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Abstract: The physical properties of a structure such stiffness although can be determined by some 

statical  tests,  the  identification of damping parameter  requires  a dynamic  test.  In general, both 

theoretical prediction and experimental identification of damping are quite difficult. There are many 

different  techniques  available  for  damping  identification,  and  each  method  gives  a  different 

damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and 

resonant vibration  tests are commonly used  to  identify  the damping of materials,  including soft 

materials. While the viscous damping ratio, loss factor, complex modulus and viscosity are quite 

common  to describe damping of materials,  there are  also other parameters  such  as  the  specific 

damping  capacity,  loss  angle,  half‐power  bandwidth,  and  logarithmic  decrement  to  describe 

damping of various materials. Often one of these parameters is measured in practical applications 

and the measured damping parameter needs to be converted into another damping parameter for 

comparison purposes.  In  this  review,  the  theoretical derivations of different parameters  for  the 

description and quantification of damping and their relationships, and the methods for damping 

identification are presented. The expressions for both high damping and low damping are included 

and evaluated. This paper could be a primary resource for damping research and teaching. 

Keywords:  damping;  complex modulus;  loss  factor;  characterization;  soft material;  ultrasound; 

viscoelastic properties; viscosity; dynamic indentation; rheometry 

 

1. Introduction 

Soft  materials  exhibit  both  viscous  (damping)  and  elastic  (stiffness)  characteristics  [1–4]. 

Quantification of  the viscoelastic properties of soft materials  is essential  in numerous science and 

engineering applications [5–12]. Furthermore, next to elasticity, damping (or viscosity) could be an 

additional,  relevant, diagnostic  biomarker,  and  viscosity  could  enhance  the  current diagnosis  in 

quantitative elastography [13–22]. Briefly, damping is the removal of energy from a system, and the 

energy can be either dissipated within the system or transmitted away by radiation [23]. It should be 

remembered that material damping is the energy dissipation due to deformation in a medium, and 

radiation damping is the energy transfer to a surrounding medium [23,24]. In addition, the energy in 

a system can be dissipated, for example, via the friction between different parts in the system and air 

resistance  [25].  The  properties  of  a  structure  such  as mass  and  stiffness  can  be  determined  by 

preforming some static tests. However, identifying the damping of a structure or system requires a 

dynamic test [26]. In general, both theoretical modelling and experimental identification of damping 

is quite difficult [24,27–29]. There are many research papers on determining the damping of materials, 

including biomaterials (e.g., [30–37]). The literature survey shows that there are different techniques 

for the identification of damping (e.g., dynamic indentation method, logarithmic decrement method, 

rheometry), and each method gives a different damping parameter, such as loss factor, loss modulus 
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and viscous damping ratio [23,26,38–43]. The identification of the damping of conventional materials 

(such as ceramics and metals) is quite straightforward, and loss factor or viscous damping ratio is 

commonly used to quantify their damping [44]. On the other hand, the identification of the damping 

of soft materials (e.g., agar, gelatine and collagen phantoms and tissue) is challenging, and different 

damping parameters such as loss modulus, loss angle, viscous damping ratio, or viscosity are used 

to describe their damping [30,34,36,45,46]. 

Regarding  the  identification of  the damping of materials, Nayar et al.  [30] used  the dynamic 

indentation method to determine the storage and  loss moduli of some samples of agar which  is a 

representative  material  for  biological  tissues.  Similarly,  using  the  dynamic  indentation 

method, Vriend et al. [47] determined the viscoelastic properties of some elastomeric materials and 

Boyer et al. [48] assessed the stiffness and damping of skin. Dakhil et al. [31] identified the storage 

and loss moduli of cells using a rheometer. Peng et al. [32] determined the dilute solution viscosities 

of some cellulose nanocrystal dispersions using a capillary viscometer. Wang et al. [33] identified the 

viscous damping ratios of some beam‐like hydrogel samples via resonant vibration tests. Esmaeel et 

al.  [36]    determined  the  viscous damping  coefficient  of  soft  tissue  by  calculating  the dissipated 

energy per cycle of harmonic motion by the material and the maximum stored energy in the sample 

using the displacement‐force curve. Rosicka et al. [49] identified the biomechanical and viscoelastic 

properties of skin, including the logarithmic decrement values. Based on the mathematical models 

for the dynamic response of a microbubble located at the soft medium interface [50–52], Bezer et al. 

[34]  determined  the  shear  modulus  and  viscosity  of  a  tissue‐mimicking  gelatine  phantom  by 

matching the experimentally measured and predicted responses of the microbubble located at the 

soft medium  interface  exposed  to  ultrasound.  Similarly,  using  the mathematical models  for  the 

dynamic response of a sphere located at the soft medium interface [53–55], the shear modulus and 

viscous  damping  ratio  of  tissue‐mimicking  gelatine  phantoms were  identified  by matching  the 

experimentally measured and predicted responses of the sphere located at the soft medium interface 

[37,56,57]. 

Li et al.  [58] presented  the viscoelasticity  imaging of biological  tissues and single cells using 

shear wave  propagation,  including  examples  of  ultrasound  shear wave  viscoelasticity  imaging 

applications.  Beuve  et  al.  [59]  investigated  the  diffuse  shear  wave  spectroscopy  for  the 

characterisation of the viscoelastic properties (shear modulus and viscosity) of soft tissue. Tecse et al. 

[60] developed and validated a method for the characterisation of the viscoelastic properties of soft 

tissue  using  ultrasound  elastography. Wang  et  al.  [61]  investigated  the  effect  of  damping  on 

ultrasound  elastography  algorithms.  Koruk  and  Pouliopoulos  [62]  presented  the  elasticity  and 

viscoelasticity imaging based on the use of small particles located within the tissue and at the tissue 

interface exposed to static and dynamic external forces. Hirsch et al. [45] measured the shear modulus 

and loss angle of liver and spleen using magnetic resonance elastography. Wang et al. [63] derived 

the shear wave speed and loss angle for depicting hepatic fibrosis and inflammation in chronic viral 

hepatitis using magnetic resonance elastography. 

Overall, the literature review shows that the dynamic indentation method [30], rheometry and 

viscometry [31,32,64], atomic force microscopy [65], hysteresis loop [36], resonant vibration tests or 

experimental modal  analysis  [33,66],  and  logarithmic  decrement  [49,67]  are  commonly  used  to 

identify the damping of materials, including soft materials. In addition, a bubble or sphere placed 

inside the soft medium or located at the soft medium interface exposed to an external excitation such 

as  acoustic  radiation  force  or magnetic  force  has  been  recently  used  to  identify  the  viscoelastic 

properties  of  soft materials  [34,37,68–72].  The  ultrasound  elastography  [17,73–75],  and magnetic 

resonance elastography [76–79] for determining tissue mechanical properties are quite common for 

the preclinical and clinical applications. It is seen that there are many parameters for the description 

and quantification of damping. The viscous damping ratio, loss factor, complex modulus (or storage 

and loss moduli), and viscosity are quite common to describe the damping of materials. In addition, 

some other parameters such as the specific damping capacity, phase  lag or  loss angle, half‐power 

bandwidth, logarithmic decrement, and inverse quality factor are used to describe the damping of 

various  materials.  Often  one  of  these  parameters  (e.g.,  loss  factor)  is  measured  in  practical 
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applications, and for comparison purposes the measured damping parameter needs to be converted 

into  some  other damping parameters  (e.g.,  to  viscosity). However,  there  is  a  limited  number  of 

studies  that  evaluated  only  few different damping parameters  and presented  their  relationships 

[38,80]. Therefore, there is a need for a comprehensive study that presents the theoretical derivations 

of different damping parameters and their relationships.   

This  paper  presents  theoretical  derivations  of  different  parameters  for  the  description  and 

quantification of damping and their relationships, as well as the methods for damping identification. 

In this paper, the expressions for both high damping (i.e., accurate formulas) and low damping (i.e., 

approximate formulas) are presented and these approaches are evaluated. The structure of this paper 

is as follows. First, the elastic, viscous and viscoelastic materials are defined, and then the responses 

of  single‐degree‐of‐freedom  (SDOF)  systems with  a viscous damper  and  a  complex  stiffness  are 

presented in Section 2. By exploiting the theoretical background presented in Section 2, the theoretical 

derivations of different damping parameters and  their relationships are presented  in Section 3.  It 

should be noted that the MATLAB software (MathWorks, Natick, MA, USA) was used to present the 

relationship between different parameters whenever needed. The damping parameters investigated 

in this paper include the specific damping capacity, loss factor, viscous damping coefficient, viscous 

damping  ratio, phase  lag  (or  loss angle),  logarithmic decrement, half‐power bandwidth, complex 

modulus  (or  loss  and  storage moduli),  inverse  quality  factor,  viscosity,  decay  ratio  in  the  step 

response,  and  structural  reverberation  time.  The  relationships  between  different  damping 

parameters are summarised  in Section 4, and some sample damping  identification applications of 

biomaterials using different sensing  technologies are presented  in Section 5.  It  is anticipated  that 

many researchers conducting research on damping, from very soft materials to very stiff conventional 

engineering materials used  in different  fields, will  refer  to  this  study.    In  addition,  the material 

presented in this study can be exploited for teaching damping or viscoelasticity in various branches. 

Before the theoretical derivations of different parameters  for  the description and quantification of 

damping and their relationships are presented, the definitions of common damping parameters are 

listed in Table 1 so that the reader can refer to these parameters as needed. 

Table 1. The definitions of common damping parameters. 

