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Article

Interpretation of Gravity by Entropy

Seiji Fujino
RHC institute, 3rd Iriya Zama city, Kanagawa, Japan, 252-0028; rhc-institute.com or xfujino001@gmail.com or
xfujino001@rhc-institute.com

Abstract: In this paper, we introduce generalized entropy, the acceleration of its entropy and
its the partial entropy. We assume that generalized entropy can be expressed as a second-order
polynomial by applying the idea of logistics function to its entropy. In other words, we assume that
the acceleration of generalized entropy is a constant. Besides, we show that the negative inverse
of the partial entropy can express Newton’s classical gravity, which is an inverse square law. By
applying these concepts, we attempt to explain that 1) Gravity is constant within small distances with
some conditions. It is possible that gravity have 6-states within small distance. Furthermore, within
small distance, we show the possibility that the gravitational potential and the Coulomb potential
can be treated in the same way, that 2) The rotation speed of a galaxy does not depend on its radius if
the radius is within the size level of the universe. (The galaxy rotation curve problem), and that 3)
The gravitational acceleration toward the center changes at long distances compared to the classical
theory of gravity. Furthermore, we show that the possibility of the existence of some constants which
controls gravity and the speed of galaxies, and that gravity may relate on entropy.

Keywords: entropy; gravity; galaxy rotation curve; MOND; Planck’s law; dynamical system; inverse
square law; logistic function

1. Introduction

In this paper, we will explain in the following order.

1. First, We define generalized entropy Sp(x, k) and partial entropy Sp(x) partitioned by the
partition function D(x), and introduce the acceleration of partial entropy S/,(x), where x
is a positive variable, ¢ is a positive constant. Qp(x) is a positive function as satisfied
Qp (x) = &x/D(x).

2. Second, by applying the idea of logistics to that entropy, Using the ideas of logistic theory, we
derive a function Q(x) that defines the partition function D(x). Moreover, we assume that
generalized entropy Sp(x, k) is approximated by second-degree polynomial, that is, the formula
ArxZ 4+ Aqx. In other words, we assume that the second derivative of S p(x, k) is a constant A, /2.

3.  Third, the negative inverse of partial entropy Sp(x) is defined as the potential Vp(x, k), and the
first derivative of potential Vp (x, k) is defined as the acceleration V},(x, k) Namely, it is assumed
that the potential and the acceleration are derived from entropy.

4.  Finally, according as the theory of gravity, the inverse 1/A; is interpreted as the mass m, the
constant k is interpreted as the gravitational constant G, and the variable x is interpreted as the
distance R, etc. Thereby, the potential Vp(x, k), and the acceleration V/,(x, k) are interpreted as
the gravitational potential V(R, G) and the gravitational acceleration V'(R, G), Therefore, we
show and propose some conclusions:

(1)  When the distance is small enough, gravity is constant regardless of R and does not become
infinite, except some conditions. It is possible that gravity have 6-states within the distance
R is small enough. Furthermore, within small distance, we show that the possibility that

the gravitational potential and the Coulomb potential can be treated in the same way.
(2) Atdistances large enough to be within the size of the universe, gravity follows an adjusted

inverse law. Within this distances, the rotation speed of a galaxy v follows the gravitational
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constant G, the mass m and some constants, not depend on its galaxy radius R (the galaxy

rotation curve problem).
(3) At large distances, gravity follows an adjusted inverse square law. Comparing to

conventional gravity, the gravitational acceleration towards the center of rotation is slightly
weaker or stronger. This means that the gravitational acceleration towards the center of a
rotating substance can be slightly changed at distance. (Pioneer Anomaly)

Furthermore, it is possible there exists some constants that controls gravity and the speed of
galaxies. Besides, some constants depends on the definition of entropy, therefore gravity is thought to
depend on entropy.

2. Generalized Entropy and Application to Dynamical Systems

In this section, we introduce generalized entropy, its partial entropy and its acceleration entropy.
By using logistic function models, we attempt to discuss adjusted gravity and the rotation speed of
galaxy.

2.1. Generalized Entropy Sp(x, k) and Its Partial Entropy Sp(x)
We define generalized entropy as follows. In this paper, the function log represents the natural

logarithm log,.

