
enhance performance [40].

In their study, Kamaleldin and Gohringer propose AGILER, a tile-based many-core architecture
for RISC-V processors designed for adaptability and modularity in heterogeneous computing
environments. The architecture supports 32-bit and 64-bit RISC-V ISAs with scalable network-on-
chip communication, enabling high system scalability. Evaluations on Xilinx FPGAs showed scalable
performance up to 685 MOPS for 32-bit tiles and 316 MOPS for 64-bit tiles, with reconfiguration times
of 38.1 ms per tile. The key challenges include managing the complexity of modularity and ensuring
efficient reconfiguration. Future research could focus on optimizing the reconfiguration manager and
expanding the architecture’s application domains [41].

In their survey, Nicholas, Gui, and Saqib analyze SoC platform security across ARM, Intel, and
RISC-V architectures, highlighting RISC-V’s potential for customizable security extensions. They
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discuss various hardware and software security attacks and compare RISC-V’s capabilities to
traditional architectures. The tradeoff between performance and security remains a significant
challenge. They suggest further research into enhancing RISC-V’s security features without
compromising performance, mainly focusing on developing robust security frameworks and
exploring new attack vectors to improve defense mechanisms [42].

Wang and colleagues introduce xBGAS, an extension to the RISC-V ISA aimed at enhancing
HPC by enabling direct access to remote shared memory. This reduces inter-process communication
overhead by 69.26% and achieves an average 21.96% performance gain. Challenges include ensuring
seamless integration with existing software infrastructures and maintaining low latency in data
access. Future research might explore further optimization of the xXBGAS design and its application
in various HPC scenarios, potentially expanding its adoption in large-scale distributed systems [43].

Tornero and his team describe an open-source FPGA platform for exploring heterogeneous
many-core architectures, focusing on integrating custom accelerators with standard RISC-V cores.
The platform’s coherent shared memory model enhances programmability and communication
efficiency. Preliminary results indicate significant benefits from using systolic accelerators. The main
challenges are optimizing the network and memory subsystems and managing resource usage.
Future work could involve refining the platform to support more complex accelerators and
improving the coherence mechanisms to enhance overall system performance [44].

Goémez-Sanchez et al. examine using RISC-V in genomics-based workloads, benchmarking the
Variant-Interaction Analytics use case. They highlight the potential of RISC-V for HPC in large-scale
scientific environments. The study reveals challenges in achieving comparable performance to x86
architectures, particularly in data processing and system integration. Future research should
optimize RISC-V implementations for specific scientific applications, improve performance and
scalability, and address integration issues to facilitate broader adoption in genomics and other data-
intensive fields [45].

Stoyanov, Kakanakov, and Marinova developed a secure heterogeneous RISC-V system
featuring a protection-dedicated core for establishing root-of-trust and monitoring execution. This
architecture enhances system security by providing hardware mechanisms for control and
monitoring. The primary challenge lies in integrating these security features without significantly
impacting performance. Future research could explore advanced security protocols and mechanisms
to strengthen system integrity further and optimize the balance between security and performance
in heterogeneous RISC-V systems [46].

Gonzalez and colleagues present a heterogeneous RISC-V SoC, integrating high-performance
out-of-order cores, energy-efficient in-order cores, and specialized accelerators in a low-power 22nm
FinFET process. The SoC achieves substantial performance and efficiency gains, with up to 286x
MOPS/W improvement. Challenges include managing the complexity of integrating diverse
components and optimizing power consumption. Future research could focus on refining the
integration process, exploring new accelerator designs, and reducing power consumption while
maintaining high performance across varied workloads [47].

Kamaleldin, Hesham, and Gohringer propose a modular RISC-V-based many-core architecture
for FPGA accelerators designed for flexibility and scalability. The architecture features multiple
processing clusters connected via a network-on-chip, supporting dynamic and partial
reconfiguration. Evaluations demonstrate scalable performance and memory bandwidth. Key
challenges include managing reconfiguration complexity and ensuring efficient intra-cluster
communication. Future research might explore enhancing the flexibility of reconfiguration processes
and expanding the architecture’s applicability to a broader range of applications, improving
performance and energy efficiency [48].

Jia and colleagues explore a programmable heterogeneous microprocessor based on bit-scalable
in-memory computing (IMC), addressing energy and throughput trade-offs in accessing data. The
architecture integrates a 590-Kb IMC accelerator, digital near-memory computing (NMC) accelerator,
and RISC-V CPU. It achieves high energy efficiency and performance in deep neural network tasks.
Challenges involve maintaining computation signal-to-noise ratio (SNR) and ensuring robust
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hardware and software integration. Future research could improve IMC and NMC integration,
enhance SNR, and extend the architecture’s application to more complex and varied workloads [49].

