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Article

Interpretation of Gravity by Entropy

Seiji Fujino

RHC institute, 3rd Iriya Zama city, Kanagawa, Japan, 252-0028; rhc-institute.com or xfujino001@gmail.com or
xfujino001@rhc-institute.com

Abstract: In this paper, we introduce generalized entropy, the acceleration of its entropy and
its the partial entropy. We assume that generalized entropy can be expressed as a second-order
polynomial by applying the idea of logistics function to its entropy. In other words, we assume that
the acceleration of generalized entropy is a constant. Besides, we show that the negative inverse
of the partial entropy can express Newton’s classical gravity, which is an inverse square law. By
applying these concepts, we attempt to explain that 1) Gravity is constant within small distances with
some conditions. It is possible that gravity have 6-states within small distance. Furthermore, within
small distance, we show the possibility that the gravitational potential and the Coulomb potential
can be treated in the same way, that 2) The rotation speed of a galaxy does not depend on its radius if
the radius is within the size level of the universe. (The galaxy rotation curve problem), and that 3)
The gravitational acceleration toward the center changes at long distances compared to the classical
theory of gravity. Furthermore, we show that the possibility of the existence of some constants which
controls gravity and the speed of galaxies, and that gravity may relate on entropy.

Keywords: entropy; gravity; galaxy rotation curve; MOND; Planck’s law; dynamical system; inverse
square law; logistic function

1. Introduction

In this paper, we will explain in the following order.

1. First, We define generalized entropy SD(x, k) and partial entropy SD(x) partitioned by the
partition function D(x), and introduce the acceleration of partial entropy S′′

D(x), where x
is a positive variable, ξ is a positive constant. QD(x) is a positive function as satisfied
QD(x) = ξx/D(x).

2. Second, by applying the idea of logistics to that entropy, Using the ideas of logistic theory, we
derive a function Q(x) that defines the partition function D(x). Moreover, we assume that
generalized entropy SD(x, k) is approximated by second-degree polynomial, that is, the formula
λ2x2 + λ1x. In other words, we assume that the second derivative of SD(x, k) is a constant λ2/2.

3. Third, the negative inverse of partial entropy SD(x) is defined as the potential VD(x, k), and the
first derivative of potential VD(x, k) is defined as the acceleration V′

D(x, k) Namely, it is assumed
that the potential and the acceleration are derived from entropy.

4. Finally, according as the theory of gravity, the inverse 1/λ2 is interpreted as the mass m, the
constant k is interpreted as the gravitational constant G, and the variable x is interpreted as the
distance R, etc. Thereby, the potential VD(x, k), and the acceleration V′

D(x, k) are interpreted as
the gravitational potential V(R, G) and the gravitational acceleration V′(R, G), Therefore, we
show and propose some conclusions:

(1) When the distance is small enough, gravity is constant regardless of R and does not become
infinite, except some conditions. It is possible that gravity have 6-states within the distance
R is small enough. Furthermore, within small distance, we show that the possibility that
the gravitational potential and the Coulomb potential can be treated in the same way.

(2) At distances large enough to be within the size of the universe, gravity follows an adjusted
inverse law. Within this distances, the rotation speed of a galaxy v follows the gravitational
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constant G, the mass m and some constants, not depend on its galaxy radius R (the galaxy
rotation curve problem).

(3) At large distances, gravity follows an adjusted inverse square law. Comparing to
conventional gravity, the gravitational acceleration towards the center of rotation is slightly
weaker or stronger. This means that the gravitational acceleration towards the center of a
rotating substance can be slightly changed at distance. (Pioneer Anomaly)

Furthermore, it is possible there exists some constants that controls gravity and the speed of
galaxies. Besides, some constants depends on the definition of entropy, therefore gravity is thought to
depend on entropy.

2. Generalized Entropy and Application to Dynamical Systems

In this section, we introduce generalized entropy, its partial entropy and its acceleration entropy.
By using logistic function models, we attempt to discuss adjusted gravity and the rotation speed of
galaxy.

2.1. Generalized Entropy SD(x, k) and Its Partial Entropy SD(x)

We define generalized entropy as follows. In this paper, the function log represents the natural
logarithm loge.

Definition 1. Generalized Entropy SD(x, k) and its partial entropy SD(x).
Let x > 1 be a real variable, and k ⪈ 0 and ξ ⪈ 0 be real constants. Let D(x) be a positive real valued function
that partitioning x. SD(x, k), SD(x) and QD(x) are defined as follows:

SD(x, k) = kD(x)SD(x), (1)

QD(x) =
ξx

D(x)
, (2)

SD(x) =
(
1 +

x
D(x)

)
log

(
1 +

x
D(x)

)
− x

D(x)
log(

x
D(x)

),

=
(
1 +

QD(x)
ξ

)
log

(
1 +

QD(x)
ξ

)
− QD(x)

ξ
log(

QD(x)
ξ

),
(3)

where for any positive variable x > 0, the function QD is satisfied as follows :

QD ⪈ 0, Q′
D ⪈ 0. (4)

□

On above definition, S′
D(x) and S′′

D(x) are expressed as follows :

S′
D(x) =

Q′
D(x)
ξ

(
log(1 +

QD(x)
ξ

)− log(
QD(x)

ξ
)

)
(5)

S′′
D(x) =

Q′
D(x)
ξ

(
1

ξ + QD(x)
− 1

QD(x)

)
+

Q′′
D(x)
ξ

(
log(1 +

QD(x)
ξ

)− log(
QD(x)

ξ
)

)
.