Definition 1. Generalized Entropy Sp(x, k) and its partial entropy Sp(x).
Let x > 1 be a real variable, and k > 0 and & > 0 be real constants. Let D(x) be a positive real valued function
that partitioning x. Sp(x,k), Sp(x) and Qp(x) are defined as follows:

Sp(x,k) =kD(x)Sp(x), 1)
_ &
Qp(x) = W' 2)
x x x
So() = (14 ) 1081+ ) = iy 98 - o
QD( ) lo QD(x) ~ Qplx) 1 Qp(x)
= (1+ B2 1og 1 1 208 _ Qolx) 00 ()
where for any positive variable x > 0, the function Qp is satisfied as follows :
Qp =0, Qp=0. (4)
]
On above definition, S,(x) and S7,(x) are expressed as follows :

S/ ( QD(x)) IOg( QD@("O)) (5)

5 0) e (o L)
5 &+Qp(x) Qo) 6
( ) (6)

( o(1+ g( ))_bg(QDg(X)))_

We will call S, (x) entropy generation (velocity) of Sp(x), and S},(x) entropy acceleration of
Sp(x). The function Qp(x) can be regard as the position partitioned a real value x by Qp(x). The
first order derivative of Qp(x), that is, Q},(x) can be regard as the change of the position by x and
¢. (Refer to Fujino[22] for details on how to derive generalized entropy, entropy acceleration and its
partial entropy.)
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2.2. The Function Qp(x) and the Approximated of Generalized Entropy Sp(x, k)

Next, we find the function Qp (x) using the idea behind Planck’s radiation formula and logistic
function. Put the part of partial entropy S}(x) as follows :

Qp (%) 1 1 _
¢ <C+QD(X) QD(X)>_ K, 7

where p(x) > 0 is a positive real function. The left side of above formula (7) looks like spectra
partitioned by ¢x/Qp(x) and the right side of (7) become an approximation by the function y(x). We
consider Q7,(x) as follows :

Q) = 222, ®

Transforming according to formula (8), we can express as follows :

1 1
dQD(§+ Qp(x) QD(X)> = (). ®

Integrating both sides gives as follows :

log(¢ + Qp(x)) ~ 10g(Qp(x)) = ~& [ u(x)dx £ n, (10)

where 1 > 0. Therefore, the following equation is satisfied :

g
log(1+ :—/ x)dx £ . 11
By transforming the above equation, it is satisfied as follows :
1+ ¢ __ exp(—(’,‘/y(x)dxiyl). (12)
Qp(x)

Therefore, the function Qp(x) is expressed as follows :

Qp

(x) = ¢ . (13)
exp(—¢ f p(x)dx £pg) —1

The function Qp (x) becomes the distribution function of the position which the real value x
partitioned by Qp(x). The formula (7) also looks like spectra partitioned by ¢x/Qp(x). If we actually
take Qp(x) to log(x), we obtain an equation similar to the expand of Planck’s radiation formula, (Refer
to Planck[1] and Fujino[22]). If we partition it further into squares of discrete integers, put Qp,(x) =1,
1 (x) is expressed the wave number, and 1/¢ is the Rydberg constant Ry, then it resembles the Rydberg
formula that represents a spectral series. Namely, entropy may be related to atomic spectra and its
energy levels. We would like to make this a topic of research in the future.

Next, we make assumption about the approximated of generalized entropy Sp(x, k).

Assumption 1. Assume generalized entropy Sp(x, k) can be approximated by a second-degree polynomial.
Hence set as follows :

Sp(x,k) = Aax? + Aqx, (14)
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where Ay > 0 Ay > 0 are real numbers, and Sp(0,k) = 0. O
Hence, the first derivative S}, (x, k) is expressed a first-degree polynomial as follows :
Sp(x, k) =2A5x £+ Aq. (15)
Besides, the second derivative S, (x, k) is constant. Namely, it is satisfied as follows :
Sh(x, k) = 2A,. (16)
In other words, we assume that the second derivative of Sp(x, k) is a constant.
2.3. The Inverse of Partial Entropy Sp(x) and Potential Vp(x, k)
Next, we focus on the inverse of partial entropy Sp(x) as follows :
1 éx 1
= k .
Sp(x)  Qp(x) AP = Aux )
By formula (13), we can express as follows :
Vo b (e (¢ [ )z + )~ 1) (18)
Sp(x) T AxEA P # = ‘
We define the negative inverse of Sp(x) as the potential Vp(x, k) :
%
Vo (k) =k —E(exp(— [ plx)dx £ ) ~1) 19)
x —