Docker and Kubernetes have been thoroughly covered in one of our previous papers [50]. The
only notable addition to this technology overview is that Kubernetes and Docker are still complicated
to work with on the RISC-V platform. We will cover this topic later in this paper.

This paper is organized as follows: in the next section, we’ll go through some basics of ARM and
RISC-V platforms and the installation process for Docker and Kubernetes. After those two sections,
we’ll discuss our experimental test and setup environment, followed by the performance evaluations,
discussion about performance and feasibility of being used by HPC environments, future works, and
conclusion.

2. ARM as a Platform for Docker and Kubernetes

ARM processors are increasingly used to deploy Docker and Kubernetes on Ubuntu because of
their energy efficiency, scalability, and cost-effectiveness. This is particularly advantageous in cloud
computing and edge contexts. ARM’s RISC architecture is highly efficient at processing high-
throughput workloads while consuming less power. This makes it an excellent option for running
containerized apps using Docker and orchestrating them with Kubernetes. These benefits are
especially noticeable when energy economy and cost-effectiveness are crucial, such as in extensive
cloud data centers and dispersed edge computing configurations.

Utilizing ARM processors with Docker on Ubuntu enables developers to generate compact and
adaptable containers capable of operating on many platforms, hence offering versatility in deploying
applications. The ARM architecture is compatible with multiple Linux distributions, such as Ubuntu,
making it a flexible choice for developers who want to utilize containerization technologies. Docker
is highly efficient on ARM processors because of their capacity to manage concurrent operations with
reduced energy requirements compared to standard x86 processors. Docker packages apps and their
dependencies into containers. Efficiency is paramount when implementing services that must be
scaled over several nodes, as shown in extensive cloud infrastructures or distributed networks [51].

Kubernetes boosts the functionality of ARM processors by effectively managing and
orchestrating Docker containers in a scalable manner. It enables the automatic deployment, scaling,
and management of application containers across groups of hosts, offering a framework that
guarantees the reliability and resilience of applications. Integrating ARM processors and Kubernetes
on Ubuntu provides a robust solution for delivering microservices and other cloud-native
applications necessitating comprehensive orchestration. Kubernetes’ capacity to scale and oversee
containers over a wide range of nodes, including those utilizing ARM processors, guarantees
effective deployment and management of applications, even in different environments [52,53].

Furthermore, researchers have conducted several experiments to investigate the integration of
Kubernetes with ARM processors to enhance performance and optimize resource consumption. An
example is research conducted on the KubCG platform, which showcased the effectiveness of a
dynamic Kubernetes scheduler in enhancing container deployment in clusters with diverse
architectures, such as those including ARM processors. The utilization of ARM processors in
managing containerized workloads using Kubernetes has demonstrated a notable decrease in job
completion time, highlighting the potential for enhanced efficiency. A different research study
emphasized the utilization of ARM-based fog computing platforms that employ Docker and
Kubernetes for effective data processing at the network edge, further confirming the appropriateness
of ARM processors in situations that need both scalability and low latency [54,55].

The combination of ARM processors, Docker, and Kubernetes is seen in the implementation of
distributed file systems, which are crucial for efficiently handling data over extensive clusters. Studies
have demonstrated that deploying distributed file systems such as CephFS and Lustre-ZFS on ARM-
based Kubernetes clusters can enhance the flexibility of data management and the dependability of
services. This is especially advantageous in contemporary data centers and cloud environments
requiring fast data transfer rates and reliable operations [56].
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Using Docker and Kubernetes on Ubuntu operating on ARM processors offers a resilient and
effective solution for contemporary cloud computing and edge scenarios. The combination utilizes
ARM'’s energy-efficient and scalable technology, Docker’s containerization capabilities, and
Kubernetes’ powerful orchestration to provide high-performance, cost-effective, and scalable
solutions for various applications. This is why cloud providers are partially switching to ARM-based
platforms for Kubernetes environments in their offering, as they offer excellent performance for the
vast majority of everyday applications while being more efficient than x86 platforms.