Parameter  Symbol  Definition/Explanation 

Specific Damping Capacity 𝜓  𝜓 ൌ
∆𝑊
𝑊
 

∆𝑊: Area captured within the 

hysteresis loop 

𝑊: Maximum stored energy 

Loss Factor  𝜂  𝜂 ൌ
1

2𝜋
∆𝑊
𝑊
   

Complex Young’s Modulus 

(Unit: Pa) 
𝐸෨   𝐸෨ ൌ 𝐸ᇱ ൅ 𝑗𝐸ᇱᇱ 

𝐸ᇱ: Storage Young’s modulus 

𝐸ᇱᇱ: Loss Young’s modulus 

Complex Shear Modulus   

(Unit: Pa) 
𝐺෨  𝐺෨ ൌ 𝐺ᇱ ൅ 𝑗𝐺ᇱᇱ 

𝐺ᇱ: Storage shear modulus 

𝐺ᇱᇱ: Loss shear modulus 

Logarithmic Decrement  𝛿  𝛿 ൌ
1
𝑛

log௘
𝑢௜
𝑢௜ା௡

 
𝑢௜: Amplitude of the peak  𝑖 

𝑢௜ା௡: Amplitude of the peak  𝑖 ൅ 𝑛 

Viscous Damping Ratio  𝜁  𝜁 ൌ
𝑐
𝑐ୡ୰
 

𝑐: Viscous damping coefficient 

𝑐ୡ୰: Critical viscous damping 

coefficient 

Half‐Power Bandwidth   

(Unit: Hz) 
∆𝜔  ∆𝜔 ൌ 𝜔ଶ െ 𝜔ଵ 

𝜔ଵ: Lower half‐power frequency 

𝜔ଶ: Higher half‐power frequency 

Inverse Quality Factor  𝑄୧୬୴  𝑄୧୬୴ ൌ
1
𝑄
ൌ
∆𝜔
𝜔୬
 

𝑄: Quality factor 
𝜔୬: Natural frequency 

Phase Lag 

(Unit: radian) 
𝜙  𝜙 ൌ ∠ሺ𝜎, 𝜀ሻ 

∠ሺ𝜎, 𝜀ሻ: Phase angle between the 

stress (𝜎) and strain (𝜀) 
Shear Viscosity 

(Unit: Pa∙s) 
𝜇  𝜇 ൌ

𝜏ሺ𝑡ሻ

𝛾ሶሺ𝑡ሻ
 

𝜏ሺ𝑡ሻ: Shear stress 
𝛾ሶሺ𝑡ሻ: Shear strain rate 
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𝑡: Time 

Structural Reverberation 

Time (Unit: s) 
𝑇଺଴ ୢ୆  𝑇଺଴ ୢ୆ ൌ 𝑡௅ି଺଴ௗ஻ െ 𝑡௅  𝑡௅ି଺଴ௗ஻ െ 𝑡௅: 60 dB decay time 

Decay Ratio  𝛾  𝛾 ൌ 𝑐 𝑎⁄  
𝑎  &  𝑐: Amplitudes of the first and 

second peaks in the step response 

respectively   

2. Theoretical Background 

In the following sections, the elastic, viscous and viscoelastic materials are first defined, and then 

the responses of SDOF systems with a viscous damper and a complex stiffness are presented. It is 

worth  remembering  that, by using  the  theoretical background presented  in  this section, different 

damping parameters are derived, and their relationships are presented in Section 3. 

2.1. Elastic, viscous, and viscoelastic materials 

Materials are mostly assumed to behave according to the Hooke’s linear elasticity theory under 

small deformations. In other words, it is assumed that there is a linear relationship between the stress 

and strain given by: 

𝜎 ൌ 𝐸𝜀              (1) 

where  𝜎,  𝐸, and  𝜀  are the stress, Young’s modulus, and strain, respectively. It should be noted 

that the same relation can be written between the shear stress and strain as  𝜏 ൌ 𝐺𝛾  where  𝜏,  𝐺, and 
𝛾  are the shear stress, shear modulus, and shear strain, respectively. In this article, the expressions 

are written mostly using the normal strain, the normal stress, and the Young’s modulus. However, it 

should be kept in mind that similar expressions can be written using the shear strain, shear stress, 

and shear modulus. It should be noted that the materials described by Equation (1) are called elastic 

materials. For a so‐called purely elastic material, all the energy stored in the sample during loading 

is returned when  the  load  is removed. Engineering materials such as aluminium and steel can be 

conveniently assumed as elastic materials.   

Opposite to an elastic material, a so‐called purely viscous material does not store energy. For a 

purely  viscous material,  there  is  no  elastic  component,  and  all  the  energy  is dissipated  as  pure 

damping once the load is removed. For these materials, the stress is proportional to the strain rate 

given by: 

𝜎 ൌ 𝜇
ௗఌ

ௗ௧
              (2) 

where  𝜇  is  the viscosity, and  𝜀ሶ ൌ
ௗఌ

ௗ௧
  is known as  the  strain  rate. Liquidus materials  such as 

glycerine, oil and honey can be considered as viscous materials.   

The  so‐called viscoelastic materials  show both  elastic  and viscous behaviour,  therefore  they 

exhibit  time‐dependent strain  [81,82]. For viscoelastic materials, some of  the energy stored  in  the 

system can be recovered upon the removal of the load, and the remaining energy is dissipated in the 

form  of  heat.  There  are  different mathematical models  such  as  the Kelvin‐Voigt, Maxwell,  and 

standard linear solid models for the viscoelastic materials where springs and dampers are arranged 

in series and/or parallel to determine their stress and strain relationships [81,83–86]. For example, for 

the Kelvin‐Voigt model represented by a purely viscous damper and purely elastic spring connected 

in parallel, the stress, strain, and strain rate with respect to time are governed by [87]: 

𝜎ሺ𝑡ሻ ൌ 𝐸𝜀ሺ𝑡ሻ ൅ 𝜇
ௗఌሺ௧ሻ

ௗ௧
              (3) 

Tissue‐mimicking materials such as hydrogels and biological structures such as tissue and skin 

show viscoelastic behaviour.   

The cyclic stress‐strain versus time for the classic elastic, viscous, and viscoelastic materials are 

shown in Figure 1. The stress and strain curves for the elastic materials move completely in phase as 

seen in Figure 1a, while there is π⁄2 radian or 90° phase difference between the stress and strain for 

the viscous materials as seen in Figure 1b [88]. On the other hand, with the cyclic stress at frequency 

𝜔, there is a phase 𝜙  between the stress and strain for the viscoelastic materials, where 𝜙  is between 

0 and π⁄2 (Figure 1c). It is noted that  𝜀଴  and  𝜎଴  show the strain and stress amplitudes, respectively. 
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The term 𝜙  is also called phase shift or loss angle. It should be noted that the loss angle is a measure 

of material’s damping.   

 

Figure  1.  The  cyclic  stress‐strain  versus  time  plots  for  the  classical  elastic  (a),  viscous  (b),  and 

viscoelastic (c) materials. 

Various  formulations  for  the  response  of  a  SDOF  system  are  given  in  Sections  2.2–2.4.  By 

exploiting  the  theoretical background presented  in Sections 2.2–2.4,  the  theoretical derivations of 

different damping parameters and their relationships are presented in Section 3.   

2.2. Viscously damped SDOF system exposed to harmonic excitation 

2.2.1. Steady‐state response of a spring‐damper system 

The equation of motion for a viscously damped SDOF system with damping coefficient,  𝑐  and 
spring  coefficient,  𝑘   without  any  inertia  (i.e.,  𝑚 ൌ 0 )  exposed  to  a  harmonic  excitation  𝑓ሺ𝑡ሻ ൌ
𝐹଴sinሺ𝜔𝑡ሻ  shown in Figure 2a can be written as follows: 

𝑐𝑢ሶ ൅ 𝑘𝑢 ൌ 𝐹଴sinሺ𝜔𝑡ሻ                    (4) 

where  𝐹଴  is the amplitude of the applied force,  𝑢  and  𝑢ሶ   show the displacement and velocity, 

respectively,  and  𝜔 ൌ 2𝜋𝑓   is  the  angular  or  circular  frequency  in  rad/s,  and  𝑓   is  the  linear 
frequency in 1/s or Hz.    The steady‐state solution for this system can be written as follows [38]: 

𝑢ሺ𝑡ሻ ൌ 𝐵sinሺ𝜔𝑡 െ 𝜙ሻ                    (5) 

where  𝐵  is the amplitude of the steady‐state response, and  𝜙  is the phase angle by which the 

response lags the excitation given by: 

𝐵 ൌ
ிబ

௞ටଵାቀ
೎ഘ
ೖ ቁ

మ
ൌ

ிబ
௞ඥଵା୲ୟ୬మథ

              (6) 

𝜙 ൌ tanିଵ ቀ
௖ఠ

௞
ቁ                (7) 

It  is seen  that  the phase angle  is a  function of  the material properties  (i.e.,  𝑐  and  𝑘) and  the 
frequency (𝜔) for a viscously damped system. 

 

Figure 2. Viscously damped SDOF system (a), and SDOF system with a complex stiffness (b). 
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2.2.2. Free vibrations of a mass‐spring‐damper system 

The equation of motion for a viscously damped SDOF system with damping coefficient  𝑐, mass 

𝑚  and  spring coefficient  𝑘  without any external  force  (i.e.,  𝑓ሺ𝑡ሻ ൌ 0)  shown  in Figure 2a can be 

written as follows: 

𝑚𝑢ሷ ൅ 𝑐𝑢ሶ ൅ 𝑘𝑢 ൌ 0                       (8) 

where  𝑢 ,  𝑢ሶ   and  𝑢ሷ   are  the  displacement,  velocity,  and  acceleration  of  the mass. Dividing 

Equation (8) by the mass yields: 

𝑢ሷ ൅ 2𝜁𝜔୬𝑢ሶ ൅ 𝜔୬ଶ𝑢 ൌ 0                            (9) 

where  𝜔୬ ൌ ඥ𝑘/𝑚   is  the  undamped  natural  frequency,  and  𝜁 ൌ
௖

௖ౙ౨
ൌ

௖

ଶ√௞௠
  is  the  viscous 

damping ratio [89]. Here,  𝑐ୡ୰  is called the critical damping coefficient. For oscillatory motion (𝜁 ൏ 1) 
and imposed initial displacement  𝑢଴  and velocity  𝑢ሶ ଴, the solution of Equation (9) can be determined 

to be as follows [90]: 

𝑢ሺ𝑡ሻ ൌ 𝐴𝑒ି఍ఠ౤௧sinሺ𝜔ୢ𝑡 ൅ 𝜃ሻ                    (10) 

where  𝐴  and  𝜃  are  the  coefficients  to be determined  from  the  initial  conditions,  and  𝜔ୢ ൌ
𝜔୬ඥ1 െ 𝜁ଶ  is the damped natural frequency.   