A2

In other words, the above potential Vp (x, k) can be defined as the product of a constant k, the partition
D(x) = ¢/Qp(x), and the negative inverse of the general entropy Sp(x, k).
Here, let us reorganize the above, that is, we assume as follows :

Sp(x, k) = Apx? & Ay, (20)
Qp(x) 1 1 _
¢ <C+ Qp(x) QD(X)> = ), 2D

where Ay > 0 is positive real number and u(x) > 0 is a positive real function. Therefore, we define the
negative inverse of expression Sp(x) as the potential Vp(x, k) :

1

Vb (x, k) = kxfj{; (exp(—é‘/y(x)dx:l:yl) ~1). 22)

where § > 0, A > 0,A; > 0, 43 > 0 are real numbers and p(x) > 0 is a positive real function. The first
derivative V/,(x, k) is satisfied as follows :

1

Vblok) = ki (ep(S [ £ ) - 1)
1

g et [ £ ).

(23)

+k

Let Vp(x, k) be named as the potential of Sp(x, k), and V/,(x, k) be named as the acceleration of
Sp(x, k). Namely, we assume as follows :
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Assumption 2. It assume that the potential Vp(x, k) is defined the negative inverse of the partial entropy
Sp(x). Therefore, the acceleration V},(x, k) is defined the first derivative of Vp(x, k).

In the next chapter, we will discuss applications of the potential Vp(x, k) and the acceleration
Vh(x, k).
3. Application of Vp(x, k) to Gravity

The constants, variables, and functions in the above formulas can be chosen arbitrarily within
the range of conditions. Therefore, we attempt to interpret these constants, variables and functions
as gravity. Namely, we attempt to interpret Vp(x, k) as the gravitational potential and V/,(x, k) as the
gravitational acceleration.

3.1. Interpretation to V(R, G)

We consider the interpretation of formula Vp(x, k) as follows :

x:=R >0, R is the distance,
1 . g
" =m >0, m is the mass within R,
2
k:= G, G is the gravitational constant,
&.=as, &8 is a constant, (24)
u(x):=u3 >0, s isa positive real constant,
Yp = yf >0, yf is a real constant,
A= )\f >0, )\f is a real constant,

where the symbol g in the upper right corner of the alphabet stands for g of gravity.

We assume as follows :
The direction with smaller R is defined as the central direction. The gravitational potential increases
away from the center and decreases toward the center. However, when R = 0 become V(R,G) = 0.
Moreover, it assume the constant 1/A; is equal to the mass m within R.

Assumption 3. Assume the constant 1/ A, is equal to the mass m within R.

Assume that 2-times the inverse of entropy acceleration, 2/ S},(x, k), that is, 1/ Ay is equal to the mass m within
R. In other word, the mass m within R is defined as the inverse of the second-order term of Sp(x, k), that is
1/A,. O

According assumption 3, if the entropy acceleration S, (x, k) is large, the mass m becomes small,
and if the entropy acceleration S, (x, k) is small, the mass m becomes large. The relationship between
entropy acceleration and mass is intuitive, isn't it?

We define V (R, G) as the gravitational potential of G as follows :

V(R,G) = (exp(—gSp5R £ pi) — 1), (25)

__om
REASm

where ¢ > 0, “I/l‘g >0, y‘f > 0and )\‘% > 0.
The first derivative V/(R, G) is satisfied as follows :

Gm

m (exp(—G8pu3R + pf) — 1)
Gmésys
R+ Afm

V/(R,G) =
(26)
exp(—G8u3R £ uf).
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The above formula (26) become the gravitational acceleration. The second term of formula (26)
becomes like Yukawa potential. (Refer to H.Yukawa[17], R.Feynman[2])
The solution of formula (26) for u{ is satisfied as follows :

p1 = +log( ) F GEuR. (27)

1+ &8u5 (R Am)

Since the following conditions is needed to satisfied :

1
exp(—E8uSR £ i) = >0,
p(—G3u3 #y) 1+ &S (R £ ASm) (28)
hence, it is satisfied as follows :
1+ &8 u5(REAfm) > 0. (29)
Therefore,
1 1
A < (R+— | —. (30)
Gsps /) m
Namely, the following conditions are satisfied :
if 1+ &8puS(R—ASm) >0, then AS < R+ )1 31
13 1 r 1 & ) m’ @31
if 14+ S (R+ASm) >0, then AS > — Rt )2 (32)
2 1 ’ 1 &S ) m’

where ¢ > 0, y§ >0,m> O,A‘f > 0, the distance R > 0 and the mass m > 0.