Deployment processes on the TuringPi2 platform were quite complex — that's down to our
hardware choice due to the lack of availability of Ampere-based servers, for example. But we had to:
e  Flash the image to the module using the TuringPi web interface (for RK1) or the Seeed Studio

Development Board Kit connected to an Ubuntu-based laptop with a specific Ubuntu release

and NVIDIA’s SDK Manager;

° Power on the module to enter the default installation;
e  Configure output on TuringPi to output from the module via HDML

TuringPi has HDMI output available, so we could use GUI if required. This is much more
convenient than using the USB serial console, which is easy to break physically on our RISC-V
platform.

2.1. Docker Deployment

The situation with Docker deployment on the ARM platform is straightforward. A set of Docker
packages is available in repositories for Ubuntu for ARM. Hence, the installation process for Docker
is as simple as issuing the following apt command on the Ubuntu Server:

apt -y install docker.io

Even if there were no packages, the compilation process for Docker isn’t a big challenge. It takes
a couple of hours, but Docker does work after it. After this, Docker containerization features are fully
available, feature-par with features available on the x86 platform. This also makes the deployment
experience on par with our experience for years on x86 platforms. Let’s now see if the same applies
to the process of deploying Kubernetes on the ARM platform.

2.2. Kubernetes Deployment

Kubernetes deployment has always been more involved than Docker deployment, which is
reasonable, as it's a much bigger platform. However, deployment on ARM closely resembles the
deployment process on x86 counterparts. The detailed installation procedure is available online [57].
With a few tweaks here and there, it’s the same for all our ARM platforms.

3. RISC-V as a Platform for Docker and Kubernetes

The RISC-V architecture has become increasingly popular in recent years because of its open-
source nature, which enables more customization and freedom in designing processors. This
architecture’s scalability and cost-effectiveness make it suitable for cloud computing, IoT, and edge
computing applications. However, there are several obstacles and constraints to the RISC-V story.
The first one we will mention is the very slow NVMe controller. Figure 1 clearly shows the difference
in performance between the NVMe controller on the TuringPI2 platform versus the RISC-V platform
with the same SSD:

Figure 1. NVMe SSD speed comparison, Turing RK1 vs SiFive platform.


https://doi.org/10.20944/preprints202408.0867.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 August 2024 d0i:10.20944/preprints202408.0867.v1

10

Operationally speaking, SiFive’s RISC-V platform has one big issue - it’s unable to boot from
NVMe - it only boots from microSD, which is much slower. For reference, we're talking about
50MB/sec cached reads and 1.51 MB/s buffered disk reads, which makes it unusable except for the
initial boot and a bit of configuration to make the platform use NVMe as an Ubuntu root partition
drive. Even the regular package deployment processes can become unusably slow if we were to go
down that route, which is not recommended. This would be a huge issue if we wanted to run
containers from a local disk.

Implementing Docker on RISC-V is reasonably seamless, thanks to the flexibility of Linux as a
platform, which serves as the foundation for Ubuntu and Docker’s containerization technologies.
Nevertheless, difficulties arise in the process of coordinating these containers using Kubernetes.
Kubernetes is essential for efficiently managing large-scale containerized applications commonly
found in cloud computing settings. Regrettably, there is no complete and officially endorsed version
of Kubernetes available for the RISC-V architecture, and there’s also a significant lack of available
RISC-V-compatible Docker containers with which to work. For example, there’s no official Ubuntu
RISC-V image available at the time of writing this paper. Therefore, the potential for implementing
Kubernetes in a production setting on RISC-V processors is significantly restricted [52,56].

The sole existing binary package of Kubernetes for RISC-V is version 1.16, providing solely
fundamental services. As a result of this constraint, certain sophisticated functionalities of
Kubernetes, including automatic recovery, scalability, and gradual upgrades, may not operate as
intended or necessitate substantial adjustments and customization. Furthermore, the absence of
support from the upstream source means that any upgrades or security patches must be done
manually, making it more complicated and increasing the risks involved in maintaining a Kubernetes
cluster on RISC-V [58].

Notwithstanding these obstacles, endeavors have been made to narrow the divide. An
orchestration platform called KubeEdge-V has been created explicitly for RISC-V computers. This
platform establishes the essential elements necessary to facilitate the fundamental functionalities of
containerization and orchestration. It has undergone testing on a prototype system utilizing SiFive
processors. Nevertheless, this solution is under development and does not give Kubernetes a
complete array of functionalities on well-established architectures such as x86 or ARM [59,60].

