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Abstract: The physical properties of a structure such stiffness although can be determined by some
statical tests, the identification of damping parameter requires a dynamic test. In general, both
theoretical prediction and experimental identification of damping are quite difficult. There are many
different techniques available for damping identification, and each method gives a different
damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and
resonant vibration tests are commonly used to identify the damping of materials, including soft
materials. While the viscous damping ratio, loss factor, complex modulus and viscosity are quite
common to describe damping of materials, there are also other parameters such as the specific
damping capacity, loss angle, half-power bandwidth, and logarithmic decrement to describe
damping of various materials. Often one of these parameters is measured in practical applications
and the measured damping parameter needs to be converted into another damping parameter for
comparison purposes. In this review, the theoretical derivations of different parameters for the
description and quantification of damping and their relationships, and the methods for damping
identification are presented. The expressions for both high damping and low damping are included
and evaluated. This paper could be a primary resource for damping research and teaching.

Keywords: damping; complex modulus; loss factor; characterization; soft material; ultrasound;
viscoelastic properties; viscosity; dynamic indentation; rheometry

1. Introduction

Soft materials exhibit both viscous (damping) and elastic (stiffness) characteristics [1-4].
Quantification of the viscoelastic properties of soft materials is essential in numerous science and
engineering applications [5-12]. Furthermore, next to elasticity, damping (or viscosity) could be an
additional, relevant, diagnostic biomarker, and viscosity could enhance the current diagnosis in
quantitative elastography [13-22]. Briefly, damping is the removal of energy from a system, and the
energy can be either dissipated within the system or transmitted away by radiation [23]. It should be
remembered that material damping is the energy dissipation due to deformation in a medium, and
radiation damping is the energy transfer to a surrounding medium [23,24]. In addition, the energy in
a system can be dissipated, for example, via the friction between different parts in the system and air
resistance [25]. The properties of a structure such as mass and stiffness can be determined by
preforming some static tests. However, identifying the damping of a structure or system requires a
dynamic test [26]. In general, both theoretical modelling and experimental identification of damping
is quite difficult [24,27-29]. There are many research papers on determining the damping of materials,
including biomaterials (e.g., [30-37]). The literature survey shows that there are different techniques
for the identification of damping (e.g., dynamic indentation method, logarithmic decrement method,
rheometry), and each method gives a different damping parameter, such as loss factor, loss modulus
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and viscous damping ratio [23,26,38—43]. The identification of the damping of conventional materials
(such as ceramics and metals) is quite straightforward, and loss factor or viscous damping ratio is
commonly used to quantify their damping [44]. On the other hand, the identification of the damping
of soft materials (e.g., agar, gelatine and collagen phantoms and tissue) is challenging, and different
damping parameters such as loss modulus, loss angle, viscous damping ratio, or viscosity are used
to describe their damping [30,34,36,45,46].

Regarding the identification of the damping of materials, Nayar et al. [30] used the dynamic
indentation method to determine the storage and loss moduli of some samples of agar which is a
representative material for biological tissues. Similarly, using the dynamic indentation
method, Vriend et al. [47] determined the viscoelastic properties of some elastomeric materials and
Boyer et al. [48] assessed the stiffness and damping of skin. Dakhil et al. [31] identified the storage
and loss moduli of cells using a rheometer. Peng et al. [32] determined the dilute solution viscosities
of some cellulose nanocrystal dispersions using a capillary viscometer. Wang et al. [33] identified the
viscous damping ratios of some beam-like hydrogel samples via resonant vibration tests. Esmaeel et
al. [36] determined the viscous damping coefficient of soft tissue by calculating the dissipated
energy per cycle of harmonic motion by the material and the maximum stored energy in the sample
using the displacement-force curve. Rosicka et al. [49] identified the biomechanical and viscoelastic
properties of skin, including the logarithmic decrement values. Based on the mathematical models
for the dynamic response of a microbubble located at the soft medium interface [50-52], Bezer et al.
[34] determined the shear modulus and viscosity of a tissue-mimicking gelatine phantom by
matching the experimentally measured and predicted responses of the microbubble located at the
soft medium interface exposed to ultrasound. Similarly, using the mathematical models for the
dynamic response of a sphere located at the soft medium interface [53-55], the shear modulus and
viscous damping ratio of tissue-mimicking gelatine phantoms were identified by matching the
experimentally measured and predicted responses of the sphere located at the soft medium interface
[37,56,57].

Li et al. [58] presented the viscoelasticity imaging of biological tissues and single cells using
shear wave propagation, including examples of ultrasound shear wave viscoelasticity imaging
applications. Beuve et al. [59] investigated the diffuse shear wave spectroscopy for the
characterisation of the viscoelastic properties (shear modulus and viscosity) of soft tissue. Tecse et al.
[60] developed and validated a method for the characterisation of the viscoelastic properties of soft
tissue using ultrasound elastography. Wang et al. [61] investigated the effect of damping on
ultrasound elastography algorithms. Koruk and Pouliopoulos [62] presented the elasticity and
viscoelasticity imaging based on the use of small particles located within the tissue and at the tissue
interface exposed to static and dynamic external forces. Hirsch et al. [45] measured the shear modulus
and loss angle of liver and spleen using magnetic resonance elastography. Wang et al. [63] derived
the shear wave speed and loss angle for depicting hepatic fibrosis and inflammation in chronic viral
hepatitis using magnetic resonance elastography.

Overall, the literature review shows that the dynamic indentation method [30], rheometry and
viscometry [31,32,64], atomic force microscopy [65], hysteresis loop [36], resonant vibration tests or
experimental modal analysis [33,66], and logarithmic decrement [49,67] are commonly used to
identify the damping of materials, including soft materials. In addition, a bubble or sphere placed
inside the soft medium or located at the soft medium interface exposed to an external excitation such
as acoustic radiation force or magnetic force has been recently used to identify the viscoelastic
properties of soft materials [34,37,68-72]. The ultrasound elastography [17,73-75], and magnetic
resonance elastography [76-79] for determining tissue mechanical properties are quite common for
the preclinical and clinical applications. It is seen that there are many parameters for the description
and quantification of damping. The viscous damping ratio, loss factor, complex modulus (or storage
and loss moduli), and viscosity are quite common to describe the damping of materials. In addition,
some other parameters such as the specific damping capacity, phase lag or loss angle, half-power
bandwidth, logarithmic decrement, and inverse quality factor are used to describe the damping of
various materials. Often one of these parameters (e.g., loss factor) is measured in practical
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applications, and for comparison purposes the measured damping parameter needs to be converted
into some other damping parameters (e.g., to viscosity). However, there is a limited number of
studies that evaluated only few different damping parameters and presented their relationships
[38,80]. Therefore, there is a need for a comprehensive study that presents the theoretical derivations
of different damping parameters and their relationships.