3.2. When the Distance R is Small Enough

If the distance R is small enough, that is, since R approaches 0, hence exp(—&8u5R) approaches 1
infinitely. Therefore, the formula (26) is satisfied as follows:

Gm Gme8us

V/(R,G) = —————(exp(pf) — 1) + ———2 exp(£puf

(R.6) = (e ) =)+ 715 B2 enp ()
G ¢ G&spi3 s (33)

~(A9)m (exp(dp7) —1) + A8 exp(£p7),
("R —0, exp(—ZuSR) — 1).
If the distance Af = 0, then it is satisfied as follows :
Gm Gm&sus

V/(R,G) = 25 (exp(~S8 iR % 1) — 1) + —= 2 exp(— g8 R & ). (34)

The case of the above formula (34), if R — 0, then it become V'(R, G) — oco. Hence, we consider that it
make Af # 0 and R is small enough, and later consider the case )\f =0.

Therefore, if the distance R is small enough, then the acceleration V'(R, G) is approximated by
the constant. Namely, the following formula is satisfied :

d0i:10.20944/preprints202408.1039.v2
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Suggestion 1. The acceleration V' (R, G) becomes a constant with small R.
Let m be a positive real number (the mass). For sufficiently small distance R > 0, the following condition is
satisfied : the acceleration V' (R, G) becomes a constant.

V(R G) = S (exp(d) — 1) + S exp(p) @)
' (£A%)2m ! +£A8 T
where &8 > 0,5 >0, A3 > 0and ps > 0. O
The solution of formula (35) for y; is satisfied as follows :
ui==+ 1055(71 ). (36)
! 1+ ASp5Esm
Since the following conditions is needed to satisfied :
exp(£ptf) = g >0 (37)
Vo r e aSuSesm T
hence, it is satisfied as follows :
1j:/\1y2§gm > 0. (38)

Because ¢8 > 0, y§ >0,m > 0and /\f > 0, hence, these values condition is satisfied as follows :

1
1— g 8
if A1y2§ m>0, then A7 < ng‘gm (39)
if 1+ASuSc8m >0, then Ag>—# (40)
172 1 ggyé'm

According to the sign of plus and minus of )»‘513 and yf , the formula (35) and its solution for ],t‘ig can
be classified four patterns as follows :

(Case A):+AS, Jr‘u'flZ

/ Gg8u3
V(R,G>z—(A§)2m<exp(V§)—1)+ i exp(if), (41)
g_ 1 . / —
e A @

However thls above case does not occur because ;41 >0and 1+ /\1 1 §&8m > 0.
(Case B):— + 1"1

, G GEsus
V(R,G) ~ W(GXP(V@ -+ g)\lj exp (i), (43)
1 o
ui =log (W) if V/(R,G) =0. (44)

However, this above case does not occur because ;41 >0and 1+ )\1 1 §&8m > 0.

d0i:10.20944/preprints202408.1039.v2
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(Case C):+A§, —uf
G GEsps
V'(R,G) ~ ———(exp(—pf) — 1) + 2 exp(—pf), 45
(R,G) (A§)2m< p(—ui) —1) It p(—#7) (45)
1
8 _ i / _
1§ = —log if V!(R,G) = 0. 46
i St (46)
(Case D) :—/\f, —yéf
/ ~ G 8 G(fgyg 8
VA(R,G) ~ W(QXP(*M) -1+ Y exp(—py), (47)
1
8§ _ i / _
u; = —log lfV(R,G)—O. 48
i sz (48)
Suggestion 2. The classified V'(R, G) with small R.
According to values of &8 > 0,45 > 0 A > 0and p§ > 0, the formula (35) can be classified as follows:
(Case 1) If the constant yf is satisfied as follows :
u3 > log(1 £ Afu5E8m) >0, (49)
then the above formula (35) is positive, that is, it is satisfied as follows :
V'(R,G) > 0. (50)
(Case 2) If the constant y$ is satisfied as follows :
0 < uf <log(1+Afusesm), (51)
then the above formula (35) is negative, that is, it is satisfied as follows :
V'(R,G) < 0. (52)
(Case 3) If the constant ‘uf = 0, then the following condition is satisfied :
/ G‘:g?/‘g 8
V(R,G) ~ f (. exp(Eug) — 1). (53)
1
(Case 4) In case (45) and (47), if the constant exp(—ps3 ) is small enough, that is, p3 — oo, hence it is satisfied
as follows:
V'(R,G) =~ _& (. exp(—pd) = 0). (54)
7 (/\f)zm, . 1

