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Columns in Magneto‐Fluid Dynamics 

Peter Vadasz 
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peter.vadasz@nau.edu 

Abstract:  An analogy between magneto‐fluid dynamics (MFD/MHD) and geostrophic flow in a 

rotating frame of reference including the existence of electromagnetic columns identical to Taylor‐

Proudman columns  is  identified and demonstrated theoretically. The  latter occurs  in the  limit of 

large values of a dimensionless group representing the magnetic field number. Such conditions are 

shown to be easily satisfied in reality. Consequently, the electromagnetic fluid flow subject to these 

conditions is two dimensional and the streamlines are being shown to be identical to the pressure 

lines  in  complete analogy  to  rotating geostrophic  flows. An  experimental  setup  is  suggested  to 

confirm the theoretical results experimentally. 

Keywords:  magnetostrophic  flow;  electromagnetic  columns;  taylor‐proudman  columns; 

geostrophic flow 

 

1. Introduction 

Flow of electric charges within or with a  fluid or alternatively  freely moving  in  free space  is 

being analyzed as part of magneto‐fluid dynamics (MFD). The latter appears also under the acronym 

MHD (magneto‐hydrodynamics) although inaccurately linked to water (hydro) flow due to historical 

reasons. It applies to plasmas, liquid metals as well as beams of charges moving in free space. The 

present paper deals with  the  theoretical demonstration of  two  linked MFD effects  that are being 

shown to be analogous to fluid flow in a rotating frame of reference. The flow of fluids in a rotating 

frame of reference has been studied extensively and has applications in geophysics, astrophysics, as 

well as  in engineering. The specific effects related  to rotating  flows are predominantly a result of 

centripetal  and  Coriolis  accelerations  (Greenspan  [1])  as well  as  possibly  centrifugal  buoyancy 

Vadasz [2]. The Coriolis effect and the resulting vortex formations have been identified theoretically 

as well as experimentally. Amar et al. [3] demonstrated the latter numerically as well as analytically 

and  compared  their  results  with  experimental  data.  They  focused  on  the  separation  between 

geostrophic flow and Ekman and Stewartson boundary layers. Asymptotic analyses of rotating flows 

identify Taylor‐Proudman columns and two‐dimensional flow at the leading order and Ekman as 

well as Stewartson boundary  layers  for higher order  corrections  [1],  results  that were  confirmed 

numerically  as  well  as  experimentally  (Subbotin  et  al.  [4],  and  Burmann  and  Noir  [5]).  The 

explanation of the appearance of von Karman vortex streets around invisible bluff bodies as captured 

by satellite images over certain islands in the Atlantic and Pacific Oceans was provided by Vadasz 

[6] in terms of Taylor‐Proudman columns. Sarkar et al. [7] investigated the effect of a magnetic field 

on Taylor‐Proudman columns in a rotating electrically conducting fluid (MFD). They concluded that 

the “application of a magnetic field” “suppresses the Taylor column” in certain circumstances. In an 

electrically conducting fluid the balance between the Coriolis acceleration and the Lorentz force is 

the mechanism that controls the Taylor‐Proudman column. Extensive research results on the problem 

of  natural  convection  due  to  centrifugal  buoyancy  in  rotating  porous media were  presented  by 

Vadasz [8–13] and by Vadasz and Govender [14]. Vadasz [8] focused on the centrifugal buoyancy in 

a porous layer distant from the axis of rotation, Vadasz [9] analyzed the Coriolis effect on a rotating 

porous layer heated from below via linear as well as weak nonlinear methods. Other investigations 
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of centrifugal buoyancy in rotating porous media were performed by Saravanan and Vigneshwaran 

[15] and Kang et al. [16]. 

The effect of the magnetic field on the flow of conducting fluids has been studied extensively, 

e.g., identifying the law of isorotation (Allen et al. [17]). An analogy between the Taylor‐Proudman 

theorem for rotating fluids and the law of isorotation for MFD might evolve as a consequence of the 

present paper’s derivations. 

The analogy between the Coriolis and Lorentz forces is not new, e.g., the analogy between the 

gyrocompass and the magnetic compass was demonstrated by Opat [18]. In the present paper it is 

demonstrated also for fluids rather than compasses. 

The next section describes the analogy between rotating and magnetic (MFD) flows followed by 

the  theoretical demonstration on how electromagnetic columns are being created when a  flowing 

fluid carrying electric charges is exposed to an externally imposed magnetic field. The consequent 

two‐dimensional magnetostrophic  flow  then  emerges. The  final  section presents  the  fact  that  the 

conditions required for the electromagnetic columns and magnetostrophic flow to emerge are well 

satisfied in reality and should then be observable in lab experiments. 