RISC-V processors present promising opportunities for open-source hardware and software
ecosystems. The utilization of Docker and Kubernetes on these processors, particularly on Ubuntu,
is still at an early stage of development. The absence of a comprehensively endorsed Kubernetes
version and the restricted capabilities of the current binary package are substantial obstacles to
extensive adoption. Continued progress and assistance from the community will be essential in
overcoming these obstacles and fully harnessing the capabilities of RISC-V in cloud-native settings.

First, Linux must be deployed on the set of RISC-V nodes. The deployment process for these
platforms is more involved than using an x86 platform. That’s partially due to the hardware choices
we made and partially due to the immaturity of these platforms. Deployment for the SiFive-based
RISC-V platform was as painless as possible:

e Download the Ubuntu Server 24.04 RISC-V image;

e  Unpack the image and flash it on an SD card for installation by using Raspberry Pi Imager;
¢  Connect the serial console and follow the standard Ubuntu boot procedure.

After that, it would be prudent to make the board boot the root filesystem from the NVMe
drive—it's much faster than the microSD. We had to change a few settings in the /etc/fstab file and
some u-boot configuration files. After that, a system-wide upgrade to the latest packages is
recommended (apt-get -y upgrade), and a mandatory reboot after the new kernel has been deployed.
The following steps involve installing Docker and Kubernetes (if possible), which we will do in the
following two sub-sections.

3.1. Docker Deployment


https://doi.org/10.20944/preprints202408.0867.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 August 2024 d0i:10.20944/preprints202408.0867.v1

11

Since we started finishing this paper a couple of months ago, the situation with Docker
deployment has improved immensely. There’s a set of available Docker packages available in
repositories for Ubuntu 24.04 for RISC-V, so the installation process for Docker is straightforward:

apt -y install docker.io

This is a recent development in the Ubuntu/RISC-V world, as these packages were unavailable
when we started writing this paper a couple of months ago. Results are visible in Figure 2:

EP COMT - PuTTY

Figure 2. Docker deployment on the RISC-V platform is now available.

Even if there were no packages, the compilation process for Docker isn’t a big challenge. It takes
a couple of hours, but Docker does work after it.

3.2. Kubernetes Deployment

Unfortunately, Kubernetes still doesn’t have current upstream packages for RISC-V. In this

sense, there are three available options:

1. To compile Kubernetes from source code (a very complex task that won’t necessarily end up
being successful);

2. To use the only available binary package for Kubernetes, version for RISC-V (1.16 from
September 2019), available online [61];

3. Toinstall and run k3s.

K3s is a version of K8s with a much smaller footprint; it uses fewer resources, the configuration
is more straightforward, albeit with a limited set of options, and it's not meant to be scalable and
highly available for production-level environments. It is also much more limited in features and
extensions while offering limited compatibility with standard K8s tools and extensions. We used
three RISC-V nodes based on SiFive HiFive Unmatched boards. We deployed the available, minimal
Kubernetes v1.16 package to evaluate whether using RISC-V as a platform makes sense for k8s
workloads. But we also must make note of one simple fact - this package doesn’t contain the full k8s
environment with all modules and addons - it just contains the minimum services, like:

e  setof required services and binaries, like kubectl, kubeadm, etc.;
. apiserver;

. controller-manager;

e  scheduler;

e  proxy;

e  pause (for pod network namespace);

. etcd;

. coredns.
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First and foremost, a couple of dependencies must be deployed before the k8s v1.16 package
deployment. We need to employ a set of commands as described on Carlos Eduardo’s GitHub page
[62]. Since this GitHub page was made, many new Docker versions have been released, so it's
expected to get some warnings about k8s v1.16 not being compatible with, for example, Docker 24.0.7.

After the package deployment on our three nodes, the Kubernetes cluster works, and we can do
some performance evaluation with it. But we also need to point out the fact that this package version
is five years old and it's missing a whole bunch of new features that were introduced during that
time, such as:

e  changes to Ingress controller (1.18);

e  Dbetter CLI support, logging, new APIs, CSI health monitoring (v1.19);

e  docker deprecation (v1.20);

e  changes to kubelet logging, storage capacity tracking (v1.21);

e external credential providers support (v1.22);

. dual-stack IPv4/IPv6 networking, HorizontalPod Autoscaler v2 changes (v1.23);

e removal of Dockershim from kubelet, changes in storage plugins (v1.24);

e  cgroups v2 support, further changes in storage plugins (v1.25);

e  APIchanges (v1.26);

e  iptables performance improvements (v1.27);

e  changes to Ceph support (removal of the CephFS plugin in favor of CephFS CSI driver) (v1.28),
etc.