2.2.3. Forced vibrations of a mass‐spring‐damper system 

The equation of motion for a viscously damped SDOF system subjected to a harmonic excitation 

𝑓ሺ𝑡ሻ ൌ 𝐹଴cosሺ𝜔𝑡ሻ  shown in Figure 2a can be written as follows [91]: 

𝑚𝑢ሷ ൅ 𝑐𝑢ሶ ൅ 𝑘𝑢 ൌ 𝐹଴cosሺ𝜔𝑡ሻ                  (11) 

Dividing Equation (11) by the mass yields: 

𝑢ሷ ൅ 2𝜁𝜔୬𝑢ሶ ൅ 𝜔୬ଶ𝑢 ൌ
ிబ
௠

cosሺ𝜔𝑡ሻ                   (12) 

For  oscillatory motion  (𝜁 ൏ 1 ),  the  solution  of  Equation  (12)  can  be  determined  to  be  the 

summation of the homogenous solution  𝑢୦ሺ𝑡ሻ  and particular  𝑢୮ሺ𝑡ሻ  solution as follows [26]: 

𝑢ሺ𝑡ሻ ൌ 𝐴𝑒ି఍ఠ౤௧sinሺ𝜔ୢ𝑡 ൅ 𝜃ሻ ൅ 𝐵cosሺ𝜔𝑡 െ 𝜑ሻ          (13) 

where  𝐴  and  𝜃  are the coefficients to be determined from the initial conditions, and  𝐵  and  𝜑 
are the coefficients of the particular solution given by: 

𝐵 ൌ
ிబ ௠⁄

ට൫ఠ౤
మିఠమ൯

మ
ାሺଶ఍ఠ౤ఠሻమ

             (14) 

𝜑 ൌ tanିଵ
ଶ఍ఠ౤ఠ

ఠ౤
మିఠమ                (15) 

The equations above can be further arranged as follows: 

𝐶 ൌ
஻

ிబ ௞⁄
ൌ

ଵ

ඥሺଵି௥మሻమାሺଶ఍௥ሻమ
              (16) 

𝜑 ൌ tanିଵ
ଶ఍௥

ଵି௥మ
                (17) 

where  𝑟 ൌ 𝜔 𝜔୬⁄   is  the  frequency  ratio. Here,  𝜑  is  the phase  lag of  the displacement of  the 

mass with respect to the force applied to the mass. It should be remembered that  𝜙  is the phase lag 
of the strain with respect to the stress in the material. As presented later, the phase lag of the strain 

with respect to the stress in the material is  𝜙 ൌ tanିଵ ቀ2𝜁
ఠ೙
ఠ
ቁ ൌ tanିଵሺ2𝜁𝑟ሻ  for a viscously damped 

system. It should be noted that for the quasistatic loading (i.e.,  𝑟 ൌ 𝜔 𝜔୬⁄ ≪ 1), the solution for the 
forced vibrations of mass‐spring‐damper system reduces to that of the system without inertia, hence 

we have  𝜑 ≅ 𝜙  for the quasi‐static loading. 

2.3. Viscously damped SDOF system exposed to step excitation 

The  equation of motion  for a viscously damped SDOF  system  subjected  to a  step  excitation 

𝑓ሺ𝑡ሻ ൌ 𝐹଴  for  𝑡 ൒ 0  shown in Figure 2a can be written as follows: 

𝑚𝑢ሷ ൅ 𝑐𝑢ሶ ൅ 𝑘𝑢 ൌ 𝐹଴      for      𝑡 ൒ 0                          (18) 

The response of an underdamped system (𝜁 ൏ 1) exposed to step excitation can be shown to be 

as follows [55]: 

𝑢ሺ𝑡ሻ ൌ
ிబ
௞
െ

ிబ
௞ඥଵି఍మ

𝑒ି఍ఠ౤௧cosሺ𝜔ୢ𝑡 െ 𝜃ሻ          (19) 

where 
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  𝜃 ൌ tanିଵ
఍

ඥଵି఍మ
              (20) 

2.4. SDOF system with complex stiffness exposed to harmonic excitation 

2.4.1. Steady‐state response of a complex spring system 

The equation of motion for a complex spring having real and imaginary components  𝑘෨ ൌ 𝑘ᇱ ൅
𝑗𝑘ᇱᇱ  without any  inertia (i.e., 𝑚 ൌ 0) exposed to a harmonic excitation  𝑓ሺ𝑡ሻ ൌ 𝐹଴sinሺ𝜔𝑡ሻ  shown  in 

Figure 2b can be written as follows: 

𝑘෨𝑢 ൌ ሺ𝑘ᇱ ൅ 𝑗𝑘ᇱᇱሻ𝑢 ൌ 𝐹଴sinሺ𝜔𝑡ሻ                 (21) 

where  𝑗 ൌ √െ1. The steady‐state solution for this system can be shown to be as follows [38]: 

𝑢ሺ𝑡ሻ ൌ 𝐵sinሺ𝜔𝑡 െ 𝜙ሻ                    (22) 

where   

𝐵 ൌ
ிబ

௞ᇲඨଵା൬
ೖᇲᇲ

ೖᇲ
൰
మ
ൌ

ிబ
௞ᇲඥଵା୲ୟ୬మథ

              (23) 

𝜙 ൌ tanିଵ ቀ
௞ᇲᇲ

௞ᇲ
ቁ                      (24) 

It is worth remembering that the spring with complex stiffness property is restrained from one 

end and forced from the other end (see Figure 2b). It is seen that, opposite to the viscously damped 

system  in which  the phase  angle  is  a  function of  the material properties  (i.e.,  𝑐  and  𝑘)  and  the 
frequency (𝜔), the phase angle is only a function of the material properties for the complex spring 

system (i.e.,  𝑘ᇱ  and  𝑘ᇱᇱ). However, the material properties can be dependent on the frequency. 

2.4.2. Steady‐state response of a mass‐complex spring system 

The  equation  of motion  for  a  SDOF  system with  complex  stiffness  subjected  to  harmonic 

excitation  𝑓ሺ𝑡ሻ ൌ 𝐹଴𝑒௝ఠ௧  shown in Figure 2b can be written as follows: 

𝑚𝑢ሷ ൅ ሺ𝑘ᇱ ൅ 𝑗𝑘ᇱᇱሻ𝑢 ൌ 𝐹଴𝑒௝ఠ௧                  (25) 

It  is  common  to write  𝑘෨ ൌ 𝑘ᇱ ൅ 𝑗𝑘ᇱᇱ ൌ 𝑘 ൅ 𝑗𝜂𝑘 ൌ 𝑘ሺ1 ൅ 𝑗𝜂ሻ  where  𝜂   is  known  as  loss  factor. 

Assuming the form of the solution to be as  𝐵෨𝑒௝ఠ௧, and substituting this into the equation above, the 
following expression will be produced: 

ሾെ𝑚𝜔ଶ ൅ 𝑘ሺ1 ൅ 𝑗𝜂ሻሿ𝐵෨ ൌ 𝐹଴                  (26) 

By performing some operations, the equation above can be written as follows: 

𝐵෨ ൌ
ிబ ௠⁄

ఠ౤
మିఠమା௝ఎఠ౤

మ                    (27) 

Hence, the amplitude of oscillations and the phase between the displacement of the mass with 

respect to the force applied to the mass can be written as follows [92]: 

ห𝐵෨ห ൌ
ிబ ௠⁄

ට൫ఠ౤
మିఠమ൯

మ
ା൫ఎఠ౤

మ൯
మ
                    (28) 

𝜑 ൌ tanିଵ
ఎ

ଵିሺఠ ఠ೙⁄ ሻమ
              (29) 

The equations above can be further arranged as follows: 

ห𝐶ሚห ൌ
|஻෨ |

ிబ ௞⁄
ൌ

ଵ

ඥሺଵି௥మሻమା௝ఎమ
                    (30) 

𝜑 ൌ tanିଵ
ఎ

ଵି௥మ
              (31) 

It  is again worth remembering  that  𝜑  is  the phase  lag of  the displacement of  the mass with 

respect to the force applied to the mass, while  𝜙  is the phase lag of the strain with respect to the 

stress in the material. As presented later, the phase lag of the strain with respect to the stress in the 

material  is  𝜙 ൌ tanିଵሺ𝜂ሻ  for  a  SDOF  system with  complex  stiffness. As  stated  before, using  the 

theoretical background presented in Section 2, different damping parameters are derived, and their 

relationships are presented in Section 3. 

3. Theoretical Derivations of Different Damping Parameters and Their Relationships 

Many  techniques  are  available  for  the  identification  of  the  damping  of  structures  using 

experimental data. For example, the logarithmic decrement and step‐response techniques are time‐
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domain decay‐rate methods; the half‐power bandwidth, circle‐fit and line‐fit methods are frequency‐

domain modal  analysis  curve‐fitting methods;  the  hysteresis  loop  or  power  input method  is  an 

energy‐based technique [90]. Each method gives a different damping parameter (loss factor, viscous 

damping  ratio,  etc.).  The  theoretical  derivations  of  different  damping  parameters  and  their 

relationships, and damping identification methods are presented in the following sections. 

3.1. Hysteresis loop and specific damping capacity 

The force‐displacement and the stress‐strain relationship for a purely elastic material given in 

Equation (1) are simply illustrated in Figure 3a,c. As seen, the stress‐strain (or force‐displacement) 

curve of a purely elastic material is a straight line. For a viscoelastic material under the cyclic loading 

at constant frequency  𝜔, and for the stress amplitude  𝜎଴  (see Figure 1), the stress can be written as 

follows: 

𝜎ሺ𝑡ሻ ൌ 𝜎଴𝑒௝ఠ௧                                                                  (32) 
The induced strain for the viscoelastic material can be expressed as follows: 

𝜀ሺ𝑡ሻ ൌ 𝜀଴𝑒௝
ሺఠ௧ିథሻ                                                                  (33) 

where  𝜀଴  is the strain amplitude, and as stated before,  𝜙  is the phase between the stress and 

strain. For a viscoelastic material,  the  input  force versus  the  induced displacement, and  the  input 

stress  𝜎ሺ𝑡ሻ  versus  the  induced strain  𝜀ሺ𝑡ሻ  for one cycle of motion  is plotted  in Figures 3b,d. The 

elliptical shape shown  in Figures 3b,d  is known as  the hysteresis  loop  [93,94]. The area captured 

within the hysteresis loop,  ∆𝑊, equals the dissipated energy per cycle of harmonic motion by the 

material,  and  𝑊   represents  the  maximum  stored  energy  [88].  Similarly,  ∆𝑊ഥ   is  the  energy 
dissipated per unit volume of the sample during one cycle, and 𝑊ഥ   is the maximum stored energy 

per unit volume.  It  should be noted  that  ∆𝑊 ൌ 0  for a purely  elastic material  (or  spring), while 

∆𝑊 ൐  for a viscoelastic material, and it is proportional to the area bounded by the hysteretic curve. 