(Case 5) According to the above formulas (53) and (54), if the constant )\f — 0, otherwise according to the
above formulas (41) and (43), if the constant y§ — oo, it is satisfied as follows:

V'(R,G) ~ o0 or V'(R,G)~ —oco. (55)
(Case 6) According to the above formulas (53) and (54), if the constant A§ — oo, it is satisfied as follows :

V/(R,G) ~0. (56)

O
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3.2.1. Summarize the Gravitational Acceleration for Small Enough R
By the above the acceleration V'(R, G), we summarize the gravitational acceleration as follows :
Gm Gmg Vg
7 g =—— (exp(—EuSR+ 1u8) — 1) + — L2 exp(—E8uSR + u$),
ELa$+ys R+ /\fm)Z( p(=& R+ py) = 1) R+ ASm p(—C8 R+ py) 57)

Adjusted Gravitational Acceleration with {3 and yé,
If the distance )\517 =0, then

_ Gm g g Gngy§ g g
E+0+pf = F(exp(—é‘g‘qu £py)—1)+ R exp(—&8uy R+ py), (58)

Adjusted Gravitational Acceleration with 8 y‘g and )Lf =0,

If the distance R — 0, then

5 __ G g GEs s g
Exa$+p$ = m(exp(iﬂl) -1)+ ﬂ:/\f exp(Epug), (59)

Adjusted Gravitational Acceleration with 3, R is small enough.

Therefore, if the distance R — 0, then it is satisfied as follows :

= lim ¢ <.,
Ry S pf =

g

~ _ G&8uy
Saf+puf +15 7

Y
giAl £
lim
3 —0

lim
3 —0,A§ =0

7 =+
Saf '

lim §.,,8,,8=0
EIREE ’
;4‘%—)0,/\‘5—)00 1751

G
Iim ¢ g = ,
#f_mgi/\‘ffﬂi ()\f)zm (60)
lim —0

g:l:)tgf 8§ = ,
yf—wo,/\f—)O 171

lim $.y¢_8=0,
p§ —00,AF —00 A

1
lim §, s, s=00, ") A< ——
B =

1
lim § ¢ g=—co, ") AS>— .
§Smeo S TMHH T asuSm

From the above, we can suppose as follows :

Suggestion 3. Within the distance R is small enough, gravity have 6-states.

g8
Within the distance R is small enough, it is possible that ¢ravity have 6-states such that finite 3-states Cel1s and
8 p 8 Y AT
ﬁ, and that infinite 2-states +oo and 1-state of 0. g
1

Namely, if the distance R is small enough, hence the acceleration V'(R, G) becomes some finite
constants depend on constants ¢3, /\f , yf and y%, not infinite. However, if the constant A‘% or yf
approach 0 or oo, then the acceleration V/(R, G) becomes oo or 0. Depending on the value of y; and
A$, the value of V/(R, G) can be positive or negative. When the value of V/(R, G) is the negative, the
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deceleration acts toward the center. These constants is depended on generalized entropy and the
part of partial entropy. Namely, the acceleration depend on generalized entropy. Therefore, there
exists 6-states within the distance R is small. The constant A{ is the coefficients of degree one of the
approximate generalized entropy Agxz + A‘%’ x, and the constant ‘uf is the integral constant obtained by
integrating the parts of partial entropy S7,(x). In other word, The acceleration moving away from the
center is changed by these constant, that is, simply the acceleration is depended on entropy. (Note
: The center direction is defined as the positive direction.) The above discussion can be applied to
Coulomb’s law (electric field) . By adjusting the value of yi1, 2, A1, m = 1/ A, and ¢, it may be possible
to make the argument by replacing the gravitational constant G to the Coulomb constant k.. (In this
paper, the Coulomb constant is defined as k..) We will discuss this possibility next.