(6)

We will call S′
D(x) entropy generation (velocity) of SD(x), and S′′

D(x) entropy acceleration of
SD(x). The function QD(x) can be regard as the position partitioned a real value ξx by QD(x). The
first order derivative of QD(x), that is, Q′

D(x) can be regard as the change of the position by x and
ξ. (Refer to Fujino[22] for details on how to derive generalized entropy, entropy acceleration and its
partial entropy.)
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2.2. The Function QD(x) and the Approximated of Generalized Entropy SD(x, k)

Next, we find the function QD(x) using the idea behind Planck’s radiation formula and logistic
function. Put the part of partial entropy S′′

D(x) as follows :

Q′
D(x)
ξ

(
1

ξ + QD(x)
− 1

QD(x)

)
= −µ(x), (7)

where µ(x) > 0 is a positive real function. The left side of above formula (7) looks like spectra
partitioned by ξx/QD(x) and the right side of (7) become an approximation by the function µ(x). We
consider Q′

D(x) as follows :

Q′
D(x) =

dQD
dx

. (8)

Transforming according to formula (8), we can express as follows :

dQD

(
1

ξ + QD(x)
− 1

QD(x)

)
= −ξµ(x)dx. (9)

Integrating both sides gives as follows :

log(ξ + QD(x))− log(QD(x)) = −ξ
∫

µ(x)dx ± µ1, (10)

where µ1 ≥ 0. Therefore, the following equation is satisfied :

log(1 +
ξ

QD(x)
) = −ξ

∫
µ(x)dx ± µ1. (11)

By transforming the above equation, it is satisfied as follows :

1 +
ξ

QD(x)
= exp(−ξ

∫
µ(x)dx ± µ1). (12)

Therefore, the function QD(x) is expressed as follows :

QD(x) =
ξ

exp(−ξ

∫
µ(x)dx ± µ1)− 1

. (13)

The function QD(x) becomes the distribution function of the position which the real value ξx
partitioned by QD(x). The formula (7) also looks like spectra partitioned by ξx/QD(x). If we actually
take QD(x) to log(x), we obtain an equation similar to the expand of Planck’s radiation formula, (Refer
to Planck[1] and Fujino[22]). If we partition it further into squares of discrete integers, put Q′

D(x) = 1,
µ(x) is expressed the wave number, and 1/ξ is the Rydberg constant Ry, then it resembles the Rydberg
formula that represents a spectral series. Namely, entropy may be related to atomic spectra and its
energy levels. We would like to make this a topic of research in the future.

Next, we make assumption about the approximated of generalized entropy SD(x, k).

Assumption 1. Assume generalized entropy SD(x, k) can be approximated by a second-degree polynomial.
Hence set as follows :

SD(x, k) = λ2x2 ± λ1x, (14)
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where λ2 ⪈ 0 λ1 ≥ 0 are real numbers, and SD(0, k) = 0. □

Hence, the first derivative S′
D(x, k) is expressed a first-degree polynomial as follows :

S′
D(x, k) = 2λ2x ± λ1. (15)

Besides, the second derivative S′′
D(x, k) is constant. Namely, it is satisfied as follows :

S′′
D(x, k) = 2λ2. (16)

In other words, we assume that the second derivative of SD(x, k) is a constant.

2.3. The Inverse of Partial Entropy SD(x) and Potential VD(x, k)

Next, we focus on the inverse of partial entropy SD(x) as follows :

1
SD(x)

= k
ξx

QD(x)
1

λ2x2 ± λ1x
. (17)

By formula (13), we can express as follows :

1
SD(x)

= k
1

λ2x ± λ1
(exp(−ξ

∫
µ(x)dx ± µ1)− 1). (18)

We define the negative inverse of SD(x) as the potential VD(x, k) :

VD(x, k) = −k
1

λ2

x ± λ1
λ2

(exp(−ξ
∫

µ(x)dx ± µ1)− 1). (19)

In other words, the above potential VD(x, k) can be defined as the product of a constant k, the partition
D(x) = ξ/QD(x), and the negative inverse of the general entropy SD(x, k).