Furthermore, many stability issues exist when deploying Kubernetes from the binary package
on Ubuntu 24.04. The Kubelet service times out occasionally (even during the cluster initialization
phase), containers sometimes fail to start, issues with networking and firewalling, problems with the
cgroups v2 subsystem, etc. However, we got it up and running and ran some tests to understand how
this platform performs compared to ARM-based platforms.

4. Experimental Setup and Study Methodology

When we started working on this paper a couple of years ago, the priority was to get access to
hardware to do real-life performance evaluations, not to write about theory and technical marketing.
Years later, these platforms are still challenging to get, especially in volume. The availability of ARM
servers in the EU region is poor. RISC-V is even worse, although it has been years since various
vendors promised that they’ll be available. It is a bit better in 2024. Still, no high-performance RISC-
V processors are available, and - for example - ARM Ampere-based multicore system availability
isn’t much better.

Ultimately, we’ve opted to do our software and performance evaluations based on readily
available platforms — a set of TuringPI2 platforms plus a selection of ARM-based compute modules
for ARM systems and SiFive HiFive Unmatched Rev B for RISC-V. For TuringPi compute modules,
we acquired Turing RK1, CM4-based Raspberry Pi CM4 modules, and NVIDIA Jetson TX2 NX.
Turing RK1s based on Rockchip RK3588 are by far and away the most performant modules within
the price envelope. At the time of writing this paper, the TuringPI2 cluster board plus an RK1 price
was comparable to SiFive Unmatched Rev B with a RISC-V CPU if we add the cost of memory that
was an extra cost for the RISC-V board. Price similarity gave us a good baseline with which to work.

Regarding performance evaluations, we focused on a stack of CPU, memory, and disk
evaluations implemented by a set of custom containers managed by Kubernetes. This means that all
the scores will be from the perspective of an Alpine container with the necessary tools (stress-ng,
sysbench, etc.) installed inside. There was no point in using any GPU tests as GPUs are far from being
supported on the RISC-V platform, making the comparison moot. However, we will reflect on that
in our Discussion section to provide the correct information.

For HPC performance evaluations, we decided to use a standard set of performance evaluations
based on HPCC (High-Performance Challenge), as it has different test suites and gives us a broad
performance evaluation for various types of workloads. First and foremost, HPCC needed to be
compiled for every one of these platforms. For that, we also had to compile OpenBLAS (Open Basic
Linear Algebra Subprograms) library, then compile HPCC (which required a custom Makefile per
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platform, and then all that was merged into a per-platform Docker image container to keep the
methodology constant across all performance evaluations. We used the latest OpenBLAS library
(v0.3.28) and the latest version of HPCC (1.5.0). Also, as we used Ubuntu Linux across all of our
platforms, we had to install some dependencies, which was done via the same command on all
platforms:

apt -y install build-essential hwloc libhwloc-dev libevent-dev gfortran libblas-dev liblapack-dev
mpich libopenmpi-dev make

On our GitHub page dedicated to this paper [63], we published the procedure for compiling
OpenBLAS, installing these dependencies, and finishing Makefiles for HPCC for all platforms.
Configuration and compilation processes for these utils take quite a while, so we’re publishing these
configuration details for transparency reasons in case someone needs them for verification.

5. ARM and RISC-V Performance Evaluation

We used a set of standardized tests for performance evaluation, like stress-ng and sysbench,
where available (sysbench is not supported on RISC-V architecture). We focused on CPU and
memory performance paired with power usage, as this seemed like a reasonable scenario—these
platforms should be efficient compared to x86 platforms. We used an HP ProLiant Gen8 server based
on an Intel Xeon E5-2680 CPU for context reasons—we wanted to see how the performance of all
these RISC-V and ARM platforms stacks up against a similarly priced x86 CPU, no matter the fact
that E5-2680 is a twelve-year-old CPU. The RK3588 processor mentioned in the performance
evaluations is the CPU on the Turing RK1 compute module.

Let’s start with single-core performance, as this is very important when dealing with various
types of workloads based on containers.