Overall, by harmonically loading a sample in one direction, the hysteresis loop for the sample can be 

obtained. The  specific damping  capacity which  is defined  as  the  ratio  of  the mechanical  energy 

dissipated during one cycle to the maximum potential (strain) energy of the sample can be calculated 

using [44]: 

𝜓 ൌ
∆ௐ

ௐ
                                (34) 

or 

𝜓 ൌ
∆ௐഥ

ௐഥ
                                (35) 

Remembering that the energy dissipated per unit volume of the sample is  ∆𝑊ഥ ൌ  𝜎𝑑𝜀, and the׬

maximum energy per unit volume is 𝑊ഥ ൌ
ଵ

ଶ
𝜎଴𝜀଴, the expression above can be written as: 

𝜓 ൌ ∮ఙௗఌ
భ
మ
ఙబఌబ
                  (36) 

Furthermore, as we can write  𝜎଴ ൌ 𝐸𝜀଴, the following expression can be written: 

𝜓 ൌ ∮ఙௗఌ
భ
మ
ாఌబ

మ                   (37) 

It should be noted that the hysteresis loop method or the power input method is quite effective 

for determining the frequency‐averaged damping of a structure under steady‐state vibration. 
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Figure 3. The force‐displacement and stress‐strain relationship for a purely elastic material (a and c), 

and a viscoelastic material (b and d) under harmonic loading. 

3.2. Hysteresis loop and loss factor 

For reasonable levels of damping, the relationship between the structural (or material) damping 

ratio and associated energy components shown in Figures 3b,d is given by the following equation 

[88,95]: 

𝜂 ൌ
ଵ

ଶగ

∆ௐ

ௐ
                    (38) 

or 

𝜂 ൌ
ଵ

ଶగ

∆ௐഥ

ௐഥ
                    (39) 

where  𝜂  is known as  loss  factor. Furthermore, using  ∆𝑊ഥ ൌ 𝜎𝑑𝜀, 𝑊ഥ׬ ൌ
ଵ

ଶ
𝜎଴𝜀଴  and  𝜎଴ ൌ 𝐸𝜀଴ 

in Equation (39) produces the following expression: 

𝜂 ൌ ∮ఙௗఌ

గఙబఌబ
                      (40) 

or 

𝜂 ൌ ∮ఙௗఌ

గாఌబ
మ                     (41) 

It  is worth  reminding  that  the  loss  factor  is  so  commonly  used  to  define  and  quantify  the 

damping of structures in practical applications.   

3.3. Specific damping capacity and loss factor 

By substituting Equation (34) into Equation (38), the relationship between the specific damping 

capacity and loss factor can be easily obtained to be as follows [96]: 

𝜂 ൌ
ట

ଶగ
                    (42) 

3.4. Dissipated energy and viscous damping coefficient 

For a viscous damper  subjected  to a harmonic  force,  the dissipated  energy per  cycle  can be 

written as follows: 

∆𝑊 ൌ ∮𝑐𝑥ሶ𝑑𝑥                    (43) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202408.0973.v1

https://doi.org/10.20944/preprints202408.0973.v1


  10 

 

where  𝑐   is  the  viscous  damping  coefficient.  Since  𝑑𝑥 ൌ 𝑥ሶ𝑑𝑡 ,  𝑥ሺ𝑡ሻ ൌ 𝐵sinሺ𝜔𝑡ሻ ,  and  hence 
𝑥ሶሺ𝑡ሻ ൌ 𝐵𝜔cosሺ𝜔𝑡ሻ,  the  expression  for  the dissipated  energy per  cycle of harmonic motion by  the 

material becomes: 

∆𝑊 ൌ ∮𝑐𝐵ଶ𝜔ଶcosଶሺ𝜔𝑡ሻ𝑑𝑡                  (44) 

where  𝐵  is the displacement amplitude. Hence, the integration for the whole cycle produces 

[36]: 

∆𝑊 ൌ 𝜋𝑐𝐵ଶ𝜔                    (45) 

or   

∆𝑊 ൌ 2𝜋ଶ𝑐𝐵ଶ𝑓                        (46) 

Here,  𝑓  is the frequency in Hz, and  𝜔 ൌ 2𝜋𝑓  is the frequency in rad/s, as stated before. After 
all, the viscous damping coefficient can be found using the dissipated energy per cycle of harmonic 

motion as: 

𝑐 ൌ
∆ௐ

గ஻మఠ
ൌ

∆ௐ

ଶగమ஻మ௙
                      (47) 

3.5. Complex modulus and loss factor 

The Young’s modulus  or  shear modulus  of  a  viscoelastic material  can  be  represented  by  a 

complex (or dynamic) quantity, having both the storage and dissipative energy components. In order 

to derive the complex modulus, now, let’s write the stress and strain as complex quantities as follows: 

𝜎ሺ𝑡ሻ ൌ 𝜎଴𝑒௝ఠ௧ ൌ 𝜎଴ሾcosሺ𝜔𝑡ሻ ൅ 𝑗sinሺ𝜔𝑡ሻሿ                                        (48) 
𝜀ሺ𝑡ሻ ൌ 𝜀଴𝑒௝

ሺఠ௧ିథሻ ൌ 𝜀଴ሾcosሺ𝜔𝑡 െ 𝜙ሻ ൅ 𝑗sinሺ𝜔𝑡 െ 𝜙ሻሿ                                (49) 
where  𝜎଴   and  𝜀଴   are  the  stress  and  strain  amplitudes,  respectively.  Hence,  the  complex 

Young’s modulus  𝐸෨   of the material can be written as follows: 

 𝐸෨ ൌ
ఙబ௘ೕഘ೟

ఌబ௘ೕሺഘ೟షഝሻ
ൌ

ఙబ
ఌబ

cosሺ𝜙ሻ ൅ 𝑗
ఙబ
ఌబ

sinሺ𝜙ሻ ൌ 𝐸ᇱ ൅ 𝑗𝐸ᇱᇱ                                        (50)           

where  𝐸ᇱ  is the storage Young’s modulus, and  𝐸ᇱᇱ  is the  loss Young’s modulus. The storage 

Young’s modulus or the real part of the complex Young’s modulus  𝐸ᇱ ൌ
ఙబ
ఌబ

cosሺ𝜙ሻ  is related to the 

elastic behavior of the material, and the loss Young’s modulus or the imaginary part of the complex 

Young’s modulus  𝐸" ൌ
ఙబ
ఌబ

sinሺ𝜙ሻ  is related to the viscous behavior of the material (a measure of the 

energy dissipation ability of  the material). When  𝐸ᇱᇱ ൌ 0,  then  𝐸ᇱ  takes  the place of  the ordinary 
Young’s modulus  𝐸 .  Therefore,  it  is  called  the  storage  Young’s modulus  since  it measures  the 

material’s ability to store elastic energy. The complex Young’s modulus can be written as follows [97]: 

 𝐸෨ ൌ 𝐸ᇱ ቀ1 ൅ 𝑗
ாᇲᇲ

ாᇲ
ቁ                                              (51)           

The  energy  dissipated  during  a  load  cycle  can  be  written  as  ∆𝑊ഥ ൌ 𝜋𝐸ᇱᇱ𝜀଴
ଶ .  Similarly,  the 

maximum elastic energy during the cycle can be written as 𝑊ഥ ൌ
ଵ

ଶ
𝐸ᇱ𝜀଴

ଶ. By substituting these into the 

equation above yields: 

 𝐸෨ ൌ 𝐸ᇱ ቀ1 ൅ 𝑗
∆ௐ

ଶగௐ
ቁ                                                (52)           

As 
∆ௐ

ଶగௐ
  was defined as the loss factor before, the following expression can be written: 

 𝐸෨ ൌ 𝐸ᇱሺ1 ൅ 𝑗𝜂ሻ                                                  (53)           

From Equations  (51) and  (53),  it  is clear  that  the relationship between  the  loss  factor and  the 

storage and loss Young’s moduli is as follows: 

  𝜂 ൌ
ாᇲᇲ

ாᇲ
                                                      (54) 

Although the expressions above are written for the Young’s modulus, the similar expressions 

can be written for shear modulus using  𝐺෨ ൌ 𝐺ᇱ ൅ 𝑗𝐺ᇱᇱ  where  𝐺ᇱ  is the storage shear modulus, and 

𝐺ᇱᇱis the loss shear modulus. 

3.6. Logarithmic decrement and viscous damping ratio 

A typical free vibration response of a viscously damped SDOF system given in Equation (10) is 

illustrated in Figure 4. It should be noted that the decay envelope for the free vibrations is  𝐴𝑒ି఍ఠ౤௧. 
The logarithmic decrement is defined as the natural logarithm of the ratio of the amplitudes of any 

two successive peaks given by [67]: 
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𝛿 ൌ log௘
௨బ
௨భ
ൌ log௘

௨భ
௨మ
ൌ log௘

௨మ
௨య
ൌ ⋯ ൌ log௘

௨೘షభ

௨೘
               (55) 

Using Equations (10) and (55), the following equation that relates the logarithmic decrement and 

the viscous damping ratio can be obtained [98]: 

𝛿 ൌ
ଵ

௡
log௘

௨೔
௨೔శ೙

ൌ
ଶగ఍

ඥଵି఍మ
                        (56) 

where  𝑢௜  is the amplitude of the peak  𝑖, and  𝑢௜ା௡  is the amplitude of the peak  𝑖 ൅ 𝑛. Overall, 
the viscous damping ratio using the logarithmic decrement can be determined using the following 

expression: 

𝜁 ൌ
ఋ

ඥସగమାఋమ
                     (57) 

Since  ඥ1 െ 𝜁ଶ ൎ 1  for  small damping,  it  is  common  to define  the  relationship  between  the 

viscous damping ratio and the logarithmic decrement as follows: 

𝜁ୟ୮୮୰ ൌ
ఋ

ଶగ
      for      𝜁 ≪ 1               (58) 

The  logarithmic  decrement method  is  a  time‐domain  identification  approach  that  does  not 

require  input measurement,  it  requires only  response measurements.  It  should be noted  that  the 

logarithmic  decrement  method  is  effective  for  damping  identification  when  a  single  mode  of 

vibration can be isolated from the others. 

