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Article

Apocalyptic Proof of the Riemann Hypothesis with
the Generating Function for Prime Numbers

Mojtaba Jalali Koutanaei

Institute of Geophysics, University Of Tehran, Tehran, Iran

Abstract: The Riemann zeta function {(s) plays a crucial role in number theory and its applications. The
Riemann Hypothesis (RH) posits that zeros of {(s) other than the trivial ones are located on the line defined
by the equation Re(s) =1/2. This paper introduces a novel and straightforward proof of the Riemann
Hypothesis. The proof employs a standard method, utilizing the eta function in place of the zeta function,
under the assumption that the real part is greater than zero. The equation for the real and imaginary parts of
the Riemann zeta function (eta function) is completely separated. Initially, let {(s) = Rel(s) + Im{(s) with
s=a +ib. The value of the real part is determined by solving the equation, and the process is repeated
for {(1 — s). By identifying the potential roots shared by the two functions, a common value is obtained, leading
to a =1/2, which represents the real part of the main root of the function {(s). By using a standard method and
with the help of two functions {(s) and {(1-s), the real part of the root of the zeta function is obtained. To create
a generator function for prime numbers in terms of b, one can solve the root of the zeta function where it equals
one (i.e.{(s) = 1) and obtain a relationship between b’ and prime numbers. Giving the value of zeta equal to
one and s' = a' +ib’, similar to zeta equal to zero, the roots are again placed on the 1/2 line. Then, by using the
zeta function defined by multiplying prime numbers, we arrive at a new meaningful relation between b’ and
its corresponding prime number is obtained.

Keywords: riemann zeta function; number theory; riemann's hypothesis

1. Introduction

The Riemann Zeta Function embodies both additive and multiplicative structures in a single
function, making it the most important tool in the study of prime numbers. The Riemann zeta
function is crucial in number theory and has applications in physics, probability theory, and applied
statistics. It is named after the German mathematician Bernhard Riemann, who discussed it in the
memoir "On the Number of Primes Less Than a Given Quantity," published in 1859.[1] Riemann
knew that the function equals zero for all negative even integers -2,-4,-6, etc.(referred to as trivial
zeros), and that it has an infinite number of zeros in the critical strip of complex numbers between
the lines x=0 and x=1. Riemann conjectured that all nontrivial zeros are on the critical line, a
conjecture that later became known as the Riemann hypothesis. In 1900, the German mathematician
David Hilbert referred to the Riemann Hypothesis as one of the most important questions in all of
mathematics, as evidenced by its inclusion in his influential list of 23 unsolved problems that he
presented to 20th-century mathematicians. [2]

2. Riemann Hypothesis

The real part of every nontrivial zero of the Riemann zeta function is 1/2. Therefore, if the
hypothesis is correct, all nontrivial zeros lie on the critical line consisting of the complex numbers

(3% i b), where b is a real number and i is an imaginary unit.

2.1. Riemann Zeta Function

The Riemann zeta function can be expressed in the following form for complex s.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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1 1 1 1 1
Z(S)ZZF=F+§+¥+'”+F+"' ) Re(s)>1 (1)
n=1

The Riemann hypothesis discusses zeros outside the region of convergence of this series and
Euler product. To make sense of the hypothesis, it is necessary to analytically continue the function
to obtain a form that is valid for all complex s. Because the zeta function is meromorphic, all choices
of how to perform this analytic continuation will lead to the same result, by the identity theorem. A
first step in this continuation observes that the series for the zeta function and the Dirichlet eta
function satisfy the relation within the region of convergence for both series.

[oe]

1 2 _ _ (=1)ntt _ 1 1 1 R 0 )
( —E)Z(S)—H(S)— 5 pmt3ov , e(s) > (2)

n=1
However, the zeta function series on the right converges not just when the real part of s is greater
than one, but more generally whenever s has a positive real part. Thus, the zeta function can be

redefined as n(s)/ (1 — %), extending it from Re(s) > 1 to a larger domain: Re(s) > 0, except for the
points where(l - 22—5) is zero.

In the strip 0 < Re(s) <1 this extension of the zeta function satisfies the functional equation.
U(s) = 25 sin (Z) I(1 — ) (1 —5) 3)

We start by converting relation 2 into a complex form.

[oe]

2 -1 n+1
(1-5) s =ne = Z% ., Re(s) >0

n=1

s=a+ib

fee) (oo} (oo}

(1 _ %) Z(S) — Z(_l)n+1n_s — Z(_l)n+1n—(a+ib) — Z(—l)n+1l’l_a.l’l_ib (4)

n=1 n=1 n=1
By utilizing the trigonometric relationship, we can convert Riemann’s zeta function from a

complex form to a sinusoidal form.
ei®=cos(0) +i sin(B)

nib = eln ™) = g=ibIN®M) = ¢os[b In(n)] — i sin[b In(n)]

(1 — %) Us) = Z;(—l)n“n'a.n'ib = Z(—l)n“{n'a. cos[bIn(n)] — in~2.sin[b In(n)]}

(1-2)uw = 3t cost InGy] ~ £ 3 (1) sinfb In )] s)
Re[(1- ) c(s)]_= i(—l)““n-a. cosloIn(] ©
im|(1-2) )] = _ i(—l)““ . sinfb In(n)] @

If {(s)=0 then: ;:[(1 -] =0  m[(1-2)i)]|=0 ®)
i(—l)n“n_a.cos[b In(n)]=0 9

Z(—1)n+1n-a.sin[b In(n)] = 0 (10)
n=1
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By using the following trigonometric relation and multiplying both equations 9 and 10 by cos
(8) and
sin(0), then add them.

cos(a — B) = (cosa. cos B) + (sina . sinp)
i(—l)““n‘a. cos[b In(n)] = i(—nn“n—a. cos(8). cos[b In(n)]
” =0 " (11)
i(—unﬂn—a. sin[bIn(n)] = i(—nnﬂn-a. sin(8). sin[b In(n)]
” =0 " (12)
i(—unﬂn-a. {cos(8) . cos[b In(n)]
” + sin(8). sin[b In(n)]} = 0 (13)

[ee]

Z(_1)“+1n‘a. cos[6 — b In(n)]

n=1

=0 (14)
If =g ,  Then: Z(—l)““n‘a.cos [g —bIn()] = 0 (15)

Relation 15 is considered a Reference Relation, so that every final relation will be compared with
it in all stages of the proof.
In this way, we can write {(1 —s) in complex form.