This paper presents theoretical derivations of different parameters for the description and
quantification of damping and their relationships, as well as the methods for damping identification.
In this paper, the expressions for both high damping (i.e., accurate formulas) and low damping (i.e.,
approximate formulas) are presented and these approaches are evaluated. The structure of this paper
is as follows. First, the elastic, viscous and viscoelastic materials are defined, and then the responses
of single-degree-of-freedom (SDOF) systems with a viscous damper and a complex stiffness are
presented in Section 2. By exploiting the theoretical background presented in Section 2, the theoretical
derivations of different damping parameters and their relationships are presented in Section 3. It
should be noted that the MATLAB software (MathWorks, Natick, MA, USA) was used to present the
relationship between different parameters whenever needed. The damping parameters investigated
in this paper include the specific damping capacity, loss factor, viscous damping coefficient, viscous
damping ratio, phase lag (or loss angle), logarithmic decrement, half-power bandwidth, complex
modulus (or loss and storage moduli), inverse quality factor, viscosity, decay ratio in the step
response, and structural reverberation time. The relationships between different damping
parameters are summarised in Section 4, and some sample damping identification applications of
biomaterials using different sensing technologies are presented in Section 5. It is anticipated that
many researchers conducting research on damping, from very soft materials to very stiff conventional
engineering materials used in different fields, will refer to this study. In addition, the material
presented in this study can be exploited for teaching damping or viscoelasticity in various branches.
Before the theoretical derivations of different parameters for the description and quantification of
damping and their relationships are presented, the definitions of common damping parameters are
listed in Table 1 so that the reader can refer to these parameters as needed.

Table 1. The definitions of common damping parameters.

Parameter Symbol Definition/Explanation
AW': Area captured within the
s . . AW )
Specific Damping Capacity i Y = A hysteresis loop
W: Maximum stored energy
Loss Factor ] n= 12w
2t W
Complex Young's ModulusE E=E +E" E': Storage Young’s modulus
(Unit: Pa) E": Loss Young’'s modulus
Complex Shear Modulus G G=G+jG" G': Storage shear modulus
(Unit: Pa) G": Loss shear modulus
Logarithmic Decrement & 6= lloge i v Amp'l itude of the peak .l
Uisrn U+t Amplitude of the peak i +n
c c: Viscous damping coefficient
Viscous Damping Ratio { ¢= P C¢r: Critical viscous damping
coefficient
Half-Power Bandwidth Aw = @n — @ w,: Lower half-power frequency
(Unit: Hz) 2 w,: Higher half-power frequency
) 1 Aw Q: Quality factor
Inverse Quality Factor  Qjny Qinv 0" o w,: Natural }f’requency
P}Ta.se Lég & 6 =c(0) £(0,€): Phase angle bejcween the
(Unit: radian) stress (o) and strain (&)
Shear Viscosity ) 7(t): Shear stress
(Unit: Pa-s) K K m y(t): Shear strain rate
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t: Time

Structural Reverberation

. . T =t -t t_ —t;: 60 dB decay time
Time (Unit: s) 60dB 60dB ™ *L-60dB " "L L-60a ~ tL y

a & c: Amplitudes of the first and
Decay Ratio 1 y=c/a second peaks in the step response
respectively

2. Theoretical Background

In the following sections, the elastic, viscous and viscoelastic materials are first defined, and then
the responses of SDOF systems with a viscous damper and a complex stiffness are presented. It is
worth remembering that, by using the theoretical background presented in this section, different
damping parameters are derived, and their relationships are presented in Section 3.

2.1. Elastic, viscous, and viscoelastic materials

Materials are mostly assumed to behave according to the Hooke’s linear elasticity theory under
small deformations. In other words, it is assumed that there is a linear relationship between the stress
and strain given by:

o=Ee (1)

where o, E, and ¢ are the stress, Young’s modulus, and strain, respectively. It should be noted
that the same relation can be written between the shear stress and strain as T = Gy where 7, G, and
y are the shear stress, shear modulus, and shear strain, respectively. In this article, the expressions
are written mostly using the normal strain, the normal stress, and the Young’s modulus. However, it
should be kept in mind that similar expressions can be written using the shear strain, shear stress,
and shear modulus. It should be noted that the materials described by Equation (1) are called elastic
materials. For a so-called purely elastic material, all the energy stored in the sample during loading
is returned when the load is removed. Engineering materials such as aluminium and steel can be
conveniently assumed as elastic materials.

Opposite to an elastic material, a so-called purely viscous material does not store energy. For a
purely viscous material, there is no elastic component, and all the energy is dissipated as pure
damping once the load is removed. For these materials, the stress is proportional to the strain rate
given by:

o=ps 2

where u is the viscosity, and & = % is known as the strain rate. Liquidus materials such as

glycerine, oil and honey can be considered as viscous materials.

The so-called viscoelastic materials show both elastic and viscous behaviour, therefore they
exhibit time-dependent strain [81,82]. For viscoelastic materials, some of the energy stored in the
system can be recovered upon the removal of the load, and the remaining energy is dissipated in the
form of heat. There are different mathematical models such as the Kelvin-Voigt, Maxwell, and
standard linear solid models for the viscoelastic materials where springs and dampers are arranged
in series and/or parallel to determine their stress and strain relationships [81,83-86]. For example, for
the Kelvin-Voigt model represented by a purely viscous damper and purely elastic spring connected

in parallel, the stress, strain, and strain rate with respect to time are governed by [87]:

o(t) = Ee(t) + p =2 ©)

Tissue-mimicking materials such as hydrogels and biological structures such as tissue and skin
show viscoelastic behaviour.

The cyclic stress-strain versus time for the classic elastic, viscous, and viscoelastic materials are
shown in Figure 1. The stress and strain curves for the elastic materials move completely in phase as
seen in Figure 1a, while there is 2 radian or 90° phase difference between the stress and strain for
the viscous materials as seen in Figure 1b [88]. On the other hand, with the cyclic stress at frequency
w, there is a phase ¢ between the stress and strain for the viscoelastic materials, where ¢ is between
0 and 12 (Figure 1c). It is noted that &, and g, show the strain and stress amplitudes, respectively.
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The term ¢ is also called phase shift or loss angle. It should be noted that the loss angle is a measure
of material’s damping.

Amplitude
Amplitude

Time

Figure 1. The cyclic stress-strain versus time plots for the classical elastic (a), viscous (b), and
viscoelastic (c) materials.

Various formulations for the response of a SDOF system are given in Sections 2.2-2.4. By
exploiting the theoretical background presented in Sections 2.2-2.4, the theoretical derivations of
different damping parameters and their relationships are presented in Section 3.