3.2.2. Compare V (R, G) and V (R, k.) for Small R

We attempt to compare V(R,G) and V(R k.), and consider its values. Similarly the gravity
potential V(R, G), we define the Coulomb potential V (R, k) as follows :

kece
V(R k) = —#)fieq(exp(—‘?#ﬁl{ +pui)—1), (61)

where ¢; > 0 is an elementary charge, and ¢ > 0, u5 > 0, u{ > 0 and A{ > 0. and the symbol c in the
upper right corner of the alphabet stands for ¢ of Coulomb.
For example, we set the value of constants as follows :

G := 6.673E-11, G is the gravitational constant,
&8 = ¢ :=h = 6.670E-34, h is Planck’s constant,
ke := 8.987E+9, kc is Coulomb constant,
eq := 1.604E-19, eq is elementary charge,
m :=my = 2.176E-8, my is Planck’s mass(unit : kg), ©2)
‘ug =1, y‘f is a real constant,
us =1, S is a real constant,
A’ff =1, /\‘f is a real constant,
Al =1, A{ is a real constant,
R :=1.000E-6, Aq is a real constant(unit : meter).

Calculating with the above constants, the gravitational potential V (R, G) is satisfied as follows :

V(R,G) = —2442E-12, if uf =1, (63)
V(R,G) = —2480E-3, if y3 =21.28, (64)

where Planck mass 1y, is used instead of mass m. and the sign of y‘% and )\f are + ]/L‘%’ and —|—/\‘§ .
Similarly, Coulomb potential V (R, k) is satisfied as follows :

V(R k) = —2474E-3, if u§ =1, (65)
V(R k) = —2.512E+6, if uS =21.28, (66)

where elementary charge e; is used instead of mass m and used k. instead of G. the sign of y{ and A{
are +u{ and +AJ.

The value of V(R,G) and V(R, k) changes depending on how the constants y{ and p1¢ are
selected. The above values (64) and (65) is closed. Therefore, for any the distance R, ‘uf =21.28 and
u§ =1, it is satisfied V(R, G) ~ V(R, k.). In consequence, it is satisfied as follows :
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Suggestion 4. Let m), be mass , eq be elementary charge, G be the gravitational constant and k. be Coulomb
constant. For small distance R > 0, there exists constants ¢$, C°, y§ Us, y‘f g /\f and A{ such that the following
condition is satisfied :

V(R,G) ~ V(R,k.), (67)
where Cg,CC,‘u‘g,yE > 0and Af,)\ﬁ,yf, ug > 0. O
Because, if it is satisfied as follows :
V(R,G) = 0 (exp(—EuiR £ 4) — 1)
R+ Afm,
keeg (68)

= -5 —CuSREtpuj) —1
Rt Ace, OP(-EmREp) —1)
= V(R k),
then transforming the above formula, it becomes as follows :

REA{my ke
Gmp R+ Afeg

exp(—Sp3R+ ) =1+ (exp(—E R £ py) —1). (69)

Therefore, if the value of 5 is given, the value of ‘ug can be found as follows :

1 REAm, ke
S — 8 _ 1Mp .\ Kcq xcc o ;
M2 = &R [i}ll log<1+( RT Ace, )(Gmp)(exp( ZEuSR + pf) 1))} (70)

Namely, using the equation for the potential derived from entropy, within small distance, it may be
possible to treat Gravity potential and Coulomb potential in the same way by appropriately choosing
some constants. In same way, applying the gravitational acceleration V’(R, G) and Coulomb’s law
(electric field) V'(R, k.), we can get as follows :

Suggestion 5. Let m), be mass , e; be elementary charge, G be the gravitational constant and k. be Coulomb
constant. For small distance R > 0, there exists constants &8, &€, y3 us, yf g /\f and A{ such that the following
condition is satisfied :