- (_1)n+1

( - ) (1—s)=n—s) = E — Re(s) > 0 (16)
n=1

s=a+ib

2 [ee) [oe] . [oe] .
(1 _ 21—5) Z(l _ S) — Z(_l)n+1n—1+s — Z(_l)n+1n(—1+a+1b) — Z(_l)n+1n—1+a. rl1b (17)
n=1 n=1 n=1
ei®=cos(0) +i sin(0)
nib = e ™) = ibInM) = ¢os[b In(n)] + i sin[b ln(n)]

( T S) {(1-s)= Z( 1)n*ip-t+a pib = Z(—l)““{n‘“a.cos[b In(n)] + i n~2.sin[b In(n)]}

(1 - 21_3) (1-5s)= Z(—l)““n'“’a. cos[bIn(n)] + ii:(—l)“+1 n~1*2 sin[b In(n)] (18)
Re [(1 - %) {1- s)] = i(—l)““n'“’a. cos[bIn(n)] (19)
Im [( T s) (1 —s)] Z( 1)1 n=1*2 sin[b In(n)] 20)

If {1—s)=0 then: Re [(1 - 212_5) {(1- s)] =0 ,Im [(1 - 212_5) (1 - s)] =0 1)

Z(—l)““n‘“a. cos[bIn(n)] =0 (22)

n=1

Z(—l)““ n=1*2_sin[b In(n)] = 0 (23)
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2.2. Proof of the Riemann Hypothesis

2.2.1. Determining the Value of “a” in {(s)

If ¢(s)=0 then: Re [(1 - 21) ((s)] =0 ,Im [(1 - 21) c(s)] =0 (24)
i(—l)““n‘a.cos[b In(n)]=0 (25)

n=1

Z(—l)““n‘a.sin[b In(n)] =0 (26)

n=1

First, convert equation 9 from cosine to sine, and then add equation 10 to obtain equation 27.

N +1.,—a — N n+l.—a qj T _
;(—Qn n .cos[bln(n)]—nz_l(—l) n .sm[E—bln(n)]—O

Z(—l)““n_a. sin[bIn(n)] =0
n=1

[ee]

(=1)™*n~2, cos[b In(n)] + Z(—l)““n‘a.sin[b In(n)] =0

n=1
n=1

i(—l)““n‘a. sin [g -b ln(n)] + i(—l)““n‘a. sin[bIn(n)] =0

T
Z(—l)““n‘a. {sin [E -b ln(n)] +sin[bIn(n)]} =0 27
n=1
By expanding equation 27 using the trigonometric relation, we obtain equation 28.
a—
sina + sinf3 = 2 sin . COS

2

172 { sin [g ~bIn(1)] +sin[b In(1)]}
s
— 273 {sin [E —-b ln(Z)]
+ sin[b In(2)]}
s
+ 372.{sin [E —b ln(3)]
+ sin[b In(3)]} — -+ + n™2.{ sin [g —-b ln(n)] +sin[bIn(n)]} =0
1- 272 {2sin G) cos [E —bIn(2)]}4+372.{2 sin G)cos[; — bIn(3)]} —...

+n"2.{2sin G) cos E - b ln(n)} =0

1-272.{V2 .cos[; —bIn(2)]}+37% (vZ.cos[s = bIn(3)]} —..+ n% {vZcos[Z—bIn(m)]} =0 (28)
Divide both sides of equation 28 by V2
1

(ﬁ) -2

In the second sentence of relation 29, we make a small change because 1 minus 1 equals 0.

2, {cos[g —bIn(2)]}+372. {cos[; — bIn(3)]} —..+ n‘a.{cos E —-b ln(n)]} =0 (29)
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5
( \/% ) =272 {1 — 1+ cos E - b ln(Z)]} + 372, {cos E -b ln(3)]} — ..+ n™ {cos E - b ln(n)]} =0
(30)
~1= —v2{.17cos [X~ bIn(1) |} (31)

With the use of 31, we will have.

(%)—Z‘a. {1 — \/E{l‘a .Ccos E - b ln(1)]} — cos E - b 1n(2)]}+3"’". {cos E —
b 1n(3)]} —..+n2 {cos E —b ln(n)]} =0

Once we have defined the relationships, we can revisit the Function, which is similar to relation
#15.

{(\% - z—a) + (272.V2).172, cos[; -b ln(l)]} -

2_"".{cos E -b ln(2)]}+3_a. {cos E - b ln(3)]} —..+n72 {cos E - b ln(n)]} =0 (32)

If the expression (\/1—5 -27%) is equal to zero and the expression (272.v/2) is equal to one, then

Equation 32 becomes similar to Relation 15.

Z(—l)““n‘a.cos [%— bln(n)] =0
n=1

l_a.cos[% —bIn(1)]} — 272 {cos[g —bIn(2)]} +372. {cos E -b ln(B)]} -+

n‘a.{cos E - b ln(n)]} =0 (33)
Therefore, (%) — 2730 and 273 V2 =1 , then: a=% (34)

To obtain a, the manipulation of function clauses was only done in the second clause, which
includes the prefix 272. The expression -1+1 is added to it, resulting in a favorable outcome that
confirms the correctness of Riemann's Hypothesis. However, manipulating the remaining sentences
yields new values for a, which necessitates checking if there is a root on these new lines. We start
from equation 29.

Z(—l)““n‘a. cos [% —blIn(n)]
n=1

= (%) —273 {cos E —-b ln(Z)]} + 372 {cos E - b 1n(3)]} —

+ n‘a.{cos E— bln(n)]}

<§> —-273, {cos E -b ln(Z)]} + 372 {—1 + 1+ cos E - b 1n(3)]} -

+ n‘a.{cos E - b ln(n)]} =0
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(5)-3)+ 53 (1coff - vincol) -2 eos [ -bmca)

+3“’.{cos [E— b ln(3)]}} — 4 n_a.{cos [E - b ln(n)]} =0 (35)
4 4
If the expression (ﬁ) — 372 equals to zero and the expression 372.v/2 equals to one, then

2
Relation 35 becomes similar to Relation 15.

If (?)—w =0, 37.WZ=1 them 3° =2 3 =vZ , al@®=l.n@

__In(2)
, a—ln(32) (36)

Similarly, for the nth sentence we will have: #

Z(—l)““n_a. cos [; —blIn(n)]
n=1

= (g) —273 {cos E —-b ln(Z)]} + 372 {cos E - b 1n(3)]} —

+ n‘a.{cos E - b ln(n)]} =0
(x/f

)~z feos[f -]} + 3% foos f - @]} ot

n2 {—1 + 1+ cos E - b ln(n)]} =0

T
Z(—l)““n‘a. cos [Z —bln(n)]

(D)}t B e b)) -2 o[- bina)]

+3_a.{cos [E— b ln(3)]}} — et n_a.{cos [E - b ln(n)]} =0 (37)
4 4
If the expression (‘/2—5) —n™? equals to zero and the expression n"®.v/2 equals to one, then
Relation 37 becomes similar to Relation 15.

If (E)—n_"l =0 , n2+2=1 then: n™2@ =— , n? =2 a. 1n(n)=§ .In(2)

Graphical Proof:

By plotting the function at certain points, it is easy to understand that the Zeta Riemann function
has no roots at these points except for the Re(s) = %.
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Figure 3. Plots of 1{(c +it)| with o = {0%} and 0 <t < 100.

2.2.2. Determining the Value of “a” in {(1 —s)

In the strip 0 < Re(s) <1 this extension of the zeta function satisfies the functional equation.