5.1. Single-Core Performance

In single-core performance tests, the Turing RK1 ARM-based system wins considerably. What's
surprising is that all other ARM-based platforms and RISC-V-based U740 are nowhere to be found
in that respect. We do have to note, though, that NVIDIA Jetson-based TX2 NX does have a built-in
GPU with 256 CUDA (Compute Unified Device Architecture), which is one of the reasons why the
CPU part of it is losing by such a margin, as can be seen in Figure 3:

Single-core CPU performance

5000
4500
4000
3500
3000
2500
2000
1500
1000
500 l
0
E5-2680 1-core U740 1-core RK3588 1-core Jetson TX2 NX 1- Quad Cortex A721-
core core

H bogoops M bogoops/srealtime M bogo ops/s usr+sys time

Figure 3. Single-core CPU performance for all platforms.
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Regarding memory performance, the Turing RK1 ARM-based system is miles ahead of
everything else. But the exciting part is the fact that it’s also significantly faster than our x86-based
system, as can be seen in Figure 4:

Memory performance
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H vm bogo ops B vm bogo ops/s realtime B vm bogo ops/s usr+sys time

Figure 4. Memory performance with a single CPU core used for all platforms.

The RISC-V-based systems’ score (U740) is a bit misleading in the following performance chart
because we cannot do a sysbench latency test on it, so - it didn’t post any scores. If we exclude that
result, we can see that Turing RK1 is still much better than anything else, including other ARM CPUs
that also have memory built-in, as can be seen in Figure 5:

Average latency (ms)
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Figure 5. Average compute latency of all available platforms in single-core scenario.
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We'll continue our performance evaluations with multi-core performance tests to see how
performance scales across all available cores. E5-2680 has 32 cores with HyperThreading enabled,
RK3588 is an 8-core CPU, and all the other CPUs have four cores. We can expect this to impact
performance results significantly, but that's the whole point—we need a complete overview of a
platform’s performance.

5.2. All-Core Performance

With 32 available x86 cores and significantly faster frequency, it's no wonder that E5-2680 is far
ahead of every other CPU - but that’s also not the point. If we evaluate all different platforms, we can
again see the Turing RK1 compute module being far ahead of all other assessed platforms, as can be
seen in Figure 6:

All-core CPU performance
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Figure 6. All-core CPU performance for all platforms.

Memory performance for the all-core scenario continues the same trend, as the Rockwell
RK3588-based Turing RK1 compute module still has a significant lead compared to RISC-V and other
ARM platforms, as can be seen in Figure 7:
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All-core memory performance
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Figure 7. Memory performance with all CPU cores used for all platforms.

Again, ignoring that we can’t do latency testing on the RISC-V platform (U740 chip), Turing RK1
still does very well, although the A72-based CPU has a tiny bit less latency (0.57 ms vs 0.58 ms). But
this time, we need to take note and compare this latency to the x86-based system, as there’s a world
of difference between them, with the x86-based system having almost three times the latency as the
ARM-based platforms. This is one of the fundamental issues with x86 platforms in general - memory
is too far away from the CPU to be less latent, and the built-in caches cannot make that much of a
difference compared to CPUs with memory on-chip as ARM chips have. Intel and AMD announced
that this issue will be addressed in some of the future x86 chips in the next couple of generations as
this design feature has the most detrimental influence on performance. The average latency of all
platforms can be seen in Figure 8:
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Average latency (ms)
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Figure 8. Average compute latency of all available platforms in an all-core scenario.

ARM-based systems are a much better choice for CPU or memory-intensive workloads. It's
surprising how much faster they are, especially compared to the similarly priced RISC-V platform.
Let’s now do some essential HPC-related evaluations to see what performance we can expect from
these platforms.

5.3. HPC Performance

The first stack of tests that we did for our HPC performance evaluation was related to HPL
(High-Performance Linpack) in terms of available TFLOPS (Tera Floating Operations Per Second)
and HPL time (time required to finish the evaluation). The TFLOPS evaluation, which tells us the
story of how much faster ARM-based platforms are than RISC-V platform (especially Turing RK1 vs
RISC-V), can be seen in Figure 9:
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Figure 9. HPL TFLOPS evaluation for all platforms.

HPL time measures the amount of time needed to finish the benchmark, which is inversely
proportional to the TFLOPS measurement, as can be seen in Figure 10:
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Figure 10. HPL evaluation in terms of time required for HPL evaluation on all platforms.

DGEMM, part of the HPCC benchmark, measures floating point and double-precision matrix-
to-matrix multiplication performance. These performance evaluations, as well as some that are
coming up next, should scale similarly to the HPL GFLOPS scores, and they do, as can be seen in
Figure 11:
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Figure 11. DGEMM double precision scores.