2.2. Viscously damped SDOF system exposed to harmonic excitation

2.2.1. Steady-state response of a spring-damper system

The equation of motion for a viscously damped SDOF system with damping coefficient, ¢ and
spring coefficient, k without any inertia (i.e, m = 0) exposed to a harmonic excitation f(t) =
Fysin(wt) shown in Figure 2a can be written as follows:

cu + ku = Fysin(wt) 4)

where F; is the amplitude of the applied force, u and % show the displacement and velocity,
respectively, and w = 2nf is the angular or circular frequency in rad/s, and f is the linear
frequency in 1/s or Hz. The steady-state solution for this system can be written as follows [38]:

u(t) = Bsin(wt — ¢) (5)

where B is the amplitude of the steady-state response, and ¢ is the phase angle by which the
response lags the excitation given by:

B=—2__=-__N 6
k\/1+(%)2 k1+tanZ¢ ©)
¢ = tan~1 (%) @)

It is seen that the phase angle is a function of the material properties (i.e,, ¢ and k) and the
frequency (w) for a viscously damped system.

|—> u(t)

k=K +jk"
VW= e

no

k
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Figure 2. Viscously damped SDOF system (a), and SDOF system with a complex stiffness (b).
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2.2.2. Free vibrations of a mass-spring-damper system

The equation of motion for a viscously damped SDOF system with damping coefficient ¢, mass
m and spring coefficient k without any external force (i.e., f(t) = 0) shown in Figure 2a can be
written as follows:

mii+cu+ku=20 (8)

where u, ©t and i are the displacement, velocity, and acceleration of the mass. Dividing
Equation (8) by the mass yields:

i+ 2(w,it + w2u =0 9)
where w, =/k/m is the undamped natural frequency, and { =-— =—= is the viscous

cer 2Vkm
damping ratio [89]. Here, c., is called the critical damping coefficient. For oscillatory motion (¢ < 1)
and imposed initial displacement u, and velocity 1,, the solution of Equation (9) can be determined
to be as follows [90]:
u(t) = Ae=$ntsin(wyt + 0) (10)
where A and 6 are the coefficients to be determined from the initial conditions, and wq =
wpy/1 — {2 is the damped natural frequency.

2.2.3. Forced vibrations of a mass-spring-damper system

The equation of motion for a viscously damped SDOF system subjected to a harmonic excitation
f(t) = Fycos(wt) shown in Figure 2a can be written as follows [91]:

mil + cu + ku = Fycos(wt) (11)

Dividing Equation (11) by the mass yields:

i+ 2{wyu + wiu = %cos(wt) (12)

For oscillatory motion (¢ < 1), the solution of Equation (12) can be determined to be the
summation of the homogenous solution u,(t) and particular u,(t) solution as follows [26]:

u(t) = Ae=$ntsin(wyt + 6) + Beos(wt — ¢) (13)

where A and 6 are the coefficients to be determined from the initial conditions, and B and ¢
are the coefficients of the particular solution given by:

B = fo/m (14)
\/(wﬁ-wz)2+(26wnw)2
@ =tan™! —i;“:';“; (15)
The equations above can be further arranged as follows:
B 1
C=rk = Jaooaoy (16)
= tan~1 2T
¢ =tan" — 17)

where r = w/w, is the frequency ratio. Here, ¢ is the phase lag of the displacement of the
mass with respect to the force applied to the mass. It should be remembered that ¢ is the phase lag
of the strain with respect to the stress in the material. As presented later, the phase lag of the strain
with respect to the stress in the material is ¢ = tan™! (2( %) = tan"'(2¢r) for a viscously damped

system. It should be noted that for the quasistatic loading (i.e., v = w/w, <« 1), the solution for the
forced vibrations of mass-spring-damper system reduces to that of the system without inertia, hence
we have ¢ = ¢ for the quasi-static loading.

2.3. Viscously damped SDOF system exposed to step excitation

The equation of motion for a viscously damped SDOF system subjected to a step excitation
f(t) = F, for t >0 shown in Figure 2a can be written as follows:

mii+cu+ku=F, for t=0 (18)

The response of an underdamped system ({ < 1) exposed to step excitation can be shown to be
as follows [55]:

u(t) = %— k\/:O—T e~ $@ntcos(wyt — 6) (19)

where
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-1_¢
6 = tan™! N (20)

2.4. SDOF system with complex stiffness exposed to harmonic excitation

2.4.1. Steady-state response of a complex spring system

The equation of motion for a complex spring having real and imaginary components k = k' +
jk' without any inertia (i.e., m = 0) exposed to a harmonic excitation f(t) = Fysin(wt) shown in
Figure 2b can be written as follows:

ku = (k' + jk")u = F,sin(wt) (21)

where j = v—1. The steady-state solution for this system can be shown to be as follows [38]:
u(t) = Bsin(wt — ¢) (22)

where

B= Fo _ Fo (23)

k’j1+(kk—’,,)2 k'\/1+tanZ¢p

¢ = tan~ (£ (24)

It is worth remembering that the spring with complex stiffness property is restrained from one
end and forced from the other end (see Figure 2b). It is seen that, opposite to the viscously damped
system in which the phase angle is a function of the material properties (i.e., ¢ and k) and the
frequency (w), the phase angle is only a function of the material properties for the complex spring
system (i.e.,, k' and k). However, the material properties can be dependent on the frequency.

2.4.2. Steady-state response of a mass-complex spring system

The equation of motion for a SDOF system with complex stiffness subjected to harmonic
excitation f(t) = Fye/®* shown in Figure 2b can be written as follows:

mii + (k' + jk')u = Fye/®t (25)

It is common to write k = k' + jk" = k + jnk = k(1 + jn) where 7 is known as loss factor.
Assuming the form of the solution to be as Be/®t, and substituting this into the equation above, the
following expression will be produced:

[-mw? + k(1 +jn)]B =F, (26)
By performing some operations, the equation above can be written as follows:
B= ot @7)

w3-w2+jnwd
Hence, the amplitude of oscillations and the phase between the displacement of the mass with

respect to the force applied to the mass can be written as follows [92]:
Fo/m

|B| = (28)
(wh-02)"+(n0})°
= -1 n
¢ = tan™ s (29)
The equations above can be further arranged as follows:
Al — 1Bl _ 1
€1 =27k = T (30)
@ =tan™! 112 31

It is again worth remembering that ¢ is the phase lag of the displacement of the mass with
respect to the force applied to the mass, while ¢ is the phase lag of the strain with respect to the
stress in the material. As presented later, the phase lag of the strain with respect to the stress in the
material is ¢ =tan"'(n) for a SDOF system with complex stiffness. As stated before, using the
theoretical background presented in Section 2, different damping parameters are derived, and their
relationships are presented in Section 3.