Here, let us reorganize the above, that is, we assume as follows :

SD(x, k) = λ2x2 ± λ1x, (20)
Q′

D(x)
ξ

(
1

ξ + QD(x)
− 1

QD(x)

)
= −µ(x), (21)

where λ2 ⪈ 0 is positive real number and µ(x) ⪈ 0 is a positive real function. Therefore, we define the
negative inverse of expression SD(x) as the potential VD(x, k) :

VD(x, k) = −k
1

λ2

x ± λ1
λ2

(
exp(−ξ

∫
µ(x)dx ± µ1)− 1

)
. (22)

where ξ ⪈ 0, λ2 ⪈ 0, λ1 ≥ 0, µ1 ≥ 0 are real numbers and µ(x) ⪈ 0 is a positive real function. The first
derivative V′

D(x, k) is satisfied as follows :

V′
D(x, k) = k

1
λ2

(x ± λ1
λ2
)2

(
exp(−ξ

∫
µ(x)dx ± µ1)− 1

)
+ k

1
λ2

x ± λ1
λ2

ξµ(x) exp(−ξ
∫

µ(x)dx ± µ1)).

(23)

Let VD(x, k) be named as the potential of SD(x, k), and V′
D(x, k) be named as the acceleration of

SD(x, k). Namely, we assume as follows :
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Assumption 2. It assume that the potential VD(x, k) is defined the negative inverse of the partial entropy
SD(x). Therefore, the acceleration V′

D(x, k) is defined the first derivative of VD(x, k).

In the next chapter, we will discuss applications of the potential VD(x, k) and the acceleration
V′

D(x, k).

3. Application of VD(x, k) to Gravity

The constants, variables, and functions in the above formulas can be chosen arbitrarily within
the range of conditions. Therefore, we attempt to interpret these constants, variables and functions
as gravity. Namely, we attempt to interpret VD(x, k) as the gravitational potential and V′

D(x, k) as the
gravitational acceleration.

3.1. Interpretation to V(R, G)

We consider the interpretation of formula VD(x, k) as follows :

x := R ≥ 0, R is the distance,
1

λ2
:= m ⪈ 0, m is the mass within R,

k := G, G is the gravitational constant,

ξ := ξg, ξg is a constant,

µ(x) := µ
g
2 ⪈ 0, µ

g
2 is a positive real constant,

µ1 := µ
g
1 ≥ 0, µ

g
1 is a real constant,

λ1 := λ
g
1 ≥ 0, λ

g
1 is a real constant,

(24)

where the symbol g in the upper right corner of the alphabet stands for g of gravity.
We assume as follows :

The direction with smaller R is defined as the central direction. The gravitational potential increases
away from the center and decreases toward the center. However, when R = 0 become V(R, G) = 0.
Moreover, it assume the constant 1/λ2 is equal to the mass m within R.

Assumption 3. Assume the constant 1/λ2 is equal to the mass m within R.
Assume that 2-times the inverse of entropy acceleration, 2/S′′

D(x, k), that is, 1/λ2 is equal to the mass m within
R. In other word, the mass m within R is defined as the inverse of the second-order term of SD(x, k), that is
1/λ2. □

According assumption 3, if the entropy acceleration S′′
D(x, k) is large, the mass m becomes small,

and if the entropy acceleration S′′
D(x, k) is small, the mass m becomes large. The relationship between

entropy acceleration and mass is intuitive, isn’t it?
We define V(R, G) as the gravitational potential of G as follows :

V(R, G) = − Gm
R ± λ

g
1m

(exp(−ξgµ
g
2 R ± µ

g
1)− 1), (25)

where ξg ⪈ 0, µ
g
2 ⪈ 0, µ

g
1 ≥ 0 and λ

g
1 ≥ 0.

The first derivative V′(R, G) is satisfied as follows :

V′(R, G) =
Gm

(R ± λ
g
1m)2

(
exp(−ξgµ

g
2 R ± µ

g
1)− 1

)
+

Gmξgµ
g
2

R ± λ
g
1m

exp(−ξgµ
g
2 R ± µ

g
1).

(26)
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The above formula (26) become the gravitational acceleration. The second term of formula (26)
becomes like Yukawa potential. (Refer to H.Yukawa[17], R.Feynman[2])

The solution of formula (26) for µ
g
1 is satisfied as follows :

µ1 =± log
( 1

1 + ξgµ
g
2(R ± λ

g
1m)

)
∓ ξgµ

g
2 R. (27)

Since the following conditions is needed to satisfied :

exp(−ξgµ
g
2 R ± µ

g
1) =

1
1 + ξgµ

g
2(R ± λ

g
1m)

> 0, (28)

hence, it is satisfied as follows :

1 + ξgµ
g
2(R ± λ

g
1m) > 0. (29)

Therefore,

± λ
g
1 <

(
R +

1
ξgµ

g
2

)
1
m

. (30)

Namely, the following conditions are satisfied :

i f 1 + ξgµ
g
2(R − λ

g
1m) > 0, then λ

g
1 <

(
R +

1
ξgµ

g
2

)
1
m

, (31)

i f 1 + ξµ
g
2(R + λ

g
1m) > 0, then λ

g
1 > −

(
R +

1
ξgµ

g
2

)
1
m

, (32)

where ξg ⪈ 0, µ
g
2 ⪈ 0, m ⪈ 0,λg

1 ≥ 0, the distance R > 0 and the mass m > 0.