. -
©Epl
B i(_l)nﬂ
(1) ™
) = 25 sin () 1L = )31 = )
i(s)=¢(1—s) , If (s) =0,

Then: {(1 —s) =0
If (1 —-s)=0 then: Re[(l—zf—_s)i(l—s)] =0 , Im[(l—zli_s)gu —s)] -0
i(—l)nﬂn_“a.cos[b In(n)] =0

Z(—1)n+1 n=1+2_sin[b In(n)] = 0

By using the following trigonometric relation and multiplying both equations 37 and 38 by cos
(6) and sin (8), then add them.

cos(a — B) = (cosa. cos fB) + (sina . sinf)

Z(—l)““n‘“a.cos[b In(n)] = Z(—l)““n_“a.cos(e).cos[b In(n)] =0

Z(—l)““ n~'*2 sin[b In(n)] = Z(—l)““n'”"‘.sin(G).sin[b In(n)] =0
n=1 n=1
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[ee]

Z(—l)““n‘“a.{cos(e).cos[b In(n)] + sin(0).sin[b In(n)]} = 0

n=1
[oe]

Z(—l)““n‘“a. cos[@ —bln(n)] =0

T - s
If: 0=7  Then: D =DM cos| 7~ bIn(m)] = 0 (39)
n=1
First, convert equation 22 from cosine to sine, and then add equation 23 to obtain equation 40.

i(—l)““n‘“a. cos[b In(n)] = i(—l)““n_“a. sin [g -b ln(n)] =0

Z(—l)““n‘“a. sin[bIn(n)] = 0

n=1
[oe]

z(—l)n”n_”a. cos[bIn(n)] + Z(—l)n“n_”a.sin[b In(n)] =0
n=1

n=1

o o o
(_1)n+1 —1+a. inl——>bl ( ) (_1)n+1 —1+a. i [b 1 ( )] =0
HZ; n Sll’l[2 nn]+nzzl n sin nn

T
Z(—1)n+1n-1+a. {sin[5 = bIn(m)| +sin[b In(w)1} = 0 (40)
n=1
By expanding equation 40 using the trigonometric relation, we obtain equation 41.
, inB = 2si a—B
sina + sinf = 2 sin 5 Cos—

171%2 {sin [g -b ln(l)] + sin[b In(1)]}

g
— 271+ fgin [E -b ln(Z)]
+ sin[b In(2)]}

+ 3713 {sin [g —-b ln(3)]
+sin[bIn(3)]} — -+ + n~1*2. { sin E —b ln(n)] + sin[bIn(m]} =0
1- 2742 (2sin(3) cos [f—bIn(2)}+37*2.2 sin (5)cos5 — bIn3)]} -

+n~1*2 {2 sin G) cos E - b ln(n)} =0

1-2712 (V2 cos[] — bIn(2)}+37*2 (V2.cos[; — bIn()]} —..+ n~*2. {VZ cos [} -b 1n(n)]} =0
(41)
Divide both sides of equation 41 by V2.

(%) —271+a {cos[g —bIn(2)]}+37 1+, {cos[g — bIn(3)]} —..+ n_“a.{cos E - b ln(n)]} =0 (42)

In the second sentence of relation 42, we make a small change because 1 minus 1 equals 0.

(%) —271+a, {1 — 1+ cos E -b ln(2)]}+3‘1+"’. {cos E -b ln(3)]} —..+n71* {cos E -b ln(n)]} =
0 (43)
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10
—1= —VZ{17*cos |7 - bIn(1)]} (44)
With the use of 44, we will have more options.
( \/—17 ) i {1 - \/i{l_a .COS E - b ln(l)]} — cos E - b ln(Z)]} + 37t {cos E -

b 1n(3)]} —.t n71ta, {cos E - b ln(n)]} =0

Once we have defined the relationships, we can revisit the function, which is similar to relation
#39.

{(\/% _ z—1+a) +(271%.2). 17, cos[g —b 1n(1)]} -

271+ {cos E - b ln(2)]}+3‘1+"‘. {cos E -b ln(3)]} —tn1ta {cos E -b ln(n)]} =0 (45)

If the expression \/% — 2712 equals to zero and the expression 271*3.4/2 equals to one, then

Relation 45 becomes similar to Relation 39.

m
Z(—l)““n‘”a. cos [Z —bln(n)] =0
n=1

1_1+a.cos[% —bln(1)]} — 2712, {cos[g —bln(2)]} +371*2 {cos E -b ln(B)]} -t

n~1*a, {cos E -b ln(n)]} =0 (46)
Therefore, (%) — 27y and 2714 {2 =1 , then: a=
; (47)

2

To obtain a, the manipulation of function clauses was only done in the second clause, which
includes the prefix 272. The expression -1+1 is added to it, resulting in a favorable outcome that
confirms the correctness of Riemann's Hypothesis. However, manipulating the remaining sentences
yields new values for a, which necessitates checking if there is a root on these new lines. We start
from Relation 42.

Z(—l)““n‘“a. cos [g —bln(n)]
n=1

V2

= <7> — 271 {cos E -b ln(Z)]} + 371, {cos E -b 1n(3)]} —

+ n‘“a.{cos E— bln(n)]}

(?) — 271+ {cos E -b ln(Z)]} +371*2, {—1 + 1+ cos E - b ln(3)]} -

+ n‘“a.{cos E - b ln(n)]} =0

V2

{<7> - 3-1+a} + {371*2.v2) {1-1+a cos E — b 1n(1)]} — 271+, {cos E —b 1n(2)]}

4+ 3-1+a {cos [g - b ln(3)]}} — oo plHa, {cos E -b ln(n)]} =0 (48)

_ 3—1+a 1+a

If the expression (ﬁ) equals to zero and the expression 3~ 2 equals to one, then

2.
Equation 48 becomes similar to Relation 42.
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if (2)-371 =0, 37%vZ=Lthen: 37 =2 320 =22 am@)=l @) +n(3),

2 2
_In(2)

2 +In @)/ In(3)

Similarly, for the nth sentence we will have: #

[ee)

z ) (=1)+1n~1*3 cos [E —bln(n)] = (E) — 271+ {cos [E -b ln(Z)]} + 3713 {cos E - b ln(3)]} -

2 4

-+ n_a.{cos E - b ln(n)]} =0 (49)

i(—l)““n‘”a. cos [g —bln(n)]
_ (@) — 270 feos [E— b n@)]} + 342 {cos [ = b1n@@)]} - -+
2 4 4

n‘”a.{—l + 1+ cos E -b ln(n)]} =0

Z(_D“”n‘“a. cos [g —bIn(n)]

_ {(?) “notee by o) {recos[f - b))

— 2711 {cos E -b ln(Z)]}

+3‘1+a.{cos [% -b ln(3)]}} — et n_”a.{cos E -b ln(n)]} =0 (50)

If the expression (g) —n~i*a -1+a
Equation 50 becomes similar to Relation 42.

equals to zero and the expression n 2 equals to one, then

If (g) —n "2 =) |, n*42=1 then: n!* =‘/—f , n? =n\/2—E ,a.ln(n)% .In(2) +

a=%+ In(2)/ In(n) (51)
Analytical Proof:

According to Table 2, the root of ((1-s) lies between 1/2 and 1 if 0 < Re(s) < 1/2, which is not
possible. Therefore, values of a # 1/2 cannot be the real part of the root of the zeta function. Thus, the
function only has roots on the line Re(s) = 1/2. On the other hand, comparing of Tables 1 and 2, shows
that the only common root between ((s) and {(1-s) is a=1/2.

Table 1. potential values of the real part “s”, 0 <a < % , for {(s) = 0.

n 2 3 4 5 6 7 8 m

1 1 1 In(2)
a —  0.315464 — 0.215338 0.193426 0.178103 = ...