3. Theoretical Derivations of Different Damping Parameters and Their Relationships

Many techniques are available for the identification of the damping of structures using
experimental data. For example, the logarithmic decrement and step-response techniques are time-
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domain decay-rate methods; the half-power bandwidth, circle-fit and line-fit methods are frequency-
domain modal analysis curve-fitting methods; the hysteresis loop or power input method is an
energy-based technique [90]. Each method gives a different damping parameter (loss factor, viscous
damping ratio, etc.). The theoretical derivations of different damping parameters and their
relationships, and damping identification methods are presented in the following sections.

3.1. Hysteresis loop and specific damping capacity

The force-displacement and the stress-strain relationship for a purely elastic material given in
Equation (1) are simply illustrated in Figure 3a,c. As seen, the stress-strain (or force-displacement)
curve of a purely elastic material is a straight line. For a viscoelastic material under the cyclic loading
at constant frequency w, and for the stress amplitude o, (see Figure 1), the stress can be written as

follows:
a(t) = gye/®t (32)
The induced strain for the viscoelastic material can be expressed as follows:
e(t) = goe/@t=® (33)

where ¢, is the strain amplitude, and as stated before, ¢ is the phase between the stress and
strain. For a viscoelastic material, the input force versus the induced displacement, and the input
stress o(t) versus the induced strain &(t) for one cycle of motion is plotted in Figures 3b,d. The
elliptical shape shown in Figures 3b,d is known as the hysteresis loop [93,94]. The area captured
within the hysteresis loop, AW, equals the dissipated energy per cycle of harmonic motion by the
material, and W represents the maximum stored energy [88]. Similarly, AW is the energy
dissipated per unit volume of the sample during one cycle, and W is the maximum stored energy
per unit volume. It should be noted that AW =0 for a purely elastic material (or spring), while
AW > for a viscoelastic material, and it is proportional to the area bounded by the hysteretic curve.
Overall, by harmonically loading a sample in one direction, the hysteresis loop for the sample can be
obtained. The specific damping capacity which is defined as the ratio of the mechanical energy
dissipated during one cycle to the maximum potential (strain) energy of the sample can be calculated

using [44]:
p="7 (34)
or
p="2 (35)
w

Remembering that the energy dissipated per unit volume of the sample is AW = [ ade¢, and the
maximum energy per unit volume is W = %o—o &y, the expression above can be written as:

=L (36)
EJOSO
Furthermore, as we can write o, = E¢,, the following expression can be written:
_ $ode
Y= Tl (37)

It should be noted that the hysteresis loop method or the power input method is quite effective
for determining the frequency-averaged damping of a structure under steady-state vibration.
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a) F(t) b) F(t)

x(t)

Xo

c) a(t) d) a(t)

e(t) £(t)

Figure 3. The force-displacement and stress-strain relationship for a purely elastic material (a and c),
and a viscoelastic material (b and d) under harmonic loading.

3.2. Hysteresis loop and loss factor

For reasonable levels of damping, the relationship between the structural (or material) damping
ratio and associated energy components shown in Figures 3b,d is given by the following equation

[88,95]:
1 AW
= (38)
or
1 AW
=wWw (39)

where 7 is known as loss factor. Furthermore, using AW = [ode, W = %0080 and o, = E¢,

in Equation (39) produces the following expression:

_ $ode
M=o (40)
or

_ $ode

" nEs2 (41)

It is worth reminding that the loss factor is so commonly used to define and quantify the
damping of structures in practical applications.

3.3. Specific damping capacity and loss factor

By substituting Equation (34) into Equation (38), the relationship between the specific damping

capacity and loss factor can be easily obtained to be as follows [96]:

-
n==2 (42)

3.4. Dissipated energy and viscous damping coefficient

For a viscous damper subjected to a harmonic force, the dissipated energy per cycle can be
written as follows:
AW = ¢ cxdx (43)
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where ¢ is the viscous damping coefficient. Since dx = xdt, x(t) = Bsin(wt), and hence
%(t) = Bwcos(wt), the expression for the dissipated energy per cycle of harmonic motion by the
material becomes:

AW = § cB?w?cos?(wt)dt (44)

where B is the displacement amplitude. Hence, the integration for the whole cycle produces

36]:
AW = ncB%w (45)
or
AW = 2m%cB%f (46)

Here, f is the frequency in Hz, and w = 2rf is the frequency in rad/s, as stated before. After
all, the viscous damping coefficient can be found using the dissipated energy per cycle of harmonic

motion as:
c= AW AW 47)

T nB2w  2m2Bf

3.5. Complex modulus and loss factor

The Young’s modulus or shear modulus of a viscoelastic material can be represented by a
complex (or dynamic) quantity, having both the storage and dissipative energy components. In order
to derive the complex modulus, now, let’s write the stress and strain as complex quantities as follows:

a(t) = gye/®t = gy[cos(wt) + jsin(wt)] (48)

e(t) = g,/ @) = g [cos(wt — ¢p) + jsin(wt — ¢p)] (49)

where g, and g, are the stress and strain amplitudes, respectively. Hence, the complex
Young’s modulus E of the material can be written as follows:

= oged®t g .0 . T
T e @) gcos((f’) +J gsm(tb) =E'+jE (50)
where E’ is the storage Young’'s modulus, and E” is the loss Young’s modulus. The storage

Young’s modulus or the real part of the complex Young’s modulus E' = Z—Zcos(cp) is related to the
elastic behavior of the material, and the loss Young’s modulus or the imaginary part of the complex
Young’s modulus E' = Z—z sin(¢) is related to the viscous behavior of the material (a measure of the
energy dissipation ability of the material). When E” = 0, then E’ takes the place of the ordinary

Young’s modulus E. Therefore, it is called the storage Young’s modulus since it measures the
material’s ability to store elastic energy. The complex Young’s modulus can be written as follows [97]:

E=E(1 +ji—,) (51)
The energy dissipated during a load cycle can be written as AW = nE"¢§. Similarly, the
maximum elastic energy during the cycle can be writtenas W = %E ‘2. By substituting these into the

equation above yields:

~ , . AW

E=E (1+1ﬁ) (52)
As 2An_Ww was defined as the loss factor before, the following expression can be written:
E=E@{1+jn) (53)

From Equations (51) and (53), it is clear that the relationship between the loss factor and the

storage and loss Young’s moduli is as follows:
E”

n="2 (54)

Although the expressions above are written for the Young’s modulus, the similar expressions
can be written for shear modulus using G = G' 4+ jG"' where G’ is the storage shear modulus, and
G''is the loss shear modulus.