 

Figure 4. A typical free vibration response of a viscously damped SDOF system and the logarithmic 

decay. 

Figure  5  presents  the  real  viscous  damping  ratio  calculated  using  Equation  (57)  and  the 

approximate viscous damping ratio calculated using Equation (58) as a  function of  the amplitude 

ratio  (Figure  5a),  and  the  logarithmic decrement  (Figure  5b),  and  the percentage difference  as  a 

function of the amplitude ratio (Figure 5c), and the logarithmic decrement (Figure 5d). It is seen that 

the difference is greater than 2% when the amplitude ratio is greater than or equal to 3.5, or when the 

logarithmic decrement is greater than or equal to 1.25. As the exact formula (i.e., Equation (57)) is still 

quite simple, the use of Equation (57) is highly recommended when calculating the viscous damping 

ratio from the logarithmic decrement in practical applications. 
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Figure 5. The real viscous damping ratio calculated using Equation (57) and the approximate viscous 

damping  ratio  calculated  using  Equation  (58)  as  a  function  of  the  amplitude  ratio  (a),  and  the 

logarithmic decrement (b), and the percentage difference as a function of the amplitude ratio (c), and 

the logarithmic decrement (d). 

3.7. Half‐power bandwidth and viscous damping ratio 

For a viscously damped SDOF system subjected to a harmonic excitation, the contribution of the 

homogenous (or transient) solution (i.e., the response due to the initial conditions) is diminished for 

large values of  𝑡  [26], hence we have only the particular solution (i.e., the response due to the applied 

force)  at  the  steady  state  (see Equation  (13)). As  the  power  is  proportional  to  the  square  of  the 

amplitude of oscillations, the half‐power response level corresponds to  𝐵୫ୟ୶/√2  where  𝐵୫ୟ୶  is the 
maximum value of the amplitude  𝐵  given in Equation (14). The half‐power frequencies are the two 

points on either side of the natural frequency such that the dynamic amplification is equal to  1/√2. 
It should be noted  that  this corresponds  to 3 dB amplitude decrease  in  the  logarithmic scale. The 

procedure  for  the use of half‐power bandwidth  for  the  identification of damping  is  illustrated  in 

Figure 6. Using Equations (14) and (16), the operation 
ௗ

ௗ௥
ቀ

஻

ிబ ௞⁄
ቁ ൌ 0  produces the peak value  𝐶୫ୟ୶ ൌ

ଵ

ଶ఍ඥଵି఍మ
  at  𝑟୫ୟ୶ ൌ ඥ1 െ 2𝜁ଶ   [26].  Hence,  using  𝐶ሺ𝑟ሻ ൌ 𝐶୫ୟ୶ √2⁄   in  Equation  (16)  yields  the 

frequency  ratios  at  the  half‐power  points  as  𝑟ଵ,ଶ ൌ ට1 െ 2𝜁ଶ േ 2𝜁ඥ1 ൅ 𝜁ଶ . Hence,  the  lower  and 

upper  half‐power  frequencies  are  obtained  as  𝜔ଵ ൌ 𝜔୬ට1 െ 2𝜁ଶ െ 2𝜁ඥ1 ൅ 𝜁ଶ ,  and  𝜔ଶ ൌ

𝜔୬ට1 െ 2𝜁ଶ ൅ 2𝜁ඥ1 ൅ 𝜁ଶ, respectively. Overall, the relationship between the viscous damping ratio 

and the half‐power bandwidth becomes as follows [38,99]: 

∆ఠ

ఠ౤
ൌ

ఠమିఠభ
ఠ౤

ൌ ට1 െ 2𝜁ଶ ൅ 2𝜁ඥ1 ൅ 𝜁ଶ െ ට1 െ 2𝜁ଶ െ 2𝜁ඥ1 ൅ 𝜁ଶ          (59) 

where  ∆𝜔 ൌ 𝜔ଶ െ 𝜔ଵ  is the half‐power bandwidth. Once, the half‐power frequencies and the 

natural frequency are determined using the measured data, the viscous damping ratio can be found 

using Equation (59). It is clear that the wider bandwidth means more damping. The expression in 

Equation (59) is quite complicated. Therefore, the following approximate expression can be used to 

define the relationship between the half‐power bandwidth and the viscous damping ratio: 
∆ఠ

ఠ౤
ൌ

ఠమିఠభ
ఠ౤

ൌ ඥ1 ൅ 2𝜁 െ ඥ1 െ 2𝜁      for    𝜁 ൏ 0.1              (60) 
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For small damping (i.e.,  𝜁 ≪ 1), the equation can be further simplified as follows [100]: 
∆ఠ

ఠ౤
ൌ

ఠమିఠభ
ఠ౤

ൌ 2𝜁ୟ୮୮୰      for    𝜁 ≪ 1                              (61) 

 

Figure 6. The illustration for the procedure for the use of half‐power bandwidth for the identification 

of damping. 

The  relationship  between  the  half‐power  bandwidth  and  the  viscous  damping  ratio  using 

Equations (59‐61) is visualized in Figure 7. It  is seen that for small damping (i.e., 
∆ఠ

ఠ౤
൏ 0.2  or  𝜁 ൏

0.1), Equations  (59‐61) produce  almost  the  same  results, while  there  is  a  considerable difference 

between  Equation  (59)  and  Equations  (60)  and  (61)  when  𝜁 ൐ 0.2 .    On  the  other  hand,  the 

approximation given in Equation (60) is always better than the simplest expression given in Equation 

(61). 

 

Figure  7.  The  relationship  between  the  half‐power  bandwidth  and  the  viscous  damping  ratio 

calculated using Equations (59‐61). 
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3.8. Half‐power bandwidth and loss factor 

As it will be shown later, the loss factor can be written as  𝜂 ൌ tanሺ𝜙ሻ. Hence, the relationship 

between the loss factor and the half‐power bandwidth can be shown to be as [38]: 
∆ఠ

ఠ౤
ൌ

ఠమିఠభ
ఠ౤

ൌ ඥ1 ൅ 𝜂 െ ඥ1 െ 𝜂                (62) 

For small and medium damping, the equation can be further simplified as: 
∆ఠ

ఠ౤
ൌ

ఠమିఠభ
ఠ౤

ൌ 𝜂      for      𝜂 ൏ 0.3              (63) 

The  relationship  between  the  half‐power  bandwidth  and  the  loss  factor  calculated  using 

Equations (62) and (63) is visualized in Figure 8. It is seen that for small and medium damping (i.e., 
∆ఠ

ఠ౤
൏ 0.3   or  𝜂 ൏ 0.3),  Equations  (62)  and  (63)  produce  almost  the  same  results, while  there  is  a 

considerable difference between Equations (62) and (63) when  𝜂 ൐ 0.6.   

 

Figure 8. The relationship between  the half‐power bandwidth and  the  loss  factor calculated using 

Equations (62) and (63). 

In practical applications,  the most  commonly used methods  for  the  identification of  the  loss 

factor require vibration spectrums or the frequency response functions, which are obtained by the 

Fourier  transformation  of  the  time‐domain  data  [101].  Although,  we  presented  the  half‐power 

bandwidth concept above, more sophisticated methods such as the circle‐fit and line‐fit methods are 

commonly used to identify the modal loss factors of a structure using measured frequency response 

functions [90,92,102,103].   

3.9. Loss factor and viscous damping ratio 

As seen in Equation (54), the loss factor is defined as  𝜂 ൌ
ாᇲᇲ

ாᇲ
  for the complex Young’s modulus 

𝐸ᇱ ൅ 𝑗𝐸ᇱᇱ. It should be remembered that, similarly, the same concept is used for the complex stiffness 

given by  𝑘෨ ൌ 𝑘ᇱ ൅ 𝑗𝑘"  where  𝑘ᇱ  and  𝑘"  are the real and imaginary parts of the complex stiffness, 

respectively. Now, let’s try to obtain the equivalent complex stiffness for a viscously damped SDOF 

system.  The  equation  of motion  for  a  viscously  damped  SDOF  system  subjected  to  a  harmonic 

excitation can be written as: 

𝑚𝑢ሷ ൅ 𝑐𝑢ሶ ൅ 𝑘𝑢 ൌ 𝐹଴𝑒௝ఠ௧                    (64) 

Assuming the form of the solution to be  𝐵෨𝑒௝ఠ௧, and substituting this into the equation above 
produces the following expression: 

ሾെ𝑚𝜔ଶ ൅ ሺ𝑘 ൅ 𝑗𝑐𝜔ሻሿ𝐵෨ ൌ 𝐹଴                      (65) 

The equation above can be further arranged as follows: 

ቂെ𝑚𝜔ଶ ൅ 𝑘 ቀ1 ൅ 𝑗
௖ఠ

௞
ቁቃ 𝐵෨ ൌ 𝐹଴                    (66) 

or   
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൫െ𝑚𝜔ଶ ൅ 𝑘෨൯𝐵෨ ൌ 𝐹଴                        (67) 

where  𝑘෨   is the complex stiffness defined as: 

𝑘෨ ൌ 𝑘ᇱ ൅ 𝑗𝑘" ൌ 𝑘 ቀ1 ൅ 𝑗
௖ఠ

௞
ቁ                                                              (68) 

Hence, the loss factor for a viscously damped system can obtained as follows [38]: 

𝜂 ൌ
௞"

௞ᇲ
ൌ

௖ఠ

௞
                                                            (69) 

Using  the definitions of  𝜔୬ ൌ ඥ𝑘/𝑚, and  𝜁 ൌ
௖

௖ౙ౨
ൌ

௖

ଶ√௞௠
  at  𝜔 ൌ 𝜔ୢ,  the relationship between 

the loss factor and the viscous damping ratio is obtained as: 

𝜂 ൌ 2𝜁ඥ1 െ 𝜁ଶ                    (70) 

Since  2𝜁ඥ1 െ 𝜁ଶ ൎ 2𝜁  for small damping, the equation above can be written as: 

𝜂ୟ୮୮୰ ൌ 2𝜁      for      𝜁 ≪ 1                                (71) 

The  relationship  between  the  viscous  damping  ratio  and  the  loss  factor  calculated  using 

Equations (70) and (71) is visualized in Figure 9. It is seen that for small damping (i.e.,  𝜁 ൏ 0.15), both 
approaches produce almost the same results, while there is a considerable difference between these 

two approaches when  𝜁 ൐ 0.3.   