3.2. When the Distance R is Small Enough

If the distance R is small enough, that is, since R approaches 0, hence exp(−ξgµ
g
2 R) approaches 1

infinitely. Therefore, the formula (26) is satisfied as follows:

V′(R, G) =
Gm

(R ± λ
g
1m)2

(exp(±µ
g
1)− 1) +

Gmξgµ
g
2

R ± λ
g
1m

exp(±µ
g
1)

≃ G
(λ

g
1)

2m
(exp(±µ

g
1)− 1) +

Gξgµ
g
2

±λ
g
1

exp(±µ
g
1),

(∵ R → 0, exp(−ξgµ
g
2 R) → 1).

(33)

If the distance λ
g
1 = 0, then it is satisfied as follows :

V′(R, G) =
Gm
R2 (exp(−ξgµ

g
2 R ± µ

g
1)− 1) +

Gmξgµ
g
2

R
exp(−ξgµ

g
2 R ± µ

g
1). (34)

The case of the above formula (34), if R → 0, then it become V′(R, G) → ∞. Hence, we consider that it
make λ

g
1 ̸= 0 and R is small enough, and later consider the case λ

g
1 = 0.

Therefore, if the distance R is small enough, then the acceleration V′(R, G) is approximated by
the constant. Namely, the following formula is satisfied :
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Suggestion 1. The acceleration V′(R, G) becomes a constant with small R.
Let m be a positive real number (the mass). For sufficiently small distance R > 0, the following condition is
satisfied : the acceleration V′(R, G) becomes a constant.

V′(R, G) ≃ G
(±λ

g
1)

2m
(exp(±µ

g
1)− 1) +

Gξgµ
g
2

±λ
g
1

exp(±µ
g
1), (35)

where ξg ⪈ 0, µ
g
2 ⪈ 0, λ

g
1 ≥ 0 and µ

g
1 ≥ 0. □

The solution of formula (35) for µ1 is satisfied as follows :

µ
g
1 =± log

( 1
1 ± λ

g
1µ

g
2ξgm

)
. (36)

Since the following conditions is needed to satisfied :

exp(±µ
g
1) =

1
1 ± λ

g
1µ

g
2ξgm

> 0, (37)

hence, it is satisfied as follows :

1 ± λ
g
1µ

g
2ξgm > 0. (38)

Because ξg ⪈ 0, µ
g
2 ⪈ 0, m ⪈ 0 and λ

g
1 ≥ 0, hence, these values condition is satisfied as follows :

i f 1 − λ
g
1µ

g
2ξgm > 0, then λ

g
1 <

1
ξgµ

g
2m

, (39)

i f 1 + λ
g
1µ

g
2ξgm > 0, then λ

g
1 > − 1

ξgµ
g
2m

. (40)

According to the sign of plus and minus of λ
g
1 and µ

g
1 , the formula (35) and its solution for µ

g
1 can

be classified four patterns as follows :

(Case A) :+λ
g
1 ,+µ

g
1

V′(R, G) ≃ G
(λ

g
1)

2m
(exp(µg

1)− 1) +
Gξgµ

g
2

λ
g
1

exp(µg
1), (41)

µ
g
1 = log

( 1
1 + λ

g
1µ

g
2ξgm

)
i f V′(R, G) = 0. (42)

However, this above case does not occur because µ
g
1 > 0 and 1 ± λ

g
1µ

g
2ξgm > 0.

(Case B) :−λ
g
1 ,+µ

g
1

V′(R, G) ≃ G
(λ

g
1)

2m
(exp(µg

1)− 1) +
Gξgµ

g
2

−λ
g
1

exp(µg
1), (43)

µ
g
1 = log

( 1
1 − λ

g
1µ

g
2ξgm

)
i f V′(R, G) = 0. (44)

However, this above case does not occur because µ
g
1 > 0 and 1 ± λ

g
1µ

g
2ξgm > 0.
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(Case C) :+λ
g
1 ,−µ

g
1

V′(R, G) ≃ G
(λ

g
1)

2m
(exp(−µ

g
1)− 1) +

Gξgµ
g
2

λ
g
1

exp(−µ
g
1), (45)

µ
g
1 =− log

( 1
1 + λ

g
1µ

g
2ξgm

)
i f V′(R, G) = 0. (46)

(Case D) :−λ
g
1 ,−µ

g
1

V′(R, G) ≃ G
(λ

g
1)

2m
(exp(−µ

g
1)− 1) +

Gξgµ
g
2

−λ
g
1

exp(−µ
g
1), (47)

µ
g
1 =− log

( 1
1 − λ

g
1µ

g
2ξgm

)
i f V′(R, G) = 0. (48)

Suggestion 2. The classified V′(R, G) with small R.
According to values of ξg ⪈ 0, µ

g
2 ⪈ 0 λ

g
1 ≥ 0 and µ

g
1 ≥ 0, the formula (35) can be classified as follows:

(Case 1) If the constant µ
g
1 is satisfied as follows :

µ
g
1 > log

(
1 ± λ

g
1µ

g
2ξgm

)
≥ 0, (49)

then the above formula (35) is positive, that is, it is satisfied as follows :

V′(R, G) > 0. (50)

(Case 2) If the constant µ
g
1 is satisfied as follows :

0 ≤ µ
g
1 ≤ log

(
1 ± λ

g
1µ

g
2ξgm

)
, (51)

then the above formula (35) is negative, that is, it is satisfied as follows :

V′(R, G) ≤ 0. (52)

(Case 3) If the constant µ
g
1 = 0, then the following condition is satisfied :

V′(R, G) ≃
Gξgµ

g
2

±λ
g
1

, (∵ exp(±µ
g
1) → 1). (53)

(Case 4) In case (45) and (47), if the constant exp(−µ
g
1) is small enough, that is, µ

g
1 → ∞, hence it is satisfied

as follows:

V′(R, G) ≃ G
(λ

g
1)

2m
, (∵ exp(−µ

g
1) → 0). (54)

(Case 5) According to the above formulas (53) and (54), if the constant λ
g
1 → 0, otherwise according to the

above formulas (41) and (43), if the constant µ
g
1 → ∞, it is satisfied as follows:

V′(R, G) ≃ ∞ or V′(R, G) ≃ −∞. (55)

(Case 6) According to the above formulas (53) and (54), if the constant λ
g
1 → ∞, it is satisfied as follows :

V′(R, G) ≃ 0. (56)

□
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3.2.1. Summarize the Gravitational Acceleration for Small Enough R

By the above the acceleration V′(R, G), we summarize the gravitational acceleration as follows :

ḡ±λ
g
1±µ

g
1
=

Gm
(R ± λ

g
1m)2

(exp(−ξgµ
g
2 R ± µ

g
1)− 1) +

Gmξµ
g
2

R ± λ
g
1m

exp(−ξgµ
g
2 R ± µ

g
1),

Adjusted Gravitational Acceleration with ξg and µ
g
2 ,

(57)

If the distance λ
g
1 = 0, then

ḡ±0±µ
g
1
=

Gm
R2 (exp(−ξgµ

g
2 R ± µ

g
1)− 1) +

Gmξgµ
g
2

R
exp(−ξgµ

g
2 R ± µ

g
1),

Adjusted Gravitational Acceleration with ξg µ
g
2 and λ

g
1 = 0,

(58)

If the distance R → 0, then

g̃±λ
g
1±µ

g
1
=

G
(±λ

g
1)

2m
(exp(±µ

g
1)− 1) +

Gξgµ
g
2

±λ
g
1

exp(±µ
g
1),

Adjusted Gravitational Acceleration with ξg, R is small enough.

(59)

Therefore, if the distance R → 0, then it is satisfied as follows :

g̃±λ
g
1±µ

g
1
= lim

R→0
ḡλ

g
1±µ

g
1±

,

lim
µ

g
1→0

g̃±λ
g
1±µ

g
1
=

Gξgµ
g
2

±λ
g
1

,

lim
µ

g
1→0,λg

1→0
g̃±λ

g
1±µ

g
1
= ±∞,

lim
µ

g
1→0,λg

1→∞
g̃±λ

g
1±µ

g
1
= 0,

lim
µ

g
1→∞

g̃±λ
g
1−µ

g
1
=

G
(λ

g
1)

2m
,

lim
µ

g
1→∞,λg

1→0
g̃±λ

g
1−µ

g
1
= −∞,

lim
µ

g
1→∞,λg

1→∞
g̃±λ

g
1−µ

g
1
= 0,

lim
µ

g
1→∞

g̃±λ
g
1+µ

g
1
= ∞, ∵) λ

g
1 <

1
ξgµ

g
2m

,

lim
µ

g
1→∞

g̃±λ
g
1+µ

g
1
= −∞, ∵) λ

g
1 > − 1

ξgµ
g
2m

.

(60)

From the above, we can suppose as follows :

Suggestion 3. Within the distance R is small enough, gravity have 6-states.

Within the distance R is small enough, it is possible that gravity have 6-states such that finite 3-states Gξgµ
g
2

±λ
g
1

and
G

(λ
g
1)

2m
, and that infinite 2-states ±∞ and 1-state of 0. □

Namely, if the distance R is small enough, hence the acceleration V′(R, G) becomes some finite
constants depend on constants ξg, λ

g
1 , µ

g
1 and µ

g
2 , not infinite. However, if the constant λ

g
1 or µ

g
1

approach 0 or ∞, then the acceleration V′(R, G) becomes ∞ or 0. Depending on the value of µ1 and
λ

g
1 , the value of V′(R, G) can be positive or negative. When the value of V′(R, G) is the negative, the
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deceleration acts toward the center. These constants is depended on generalized entropy and the
part of partial entropy. Namely, the acceleration depend on generalized entropy. Therefore, there
exists 6-states within the distance R is small. The constant λ

g
1 is the coefficients of degree one of the

approximate generalized entropy λ
g
2 x2 + λ

g
1 x, and the constant µ

g
1 is the integral constant obtained by

integrating the parts of partial entropy S′′
D(x). In other word, The acceleration moving away from the

center is changed by these constant, that is, simply the acceleration is depended on entropy. (Note
: The center direction is defined as the positive direction.) The above discussion can be applied to
Coulomb’s law (electric field) . By adjusting the value of µ1, µ2, λ1, m = 1/λ2 and ξ, it may be possible
to make the argument by replacing the gravitational constant G to the Coulomb constant kc. (In this
paper, the Coulomb constant is defined as kc.) We will discuss this possibility next.