3.6. Logarithmic decrement and viscous damping ratio

A typical free vibration response of a viscously damped SDOF system given in Equation (10) is
illustrated in Figure 4. It should be noted that the decay envelope for the free vibrations is Ae~¢“nt,
The logarithmic decrement is defined as the natural logarithm of the ratio of the amplitudes of any
two successive peaks given by [67]:
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§ =log, :—: = logez—: = logez—z = =log, u;"; (55)

Using Equations (10) and (55), the following equation that relates the logarithmic decrement and
the viscous damping ratio can be obtained [98]:

1 u; _ 2ng
§=2l08e = e (56)

where u; is the amplitude of the peak i, and u;,, isthe amplitude of the peak i + n. Overall,
the viscous damping ratio using the logarithmic decrement can be determined using the following
expression:

s
(=T
Since /1—{? =1 for small damping, it is common to define the relationship between the

viscous damping ratio and the logarithmic decrement as follows:

lappr =o=  for (<1 (58)

The logarithmic decrement method is a time-domain identification approach that does not
require input measurement, it requires only response measurements. It should be noted that the
logarithmic decrement method is effective for damping identification when a single mode of
vibration can be isolated from the others.

(57)

Amplitude

Time

Figure 4. A typical free vibration response of a viscously damped SDOF system and the logarithmic
decay.

Figure 5 presents the real viscous damping ratio calculated using Equation (57) and the
approximate viscous damping ratio calculated using Equation (58) as a function of the amplitude
ratio (Figure 5a), and the logarithmic decrement (Figure 5b), and the percentage difference as a
function of the amplitude ratio (Figure 5c), and the logarithmic decrement (Figure 5d). It is seen that
the difference is greater than 2% when the amplitude ratio is greater than or equal to 3.5, or when the
logarithmic decrement is greater than or equal to 1.25. As the exact formula (i.e., Equation (57)) is still
quite simple, the use of Equation (57) is highly recommended when calculating the viscous damping
ratio from the logarithmic decrement in practical applications.
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Figure 5. The real viscous damping ratio calculated using Equation (57) and the approximate viscous
damping ratio calculated using Equation (58) as a function of the amplitude ratio (a), and the
logarithmic decrement (b), and the percentage difference as a function of the amplitude ratio (c), and

the logarithmic decrement (d).

3.7. Half-power bandwidth and viscous damping ratio

For a viscously damped SDOF system subjected to a harmonic excitation, the contribution of the
homogenous (or transient) solution (i.e., the response due to the initial conditions) is diminished for
large values of t [26], hence we have only the particular solution (i.e., the response due to the applied
force) at the steady state (see Equation (13)). As the power is proportional to the square of the
amplitude of oscillations, the half-power response level corresponds to Bp,y/V2 where Bp.y is the
maximum value of the amplitude B given in Equation (14). The half-power frequencies are the two
points on either side of the natural frequency such that the dynamic amplification is equal to 1/v2.
It should be noted that this corresponds to 3 dB amplitude decrease in the logarithmic scale. The
procedure for the use of half-power bandwidth for the identification of damping is illustrated in

Figure 6. Using Equations (14) and (16), the operation % (F%) = 0 produces the peak value Cpox =
0
1 at Tyax =+/1—2¢2 [26]. Hence, using C(r) = Cpax/V2 in Equation (16) yields the

201-¢2
frequency ratios at the half-power points as 15, = \/ 1—2¢? £2¢,/1+ {?. Hence, the lower and

upper half-power frequencies are obtained as w; = wy \/ 1-202-2{J1+¢?, and w, =

Wy J 1—2¢%2 + 201+ 2, respectively. Overall, the relationship between the viscous damping ratio
and the half-power bandwidth becomes as follows [38,99]:

A—"’=M=\/1—2(2+2(\/T§2—\]1—2(2—25\/ﬁc2 (59)

where Aw = w, — w, is the half-power bandwidth. Once, the half-power frequencies and the

natural frequency are determined using the measured data, the viscous damping ratio can be found
using Equation (59). It is clear that the wider bandwidth means more damping. The expression in
Equation (59) is quite complicated. Therefore, the following approximate expression can be used to
define the relationship between the half-power bandwidth and the viscous damping ratio:

Aw _ wy—wq \/1 +2¢ - \/1 —2¢ for (<0.1 (60)

Wn Wn
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For small damping (i.e., { < 1), the equation can be further simplified as follows [100]:
80 =920 g or for {1 (61)

Wn Wn

Amplitude

"
W, Frequency

Figure 6. The illustration for the procedure for the use of half-power bandwidth for the identification
of damping.

The relationship between the half-power bandwidth and the viscous damping ratio using
Equations (59-61) is visualized in Figure 7. It is seen that for small damping (i.e., i—w <02 or{<
0.1), Equations (59-61) produce almost the same results, while there is a considerable difference

between Equation (59) and Equations (60) and (61) when { >0.2. On the other hand, the
approximation given in Equation (60) is always better than the simplest expression given in Equation

©1).
03 T T T T £2s 5 IS
] 2<appr = ‘U_n
° Ps \
5 0.2+ Aw -
x -
% | OVIFR-T-R =7
£ |
€
© |
o
§ 4
2 01 l>Jl—2{2+2{\/1—{2—J1—2(2—2{W=A_"’ -
> Wn
0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Aw/w,

Figure 7. The relationship between the half-power bandwidth and the viscous damping ratio
calculated using Equations (59-61).


https://doi.org/10.20944/preprints202408.0973.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0973.v1

14

3.8. Half-power bandwidth and loss factor

As it will be shown later, the loss factor can be written as 1 = tan(¢)). Hence, the relationship
between the loss factor and the half-power bandwidth can be shown to be as [38]:

se= = Tan T (6
For small and medium damping, the equation can be further simplified as:
i—izwzw;:lzn for 1<0.3 (63)
The relationship between the half-power bandwidth and the loss factor calculated using
Equations (62) and (63) is visualized in Figure 8. It is seen that for small and medium damping (i.e.,

i—w < 0.3 or n < 0.3), Equations (62) and (63) produce almost the same results, while there is a
considerable difference between Equations (62) and (63) when 1 > 0.6.
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Figure 8. The relationship between the half-power bandwidth and the loss factor calculated using
Equations (62) and (63).

In practical applications, the most commonly used methods for the identification of the loss
factor require vibration spectrums or the frequency response functions, which are obtained by the
Fourier transformation of the time-domain data [101]. Although, we presented the half-power
bandwidth concept above, more sophisticated methods such as the circle-fit and line-fit methods are
commonly used to identify the modal loss factors of a structure using measured frequency response
functions [90,92,102,103].