V,(R/ G) ~ V/<R, kc), (71)
where &8, &, 15, uS > 0and A3, AS, uf, u$ > 0. -

3.3. When the Distance R is Large, However ¢ Is Small Enough

Assuming the distance R is large and the constant ¢¢ is small like Planck constant, that is & ~ h.
The constant & is the Planck constant, 6.626E-34] - s and the constant y‘g is also small, that is, ‘ug <1
Let R be the size of the universe within 13.8 billion light years. Since one light years is 9.461E+15 meter,
that is, R ~ 1.305E+28 meter. Therefore, the following conditions is satisfied :

Z8uSR ~ 8.708E-6 < 1. (72)
We consider that the function exp(—¢% ‘ug R) is approximately equal to 1, that is,

exp(—égng) ~1. (73)

d0i:10.20944/preprints202408.1039.v2
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Therefore, the following formulas are satisfied :
GmEsus
V/(R,G) = —— o (exp(—E8uSR £ uf) — 1) + ——2_exp(—ESuSR+ S
(:0) (Rif\fm)z( PR =)~ (R=£ A¥m) PR -1
Gm Gme8us (74)
>~ +ué) —1)+ —=2 2 +u8),
T ) D+ e e )

(. exp(—nggR) —1).

When the condition ¢SS R < 1 is satisfied, applying to mass M in circular orbit around mass 1,
the following are satisfied :

GmM
(R£A$m)?

GmME s v?

(exp(j:‘u‘%) -1+ m exp(j:‘u‘ig) = M—. (75)

R

where the mass m within radius R and the value v is rotation speed of the mass M on radius R. The
right side of equation(75) is centrifugal acceleration of mass M. Hence, the following are satisfied :

GmR Gmes s g
v= | g (exp () — 1) + —— - exp(£pf)
(R £ ASm)2 ! (1+ A“me) !
G Gmésus
- O (expl) — 1)+ 2 expltf) 76)
(R Afm)(1+ ) (1+ %)

A8
~ \/Gmggy‘g exp(£4f), (. Rislarge enough and (1 + 1Tm) —1).

Therefore, we propose that the following is satisfied :

Suggestion 6. Let m (the mass) and v (the speed of rotation) be positive real numbers. For distance R > 0
within 1.305E+28, the following condition is satisfied :

0= \/Gmésu§ exp(£p), 77)

where &8,y > 0 and Af , ]/tf > 0. As a results, the speed of rotation v at the radius R is approximated by the
constant \/ GméS s exp(£p3), not depend on the radius R. O

Therefore, the speed of rotation v is depended on constants G, m, ¢¢, yf and 43, not depend on
the radius R. It is noticed that these constants is decided by generalized entropy Sp(x, k) and the
distribution function Qp (x).

According the suggestion 6, let m be equal to the mass of the Milky Way Galaxy , that is, m ~
1.989E+30 x 2.0E+12kg. Therefore, if setting & = 1E-34 ~ h (Planck’s constant) and y5 = 1, then the
speed of rotation is satisfied according the constant 4§ as follows :

v ~ 4.208E-1y/exp(p3) m/s. (78)

For example, let y‘f = 26.29, the speed of rotation v became as follows :

v ~2152E+5m/s. (79)
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In this case, the speed of (79) is close to the rotation speed of Milky Way Galaxy, that is, approximately
2.100E+5 ~ 2.200E+5 m/s.

3.4. When the Distance R is Large Enough

If the distance R is large enough, the formula (26) is satisfied as follows:

Gm

V/(R,G)=————,
(&C) (R £ A3m)?

(. exp(—g8uSR £ uf) = 0). (80)

Therefore,

Gm Gm Gm
T T S T RIS T e gD (81)
(R—)\lm)2 R (R+/\1m)2

If the distance R is large enough and the constant Af is small enough, that is /\f — 0, then the
gravitational acceleration V'(R, G) becomes classical gravity.

3.4.1. Summarize the Gravitational Acceleration for Large R

By the above the gravitational acceleration V’(R, G), we summarize the gravitational acceleration

as follows :
3 Gm
e T Y
(R =+ Afm)? 82)
Adjusted Gravitational Acceleration, R is large enough,
_ Gm
S

Newton's Classical Gravitational Acceleration, (83)

Ris large enough and /\éf — 0.