3.2.2. Compare V(R, G) and V(R, kc) for Small R

We attempt to compare V(R, G) and V(R, kc), and consider its values. Similarly the gravity
potential V(R, G), we define the Coulomb potential V(R, kc) as follows :

V(R, kc) = −
kceq

R ± λc
1eq

(exp(−ξcµc
2R ± µc

1)− 1), (61)

where eq > 0 is an elementary charge, and ξc ⪈ 0, µc
2 ⪈ 0, µc

1 ≥ 0 and λc
1 ≥ 0. and the symbol c in the

upper right corner of the alphabet stands for c of Coulomb.
For example, we set the value of constants as follows :

G := 6.673E-11, G is the gravitational constant,

ξg = ξc := h = 6.670E-34, h is Planck′s constant,

kc := 8.987E+9, kc is Coulomb constant,

eq := 1.604E-19, eq is elementary charge,

m := mp = 2.176E-8, mp is Planck′s mass(unit : kg),

µ
g
2 := 1, µ

g
1 is a real constant,

µc
2 := 1, µc

1 is a real constant,

λ
g
1 := 1, λ

g
1 is a real constant,

λc
1 := 1, λc

1 is a real constant,

R := 1.000E-6, λ1 is a real constant(unit : meter).

(62)

Calculating with the above constants, the gravitational potential V(R, G) is satisfied as follows :

V(R, G) = −2.442E-12, i f µ
g
1 = 1, (63)

V(R, G) = −2.480E-3, i f µ
g
1 = 21.28, (64)

where Planck mass mp is used instead of mass m. and the sign of µ
g
1 and λ

g
1 are +µ

g
1 and +λ

g
1 .

Similarly, Coulomb potential V(R, kc) is satisfied as follows :

V(R, kc) = −2.474E-3, i f µc
1 = 1, (65)

V(R, kc) = −2.512E+6, i f µc
1 = 21.28, (66)

where elementary charge eq is used instead of mass m and used kc instead of G. the sign of µc
1 and λc

1
are +µc

1 and +λc
1.

The value of V(R, G) and V(R, kc) changes depending on how the constants µ
g
1 and µ1c are

selected. The above values (64) and (65) is closed. Therefore, for any the distance R, µ
g
1 = 21.28 and

µc
1 = 1, it is satisfied V(R, G) ≃ V(R, kc). In consequence, it is satisfied as follows :

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 August 2024                   doi:10.20944/preprints202408.1039.v2

https://doi.org/10.20944/preprints202408.1039.v2


11 of 15

Suggestion 4. Let mp be mass , eq be elementary charge, G be the gravitational constant and kc be Coulomb
constant. For small distance R > 0, there exists constants ξg, ξc, µ

g
2 µc

2, µ
g
1 µc

1 λ
g
1 and λc

1 such that the following
condition is satisfied :

V(R, G) ≃ V(R, kc), (67)

where ξg, ξc, µ
g
2 , µc

2 ⪈ 0 and λ
g
1 , λc

1, µ
g
1 , µc

1 ≥ 0. □

Because, if it is satisfied as follows :

V(R, G) = −
Gmp

R ± λ
g
1mp

(exp(−ξgµ
g
2 R ± µ

g
1)− 1)

= −
kceq

R ± λc
1eq

(exp(−ξcµc
2R ± µc

1)− 1)

= V(R, kc),

(68)

then transforming the above formula, it becomes as follows :

exp(−ξgµ
g
2 R ± µ1) = 1 +

R ± λ
g
1mp

Gmp

kceq

R ± λc
1eq

(exp(−ξcµc
2R ± µc

1)− 1). (69)

Therefore, if the value of µc
2 is given, the value of µ

g
2 can be found as follows :

µ
g
2 =

1
ξgR

[
±µ

g
1 − log

(
1 + (

R ± λ
g
1mp

R ± λc
1eq

)(
kceq

Gmp
)(exp(−ξcµc

2R ± µc
1)− 1)

)]
. (70)

Namely, using the equation for the potential derived from entropy, within small distance, it may be
possible to treat Gravity potential and Coulomb potential in the same way by appropriately choosing
some constants. In same way, applying the gravitational acceleration V′(R, G) and Coulomb’s law
(electric field) V′(R, kc), we can get as follows :