 

Figure 9. The relationship between viscous damping ratio and loss factor calculated using Equations 

(70) and (71). 

3.10. Phase lag and loss factor 

As  seen  in Equation  (50),  the  storage and  loss moduli are given by  𝐸ᇱ ൌ
ఙబ
ఌబ

cosሺ𝜙ሻ  and  𝐸" ൌ
ఙబ
ఌబ

sinሺ𝜙ሻ, respectively. Using these in Equation (54), the relationship between the phase lag and the 

loss factor is obtained as [104]: 

  𝜂 ൌ
ாᇲᇲ

ாᇲ
ൌ tanሺ𝜙ሻ                                               (72) 

Hence, the phase lag in terms of the loss factor can be written as follows: 

 𝜙 ൌ tanିଵሺ𝜂ሻ                                                (73) 

3.11. Phase lag and viscous damping ratio 

Using  𝜔୬ ൌ ඥ𝑘/𝑚  and  𝜁 ൌ
௖

௖ౙ౨
ൌ

௖

ଶ√௞௠
  in Equation (7), the relationship between the phase lag 

and the viscous damping ratio can be shown to be: 

2𝜁
ఠ೙
ఠ
ൌ tanሺ𝜙ሻ                                                          (74) 

Hence, the phase lag in terms of the viscous damping ratio can be written as: 

 𝜙 ൌ tanିଵ ቀ2𝜁
ఠ೙
ఠ
ቁ                                                (75) 

At  𝜔 ൌ 𝜔୬, the relation between the loss angle and viscous damping ratio becomes: 

 𝜙 ൌ tanିଵሺ2𝜁ሻ      at      𝜔 ൌ 𝜔୬                                             (76) 
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3.12. Viscosity and loss modulus 

In the oscillatory shear experiment, the rotation provided to the sample is a simple harmonic 

motion. Hence, the shear strain can be written as [105]:   

𝛾ሺ𝑡ሻ ൌ 𝛾଴sinሺ𝜔𝑡ሻ                (77) 

where  𝛾଴  and  𝜔  are  input strain amplitude and  frequency,  respectively. Based on Equation 

(77), the shear strain rate will be: 

𝛾ሶሺ𝑡ሻ ൌ
ௗఊ

ௗ௧
ൌ 𝛾଴𝜔cosሺ𝜔𝑡ሻ           (78) 

For a linear viscoelastic material, the stress response to the applied shear is determined not only 

by the current rate of strain, but also by the historical rate of strain. Hence, the stress for a general 

linear viscoelastic material at time  𝑡  can be written as [106,107]: 

𝜏ሺ𝑡ሻ ൌ ׬ 𝐺ሺ𝑡 െ 𝑡′ሻ𝛾ሶሺ𝑡′ሻd𝑡ᇱ ൌ ׬ 𝐺ሺ𝑡 െ 𝑡′ሻ𝛾଴𝜔cosሺ𝜔𝑡′ሻd𝑡ᇱ
௧
ିஶ

௧
ିஶ

                        (79) 

where the function  𝐺ሺ𝑡ሻ  is the relaxation modulus of the fluid [108] and shows the importance 

of the past strain rate on the current stress in the system. It is worth to notice that a linear elastic solid 

has a constant relaxation modulus of  𝐺ሺ𝑡ሻ ൌ 𝐺଴, and a purely viscous fluid has a relaxation modulus 

of  𝐺ሺ𝑡ሻ ൌ 𝜇𝛿ሺ𝑡ሻ  where  𝜇   is  viscosity,  and  𝛿ሺ𝑡ሻ  is  the Dirac delta  function  [106]. Overall, using 
reference [109], the relationship between the loss modulus and the viscosity is obtained as explained 

below. First, by changing variables using  𝑠 ൌ 𝑡 െ 𝑡ᇱ, we can transform the integral in Equation (79) 

to the following expression: 

𝜏ሺ𝑡ሻ ൌ 𝛾଴𝜔 ׬ 𝐺ሺ𝑠ሻcosሾ𝜔ሺ𝑡 െ 𝑠ሻሿd𝑠
ஶ
଴

                 (80) 

In addition, by writing  cosሾ𝜔ሺ𝑡 െ 𝑠ሻሿ ൌ Reൣ𝑒௝ఠሺ௧ି௦ሻ൧, we can obtain the following equation: 

𝜏ሺ𝑡ሻ ൌ 𝛾଴𝜔 ׬ 𝐺ሺ𝑠ሻReൣ𝑒௝ఠሺ௧ି௦ሻ൧d𝑠
ஶ
଴

ൌ 𝛾଴ 𝜔Reൣ𝑒௝ఠ௧ ׬ 𝐺ሺ𝑠ሻ𝑒ି௝ఠ௦d𝑠
ஶ
଴

൧                (81) 

It is clear that the integral above is a one‐sided Fourier transform, and since it has no dependence 

on  𝑡, it is a complex number. By convention, we can define the complex shear modulus  𝐺෨  as follows: 

𝐺෨  ൌ 𝑗𝜔 ׬ 𝐺ሺ𝑠ሻ𝑒ି௝ఠ௦d𝑠
ஶ
଴

ൌ 𝐺ᇱ ൅ 𝑗𝐺′′                        (82) 

where  𝐺ᇱ   is  the  storage  shear modulus, and  𝐺ᇱᇱis  the  loss  shear modulus, as  stated before. 

Overall, we have the following expression: 

𝜏ሺ𝑡ሻ ൌ 𝛾଴Reൣ𝑒௝ఠ௧൫െ𝑗𝐺෨൯൧ ൌ 𝛾଴Reሾcosሺ𝜔𝑡ሻ ൅ 𝑗sinሺ𝜔𝑡ሻሺ𝐺ᇱᇱ െ 𝑗𝐺′ሻሿ              (83) 

By  further  rearranging  the  expression  above  and  substituting  Equations  (77)  and  (78)  into 

Equation (83), we can obtain the following equation [106]: 

𝜏ሺ𝑡ሻ ൌ 𝛾଴ሾGᇱsinሺ𝜔𝑡ሻ ൅ 𝐺′′cosሺ𝜔𝑡ሻሿ ൌ 𝐺ᇱ𝛾ሺ𝑡ሻ ൅
ீᇲᇲ

ఠ
𝛾ሶሺ𝑡ሻ                 (84) 

It should be noted that  the response of a purely viscous fluid  is  𝜏ሺ𝑡ሻ ൌ 𝜇𝛾ሶሺ𝑡ሻ ൌ 𝜇𝛾଴𝜔cosሺ𝜔𝑡ሻ, 
and the response of a purely elastic solid is  𝜏ሺ𝑡ሻ  ൌ 𝐺𝛾ሺ𝑡ሻ ൌ 𝐺𝛾଴sinሺ𝜔𝑡ሻ. As seen in Equation (84), the 

role of the viscosity is taken by the term 
ீᇲᇲ

ఠ
. Therefore, it is common to write the shear viscosity in 

terms of the shear loss modulus as follows [109,110]: 

𝜇 ൌ
ீᇲᇲ

ఠ
                             (85) 

3.13. Viscosity and loss factor 

As the  loss factor  is defined as  𝜂 ൌ
ீᇲᇲ

ீᇲ
, using Equation  (85), the viscosity  in terms of  the  loss 

factor can be written as follows [111]: 

𝜇 ൌ
ఎீᇲ

ఠ
                                (86) 

3.14. Inverse quality factor and viscous damping ratio 

The  inverse quality  factor  for a mechanical  system  is defined as  the  inverse of  the  so‐called 

quality factor (𝑄), and using Equation (59), it can be written as follows [38]: 

𝑄୧୬୴ ൌ
ଵ

ொ
ൌ

∆ఠ

ఠ౤
ൌ ට1 െ 2𝜁ଶ ൅ 2𝜁ඥ1 ൅ 𝜁ଶ െ ට1 െ 2𝜁ଶ െ 2𝜁ඥ1 ൅ 𝜁ଶ              (87) 

For small damping, the equation above can be written as follows: 

𝑄୧୬୴,   ୟ୮୮୰ ൌ
ଵ

ொ
ൌ

∆ఠ

ఠ౤
ൌ 2𝜁      for      𝜁 ≪ 1                              (88) 
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3.15. Inverse quality factor and loss factor 

 The inverse quality factor in terms of the loss factor is given by [38]: 

𝑄୧୬୴ ൌ
ଵ

ொ
ൌ

∆ఠ

ఠ౤
ൌ ඥ1 ൅ 𝜂 െ ඥ1 െ 𝜂              (89) 

For small and medium damping, the equation above can be written as follows: 

𝑄୧୬୴,   ୟ୮୮୰ ൌ
ଵ

ொ
ൌ

∆ఠ

ఠ౤
ൌ 𝜂      for      𝜂 ൏ 0.3                              (90) 

3.16. Structural reverberation time and loss factor 

The loss factor of a plate‐like structure can be identified using the method based on the energy 

attenuation [112]. For this purpose, the structure is suspended by a set of soft springs, and then it is 

excited by a shaker. When the steady vibrations are set, the excitation is abruptly interrupted, and 

the decay  time of  the vibrations  is measured  (see Figure 10). Hence,  the  loss  factor of  the plate  is 

estimated using the following expression [113–115]: 

𝜂 ൌ
ଶ.ଶ

௙∙்లబ ౚా
ൌ

଺୪୭୥౛ଵ଴

ఠ∙்లబ ౚా
                          (91) 

where  𝑓  is the frequency in Hz,  𝜔 ൌ 2𝜋𝑓  is the frequency in rad/s as stated before, and  𝑇଺଴ ୢ୆ 

is the 60 dB decay time (see Figure 10) or structural reverberation time in s. 