PTRANS measurement evaluates the parallel matrix transpose capabilities of our platforms.
RandomAccess is a part of that evaluation, measuring random access performance for large data
arrays in multicore scenarios. Evaluation results can be seen in Figure 12:

HPCCPTRANS and RandomAccess
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Figure 12. PTRANS and RandomAccess evaluations for large arrays.

HPCC STREAM evaluates the sustainable memory bandwidth transfer in GB/s. RISC-V platform
falls to the bottom here, but ARM platforms are surprisingly close to the x86 platform (especially
when we consider that they’re consuming much less power), as can be seen in Figure 13:
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HPCC STREAM performance
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Figure 13. HPCC STREAM performance evaluation.
The last set of performance evaluations is related to FFT, which measures the floating-point DFT

(Discrete Fourier Transform) execution rate. Again, Turing RK1 is very close to the x86 system here,
and the other ARM platforms are far ahead of the RISC-V platform. as can be seen in Figure 14:
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Figure 14. HPCC FFT performance analysis.

In all the performance metrics we could show in this paper (and quite a few more), ARM
platforms are much faster than anything the RISC-V platform can offer for the same price. Let’s
discuss this in a bit more detail in the next section.
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6. Discussion

We can conclude that the ARM platform is much more robust and production-ready than the
RISC-V platform. Of course, this isn’t surprising, as it’s been on the market for decades. ARM has
experience designing CPU architectures from billions of processors being used in various devices, so
this was to be expected.

What we did not expect, however, was the incredible difference in performance between our
RISC-V platform and all the ARM platforms. The RISC-V platform is much slower in terms of
performance and latency. If we were to discuss these results based on the timeline, a direct
comparison could be made between the A72 ARM CPU and the RISC-V platform, as they were
launched almost simultaneously. The difference in memory performance (four times plus faster), for
the same basic CPU performance in all-core, and better single-core performance is notable when
comparing Quad Cortex A72 ARM core to U740 RISC-V core.

Then, there’s the comparison to Turing RK1 and NVIDIA Jetson TX2 NX. Yes, both platforms
are newer than the RISC-V platform, although TX2 NX was introduced only a few months after U740,
while the RK1 was introduced a year and a half later. However, the performance difference, even
accounting for the 256 CUDA cores in Jetson TX2 NX, is staggering. We compare them for the same
amount of money and a much more favorable power envelope. Jetson’s memory performance is
roughly 5x the U740, while RK3588 is 15x plus times faster in memory performance. The CPU
performance gap is also quite big - RK3588 is approximately 5x faster, and Jetson TX2 NX is
approximately 2x faster than U740. Suppose we count the CUDA cores on Jetson; that makes the
comparison even worse. That’s why, if we were to deploy micro-clusters for Docker/Kubernetes for
either cloud services or super-efficient HPC environments, TuringPi platforms based on NVIDIA
compute modules, and Turing RK1 are a much more efficient and faster solution. The only fact that
works in the RISC-V platform’s favor is its PCI-Express slot on the motherboard. But that advantage
is null and void when we look at the following facts:

e  The only officially supported PCle graphics cards are AMD RX 500-Series and Radeon HD 6000-
Series VGA cards, which are both old and don’t run CUDA formally, so they cannot be used to
accelerate anything;

e  There’s no support for CUDA on the RISC-V platform, even if the platform supports NVIDIA
GPUgs;

e There are no known FPGAs that can be used on RISC-V;

e  There are no known ASICs that can be used on RISC-V.

The big plus of RISC-V—the fact that it's an open-source platform—will only start paying
dividends when critical players on the market support the platform for familiar use cases. There are
currently EU-sponsored projects, such as the European Processor Initiative, for developing an HPC
ecosystem based on the RISC-V core. This is where concepts like FAUST [64] will shine - these sorts
of specialized acceleration units that can be integrated with RISC-V architecture are where RISC-V’s
forte will come to the fore. However, it will also take time, as RISC-V is currently not well supported
on the software side, while the basic hardware side still needs quite a bit of additional development.

Looking at the performance analytics charts, we can see why ARM, specifically the TuringPI2
platform, is used so often, especially in the education sector, to teach the different ways to do
distributed programming and HPC-related topics. These platforms are very price competitive, highly
capable, and offer incredible consolidation ratios. When the platform has all four nodes running at
full speed, we can have four independent nodes in one mini-ITX system that consumes less than 70W
of power, which is incredibly power-efficient compared to anything x86 offers. ARM Ampere-based
systems would probably be an even better example to illustrate that point, which is what we will try
to acquire in the future to do further evaluations. However, TuringPi2 systems can handle Docker
and Kubernetes, have full upstream support for those platforms, and can be procured quickly and
used for educational and production tasks.