Classical gravity is satisfied when R is large enough and /\§ — 0. According to g of (83) and ¢+
of (82) in the above equation, we propose as follows :

Suggestion 7. Gravity changes on the value /\f of generalized entropy coefficient.
Let m be a positive real number (the mass). For large R > 1, the following condition are satisfied :

A

Gm Gm .
g = 2 8+ (84)

T S8
(R — A$m)? (R+A$m
where Af > 0 is a real constant. O

Namely, for large distance R, it is possible that the adjusted gravity ¢+ is smaller or larger towards
the center than the classical gravity g. In other word, the gravitational acceleration towards the
center of a rotating substance can be slightly changed at sufficient large distance. The gravitational
acceleration moving away from the center is changed by the constant /\f . The constant )Lélz is the
coefficients of degree one of the approximate generalized entropy /\g x? + A‘% x. In other word, The
gravitational acceleration moving away from the center is changed by the coefficients of degree one
of the approximate generalized entropy, that is, simply the gravitational acceleration is depended on
entropy.
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4. Conclusion

The idea behind Planck’s radiation formula was to apply the number of cases due to the division
by the resonator to the entropy. These ideas are similar to the logistic function of a dynamical system. By
applying these ideas, we treated the partition of entropy as a function D(x), that is not minimum unit,
and the potential V(x, k) and the acceleration V},(x, k) was derived. We assumed that generalized
entropy Sp(x, k) can be expressed by a second-order polynomial, and that the potential Vp(x, k) is
defined as the negative inverse of Sp(x). Therefore, by interpreting each variables and constants used
in the potential Vp(x, k) and the acceleration V/,(x, k) as the gravity theory, and the mass is defined
the inverse of the second-order coefficient term of Sp(x, k), that is 1/A,. We proposed the following
three conclusions:

1. If the distance R is small enough, hence the gravitational acceleration V/(R, G) becomes 3-states
with finite constants depend on constants ¢, /\f , y‘f and y‘g, not infinite. However, if the constant
)\f — 0, then the gravitational acceleration V'(R, G) becomes oo, and if the constant )\f — 00,
then the gravitational acceleration V'(R, G) becomes 0. Depending on the value of #§ and A§,
the value of V'(R,G) can be positive or negative. Therefore, it is possible that gravity have
6-states within the distance R is small enough. Furthermore, using the equation for the potential
derived from entropy, within small distance, it may be possible to treat Gravity potential and
Coulomb potential in the same way by appropriately choosing some constants. Similarly, the
same suggestion can be made for the gravitational acceleration and Coulomb’s law (electric field).

2. Atdistances large enough to be within the size of the universe, gravity follows an adjusted inverse
law. Within this distances, the rotation speed of a galaxy v follows the gravitational constant G,
the mass m = 1/A§ and constants 8, 43 and ptf which depend on entropy. Besides, the rotation
speed of a galaxy v does not little depend on its radius R, (the galaxy rotation curve problem).

3. Atlarge distances, gravity follows an adjusted inverse square law. Comparing to conventional
gravity, the gravitational acceleration towards the center of rotation is slightly weaker or stronger.
This means that the gravitational acceleration towards the center of a rotating substance can be
slightly changed at distance. (The Pioneer Anomaly)

From the above discussion, it is possible there exists some constants ¢, A2, A1, yp and p1 which
depend on entropy that controls gravity and the speed of galaxies. The constant A; is the coefficients of
degree one of the approximate generalized entropy A,x? + A1 x. Namely, the gravitational acceleration
moving away from the center is changed by the coefficients of the approximate generalized entropy.
Moreover, the constants y; and p; are defined the part of the partial entropy. Therefore, gravity may
depended on entropy.

By developing the concept of the logistic function and combining it with entropy and Planck’s
ideas, we derived that the potential Vp(x, k) and the acceleration V},(x, k). Thereby, we applied these
ideas to gravity theory. Similarly, we think that these ideas can be applied to Coulomb’s law (electric
field), which is the inverse square law, and other natural sciences. In addition, because the potential
Vp(x, k) derived in this paper contains an equation similar to Yukawa potential. Therefore, it may also
have applications in particle theory and other potential theory. We hope that the concepts of entropy
and logistic functions will explain more things and provide new perspectives.

Acknowledgments: We would like to thank everyone who supported this challenge and deeply respect the ideas
they gave us.
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