 

Figure 10. Illustration of the measurement procedure of the 60 dB decay time (𝑇଺଴ ୢ୆). 

3.17. Step response and viscous damping ratio 

A typical step response of a viscously damped SDOF system given in Equation (19) is illustrated 

in Figure 11. Various parameters of  the  step  response  such as  the  so‐called peak  time,  rise  time, 

overshoot,  decay  ratio  and  settling  time  can  be  related  to  the  viscous  damping  ratio  [116].  For 

example, the relationship between the viscous damping ratio  𝜁  and the decay ratio  𝛾 ൌ 𝑐 𝑎⁄   can be 
shown to be: 

𝜁 ൌ
ି୪୭୥೐ఊ

ඥସగమାሺ୪୭୥೐ఊሻమ
              (92)     

where  𝑎  and  𝑐  are the amplitudes of the first and second peaks, respectively. 
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Figure 11. The typical step response of a viscously damped SDOF system. 

3.18. Rayleigh damping and viscous damping 

A  common method of modelling damping  in practical applications  is  the  so‐called Rayleigh 

damping [117]. It is usually known as proportional damping or classical damping [118]. Overall, the 

Rayleigh damping model approximates the viscous damping available in the system. In this model, 

two damping coefficients (i.e.,  𝛼  and  𝛽)    are specified. These coefficients can be calculated from the 
modal viscous damping ratio  𝜁௡  at a particular frequency  𝜔௡  using the following simple expression 

[119]: 

𝜁௡ ൌ
ఈ

ଶఠ೙
൅

ఉఠ೙
ଶ
              (93)     

If  the  viscous  damping  ratios  for  the  𝑖 th  and  𝑗 th modes  are  𝜁௜   and  𝜁௝ ,  then  the Rayleigh 
coefficients  𝛼   and  𝛽   are determined  from  the  solution of  the  following  two  algebraic  equations 

[120]: 

ଵ

ଶ
൤
1 𝜔௜⁄ 𝜔௜

1 𝜔௝⁄ 𝜔௝
൨ ቂ
𝛼
𝛽ቃ ൌ ൤

𝜁௜
𝜁௝
൨              (94) 

If both modes have the same viscous damping ratio (i.e.,  𝜁௜ ൌ 𝜁௝ ൌ 𝜁  ) , then the values of  𝛼  and 
𝛽  can be determined to be as follows: 

𝛼 ൌ 𝜁
ଶఠ೔ఠೕ
ఠ೔ାఠೕ

        and    𝛽 ൌ 𝜁
ଶ

ఠ೔ାఠೕ
                (95) 

It  is worth noting  that  the Rayleigh damping model  is  implemented  in many  finite element 

software packages, including ABAQUS [121], ANSYS [122] and COMSOL [123]. 

4. Summary of The Relationships Between Common Damping Parameters 

In practical applications, often one of the damping parameters (e.g., loss factor) is measured, and 

for comparison purposes, it is needed to convert the measured damping parameter into some other 

damping parameters  (e.g., viscosity). The measured parameter  can be  converted  into  the desired 

parameter using the expressions presented in Section 3. Using the derived expressions in Section 3, 

an important equation relating the loss factor (𝜂) to the ratio of the dissipated energy per cycle (∆𝑊) 

and maximum stored energy (𝑊), the specific damping capacity (𝜓), the loss angle (𝜙), the ratio of 
the loss modulus (𝐸ᇱᇱ) and storage modulus (𝐸ᇱ), and the viscous damping ratio (𝜁) can be written as 

follows: 

𝜂 ൌ
ଵ

ଶగ

∆ௐ

ௐ
ൌ

ట

ଶగ
ൌ tanሺ𝜙ሻ ൌ

ாᇲᇲ

ாᇲ
ൌ 2𝜁ඥ1 െ 𝜁ଶ          (96) 

Again using the derived expressions in Section 3, for small damping, another important equation 

relating  the viscous damping  ratio  (𝜁 )  to  the  ratio  of  the dissipated  energy per  cycle  (∆𝑊)  and 

maximum stored energy (𝑊), the specific damping capacity (𝜓), the loss angle (𝜙), the ratio of the 
loss modulus (𝐸ᇱᇱ) and storage modulus (𝐸ᇱ), the loss factor (𝜂), the logarithmic decrement (𝛿), the 
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ratio of the half‐power bandwidth (∆𝜔) and natural frequency (𝜔୬), the quality factor (𝑄) and the 
inverse quality factor (𝑄୧୬୴) at 𝜔 ൌ 𝜔୬  can be written as follows: 

𝜁 ൌ
ଵ

ସగ

∆ௐ

ௐ
ൌ

ట

ସగ
ൌ

୲ୟ୬ሺథሻ

ଶ
ൌ

ாᇲᇲ

ଶாᇲ
ൌ

ఎ

ଶ
ൌ

ఋ

ଶగ
ൌ

∆ఠ

ଶఠ౤
ൌ

ଵ

ଶொ
ൌ

ொ౟౤౬
ଶ
  for  𝜁 ≪ 1  (at 𝜔 ൌ 𝜔୬)    (97) 

Overall,  the  important  damping  parameters  measured  in  practical  applications  and  their 

relations to other important damping parameters are summarized in Table 2. 

Table 2. The important damping parameters measured in practical applications and their relations 

to other important damping parameters. 

Measured Parameter(s)    Target Parameter(s) 

Dissipated energy per 

cycle (∆𝑊) 

Viscous Damping Coefficient (𝑐): 

𝑐 ൌ
∆𝑊

2𝜋ଶ𝐵ଶ𝑓
ൌ

∆𝑊
𝜋𝐵ଶ𝜔

 

𝐵: Displacement amplitude 

𝑓: Frequency in Hz 

𝜔: Frequency in rad/s 

Dissipated energy per 

cycle (∆𝑊) and maximum 

stored energy (𝑊) 

Specific Damping Capacity (𝜓): 

𝜓 ൌ
∆𝑊
𝑊
 

Loss Factor (𝜂): 

𝜂 ൌ
1

2𝜋
∆𝑊
𝑊
 

Logarithmic decrement (𝛿) 

Viscous Damping Ratio (𝜁): 

𝜁 ൌ
ఋ

ඥସగమାఋమ
     

𝜁 ൌ
ఋ

ଶగ
      (approx. for small damping,    𝜁 ≪ 1) 

Loss modulus (𝐸ᇱᇱ) and 
storage modulus (𝐸ᇱ) 

Loss Factor (𝜂): 

𝜂 ൌ
𝐸ᇱᇱ

𝐸ᇱ
 

Half‐power bandwidth 

(∆𝜔 ൌ 𝜔ଶ െ 𝜔ଵ) 
 

(𝜔ଵ: Lower half‐power 

frequency 

𝜔ଶ: Higher half‐power 

frequency 

𝜔୬: Natural frequency 

𝑄: Quality factor) 

Viscous Damping Ratio (𝜁) and Inverse Quality Factor (𝑄୧୬୴): 

ට1 െ 2𝜁ଶ ൅ 2𝜁ඥ1 ൅ 𝜁ଶ െ ට1 െ 2𝜁ଶ െ 2𝜁ඥ1 ൅ 𝜁ଶ ൌ
∆𝜔
𝜔୬

ൌ
1
𝑄
ൌ 𝑄୧୬୴ 

ඥ1 ൅ 2𝜁 െ ඥ1 െ 2𝜁 ൌ
∆ఠ

ఠ౤
ൌ

ଵ

ொ
ൌ 𝑄୧୬୴      (approx. for small damping,    𝜁 ≪

1) 
or 

2𝜁 ൌ
∆ఠ

ఠ౤
ൌ

ଵ

ொ
ൌ 𝑄୧୬୴      (approx. for small damping,    𝜁 ≪ 1) 

Loss Factor (𝜂) and Inverse Quality Factor (𝑄୧୬୴): 

ඥ1 ൅ 𝜂 െ ඥ1 െ 𝜂 ൌ
∆𝜔
𝜔୬

ൌ
1
𝑄
ൌ 𝑄୧୬୴ 

𝜂 ൌ
∆ఠ

ఠ౤
ൌ

ଵ

ொ
ൌ 𝑄୧୬୴      (approx. for small and medium damping,    𝜂 ൏ 0.3) 

Phase lag (𝜙) 

Viscous Damping Ratio (𝜁): 

2𝜁
𝜔௡
𝜔
ൌ tanሺ𝜙ሻ 

2𝜁 ൌ tanሺ𝜙ሻ      (at  𝜔 ൌ 𝜔୬) 

𝜔୬: Natural frequency 

𝜔: Excitation frequency 

Loss Factor (𝜂): 
𝜂 ൌ tanሺ𝜙ሻ 

Loss factor (𝜂) 

Viscous Damping Ratio (𝜁): 

2𝜁ඥ1 െ 𝜁ଶ ൌ 𝜂 
2𝜁 ൌ 𝜂      (approx. for small damping,    𝜁 ≪ 1) 

Inverse Quality Factor (𝑄୧୬୴): 

𝑄୧୬୴ ൌ
1
𝑄
ൌ
∆𝜔
𝜔୬

ൌ ඥ1 ൅ 𝜂 െ ඥ1 െ 𝜂 

𝑄୧୬୴ ൌ
ଵ

ொ
ൌ

∆ఠ

ఠ౤
ൌ 𝜂      (approx. for small and medium damping,    𝜂 ൏ 0.3) 

Loss modulus (𝐺ᇱᇱ) 
Viscosity (𝜇): 

𝜇 ൌ
𝐺ᇱᇱ

𝜔
 

𝜔: Frequency in rad/s 
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Structural reverberation 

time (𝑇଺଴ ୢ୆) 

Loss Factor (𝜂): 

𝜂 ൌ
2.2

𝑓 ∙ 𝑇଺଴ ୢ୆
ൌ

6log௘10
𝜔 ∙ 𝑇଺଴ ୢ୆

 

𝑓: Frequency in Hz 

𝜔: Frequency in rad/s 

5. Some Damping Identification Applications of Biomaterials 

The  dynamic  indentation  test  is  widely  used  to  identify  the  viscoelastic  properties  of 

biomaterials. For example, the dynamic indentation method was used to determine the storage and 

loss moduli of some agar samples [30]. The average storage modulus (𝐸ᇱ) and loss modulus (𝐸ᇱᇱ) for 
a 5% agar sample obtained with the frequency sweep load function with a 1500 μN static load and 2 

μN dynamic amplitude was found to be between 2 and 2.3 MPa and 0.013 and 0.02 MPa, respectively, 

in the frequency range of 100‐200 Hz [30]. Using Equation (54), i.e.,  𝜂 ൌ
ாᇲᇲ

ாᇲ
, the loss factor of the 5% 

agar sample can be calculated to be around 0.07 and 0.09 at 100 and 200 Hz, respectively. 