7. Future Works
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We see multiple exciting research areas for the future of heterogeneous computing based on
different ISAs, especially in HPC. These research areas depend on Intel, AMD, NVIDIA, and others
to further develop their ARM, especially RISC-V-based software stack, and offer readily available
software support to continue the research path. Given better workload scheduling, heterogeneous
HPC clusters could provide a massive bump in energy efficiency with more development.

Further research is needed to optimize RISC-V performance. Given its open-source nature, RISC-
V could use more microarchitectural enhancements, but even more so, with the integration of various
hardware accelerators (AL cryptography, ...) or different Domain-Specific Architectures for specific
industries and tasks, to give RISC-V a bit more foothold in specific niche technology areas.

Research into performance optimizations has to go hand in hand with additional research into
compiler and library optimization to boost performance in specific, targeted applications.

Further research needs to be done on energy efficiency and power consumption, especially for
various workloads. x86 platforms will be the best overall choice, but there will also be areas where
ARM and, potentially, RISC-V might be the correct choice. But, the last five years of development of
ARM products for the data center are a great example of that—ARM many-core architectures (for
example, Ampere) have taken a strong foothold in the data center space, as they're very efficient for
many different tasks. Given the choice, cloud providers will gladly sell us the capability to run
Kubernetes/Docker environments on ARM-based architectures, and rightfully so, as they’re much
more efficient than x86 platforms. This research can lead to workload partitioning across different
ISA architectures for bottom-up environments for heterogeneous computing.

More research is needed into standardization in heterogeneous computing to make it easier for
researchers and regular or business users to integrate and switch seamlessly between various
architectures. For example, we mentioned that Kubernetes is supported on x86 and ARM but not
RISC-V. That means that, even if we wanted to, we can’t use the same toolset that Kubernetes offers
on RISC-V, no matter how hard we try. The latest available binary distribution of Kubernetes on
RISC-V is five years old and needs to be brought into the present. Research into the management and
implementation of such heterogeneous Kubernetes clusters is underway. Given the popularity of the
ARM platform and the rising interest in the RISC-V platform, it seems to be the right way to go [65].
We can see a potential future in which different ISAs will be used for various applications in large-
scale heterogeneous environments.

8. Conclusions

The research described in this paper thoroughly examines ARM and RISC-V architectures
performance in general and HPC workloads, specifically emphasizing their incorporation with
Docker and Kubernetes. It provides thorough empirical assessments, practical insights, and
performance comparisons between these two architectures, which are increasingly important in the
changing landscape of heterogeneous computing systems.

In most instances, the performance study demonstrates the superiority of ARM over RISC-V.
The architecture developed by ARM has consistently shown exceptional performance, particularly in
tasks that require high memory usage and extensive processing by the CPU. The Turing RK1, based
on the ARM architecture, demonstrated superior performance compared to RISC-V, exhibiting
notably better data processing speed and reduced latencies for the same price range. The advantage
is particularly highlighted in Docker and Kubernetes environments, where ARM’s well-developed
ecosystem guarantees smooth integration. The ARM platform’s capacity to efficiently manage
intricate containerized workloads makes it a more practical choice for HPC applications, especially
in cloud and edge computing scenarios where scalability and power economy are essential.

RISC-V, despite its open-source appeal and ability for customization, encounters substantial
obstacles. The study indicates that RISC-V’s performance is inferior to ARM, particularly in single
and multi-core processing. Furthermore, the absence of well-developed software assistance impeded
incorporating Docker and Kubernetes on RISC-V platforms. The lack of a comprehensive and
officially endorsed Kubernetes version for RISC-V is a significant obstacle to its implementation in
production-level environments. Despite the potential for increased flexibility and creativity, these
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drawbacks of the RISC-V architecture and the added intricacies of deploying and operating
Kubernetes clusters on this platform outweigh its current benefits.

RISC-V will exhibit its potential in the mid-term, especially in specialized fields where its open-
source characteristics and ability to be tailored to specific needs could be advantageous. Optimizing
RISC-V’s performance and improving its software ecosystem to increase its competitiveness in
heterogeneous computing settings, especially in scenarios where Docker and Kubernetes are
becoming more widespread, is an absolute must. Otherwise, RISC-V might end up being an excellent
idea that never was—on its own or in heterogeneous environments.
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