3.9. Loss factor and viscous damping ratio

As seen in Equation (54), the loss factor is defined as 1 = i—, for the complex Young’s modulus

E' +jE". It should be remembered that, similarly, the same concept is used for the complex stiffness
given by k =k’ + jk" where k' and k' are the real and imaginary parts of the complex stiffness,
respectively. Now, let’s try to obtain the equivalent complex stiffness for a viscously damped SDOF
system. The equation of motion for a viscously damped SDOF system subjected to a harmonic
excitation can be written as:

mil + cit + ku = Fyel®t (64)

Assuming the form of the solution to be Be/“!, and substituting this into the equation above
produces the following expression:

[-mw? + (k + jcw)]B = F, (65)

The equation above can be further arranged as follows:

[-ma? +k(14%2)]| B =F, (66)

or
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(-mw? + k)B =F, (67)
where k is the complex stiffness defined as:
fc:k'+jk":k(1+j%) (68)
Hence, the loss factor for a viscously damped system can obtained as follows [38]:
K cw
n=a== (69)
Using the definitions of w, =./k/m, and { = é =3 \/Z_m at w = wy, the relationship between

the loss factor and the viscous damping ratio is obtained as:

n=20y1-2¢2 (70)

Since 2{y/1 — {? = 2{ for small damping, the equation above can be written as:

Nappr = 2¢ for (K1 (71)

The relationship between the viscous damping ratio and the loss factor calculated using
Equations (70) and (71) is visualized in Figure 9. It is seen that for small damping (i.e.,, { < 0.15), both
approaches produce almost the same results, while there is a considerable difference between these
two approaches when ¢ > 0.3.
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Viscous Damping Ratio, ¢

Figure 9. The relationship between viscous damping ratio and loss factor calculated using Equations
(70) and (71).
3.10. Phase lag and loss factor

As seen in Equation (50), the storage and loss moduli are given by E' = ?cos(cp) and E' =
0
[ . . . . . .
= sin(¢), respectively. Using these in Equation (54), the relationship between the phase lag and the

loss factor is obtained as [104]:

n === tan($) (72)
Hence, the phase lag in terms of the loss factor can be written as follows:
¢ = tan"'(n) (73)

3.11. Phase lag and viscous damping ratio

Using w, =+/k/m and { = Ci = 2\/% in Equation (7), the relationship between the phase lag

and the viscous damping ratio can be shown to be:

2¢7 = tan(¢) (74)
Hence, the phase lag in terms of the viscous damping ratio can be written as:
¢ = tan~? (20 22) (75)

At w = wy, the relation between the loss angle and viscous damping ratio becomes:
¢=tan"1(20) at w=w, (76)


https://doi.org/10.20944/preprints202408.0973.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0973.v1

16

3.12. Viscosity and loss modulus

In the oscillatory shear experiment, the rotation provided to the sample is a simple harmonic
motion. Hence, the shear strain can be written as [105]:

y(@) = yosin(wt) (77)

where y, and w are input strain amplitude and frequency, respectively. Based on Equation

(77), the shear strain rate will be:
Y

¥(8) =47 = yoweos(wt) (78)

For a linear viscoelastic material, the stress response to the applied shear is determined not only
by the current rate of strain, but also by the historical rate of strain. Hence, the stress for a general
linear viscoelastic material at time t can be written as [106,107]:

() = [1_G(t—t)y)dt = [°_G(t —ty,wcos(wt’)dt’ (79)

where the function G(t) is the relaxation modulus of the fluid [108] and shows the importance
of the past strain rate on the current stress in the system. It is worth to notice that a linear elastic solid
has a constant relaxation modulus of G(t) = G,, and a purely viscous fluid has a relaxation modulus
of G(t) = pué(t) where u is viscosity, and &(t) is the Dirac delta function [106]. Overall, using
reference [109], the relationship between the loss modulus and the viscosity is obtained as explained
below. First, by changing variables using s = t — t’, we can transform the integral in Equation (79)

to the following expression:

(t) = yow fom G(s)cos[w(t — s)]ds (80)
In addition, by writing cos[w(t —s)] = Re[ej“’(f‘s)], we can obtain the following equation:
7(t) = yow fom G(s)Re[e/*(t=9)]ds = y, wRe[e/®t fooo G(s)e /*sds] (81)

It is clear that the integral above is a one-sided Fourier transform, and since it has no dependence
on t,itis a complex number. By convention, we can define the complex shear modulus G as follows:

G =jw [ G(s)e™/“ds = G’ + jG" (82)

where G' is the storage shear modulus, and G'"is the loss shear modulus, as stated before.
Overall, we have the following expression:

7(t) = yoRe[e/**(—jG)] = yoRe[cos(wt) + jsin(wt)(G" — jG)] (83)

By further rearranging the expression above and substituting Equations (77) and (78) into
Equation (83), we can obtain the following equation [106]:

T(t) = y,[G'sin(wt) + G"'cos(wt)] = G'y(t) + %’]’/(t) (84)

It should be noted that the response of a purely viscous fluid is (t) = uy(t) = puy,wcos(wt),
and the response of a purely elastic solid is 7(t) = Gy(t) = Gy,sin(wt). As seen in Equation (84), the
role of the viscosity is taken by the term %’ Therefore, it is common to write the shear viscosity in

terms of the shear loss modulus as follows [109,110]:
G”

p=— (85)

3.13. Viscosity and loss factor

As the loss factor is defined as 1 = (;—,, using Equation (85), the viscosity in terms of the loss

factor can be written as follows [111]:
= (86)

w

3.14. Inverse quality factor and viscous damping ratio

The inverse quality factor for a mechanical system is defined as the inverse of the so-called
quality factor (Q), and using Equation (59), it can be written as follows [38]:

Qinv=g=“—°’—\/1—2<2+2<\/T<2—J1—2<2—2<JT62 (87)

Wn

For small damping, the equation above can be written as follows:
A
Qinv, appr — % === 2¢ for (K1 (88)

Wn


https://doi.org/10.20944/preprints202408.0973.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2024 doi:10.20944/preprints202408.0973.v1

17

3.15. Inverse quality factor and loss factor

The inverse quality factor in terms of the loss factor is given by [38]:

1_4A
Qv =g =5 =1+n—y1-7 (89)
For small and medium damping, the equation above can be written as follows:

1 A
Qinv, appr — 2 = w_(: =n for 1n<03 (90)

3.16. Structural reverberation time and loss factor

The loss factor of a plate-like structure can be identified using the method based on the energy
attenuation [112]. For this purpose, the structure is suspended by a set of soft springs, and then it is
excited by a shaker. When the steady vibrations are set, the excitation is abruptly interrupted, and
the decay time of the vibrations is measured (see Figure 10). Hence, the loss factor of the plate is

estimated using the following expression [113-115]:
— 2.2 — 6loge10 (91)
fTeoaB @ TeodB
where f is the frequency in Hz, w = 2rf is the frequency in rad/s as stated before, and Ty 45

is the 60 dB decay time (see Figure 10) or structural reverberation time in s.