2. Analogy between Magneto‐Fluid Dynamics (MFD/MHD) and Rotating Flows 

The equations governing the isothermal compressible flow in a rotating frame of reference are 

the continuity and momentum equations presented in the form 

    (1)

  (2)

where    is  the velocity vector,  ,  êy ,  and  êz   are unit vectors  in  the 

x, y , and  z   directions, respectively,    is the constant angular velocity of rotation,  p   is pressure, 
   is the dynamic viscosity, and  X  xêx  yêy  zêz   is the position vector. By assuming the fluid 

to  be  barotropic  and  using  a  linear  relationship  between  pressure  and density  (this  assumption 

applies to isothermal conditions for an ideal gas, and approximately also for isentropic conditions of 

the latter, and for liquids) in the form 

    (3)

where    or  . Moving the Coriolis and centripetal terms to the right‐

hand side of the equation, and dividing Equation (2) by     it yields 

  (4)

where        is  the kinematic viscosity. The centripetal acceleration  term    has a 

potential and can be therefore moved under the gradient term in the form 

  (5)

êx

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2024                   doi:10.20944/preprints202408.0971.v2

https://doi.org/10.20944/preprints202408.0971.v2


  3 

 

It becomes  appealing now  to define  a generalized  reduced pressure  term  (a  specific kinetic 

energy) in the form 

    (6)

Substituting (6) into (5) leads to 

    (7)

The momentum equation for an MFD fluid, i.e., a fluid that carries electric charges (even when 

as a whole it is neutrally charged) includes the electric and magnetic fields via the Lorentz force, and 

when neglecting the gravitational field, the latter being much weaker than the electromagnetic fields 

can be presented in the form 

 V
t

 V  V







  p  qE  q V  Bi   2V     (8)

where  E t, x, y,z   is the electric field due to the distributed charges in the fluid,  V   is the velocity 
of the charges, and  q V  Bi   is the induced magnetic field that results from the electric current 

due to the moving charges. When the fluid is exposed to an external magnetic field then an additional 

term in the form  q V  Bf    is to be added in Equation (8). Substituting Equation (3) into Equation 
(8), dividing Equation (8) by   , and using the definition of the generalized reduced pressure (6) for 
the case without rotation (i.e., ) produces 

V
t

 V  V  pr  sqq
1E  sqq

1 V  Bi  2V     (9)

where  q   q   is assumed to be constant and equal to the ratio between the total mass of the 

electric charges to the total electric charge, i.e.,  q   q  mq q , and 

sq 
1  q  0

1  q  0






    (10)

is the electric charge sign function. Comparing Equation (9) for the magnetic‐fluid dynamics flow to 

Equation  (7)  for  non‐magnetic  fluid dynamics  in  a  rotating  frame  of  reference  one  observes  the 

analogy where the gravitational field term  g  was replaced by the electric field term  sqq
1E , and 

the  Coriolis  acceleration  term   was  replaced  by  the magnetic  term  sqq
1 V  Bi  . 

Consequently  it  is  plausible  to  anticipate  that  the magnetic  field  term  Bi q   in MFD  has  an 

identical effect as the angular velocity of rotation term    in the Coriolis acceleration of the rotating 

flow. Note that even the units of  Bi q   are  T C kg   s1    identical to the units of  . Since 

the analogy between MFD  flow  and  rotating  flows was  established by  this  comparison, one  can 

therefore anticipate similar effects in MFD flow as in the corresponding Coriolis effects for rotating 

flow. 
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A similar analogy applies if the fluid is exposed to an externally imposed magnetic field. Then 

Equation (9) takes the form 

V
t

 V  V  pr  sqq
1E  sqq

1 V  Bi   sqq1 V  Bf  2V     (11)

where  Bf  Bf ê f   is the imposed magnetic field, which is constant, i.e.,  Bf  const., and  ê f   is a 

unit vector in the direction of the imposed magnetic field. 

3. Emerging Electromagnetic Columns in an Electrically Charged Fluid Flowing Subject to an 

Imposed Magnetic Field 

When the fluid is incompressible, or when the fluid can be assumed to be weakly compressible 

(i.e., the density does not change but only when in a body force term in the momentum equation) the 

continuity Equation (1) transforms into 

    (12)

By considering the flow subject to an imposed magnetic field, then Equation (11) is to be solved 

together with Maxwell equations presented in the form 

Coulomb law in field form 

 E  1

o
q     (13)

where  o   is the permittivity of vacuum. 

Ampere law 

co
2 Bi 

1

o
qV 

E
t
    (14)

where  co
2  1 oo   is the speed of light in vacuum, and  o   is the permeability of free space. 