2 4 6 In(m?)

Table 2. potential values of the real part “s”, % <a< 1 forl(1—-s)=0.

n 2 3 4 8 m

a L 0684534 5 2 k@
) 4 6 ln(m)

+1In (%) / In(m)
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In(2)

or a=l-1r5

2.2.3. The Final Proof of the Riemann Hypothesis
The complex form of equations (5 and 18) for {(s) and (1 —s) are written.
(1 - §> Us) = Z( 1)™1n=2 cos[b In(n)] — lZ( 1)1 n3 sin[b In(n)]

[oe]

(1 ~ 5 S) (1-5s)= Z(—l)““n‘“"‘.cos[b In(n)] + lZ(—l)“Jr1 n~1*2 sin[b In(n)]

n=1 n=1

i(s)=0
[ 2
Re (1 — 2—

2
Re (1——

)Z(s): =0 , Im [(1 - —) {(s)] =0
)Z(S) = i(—l)““n'a.cos[b In(n)] =0

n=1
[oe]

Z(—l)““ n~2.sin[bIn(n)] = 0

n[(1- 2o
(1-s)=0
2

Re:(l—F>Z(1—s):=0 , Im[( T S) (1—5)]—0

Re :(1— 2_)((1—5): Z( 1)"*1n=1+2_cos[b In(n)] = Z( 1)"*1n=1+22_n=a cos[b In(n)] = 0

Im (1 - 2_ )Z(l - s): Z( 1)1 n=1*2 sin[b In(n)] Z( 1)1 n~1*22 n=3 sin[b In(n)] = 0

() =¢(1—9)=
(1~ 0] el (1] =

Z(—l)““n‘a.cos[b In(n)] = Z:(—l)““Lln_l“Lz"".n‘a cos[bIn(n)] =0 (52)
=

s3] - 1)t

Z(—1)n+1 n=2.sin[b In(n)] = Z(—l)““ n=1+23 1= sin[b In(n)] = 0 (53)

By comparing both sides of equations 52 and 53, we can determine the value of "a"
nTi*2 =1, —1+2a=0, a= (54)

Additionally, both the positive and negative values of b can be used in equations 9 and 10.

Z(—l)““n‘a.cos[b In(n)] =0 , Z(—l)““n‘a.cos[(—b) In(n)] =0
Z(—l)““n‘a.sin [bIn(n)] = 0 , Z(—l)““n_a.sin [(=b) In(n)] = 0

Therefore, both b and -b are valid for the function. The general solution to the equation will
bes = % +ib.
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If we repeat this entire process with relation 1, we will obtain the same result with slight changes
in the details (Shown in Appendix A).
2.3.4. Determining the Value of “b”

We start from Equation 2 to prove that the relation between the zeta function and prime numbers
(Euler's relation) is true for Re(s)>0.

(1 - %) i(s) = i:(—l)““n_S , Re(s) > 0

. 1101 101 1.1 1 1
1‘—)“5’—2( D = n s T w s et E T
n=

Ly(,_ 2 111 1.1 1 1 11
(5)( _F)Z(S)_F_E 65 8 105 12° ' 14° 16° @ 18°

2 1 1 2 1 1 2 1 1 2 1 1 2 1

R (R R — — e R T

s T n et st Tt st T Tt 1 T 1o
(1)(1 1)(1 ) )= 2+1+1 2+1+1 2+1+1
3s 25 oG 65 ' 95 ' 155 185 ' 215 ' 275 305 @ 335 305

12+1+1 2+1+1 2+1+1 2+1+
Bl 5s 10s ~ 11s 135 14 175 198 228  23s

11)(1 1)(1 2)()_ 2+1+1+1 2+1+1 2_|_1+
o) = 25 75 11 135 14 178 195 225 23S

(1-2)(1-5)(1-%)(t )()—12 NS S S S
5s 3s 28 s 11s  13s 17 195 225 23S

(1 1)(1 1)(1 1)(1 1)(1 )()—1 2, .ty
75 5s 3s 25 os 25 135 T 175 T 1os T 23

(- H -3 C-R0-He- (-3

(1 - 22—5) can be removed from both sides of the above equation because (1 - 23) #0. So

S

we will have:

(o) (- ) (-7 0-5) (- F) - =
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((S)=§:n_s=n ! ,s=%+ib
n=1

1
1=ps
1,. .
1—[ 1 1 pS pz+iP pib
1)1 PS—1 e . o L
1-55 153 pztib _1 P %

pib = eln ') = ¢ibIN(®) = co5[b In(P)] + isin[b In(P)]

(1 B cos(b In(P)) ) iy <_ sin(b In(P)) )
pib _ VP VP 55
pib _ L (1 N 2 cos(b In(P)) )

VP P JP

To determine the root of the equation, we set the value of {(s) equal to zero and simplify the

equation.

. ((1 B cos(b In(P)) ) _ (sin(b In(P)) )\‘
=Y =[] =511 /P LA (56)
n=1 - E

1_2cos(bIn(P))
NG e

When solving the equation, terms with a factor of \/% are placed on the left, while the remaining

terms with a factor of one are placed on the right. Expressions that involve the multiplication of
multiple primes in the denominator of the fraction are ignored with high confidence, compared to
expressions that have only one prime in the denominator. The complete proof of the relationship
between prime numbers and the generalized zeta function is given in Appendix B

Therefore, the final form of the equation will be as follows.

1 1
—.cos[bIn(P)] +i z —.sin[bIn(P)] =1 (57)
P P
— VP P=2 VP
1 < _
ﬁ.cos[b In(P)]=1 , Zﬁ.sm[b In(P)] =0 (58)
P=2

P=2
2.2.5. Results

The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2.
The real part of every nontrivial zero of the Riemann zeta function is Re(s) = 1/2. Thus, the hypothesis
is correct, and all the nontrivial zeros lie on the critical line consisting of the complex numbers a +ib,
where a=1/2 is a real number and b is the imaginary number.

In general, the following relationships hold for the zeta function.

{(s)=0 then: Re [(1 - 21) z(s)] =0 ,Im [(1 —21) z(s)] =0, s=a+ib

1
a=3 , b = Unknown
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valﬂ.cos[b In(n)] —i va“.sin[b In(n)] =0
2 n n

o™t e
T.cos[ n(n)]=0 , T-Sln[ n(n)] =
n=1 et
1 bln(P)] +i N L. bIn(P)] =1
\/_?'COS[ n(P)] +i ﬁ-sm[ n(P)] =
— P=2
! bIn(P)] =1 N L. bIn(P)] =0
\/_?'COS[ n(P)]=1 , ﬁ.sm[ n(P)] =
P=2
P=2

3. The Generator Function of Prime Numbers

First, we set the value of the original zeta function to 1. Using the trigonometric relationship, we
convert it into a complex form and consider the real part as 1 and the imaginary part as 0. By summing
the two real and imaginary components, we reach a value of a = 1/2.To find b’, we utilize the
multiplicative form of prime numbers and set the value to 1 resulting in a new sinusoidal form of the
real and imaginary parts which includes two parameters b’ and P. In this case, the amplitude of the
zeta function is 1. With the correct assumption, the true value can be considered equal to the cosine
of the arbitrary angle theta, and its imaginary part equal to the sine of the same angle. By using the
relationship between the sine and cosine of the theta angle and solving the resulting equation, we
obtained a correct relationship between b’ and the prime number corresponding to it.