A

steady-state level _~ turning the source off
&~

natural decay

Amplitude

eV = = = background level

Figure 10. [llustration of the measurement procedure of the 60 dB decay time (T 4g)-

3.17. Step response and viscous damping ratio

A typical step response of a viscously damped SDOF system given in Equation (19) is illustrated
in Figure 11. Various parameters of the step response such as the so-called peak time, rise time,
overshoot, decay ratio and settling time can be related to the viscous damping ratio [116]. For
example, the relationship between the viscous damping ratio { and the decay ratio y = c¢/a can be
shown to be:

_ —logey
¢= J4an2+(logey)? (92)

where a and ¢ are the amplitudes of the first and second peaks, respectively.
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Figure 11. The typical step response of a viscously damped SDOF system.

3.18. Rayleigh damping and viscous damping

A common method of modelling damping in practical applications is the so-called Rayleigh
damping [117]. It is usually known as proportional damping or classical damping [118]. Overall, the
Rayleigh damping model approximates the viscous damping available in the system. In this model,
two damping coefficients (i.e., @ and f) are specified. These coefficients can be calculated from the
modal viscous damping ratio {,, ata particular frequency w, using the following simple expression
[119]:

G =gt B2 93)

2wn 2

If the viscous damping ratios for the ith and jth modes are {; and {;, then the Rayleigh
coefficients @ and S are determined from the solution of the following two algebraic equations
[120]:

1[1/w; w]ay _ [S

17y wllel =) o9

If both modes have the same viscous damping ratio (i.e., {; = {; = ¢ ), then the values of « and
B can be determined to be as follows:

_ Zwiwj _ 2
a= C(ui+(uj and ﬁ - Z(4)i+(1)]'

It is worth noting that the Rayleigh damping model is implemented in many finite element
software packages, including ABAQUS [121], ANSYS [122] and COMSOL [123].

(95)

4. Summary of The Relationships Between Common Damping Parameters

In practical applications, often one of the damping parameters (e.g., loss factor) is measured, and
for comparison purposes, it is needed to convert the measured damping parameter into some other
damping parameters (e.g., viscosity). The measured parameter can be converted into the desired
parameter using the expressions presented in Section 3. Using the derived expressions in Section 3,
an important equation relating the loss factor (1) to the ratio of the dissipated energy per cycle (AW)
and maximum stored energy (W), the specific damping capacity (), the loss angle (¢), the ratio of
the loss modulus (E"') and storage modulus (E'), and the viscous damping ratio ({) can be written as
follows:

=LV tan(g) =2 = 2T (96)

"=%w "
Again using the derived expressions in Section 3, for small damping, another important equation

relating the viscous damping ratio ({) to the ratio of the dissipated energy per cycle (AW) and
maximum stored energy (W), the specific damping capacity (), the loss angle (¢), the ratio of the
loss modulus (E") and storage modulus (E’), the loss factor (1), the logarithmic decrement (8), the
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ratio of the half-power bandwidth (Aw) and natural frequency (w,), the quality factor (Q) and the

inverse quality factor (Qiny) at @ = w, can be written as follows:

1MW _ ¥ _tn@) _ET_n_8 _ Ao _ 1 _ Qny _
(=%w " 2 28’ 2 2m 2wy 20 2 for { «1 (at w = wy) (97)

Overall, the important damping parameters measured in practical applications and their
relations to other important damping parameters are summarized in Table 2.

Table 2. The important damping parameters measured in practical applications and their relations
to other important damping parameters.

Measured Parameter(s) Target Parameter(s)
. Viscous Damping Coefficient (c): B: Displacement amplitude
Dissipated energy per AW AWP g Coeffi © f:%requency in sz
cycle (AW) €= 2n?B2f ~ 7B2w w: Frequency in rad/s
Specific Damping Capacity ():
Dissipated energy per ), = AW
cycle (AW) and maximum X
stored energy (W) L aw Loss Factor (n):
Unbrara
Viscous Damping Ratio ({):
s
Logarithmic decrement (5) {= Jan2io?
(= % (approx. for small damping, ¢ « 1)
Loss modulus (E'") and g Loss Factor (n):

storage modulus (E') n=—

Viscous Damping Ratio ({) and Inverse Quulity Fuctor (Qiny):
Half-power bandwidth \/1—2(2 + 201+ 2 - \/1—2{2 201+ =—===Qj

(Aw = w; — wy)

J1+20—-J1-20= w_n =5 = Qiny (approx. for small damping, { <

(w;: Lower half-power 1)
frequency or

w,: Higher half-power 2{ = i—t = % = Qiny  (approx. for small damping, ¢ « 1)
frequency

Loss Fuctor (n) and Inverse Quality Factor (Qiyy):
wy: Natural frequency

Q: Quality factor) Vitn—yl-n=— = Qinv

Aw 1

== = Qiny (approx. for small and medium damping, 7 < 0.3)

Vlscous Damping Ratio ({):
202" = tan(¢)

wy: Natural frequency

w: Excitation frequency
Phase lag (¢) 2¢ =tan(¢) (at w = wy)
Loss Factor (n):
1 = tan(¢)
Viscous Damping Ratio ({):
201= ¢ =1
2{ =n  (approx. for small damping, { < 1)
Loss factor (1) Inverse Quality Factor (Qipny):
1 Aw
Qinv=6=w_=\/1+n_\/1_n
n
Qiny = % = i—w =n (approx. for small and medium damping, 7 < 0.3)
Viscosity (u):
Loss modulus (G") G" w: Frequency in rad/s
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Loss Factor (n):
22 6log,10

fTeoag ®-Teodp

Structural reverberation
time (Teo gB) n

f: Frequency in Hz
w: Frequency in rad/s

5. Some Damping Identification Applications of Biomaterials

The dynamic indentation test is widely used to identify the viscoelastic properties of
biomaterials. For example, the dynamic indentation method was used to determine the storage and
loss moduli of some agar samples [30]. The average storage modulus (E’) and loss modulus (E"') for
a 5% agar sample obtained with the frequency sweep load function with a 1500 uN static load and 2
puN dynamic amplitude was found to be between 2 and 2.3 MPa and 0.013 and 0.02 MPa, respectively,

in the frequency range of 100-200 Hz [30]. Using Equation (54), i.e., n = i—’,’, the loss factor of the 5%

agar sample can be calculated to be around 0.07 and 0.09 at 100 and 200 Hz, respectively.

It is quite common to measure the storage and loss shear moduli of soft materials using an
oscillatory rheometer, and then calculate the loss factor or viscosity from the measured storage and
loss shear moduli. For instance, the storage shear modulus (G') and loss shear modulus (G") of a
hydrogel were measured using an oscillatory rheometer test [124]. Using the relationship between
the loss factor and the storage and loss shear moduli given before (i.e.,, n = G"'/G'), the average loss
factor of the hydrogel for the given frequency range (i.e., 1-10 Hz) can be calculated to be n = 0.007.
Similarly, using the relationship between the viscosity and the loss shear modulus (i.e,, p = G"/w)
and the given frequency, the viscosity of the hydrogel at f =10 Hz can be calculated to be u = 4
Pa-s.