Faraday law of induction 

 E  
Bi
 t
    (15)

Gauss law for the magnetic field 

 Bi  0     (16)

Note  that  Bf   does not appear  in Equations  (14)–(16) because  it  is constant and  therefore  its 

derivatives vanish. 

Converting  the  equations  into  a  dimensionless  form  requires  the  introduction  of  scales  or 

characteristic values. The only  requirement  from  such  scales  is  that  they  are non‐zero  constants. 

Selecting  lc ,  c ,  qc  0 ,  ,  qc  0 ,  and  m   as  the  length, mass  density,  charge  density, 

velocity, electric charge, and mass scales, respectively, one can  introduce  the  following additional 

scales  in  terms  of  the  latter  ,  ,  Ec  qc olc
2 ,  Bic  oqc

2 molc
5 1 2

, 

Bfc  Bf  Bf . One can also relate the mass density scale to the mass scale, i.e.,  c  m lc
3   and 
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the charge density scale  to  the charge scale,  i.e.,  qc  qc lc
3
. By using these scales  the  following 

dimensionless  variables  are  being  defined  as  follows  x*  x lc ,  ,  *   c , 

q*  q qc ,  ,  ,  E*  Eolc
2 qc ,  Bi*  Bi molc

5 1 2
oqc

2
,  Bf*  ê f

. Substituting these dimensionless variables into Equations (11) and (12) transforms the latter into the 

following dimensionless form 

  (17)

V*

t*
 V* * V*  

1

Ma2 *pr* 
sq
ME

E* 
sq
Mi

2 V*  Bi*   sqMB V*  ê f   1

Re
*

2V*   (18)

where the following dimensionless groups emerged 

 the Mach number 

  (19)

 the electric field number 

    (20)

 the induced magnetic field number 

    (21)

 the imposed magnetic field number 

    (22)

 the Reynolds number 

    (23)

Dividing Equation (18) by  MB   produces (after dropping the symbol * as now all variables are 

dimensionless) 

  (24)

where  a  rescaled  pressure  was  introduced  in  the  form    and  where  new 

dimensionless groups emerged as follows 

 the magnetic Rossby number 
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    (25)

 the magnetic Ekman number 

EkM  MB
1Re1 


Bf q lc2

    (26)

Assuming steady state, and  MB 1  which implies  RoM 1. Then if also  Re O 1    (or 
Re 1) which implies  Ek 1, and if  ME O 1    (or  ME 1), and if also  Mi

2 O 1   (or 
Mi

2 1) then neglecting the terms in Equation (24) corresponding to the small coefficients leads to 

    (27)

since  sq  1 sq   by definition presented in Equation (10). Selecting the coordinates axes in a such a 

way that the direction of the imposed magnetic field  Bf   is aligned with the negative direction of 

the  z ‐axis, i.e.,  ê f  êz   transforms (27) into 

    (28)

Taking the curl ( ) of Equation (28) produces 

 êz V   0    (29)

However, by using Equation (17) and evaluating the curl in (29) leads to 

 êz V    êz  V  0     (30)

Evaluating the dot product yields 

êz  V 
V
 z

 0     (31)

Equation (31) is the electromagnetic equivalent to the Taylor‐Proudman theorem from rotating 

flows.  It  implies  in particular  that  w z  0   and since  w  0   at  z  0   due  to  impermeability 

boundary conditions  it means  that  w  0   for all values of  z . This  indicates  that a  flow over an 
object aligned with  the  imposed magnetic  field as presented  in Figure 1  is  impossible because  it 

introduces a vertical component of velocity,  w  0 , and consequently is violating Equation (31). The 
conclusion is that the flow will adjust around the object as presented in Figure 2a. 
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Figure 1. An impossible type of flow above a small object aligned with the magnetic field. 

(a)          (b)   

Figure 2. (a) The flow will adjust around the object (b) The flow pattern extends over the whole height 

creating a fluid column above the object, which behaves like a solid body. 

However, this flow pattern is also independent of  z   because Equation (31) implies 

  (32)

and consequently the flow pattern extends over the whole height creating a fluid column above the 

object which behaves like a solid body, as presented in Figure 2b. 