The Riemann zeta function can be expressed in the following form for complex s.

i(s) = Z ns = Z n~@+b) — Z n=2.nib (59)
n=1 n=1 n

=1
s=a+ib
By utilizing the trigonometric relationship provided, we are able to convert the shape of
Riemann’s zeta function from complex to sinusoidal form.
ei®=cos(0) +i sin(6)

nib = el (7) = g=ibIN®) = cos[b In(n)] — i sin[b In(n)]
Us) = z nan P = Z{n'a. cos[bIn(n)] —in~2 sin[b In(n)]}

n=1
[ee) [oe]

U(s) = Z n~2. cos[bIn(n)] — iZ n~2.sin[b In(n)]

n=1 n=1
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3.1. Determining the Value of a’

U(s)=1 then: Re[l(s)]=1 , Im[l(s)]=0 ,s'=a' +ib’

[ee] [oe]

Z n~®.cos[b’ In(n)] — iz n~¥.sin [b'In(n)] =1 (60)

n=1 n=1

Z n‘a'.cos[b’ln(n)] =1 , Z .sin [b'lIn(n)] =0 (61a,61b)
n=1 n=1

We multiply both equations 61a and 61b by cos(8) and sin(8) respectively, and then add them
together.

[ee]

Z n~?.cos(0).cos[b’ In(n)] = cos(0)

n=1
[ee]

Z n~?.sin(0).sin[b’ In(n)] = 0

n=1
[oe]

Z n~?.{cos(0).cos[b’ In(n)] + sin(0) .sin[b’ In(n)]} = cos(6)

Z n~?.cos[0 — b’ In(n)] = cos(0) (62)
n=1 © \/E
If: 0= g Then: Z n~%.cos E —b' ln(n)] =7 (63)

n=1

We add the two relations 61a and 61b together to obtain relation 63.

(oo}

n~¥. cos[b’ In(n)] = Z n~?. sin [g —-b’ ln(n)] =1

1 n=1

NgE

n

81

n~¥.sin [b' In(n)] = 0

]

=
1l
_

Nk

n~¥. sin [g -b’ ln(n)] + Z n~2.sin[b’ In(n)] =
n=1
n=1

T
Z n~? {sin[b’ In(n)] +sin [E -b’ ln(n)]} =1 (64)
n=1
By expanding equation 64 using the trigonometric relation, we obtain equation 61.
a—B
2

sina + sinf = 2 sin .COS

[ee]

Z n~ . {sin[b’ In(n)] +sin [E —-b’' ln(n)]}
i sm .COS [— —-b’ ln(n)] \/_Z ~a cos [— —b' ln(n)] 1

Z n~ . cos E - b’ ln(n)] = g

n=1

1, cos E ~ b'In(1))

+ 27 . cos [——b' ln(Z)] +37%.cos [——b' 1n(3)] + ..+n"¥.cos [——b ln(n)] g
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V2 , i , s , T V2
— —a — ! —a - ! —a - ! —_

> + 272 .cos [4 b ln(Z)] +37% .cos [4 b ln(3)] + ...+n"?.cos [4 b ln(n)] =3 (65)

In the second sentence of relation 65, we make a small change because -1+1 equals 0.
V2 T T V2
ar o ’ —ar W —-ar’ W _

> +2- { 1+ 1+ cos [ b ln(Z)]} +37¥.cos [4 b ln(3)] +--4+n"?.cos [4 b ln(n)] =5
1=v2 {17*.cos[; — b’ In(1)]} (66)

With the use of 66, we will have it.

{g = 27J4{(27 .V2).1 ¥ .cos[} — b In(1)]}+ 2. [cos E Y 1n(2)]}+3—a' {cos E - b 1n(3)]}+

) T V2
+n? .{cos [Z - b’ln(n)]} == (67)
Once we have defined the relationships, we can revisit the function, which is similar to relation

#59.
If the expression (% -27%) is equal to zero and the expression (272.4/2) is equal to one, then

Relation 67 becomes similar to Relation 63.
1‘3’.cos[;—I — b’ In(1)]}+ 272 {cos E - b ln(2)]}+3‘a’ {cos E - b ln(3)]}+...

+n ¥ {cos [— - b’ ln(n)] = i .COS E -b’ ln(n)] = g (68)

Therefore, \/2_7 —27%=0 and 272 42 =1 , then: a'= % (69)

Additionally, both the positive and negative values of b can be applied in equations 61.

Z n~.cos[b’In(n)] =1 , Z n~?. cos[(=b") In(n)] = 1
Z n~¥.sin [b' In(n)] = 0 , Z n~¥.sin [(=b") In(n)] = 0

Therefore, both b’ and -b” are valid for the function. The general solution to the equation will
be s" = % tib'.

By substituting a =1/2, relations 60 and 61 are transformed into the following relations. Then by
numerically solving the equation, we can determine the values of b’".

Z— cos[b’ In(n)] —12— sin [b'In(n)] =1 (70)
z— cos[b’'In(n)] =1 Z— sin [b"'In(n)] =0 (71)

Similar to the proof presented in Sectlon 2.2.4, the relation of prime numbers with the
generalized zeta function is given in Appendix C.
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s =§:n_5=1_[ ! s’ =%+ib’ (72)
n=1

1 1 ps p%“b’ pib

H 1_% =1_%2P5—1zpéﬂb,_lzpib,_%
. < L cos(b'In(P)) ) . (sin(b’ln(P)) )

= z " 1_[ i - l_[ \/§1 2cos(b’ln(P))\/§ =1 73)
ps (1432 )

When solving the equation, terms with a factor of \/% are placed on the left, while the remaining

terms with a factor of one are placed on the right. Expressions that involve the multiplication of
multiple primes in the denominator of the fraction are ignored with high confidence, compared to
expressions that have only one prime in the denominator.

Therefore, the final form of the equation will be as follows.

1 _ X 1
ﬁcos(b’ln(P))—lzﬁsm(b’ln(P)) =0 (74)
P=2
P=2
— cos(bIn(P)) = 0 N L i) -0
\/?COS n = , \/ﬁs]n n =
P=2
P=2

3.2. Definition of the Generating Function of Prime Numbers

The real and imaginary components of equation 69 can be thought of as the cosine and sine of a
trigonometric angle.

1 cos(b'In(P)) ) _ (sin(b’ln(P)) )
1

N 1) < VP P _
Oh Z no= 1_[ 1] H 1 2cos(b'In(P)) a (75)
&) T

<1 _ cos(b' In(P)) )
VP

(1 N 1 2 cos(b’ In(P)) )

If cos[2m — Op] = ,Then:  sin[2m — 6p] = \/1 — cos?(2m — 6p)

P P
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<1 _ cos(b'In(P)) )

|
|
_ ~ VP
snfon o5 = !1—{<1+1_2cos<bwm)}z
e
n sin(b'In(P))
p (1= cos?(b'In(P)) ) (T>

1 2 cos(b'In(P)) - 1 2 cos(b’In(P)) )
(1+p — 5 )? <1+P %

( <1 B cos(b’ In(P)) ) \l
21— 0p = cos™! VP ,or 2m—0p

1_ 2cos(b'In(P))
\a+p-==0 )

<sin(b’ In(P)) )
VP
1 2cos(b’ In(P))
A+p——5 )

We can use the trigonometric relationship of the sum of the squares of sine and cosine to then

1

= sin~

obtain an independent relationship between b’ and the prime number.