Suggestion 5. Let mp be mass , eq be elementary charge, G be the gravitational constant and kc be Coulomb
constant. For small distance R > 0, there exists constants ξg, ξc, µ

g
2 µc

2, µ
g
1 µc

1 λ
g
1 and λc

1 such that the following
condition is satisfied :

V′(R, G) ≃ V′(R, kc), (71)

where ξg, ξc, µ
g
2 , µc

2 ⪈ 0 and λ
g
1 , λc

1, µ
g
1 , µc

1 ≥ 0. □

3.3. When the Distance R is Large, However ξ Is Small Enough

Assuming the distance R is large and the constant ξg is small like Planck constant, that is ξg ∼ h.
The constant h is the Planck constant, 6.626E-34J · s and the constant µ

g
2 is also small, that is, µ

g
2 ≤ 1.

Let R be the size of the universe within 13.8 billion light years. Since one light years is 9.461E+15 meter,
that is, R ≃ 1.305E+28 meter. Therefore, the following conditions is satisfied :

ξgµ
g
2 R ≃ 8.708E-6 ≪ 1. (72)

We consider that the function exp(−ξgµ
g
2 R) is approximately equal to 1, that is,

exp(−ξgµ
g
2 R) ≃ 1. (73)
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Therefore, the following formulas are satisfied :

V′(R, G) =
Gm

(R ± λ
g
1m)2

(exp(−ξgµ
g
2 R ± µ

g
1)− 1) +

Gmξgµ
g
2

(R ± λ
g
1m)

exp(−ξgµ
g
2 R ± µ

g
1)

≃ Gm
(R ± λ

g
1m)2

(exp(±µ
g
1)− 1) +

Gmξgµ
g
2

(R ± λ
g
1m)

exp(±µ
g
1),

(∵ exp(−ξgµ
g
2 R) → 1).

(74)

When the condition ξgµ
g
2 R ≪ 1 is satisfied, applying to mass M in circular orbit around mass m,

the following are satisfied :

GmM
(R ± λ

g
1m)2

(exp(±µ
g
1)− 1) +

GmMξgµ
g
2

(R ± λ
g
1m)

exp(±µ
g
1) = M

v2

R
. (75)

where the mass m within radius R and the value v is rotation speed of the mass M on radius R. The
right side of equation(75) is centrifugal acceleration of mass M. Hence, the following are satisfied :

v =

√√√√ GmR
(R ± λ

g
1m)2

(exp(±µ
g
1)− 1) +

Gmξgµ
g
2

(1 ± λ
g
1 m
R )

exp(±µ
g
1)

=

√√√√ Gm

(R ± λ
g
1m)(1 ± λ

g
1 m
R )

(exp(±µ
g
1)− 1) +

Gmξgµ
g
2

(1 ± λ
g
1 m
R )

exp(±µ
g
1)

≃
√

Gmξgµ
g
2 exp(±µ

g
1), (∵ R is large enough and (1 +

λ
g
1m
R

) → 1).

(76)

Therefore, we propose that the following is satisfied :

Suggestion 6. Let m (the mass) and v (the speed of rotation) be positive real numbers. For distance R > 0
within 1.305E+28, the following condition is satisfied :

v ≃
√

Gmξgµ
g
2 exp(±µ

g
1), (77)

where ξg, µ
g
2 ⪈ 0 and λ

g
1 , µ

g
1 ≥ 0. As a results, the speed of rotation v at the radius R is approximated by the

constant
√

Gmξgµ
g
2 exp(±µ

g
1), not depend on the radius R. □

Therefore, the speed of rotation v is depended on constants G, m, ξg, µ
g
1 and µ

g
2 , not depend on

the radius R. It is noticed that these constants is decided by generalized entropy SD(x, k) and the
distribution function QD(x).

According the suggestion 6, let m be equal to the mass of the Milky Way Galaxy , that is, m ≃
1.989E+30 × 2.0E+12kg. Therefore, if setting ξ = 1E-34 ∼ h (Planck’s constant) and µ

g
2 = 1, then the

speed of rotation is satisfied according the constant µ
g
1 as follows :

v ≃ 4.208E-1
√

exp(µg
1) m/s. (78)

For example, let µ
g
1 = 26.29, the speed of rotation v became as follows :

v ≃ 2.152E+5 m/s. (79)
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In this case, the speed of (79) is close to the rotation speed of Milky Way Galaxy, that is, approximately
2.100E+5 ∼ 2.200E+5 m/s.

3.4. When the Distance R is Large Enough

If the distance R is large enough, the formula (26) is satisfied as follows:

V′(R, G) = − Gm
(R ± λ

g
1m)2

, (∵ exp(−ξgµ
g
2 R ± µ

g
1) → 0). (80)

Therefore,

− Gm
(R − λ

g
1m)2

≲ −Gm
R2 ≲ − Gm

(R + λ
g
1m)2

. (81)

If the distance R is large enough and the constant λ
g
1 is small enough, that is λ

g
1 → 0, then the

gravitational acceleration V′(R, G) becomes classical gravity.