The logarithmic decrement method is effective for determining the damping of a structure
when a single mode of vibration can be isolated from the others. Furthermore, this time-domain
method does not require input measurement, it requires only response measurements. For example,
the vibration damping characteristics of some spider silk threads were determined through the
nanoindentation and the time decay waveform obtained from a laser vibrometer [125]. Using the
measured time decay waveform and Equation (56), the logarithmic decrement of the so-called spiral
thread was calculated. Then, the viscous damping ratio of the spiral thread was calculated using
Equation (57). It should be noted that, although the measured time decay waveform given in the
reference [125] is not pure harmonic, it is still dominated by a frequency component, and the
logarithmic decrement can be used to identify the damping of the structure. Overall, the viscous
damping ratio for the spiral thread was found tobe { = 0.12 [125]. Using Equation (71), i.e., n = 2{,
the loss factor of the spiral thread can be calculated to be 1 = 0.24.

The resonant vibration test or experimental modal analysis is quite commonly used to identify
the damping of a structure. The viscous damping ratios of some hydrogel beam-shaped samples were
identified via resonant vibration tests for the first bending mode [33]. For this purpose, the frequency
response functions using an accelerometer and a laser Doppler vibrometer were measured. The
modal viscous damping ratio was determined by fitting the Euler-Bernoulli beam model to the
experimental data. Using Equation (72), i.e., n = i—” = tan(¢), the loss factor of the hydrogel sample

was determined, and using the simplified relation between the loss factor and the viscous damping
ratio (i.e., n = 2{), the viscous damping ratio of the hydrogel sample was calculated. For example,
the viscous damping ratio for the hydrogel 0.8% Bis sample was found to be { = 0.019 [33].

As mentioned before, although the half-power bandwidth concept for the identification of the
loss factor was presented in Section 3, more sophisticated methods such as the circle-fit and line-fit
methods are commonly used to identify the modal loss factors of a structure using the measured
frequency response functions [92]. For instance, the circle-fit is based on fitting a circle to the
measured frequency response function data around the vicinity of a natural frequency. Although the
viscous damping ratio can be identified using Equations (59-61) based on the half-power bandwidth
method, the modal loss factor for the rt mode (7,) of a structure is determined using 7, =

0.)2 r—wz r
wﬁ,r[tan(ezi/z)+1t'an(91‘r/2)]
and w,; and w;, correspond to the angles 6., and 6, around w,, when the frequency

in the circle-fit method where w,, is the natural frequency of the rt mode,
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response function is plotted using the Nyquist diagram. For example, the loss factor of a biofibre
based plate for the first mode using the circle-fit method was determined to be n = 0.027 [102].
Using the simplified relation between the loss factor and viscous damping ratio (i.e., n = 2{), the
viscous damping ratio of the biofiber based plate can be determined to be ¢ = 0.0135.

In the recent years, a bubble or sphere placed inside the soft medium [68-70] or located at the
soft medium interface [34,56,57] exposed to an external excitation such as acoustic radiation force or
magnetic force has been widely used to identify the viscoelastic properties of soft materials. For
instance, using the deformation curve for a microbubble administered into a wall-less hydrogel
channel exposed to an acoustic pulse obtained by the high-speed microscopy, and the curve fitted to
the measured deformation curve exploiting a mathematical model, the viscosity of the gel was
estimated [34]. Overall, the maximum displacement of the bubble was determined to be around 2.2
pum, and the viscosity of the hydrogel was estimated to be 0.12 Pa-s [34]. Using a novel approach
based on the dynamic response of a spherical object placed at the sample interface, the shear modulus
and viscosity of a gelatine sample with a density of 1105 kg/m? were determined to be 3000 Pa and
1.5 Pas, respectively [56].

An ultrasound elastography for the characterisation of the viscoelastic properties of soft tissue
was developed and validated [60]. The reverberant shear wave ultrasound elastography was used to
scan plantar soft tissue and gelatine phantom at 400-600 Hz. The shear wave speed was determined
using the ultrasound particle velocity data. The viscoelastic parameters were extracted by fitting the
Young’s modulus as a function of frequency derived using different rheological models to the shear
wave dispersion data. For example, the Young’s modulus and viscosity of plantar soft tissue were
determined to be 13628 Pa and 3.3 Pa-s, respectively, using the Kelvin-Voight model [60]. It should
be noted that there have been many attempts to exploit the damping (or viscosity) in quantitative
ultrasound [58,60,126-129]. For example, the reconstructions of viscosity maps in different tissues
(e.g., ex vivo normal porcine liver, fatty duck liver and fatty goose liver) with inclusions were
presented in [60]. In addition, modifications have been made to existing magnetic resonance
elastography via using a damping parameter (e.g., loss angle) to improve its accuracy
[45,63,76,130,131].

6. Conclusions

The literature review shows that the dynamic indentation method, rheometry and viscometry,
atomic force microscopy, hysteresis loop or power input method, resonant vibration tests or
experimental modal analysis, and logarithmic decrement are commonly used to identify the damping
of materials, including soft materials. In addition, a bubble or sphere placed inside the soft medium
or located at the soft medium interface exposed to an external excitation such as acoustic radiation
force or magnetic force is nowadays used to identify the viscoelastic properties of soft materials. The
ultrasound elastography and magnetic resonance elastography for determining tissue mechanical
properties are quite common for the preclinical and clinical applications. The viscous damping ratio,
loss factor, complex modulus (or storage and loss moduli), and viscosity are quite common to
describe and quantify damping in practical applications. In addition, the specific damping capacity,
loss angle, half-power bandwidth, logarithmic decrement, and inverse quality factor are used to
describe and quantify damping in many applications. In practice, usually one of the damping
parameters (e.g., loss factor) is measured, and for comparison purposes the measured damping
parameter needs to be converted into some other damping parameters (e.g., viscosity).

The theoretical derivation of different damping parameters and their relationships have not been
presented in the literature so far. Therefore, the theoretical derivations of different parameters for the
description and quantification of damping and their relationships, as well as the methods for
damping identification are covered in this comprehensive review. Both accurate formulas (i.e., for
systems with any amount of damping) and approximate formulas (i.e., for systems with low
damping) are presented and compared. The damping parameters investigated in this paper include
the specific damping capacity, loss factor, viscous damping coefficient, viscous damping ratio, loss
angle or phase lag, logarithmic decrement, half-power bandwidth, complex modulus (or loss and
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storage moduli), inverse quality factor, viscosity, decay ratio in the step response, and structural
reverberation time. It is believed that the material presented in this paper will be a primary resource
for damping or viscoelasticity research and teaching in the future.
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