(1 _ cos(b' In(P)) )2 (sin(b’ In(P)) >2
VP VP

cos?(2m — Bp) +sin?(2n—6p) =1 , ; 2
Q+1_32izﬂﬁﬂ) @+1_zgizmgn)
P \/ﬁ P \/ﬁ

=1

2cos(b’In(P)) = cos?(b’ In(P)) sin?(b’ In(P))

1- NG + P P
+ =
1 2cos(b’ In(P)) g 1 2cos(b’ In(P)) ’

<1+§—T> (“’ﬁ‘T)

L 1 2cos(b’ In(P))
TP _, <1 L1 2cos(y’ ln(P))> _ (1 , 1 2cos(b'In(P)) )2
’ P VP - P VP

1 2cos(b’In(P)) 2
(“’ﬁ‘T)
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(1 N 1 2 cos(b’ In(P)) )2 B <1 N 1 2 cos(b’ ln(P)))

P JP p NG
3 <1 N 1 2 cos(b’ ln(P))) <1 2 cos(b’ 1n(P))> “o
= i - e i
1 2cos(b'In(P) 1 2cos(b’ In(P) , VP 1
14 20CO) oy 12O o mm) = (145) 51

(1 2 cos(b’ln(P))) “o 1_2 cos(b'In(P))
P VP P VP

, 1 ) 1 1 1
cos(b ln(P)) = (ﬁ) , b'In(P) = arccos (ﬁ> , b= marccos (2_\/?) , lts)=1 (76)

3.4. Results

To find the values of b’, you can numerically solve equation 67 and then calculate the
corresponding prime number using equation 76.
In general, the following relationships hold for the zeta function.

U(s)=1 then: Re[l(s)]=1 , Im[i(s)]=0 ,s'=a"+ib’

. 1 b= 1 1
a = E , = ln(P) arccos (Z—W)
! b’ 1 i N L s b’1 =1
\/—H.cos[ n(n)] —i TH.SIH[ n(n)] =
— n=1
1 b1 =1 N L b1 =0
\/—H.cos[ n(n)]=1, - TH.SIH[ n(n)] =
— n=1
— . cosb’ In(P)] — ¢ ! infb'In(P)] = 0
\/ﬁ.cos n i \/ﬁ.sm n =
— P=2
- [b"In(P)] =0 - wi in[b’ In(P)] = 0
\/F.cos n(P)]=0 , \/ﬁ.sm n(P)] =
P=2
P=2

4. Conclusions

In this article, we began by attempting to prove the Riemann hypothesis. We started by working
with the initial form of the function and then transformed it into its complex form. To find the roots
of the function’s real and imaginary values, we set it equal to zero. By considering s =a * ib, we were
able to derive the phase-shifted form of the equation using trigonometric relations. Next, we
combined the real and imaginary parts of the equations (relations 9 and 10), expanded the resulting
equation, and compared it with the phase-shifted state. This process led to obtaining two simple
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equations for values of a. Solving these equations revealed that the value is equal to 1/2. Additionally,
we applied the values of b and -b in equations 9 and 10, confirming that all roots of the equation lie
on the 1/2 line, resulting in s=a + ib.

It seems that obtaining a prime number generator through the zero root of Riemann's zeta
function is not possible. To create a prime number generator function in terms of b’, one can solve
the root of the zeta function where it equals one (i.e.,{(s) = 1) and establish a relationship between
b” and prime numbers. By setting the value of zeta equal to one and s'=a' + ib’, similar to zeta equal
to zero, the roots are once again placed on the 1/2 line. Moving forward, we will perform operations
on equation 69, which represents the complex form of the [] function. We assume that the real
component is the cosine 8p function and the imaginary component is the sine 8p function. By using
the trigonometric relationship that the square of the sine plus the square of the cosine equals one, we
can derive an independent relationship between b’ and P. Therefore, if the value of b’ can be obtained
from equation 61 as a numerical solution, then by using the relationship between b” and P, referred
to as the generating function of the prime number (relation 76), the prime number corresponding to
b’ can be easily obtained.
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Appendix A

The Riemann zeta function can be expressed in the following form for complex s:

U(s) = Z n-s = Z n—(a+ib) — z n~a p-ib 1
n=1 n=1 n

=1

s=a+ib 2)

By using the following trigonometric relationship, we can transform the shape of Riemann’s zeta
function from complex to sinusoidal form. ei® = cos(0) +1isin(0)
nib = eln ™) = o=ibLnM) = ¢o5[b In(n)] — i sin[b In(n)]

(o) (o)

U(s) = Z nanP= Z n~2.cos[b In(n)] —in~2.sin[b In(n)]

U(s) = Z n~2 cos[bIn(n)] — iz n~2.sin[b In(n)] 3)
Re[l(s)] = Z n~2.cos[b In(n)] (4)
Im[{(s)] = — Z n~2.sin[b In(n)] (5
if {(s)=0 tzhen: Re[l(s)]=0 , Im[l(s)] =0 (6)

Z n~2.cos[bln(n)] =0 @)
Z n~2.sin[bIln(n)] =0 ()

Before we begin proving the hypothesis, we first obtain the Phase-shifted Riemann relation
using the following trigonometric relation, which we will reference at the end of the discussion.

cos(a + B) = (cosa. cos B) F (sina . sinfB)
sin(a £+ B) = (sina.cos B) £ (cosa . sinp)
Multiply both equations 7 and 8 by cos[8] and sin[6] , then add them together:
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Z n~2.cos[bIn(n)] = Z n~2. cos[bIn(n)].cos[6] =0 9)
n;l n;l
Z n~2.sin[b In(n)] = z n~2.sin[b In(n)].sin[0] = 0 (10)
Z n~2.sin[b In(n)] = z n~2.sin[b In(n)].cos[6] = 0 (1D
Z n~2.cos[bIn(n)] = Z n~2.cos[b In(n)].sin[6] = 0 (12)
n=1 n=1
Z n~2 {cos[b In(n)] . cos(6)] F sin[[b In(n)].sin(6)]} = 0 (13)
n=1
Z n~2. cos[(0) £ bln(n)] =0 (14)
For example: anl n~2, cos [Z —-b ln(n)] =0
U(s) =0 then: Re[l(s)]=0 , Im[l(s)]=0 (15)
Z n~2.cos[bln(n)] =0 , Z n~2.sin[bln(n)] =0
) We combine relations 7 and 8 to obtain r_elation 16
Z n~2. cos[bIn(n)] = Z n~?.sin [; —-b ln(n)] =0
Z n~2sin[bIln(n)] =0
Z a,cos[bIn(n)] Z .sin[bln(n)] =0
Zn‘a.sin [g —-b ln(n)] Z .sin[bln(n)] =0
Z n~2. {sin [g —b ln(n)] +sin[bIn(n)]} =0 (16)

By expanding the relation 16 using the following trigonometric relation, we get:
(sina + sinB) = 2 [sin(a + B)/2]. [cos(a F B)/2]