3.4.1. Summarize the Gravitational Acceleration for Large R

By the above the gravitational acceleration V′(R, G), we summarize the gravitational acceleration
as follows :

ĝ± = − Gm
(R ± λ

g
1m)2

,

Adjusted Gravitational Acceleration, R is large enough,
(82)

g = −Gm
R2 ,

Newton′s Classical Gravitational Acceleration,

R is large enough and λ
g
1 → 0.

(83)

Classical gravity is satisfied when R is large enough and λ
g
1 → 0. According to g of (83) and ĝ±

of (82) in the above equation, we propose as follows :

Suggestion 7. Gravity changes on the value λ
g
1 of generalized entropy coefficient.

Let m be a positive real number (the mass). For large R > 1, the following condition are satisfied :

ĝ− = − Gm
(R − λ

g
1m)2

≲ g ≲ − Gm
(R + λ

g
1m)2

= ĝ+, (84)

where λ
g
1 ≥ 0 is a real constant. □

Namely, for large distance R, it is possible that the adjusted gravity ĝ± is smaller or larger towards
the center than the classical gravity g. In other word, the gravitational acceleration towards the
center of a rotating substance can be slightly changed at sufficient large distance. The gravitational
acceleration moving away from the center is changed by the constant λ

g
1 . The constant λ

g
1 is the

coefficients of degree one of the approximate generalized entropy λ
g
2 x2 + λ

g
1 x. In other word, The

gravitational acceleration moving away from the center is changed by the coefficients of degree one
of the approximate generalized entropy, that is, simply the gravitational acceleration is depended on
entropy.
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4. Conclusion

The idea behind Planck’s radiation formula was to apply the number of cases due to the division
by the resonator to the entropy. These ideas are similar to the logistic function of a dynamical system. By
applying these ideas, we treated the partition of entropy as a function D(x), that is not minimum unit,
and the potential VD(x, k) and the acceleration V′

D(x, k) was derived. We assumed that generalized
entropy SD(x, k) can be expressed by a second-order polynomial, and that the potential VD(x, k) is
defined as the negative inverse of SD(x). Therefore, by interpreting each variables and constants used
in the potential VD(x, k) and the acceleration V′

D(x, k) as the gravity theory, and the mass is defined
the inverse of the second-order coefficient term of SD(x, k), that is 1/λ2. We proposed the following
three conclusions:

1. If the distance R is small enough, hence the gravitational acceleration V′(R, G) becomes 3-states
with finite constants depend on constants ξ, λ

g
1 , µ

g
1 and µ

g
2 , not infinite. However, if the constant

λ
g
1 → 0, then the gravitational acceleration V′(R, G) becomes ±∞, and if the constant λ

g
1 → ∞,

then the gravitational acceleration V′(R, G) becomes 0. Depending on the value of µ
g
1 and λ

g
1 ,

the value of V′(R, G) can be positive or negative. Therefore, it is possible that gravity have
6-states within the distance R is small enough. Furthermore, using the equation for the potential
derived from entropy, within small distance, it may be possible to treat Gravity potential and
Coulomb potential in the same way by appropriately choosing some constants. Similarly, the
same suggestion can be made for the gravitational acceleration and Coulomb’s law (electric field).

2. At distances large enough to be within the size of the universe, gravity follows an adjusted inverse
law. Within this distances, the rotation speed of a galaxy v follows the gravitational constant G,
the mass m = 1/λ

g
2 and constants ξg, µ

g
2 and µ

g
1 which depend on entropy. Besides, the rotation

speed of a galaxy v does not little depend on its radius R, (the galaxy rotation curve problem).
3. At large distances, gravity follows an adjusted inverse square law. Comparing to conventional

gravity, the gravitational acceleration towards the center of rotation is slightly weaker or stronger.
This means that the gravitational acceleration towards the center of a rotating substance can be
slightly changed at distance. (The Pioneer Anomaly)

From the above discussion , it is possible there exists some constants ξ, λ2, λ1, µ2 and µ1 which
depend on entropy that controls gravity and the speed of galaxies. The constant λ1 is the coefficients of
degree one of the approximate generalized entropy λ2x2 + λ1x. Namely, the gravitational acceleration
moving away from the center is changed by the coefficients of the approximate generalized entropy.
Moreover, the constants µ2 and µ1 are defined the part of the partial entropy. Therefore, gravity may
depended on entropy.

By developing the concept of the logistic function and combining it with entropy and Planck’s
ideas, we derived that the potential VD(x, k) and the acceleration V′

D(x, k). Thereby, we applied these
ideas to gravity theory. Similarly, we think that these ideas can be applied to Coulomb’s law (electric
field), which is the inverse square law, and other natural sciences. In addition, because the potential
VD(x, k) derived in this paper contains an equation similar to Yukawa potential. Therefore, it may also
have applications in particle theory and other potential theory. We hope that the concepts of entropy
and logistic functions will explain more things and provide new perspectives.
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