It  is quite  common  to measure  the  storage and  loss  shear moduli of  soft materials using an 

oscillatory rheometer, and then calculate the loss factor or viscosity from the measured storage and 

loss shear moduli. For  instance,  the storage shear modulus  (𝐺ᇱ) and  loss shear modulus  (𝐺ᇱᇱ) of a 
hydrogel were measured using an oscillatory rheometer test [124]. Using the relationship between 

the loss factor and the storage and loss shear moduli given before (i.e.,  𝜂 ൌ 𝐺ᇱᇱ 𝐺ᇱ⁄ ), the average loss 

factor of the hydrogel for the given frequency range (i.e., 1‐10 Hz) can be calculated to be  𝜂 ൌ 0.007. 
Similarly, using the relationship between the viscosity and the loss shear modulus (i.e.,  𝜇 ൌ 𝐺ᇱᇱ 𝜔⁄ ) 

and the given frequency, the viscosity of the hydrogel at    𝑓 ൌ 10  Hz can be calculated to be  𝜇 ൌ 4 
Pa∙s. 

 The  logarithmic decrement method  is  effective  for determining  the damping of a  structure 

when a  single mode of vibration can be  isolated  from  the others. Furthermore,  this  time‐domain 

method does not require input measurement, it requires only response measurements. For example, 

the  vibration  damping  characteristics  of  some  spider  silk  threads were  determined  through  the 

nanoindentation and  the  time decay waveform obtained  from a  laser vibrometer  [125]. Using  the 

measured time decay waveform and Equation (56), the logarithmic decrement of the so‐called spiral 

thread was calculated. Then,  the viscous damping ratio of  the spiral  thread was calculated using 

Equation  (57).  It should be noted  that, although  the measured  time decay waveform given  in  the 

reference  [125]  is  not  pure  harmonic,  it  is  still  dominated  by  a  frequency  component,  and  the 

logarithmic decrement can be used  to  identify  the damping of  the structure. Overall,  the viscous 

damping ratio for the spiral thread was found to be  𝜁 ൌ 0.12  [125]. Using Equation (71), i.e.,  𝜂 ൌ 2𝜁,   
the loss factor of the spiral thread can be calculated to be  𝜂 ൌ 0.24.   

 The resonant vibration test or experimental modal analysis is quite commonly used to identify 

the damping of a structure. The viscous damping ratios of some hydrogel beam‐shaped samples were 

identified via resonant vibration tests for the first bending mode [33]. For this purpose, the frequency 

response  functions using  an  accelerometer  and  a  laser Doppler vibrometer were measured. The 

modal  viscous  damping  ratio was  determined  by  fitting  the  Euler‐Bernoulli  beam model  to  the 

experimental data. Using Equation (72), i.e.,  𝜂 ൌ
ாᇲᇲ

ாᇲ
ൌ tanሺ𝜙ሻ, the loss factor of the hydrogel sample 

was determined, and using the simplified relation between the loss factor and the viscous damping 

ratio (i.e.,  𝜂 ൌ 2𝜁), the viscous damping ratio of the hydrogel sample was calculated. For example, 

the viscous damping ratio for the hydrogel 0.8% Bis sample was found to be  𝜁 ൌ 0.019  [33].   
 As mentioned before, although the half‐power bandwidth concept for the identification of the 

loss factor was presented in Section 3, more sophisticated methods such as the circle‐fit and line‐fit 

methods are commonly used  to  identify  the modal  loss  factors of a structure using  the measured 

frequency  response  functions  [92].  For  instance,  the  circle‐fit  is  based  on  fitting  a  circle  to  the 

measured frequency response function data around the vicinity of a natural frequency. Although the 

viscous damping ratio can be identified using Equations (59‐61) based on the half‐power bandwidth 

method,  the  modal  loss  factor  for  the  rth  mode  ( 𝜂୰ )  of  a  structure  is  determined  using  𝜂୰ ൌ
ఠమ,౨
మ ିఠభ,౨

మ

ఠ౤,౨
మ ൣ୲ୟ୬൫ఏమ,౨/ଶ൯ା୲ୟ୬൫ఏభ,౨/ଶ൯൧

  in the circle‐fit method where  𝜔୬,୰  is the natural frequency of the rth mode, 

and  𝜔୰,ଵ   and  𝜔୰,ଶ   correspond  to  the  angles  𝜃୰,ଵ   and  𝜃୰,ଶ   around  𝜔୬,୰   when  the  frequency 
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response  function  is plotted using  the Nyquist diagram. For example,  the  loss  factor of a biofibre 

based plate  for  the  first mode using  the  circle‐fit method was determined  to be  𝜂 ൌ 0.027  [102]. 
Using  the simplified relation between  the  loss  factor and viscous damping ratio  (i.e.,  𝜂 ൌ 2𝜁),  the 
viscous damping ratio of the biofiber based plate can be determined to be  𝜁 ൌ 0.0135.   

In the recent years, a bubble or sphere placed inside the soft medium [68–70] or located at the 

soft medium interface [34,56,57] exposed to an external excitation such as acoustic radiation force or 

magnetic  force has been widely used  to  identify  the viscoelastic properties of  soft materials. For 

instance, using  the deformation  curve  for  a microbubble  administered  into  a wall‐less  hydrogel 

channel exposed to an acoustic pulse obtained by the high‐speed microscopy, and the curve fitted to 

the measured  deformation  curve  exploiting  a mathematical model,  the  viscosity  of  the  gel was 

estimated [34]. Overall, the maximum displacement of the bubble was determined to be around 2.2 

μm, and the viscosity of the hydrogel was estimated  to be 0.12 Pa∙s  [34]. Using a novel approach 

based on the dynamic response of a spherical object placed at the sample interface, the shear modulus 

and viscosity of a gelatine sample with a density of 1105 kg/m3 were determined to be 3000 Pa and 

1.5 Pa⋅s, respectively [56].   
An ultrasound elastography for the characterisation of the viscoelastic properties of soft tissue 

was developed and validated [60]. The reverberant shear wave ultrasound elastography was used to 

scan plantar soft tissue and gelatine phantom at 400–600 Hz. The shear wave speed was determined 

using the ultrasound particle velocity data. The viscoelastic parameters were extracted by fitting the 

Young’s modulus as a function of frequency derived using different rheological models to the shear 

wave dispersion data. For example, the Young’s modulus and viscosity of plantar soft tissue were 

determined to be 13628 Pa and 3.3 Pa⋅s, respectively, using the Kelvin‐Voight model [60]. It should 

be noted that there have been many attempts to exploit the damping (or viscosity) in quantitative 

ultrasound  [58,60,126–129]. For example,  the reconstructions of viscosity maps  in different  tissues 

(e.g.,  ex  vivo  normal  porcine  liver,  fatty  duck  liver  and  fatty  goose  liver) with  inclusions were 

presented  in  [60].  In  addition,  modifications  have  been  made  to  existing  magnetic  resonance 

elastography  via  using  a  damping  parameter  (e.g.,  loss  angle)  to  improve  its  accuracy 

[45,63,76,130,131]. 

6. Conclusions 

The literature review shows that the dynamic indentation method, rheometry and viscometry, 

atomic  force  microscopy,  hysteresis  loop  or  power  input  method,  resonant  vibration  tests  or 

experimental modal analysis, and logarithmic decrement are commonly used to identify the damping 

of materials, including soft materials. In addition, a bubble or sphere placed inside the soft medium 

or located at the soft medium interface exposed to an external excitation such as acoustic radiation 

force or magnetic force is nowadays used to identify the viscoelastic properties of soft materials. The 

ultrasound elastography and magnetic resonance elastography  for determining  tissue mechanical 

properties are quite common for the preclinical and clinical applications. The viscous damping ratio, 

loss  factor,  complex modulus  (or  storage  and  loss moduli),  and  viscosity  are  quite  common  to 

describe and quantify damping in practical applications. In addition, the specific damping capacity, 

loss  angle, half‐power bandwidth,  logarithmic decrement,  and  inverse quality  factor  are used  to 

describe  and  quantify  damping  in many  applications.  In  practice,  usually  one  of  the  damping 

parameters  (e.g.,  loss  factor)  is measured,  and  for  comparison  purposes  the measured damping 

parameter needs to be converted into some other damping parameters (e.g., viscosity).   

The theoretical derivation of different damping parameters and their relationships have not been 

presented in the literature so far. Therefore, the theoretical derivations of different parameters for the 

description  and  quantification  of  damping  and  their  relationships,  as well  as  the methods  for 

damping identification are covered in this comprehensive review. Both accurate formulas (i.e., for 

systems  with  any  amount  of  damping)  and  approximate  formulas  (i.e.,  for  systems  with  low 

damping) are presented and compared. The damping parameters investigated in this paper include 

the specific damping capacity, loss factor, viscous damping coefficient, viscous damping ratio, loss 

angle or phase  lag,  logarithmic decrement, half‐power bandwidth, complex modulus (or  loss and 
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storage moduli),  inverse quality  factor, viscosity, decay  ratio  in  the  step  response, and  structural 

reverberation time. It is believed that the material presented in this paper will be a primary resource 

for damping or viscoelasticity research and teaching in the future. 
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