172.{sin [g —b ln(l)] + sin[b In(1)]}

s
+ 272 {sin [E -b ln(Z)]
+ sin[b In(2)]}

g
+37 {sin [E —b 1n(3)]
+ sin[b In(3)]} + -+ + n™2.{ sin [g —b ln(n)] +sin[bIn(n)]} =0

14+272.{2 sin G)-COS[E —bIn(2)]}+372.{2 sin G).cos[} — bIn(3)}+...
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+n2.{2sin G) .CoS E - b ln(n)} =0

1+272.{V/2 .cos [E —bIn(2)]}+372 {\/E.cos[g — bIn(3)]}+..+ n2. {2 cos E -b ln(n)]} =0 @17)
Divide both sides of equation 17 by V2

(%) + 272 {cos[g —bIn(2)]}+372. {cos[g — bIn(3)}+..+ n72 {cos E - b ln(n)]} =0 (18)

In the second sentence of relation 18, we make a small change because -1+1 equals 0.
1 T T L
(73) +27% (=1 + 1 +cos[} ~ bIn()]}+37". {cos[; ~ bIn(@)]}+..+ n™ {cos[Z= bmm)|} =0 (19)

1= V2{17%cos[; — bIn(1)]} (20)
With the use of 20, we will have.

(\/ii = 2727 *V2).1 % cos[; — bIn(D]}+ 272 {cos[; — b In(2)}+372 {cos[; — bIn(3)]}+...
+n2 {cos E - b ln(n)]} =0

Once we have defined the relationships, we can revisit the Phase-Shifted Riemann Zeta
Function, which is similar to relation #14.

(\/ii —27%) 4 (272« \/E).l‘a.cos[g —bIn(1)]}+
2—3,{cos E —b ln(Z)]} +3_a.{cos E - b ln(3)]}+...+ n2 {cos E —b ln(n)]} =0

If the expression ( 3) is equal to zero and the expression (272 * v/2) is equal to one, then

1 9=
ok
equation becomes the Phase-Shifted Riemann Zeta Function (Relation 14).

l_a.cos[g —bIn(1)]}+ 272 {cos[g —bIn(2)]}+372 {cos E - b ln(3)]}+...+ n2. {cos E - b ln(n)]} =0

[oe]

Z n~2.cos [Z —b ln(n)] =0 21
n=1
Therefore, (\%) —273=0 and 273 x4/2 =1 , then: a= % (22)
Appendix B
S 1 1
Z(s)=2n =1_[ 1 ,s=z+1b 1
n=1 1- ﬁ
1, .
1—[ 1 1 pS pz+iP pib
1) 1 PS -1 Ll b L
1-55) 1-1 P 1 PP

pib = eln (®) = ¢ibIn(®) = ¢os[b In(P)] + isin[b In(P)]
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pib _ cos[b In(P)] + isin[b In(P)] _ cos[b In(P)] + isin[b In(P)]
pib — % cos[b In(P)] + isin[b In(P)] — % (cos[b In(P)] — %) + isin[b In(P)]

cos[b In(P)] + isin[b In(P)]

) (cos[b In(P)] — %) + isin[b In(P)] . (cos[b In(P)] —

 lcos* (bIn(P)) - w

(cos[b In(P)] — —isin[b In(P)]

1
ﬁ)
%) —isin[bIn(P)]
+ sin? (b ln(P))] +i [sin(bln(P)). cos(b ln(P)) - sin(b ln(P)).cos(b ln(P)) —
1
VP

sin(b ln(P))
— 5 ]

(cos[b In(P)] —

(1 B cos(b In(P)) ) iy <_ sin(b In(P)) )
Pib _ \/ﬁ \/ﬁ (2)

1 2cos(bIn(P))
)

)2 + (sin[b In(P)] )?

. (1 _ cos(bIn(P)) ) _ <sin(b In(P)) )
_ s 1 _ VP VP
Ok Z ne= 1_[ 1— i) B 1_[ 1 2cos(bIn(P)) @)
P (1r5- 22

To determine the root of the equation, we set the value of {(s) equal to zero and simplify the
equation.

<1 cos(b In(P)) ) ; (sin(b In(P)) )
> 1 G ] VP
(=) =] ||—7|= =0

1 2 cos(b ln(P))
1+ P T)

4
s

- cos(bIn(P1)) ) . <sin(b In(P1)) ) <1 _ cos(bIn(P2)) ) _ (sin(b In(P2)) >

_ VP1 VP1 VP2 VP2
Bl 1 2 cos(b ln(Pl)) 1 2 cos(b ln(PZ))
) )| e
(1 B cos(b In(Pn)) ) . <sin(b In(Pn)) )
VPn VPn =0
(1 L 2 cos(b In(Pn)) )
Pn \VPn

(1 B cos(bn(P1)) ) . (sin(b In(P1)) ) (1 B cos(bIn(pP2)) >
VP et N

i (Sin(b ln(PZ)) ) (1 ~ cos(b ln(Pn)) ) ~ i(sin(b ln(Pn))) _ 0
VP2 VPn VPn -
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To simplify the multiplication process, the expression is changed from complex to exponential
form.

cos(b ln(Pn)) > <51n(b In(Pn)) ) 1 o
(1 =1 N [cos(b ln(Pn)) + lsm(b ln(Pn))]

1b In(Pn)

1_[ 1 =<1_ 1 _eibln(m))(l_ 1 .eibln(Pz))(l_ 1 _eibln(ps)) _"(1_ 1 .eibln(Pn))
1 VP1 VP2 VP3 VPn

1——
ps
=0
1_[ 1 _ (1 _ 1 _eibIn(P1) _ 1 _eibIn(P2) | 1 _eib[ln(P1)+ln(P2)]) (1
1— 1 VP1 VP2 VP1.4/P2
ps
_ 1 _eibln(Ps)) (1 _ 1 b ln(Pn)) —0
VP3 VvPn
1_[ 1 _ (1 1 _eibIn(P1) _ 1 eibln(P2) _ 1 eibIn(P3) _ . _ 1 _eibIn(Pn)
_1 VP1 VP2 VP3 VPn
ps
+ 1 .eib[ln(P1)+ In(P3)+---+In(Pn)] F 1 . eib[ln(P2)+ In(P3)+:--+In(Pn)] + ...
" +/P1.P3...Pn VvP2.P3..Pn -
¥ . eib[ln(Pn—1)+1n(Pn)] + 1 . eib[ln(P1)+ In(P2)+ 1n(P3)+---+ln(Pn)])
vPn — 1.Pn " +/P1.P2.P3...Pn
=0

When rearranging the terms of the equation, the terms with a factor of % are placed on the

left side, while the remaining terms with the number one are included on the right side.

L eib In(P1) + L eib In(P2) + L eib In(P3) 4ot L eib In(Pn)
VP1 VP2 VP3 VPn
=14+ —-- 1b[ln(P1)+ln(P3)+ -+In(Pn)] + ; 1b[ln(P2)+ In(P3)+:--+In(Pn)]
“VPLP3..Pn VP2.P3..Pn
+ oo T 1 . eib[ln(Pn—1)+ln(Pn)]
\/Plil 1.Pn

. eib [In(P1)+ In(P2)+ In(P3)+:--+In(Pn)]

i
VvP1.P2.P3..Pn

With high confidence, expressions involving the multiplication of several prime numbers in the
denominator of the fraction can be ignored compared to expressions containing only one prime
number in the denominator.