4. Magnetostrophic Flow 

The lack of a vertical component of velocity leads to two‐dimensional flow and then it becomes 

appealing to introduce a stream function that causes the continuity Equation (17) to be identically 

satisfied, i.e., 

u  

 y

;  ;  w  0    (33)

Substituting  (33)  in  Equation  (28)  after  performing  the  vector  product  on  its  left‐hand  side 

produces 

    (34)

where  H   x êx   y êy   is the horizontal gradient operator. 
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As both the generalized reduced pressure,  , and the stream function,  , can be related to 

an arbitrary reference value, the conclusion from (34) is that the stream function and the generalized 

reduced pressure are the same in the limit of small magnetic Ekman and Rossby numbers. This type 

of magnetostrophic flow (in analogy to the geostrophic type in rotating flows) means thar isobars 

represent streamlines at the leading order for  EkM 1  and  RoM 1, i.e., for  MB 1. 

5. Parameter Estimation and Suggested Experimental Setup 

In this section an evaluation of the conditions for electromagnetic columns and magnetostrophic 

flow to exist are tested via parameter estimation and a suggested experimental setup is proposed. 

The objective is in establishing the criteria for the theoretical results to be detectable in practice. The 

main condition for the emergence of electromagnetic columns and magnetostrophic flow was derived 

as 

MB 1 
vc

Bf q lc
1 

Bf
q


vc
lc
    (35)

For the flow of free charges one can estimate the value of  q  me e  5.7 1012 kg C   as 
the  ratio between  the mass of  the  elementary  charge  (the  electron)  and  the  absolute value of  its 

electrical charge. For flow of charges via fluids one has to account for the mass of the fluid too when 

evaluating  the  mass,  however  for  rarified  gases  the  former  estimation  still  applies  as  an 

approximation.  Then  for  an  imposed  magnetic  field  of  Bf  1 T    the  ratio 

Bf q  1.75 1011 s1    and condition (35) implies  . This means that 

for  length  scales of  ,  lc  102 m  , and  lc  103 m  ,  the  condition  that  the average 
fluid  velocity  should  satisfy  is  ,  ,  and 

, respectively. The first two values exceed the speed of light in vacuum. These 

conditions are easily satisfied in any realistic experimental setups. Even if the value of  q   turns out 
to be much larger even by a few orders of magnitude it should not be difficult to satisfy this condition, 

which on extreme cases will require stronger magnetic fields. Estimates for the secondary conditions, 

i.e.,  Re O 1    (or  Re 1),  ME O 1    (or  ME 1 ),  Mi
2 O 1    (or  Mi

2 1)  indicate 
that they can also be satisfied in reality. For example, for plasmas large velocities are required such 

that for length scales of  ,  lc  102 m , and  lc  103 m  , the condition that the average 
fluid  velocity  should  satisfy  when  combined  with  the  condition  for  MB 1   is 

,  ,  and 

,  respectively. For  liquid metals  the conditions are much 

less  constrained  as  ,  , 

and  .  Therefore  experiments  to  confirm  the  emergence  of 

electromagnetic columns and magnetostrophic flow are being suggested and planned by using the 

constraints evaluated in this section and an experimental setup as described in Figures 1 and 2. Using 

earth magnets  for creating  the  imposed magnetic  field  is also quite practical given  the estimated 

parameters values. 

6. Conclusions 

The  theoretical  derivation  identifying  an  analogy  between  magneto‐fluid  dynamics 

(MFD/MHD) and geostrophic flow in a rotating frame of reference was presented. The latter includes 

the existence of electromagnetic columns identical to Taylor‐Proudman columns. The emergence of 
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these columns is conditional upon very small magnetic Rossby numbers or alternatively very large 

values of  its  reciprocal,  the electromagnetic number. This  condition was  shown  to be possible  to 

satisfy in reality. 

As a  result,  the electromagnetic  fluid  flow  is  two dimensional and  the streamlines are being 

shown  to be  identical  to  the pressure  lines  in  complete analogy  to  rotating geostrophic  flows. A 

possible setup is suggested to confirm the theoretical results experimentally in Figures 1, 2, and in 

detail in Figure 3. Using earth magnets for creating the imposed magnetic field is also quite practical 

given the estimated parameters values. An imposed magnetic field  is anticipated to be affecting a 

stream of beams of charges or MFD type fluids that is flowing through. A specific type of detection 

via a tracer, PIV, or optical methods such as interferometry or similar can be used for the detection of 

the flow of charges. When magnetostrophic flow and magnetic virtual columns are detected, it raises 

the possibility of the creation of von‐Kármán vortex streets as presented in Figure 3 on the “top view”. 

This is similar to the creation of von‐Kármán vortex streets in the wake of Taylor‐Proudman columns 

in rotating flows as captured by satellite images and presented theoretically by Vadasz [6]. 

 

Figure 3. Proposed experimental set‐up: An imposed magnetic field affecting a stream of beams of 

charges or MFD type fluids. (the top view von‐Kármán vortex street courtesy: Andrew Yeckel, PhD 

https://andrewyeckel.com). 
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