1 . 1 . 1 . 1 .
elb In(P1) + e1bln(P2) + elb In(P3) 4ot elb In(Pn) — 1 (5)

VPT VPZ' VP3’ VPn'
\/% ( cos(b ln(Pl)) + isin(b ln(Pl))) + \/% (cos(b ln(PZ)) ) + i sin(b In(P2))) + -+

+i( (bIn(Pn)) ) + isin(bIn(Pn))) =1
mcos n(Pn isin(b In(Pn))) =

L cos(bIn(PD)) + —cos(b 1n(P2)) + -+ ——cos(b In(Pn))] + i[—sin(b In(P1))
[\/ﬁcos n 1\/ﬁcos n 1\/ﬁcos n(Pn))] L[m51n n
+ —sin(b ln(PZ)) + 4 —sin(b ln(Pn))] =1

VP2 VPn

Therefore, the final form of the equation will be as follows.
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1 . 1
\/—?.cos[b In(P)] +i ﬁ.sm[b In(P)] =1 (6)
P=2 p=2
~ cos[b In(P)] = 1 _ sinfbIn(P)] = 0 @
—.COS n = B —.Sln n =
VP VP
P=2 p=2
Appendix C
- 1 1
U(s) = z ns = <—1> s =5+ b )
n=1 1- Ps
H( 1 ) 1 PS pzHib/ _ P
IS R B TR R i _ 1
1-55) 1-33 P —1 P -

pib’ = gln (') — ibrIn(®) = c5[hy’ In(P)] + isin[b’ In(P)]

pibr _cos[b’In(P)] +isin[b’"In(P)] cos[b’ In(P)] + isin[b’ In(P)]
pib’ — \/% cos[b’ In(P)] + isin[b’ In(P)] — % (cos[b’ in(P)] — %) +isin[b’ In(P)]
COS[b, ln(P)] + isin[b' ln(P)] (COS[b, ln(P)] - ﬁ) - isin[b' ln(P)]

B (cos[b’ In(P)] — \/—1?) + isin[b’ In(P)] -(cos[b' In(P)] — \/%) —isin[b’ In(P)] |
(COSZ(b’ In(P)) ~ w + sin?(b' In(P))] +i[ sin(b’ In(P)). cos(b’ In(P)) — sin(b’ In(P)). cos(b’ In(P)) — sin(®’ In(P)) \/%n ®) )
- (cos[b’ In(P)] — \/%)2 + (sin[b’ In(P)] )?

_cos(b' In(P)) . _sin(b’ ln(P)))
(1 —\/ﬁ )+l< —\/ﬁ
1 2 b’ In(P)
<1+§_;£iﬁ7_l>

Pib

5=
I

pib —
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. ) ( <1 _ cos(tyﬁna%) ) . (Sin(bﬁl(m) )\
(1 _cos(b'In(P)) ) ., <sin(b’ln(P)) )

VP VP
1 2cos(b’In(P)
EE=)

( cos(b ln(P)) <sm(b In(P)) )

( cos(b 1n(P)) ) +l_ <sin(b\’/1§n(P)) >>

(1 cos(b ln(P)) ) sm(b ln(P))

( 1
[

)
(1 cos(b ln(P)) ) sm(b ln(P)))
)

-
)
)
)

cos (b ln(P)) (sm(b In(P)

I <1
1 2 cos(b’ In(P)) )

VP

(1 _ cos(b'In(P)) ) . <sin(b’ln(P)) )
VP T

( cos(ki/l_;(l’)) ) e <sin(b\’/l%1(P)) ) ) | <<1 ~ cos(ki;lﬁn(P)) ) i <sin(b\’/1%1(P)) > >

1
- 1_[ 3 cos(b'In(P)) _(sin(b’In(P)) )
<1 —\/ﬁ ) +i <—\/ﬁ

It can be concluded that

n((1_cos(gg<f’>>)+i<sin(bg<f’>> )) o

To simplify the multiplication process, the expression is converted from complex to exponential
form.

( cos(b ln(Pn)) ) <sm(b In(Pn)) )
=1

“<

\/ﬁ [cos(b’ln(Pn)) —1i sin(b’ln(Pn))]

—1bl In(Pn)

\/__

+

1—[ <<1 cos(b ln(P))

; <sin(b\’/l_;1(P)) ))

1 e—iblln(PZ)) <1 _
VP2

1 )
1— _e—lbl ln(Pl)) (1 _
(-7
_ 1 e—ib'ln(Pn)) -1
vPn

1 e—ibl ln(P3)) (1
VvP3
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(1 _ L a-ib/In(P1) _ L a-ibrIn(P2) | 1 _e—ibr[ln(p1)+1n(pz)]) (1 _ 1 omibr ln(PS)) (1
VP1 VP2 VP1.P2 VvP3
_ 1 . e—ibl ln(Pn))
VPn
_ (1 1 e-ibIn(P1) _ 1 e=ib/In(P2) _ e-ib/In(P3) _ .. _ 1 _-ib/In(Pn)
VvP1 VP2 VvP3 vPn
+ ;e—ib'[ln(mﬂ In(P3)+-+In(Pn)] 1 e~ib/[In(P2)+ In(P3)+-+In(Pn)]
vP1.P3..Pn vP2.P3 ... Pn
+ .. F ; e—ibl[ln(Pn—1)+ln(Pn)]
\/Prll —1.Pn

o-ib/In(PL)+ In(P2)+ ln(P3)+~-+ln(Pn)]) -1

i
VvP1.P2.P3..Pn

When rearranging the terms of the equation, the terms with a factor of \/% are placed on the left
side, while the remaining terms with a factor one are included on the right side.

With high confidence, expressions involving the multiplication of several prime numbers in the
denominator of the fraction can be ignored when compared to expressions containing only one prime
number in the denominator.

1 e—iblln(Pl) + 1 .eiblln(PZ)_I_ 1 .e—iblln(P3)+,__+ 1 .e—iblln(Pn) =0 (4)

VPT VP2 VP3 VPn

\/% (cos(b’ln(Pl)) — isin(b’ln(Pl))) + \/% (cos(b’ln(PZ)) — isin(b'ln(PZ)))

+ % (cos(b'In(P3)) — i sin(b'In(P3))) + - + % (cos(b'In(Pn)) — i sin(b’In(Pn)))
n

V3 VPn
( L cos(b/In(P1)) + —= cos(b'In(P2)) + -+ — cos(b/In(Pm) )
= | ——CO0S n —_— oo —_—
VP1 VP2 VPn
( L sin(b'In(P1)) + —sin(b'In(P2)) + - + ——sin(b'In(P ) =0
— i{—==sin(b'In ——=sin(b'In «++—=sin(b’In(Pn) ) | =
VP1 VP2 VPn
Therefore, the final form of the equation will be as follows.
! (b'In(P)) — i g (b'In(P)) =0 (5)
—cos(b'In —i —=sin(b’In =
7 N
P=2
P=2
! (b'In(P)) =0 L (b'In(P)) =0
—cos(b'In =0, - —sin(b’In =
VP VP
P=2
P=2
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