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Article 

Apocalyptic Proof of the Riemann Hypothesis with 

the Generating Function for Prime Numbers 

Mojtaba Jalali Koutanaei 

Institute of Geophysics, University Of Tehran, Tehran, Iran 

Abstract: The Riemann zeta function  ζ(s) plays a crucial role in number theory and its applications. The 

Riemann Hypothesis (RH) posits that zeros of ζ(s) other than the trivial ones are located on the line defined 

by the equation Re(s) =1/2. This paper introduces a novel and straightforward proof of the Riemann 

Hypothesis. The proof employs a standard method, utilizing the eta function in place of the zeta function, 

under the assumption that the real part is greater than zero. The equation for the real and imaginary parts of 

the Riemann zeta function (eta function) is completely separated. Initially, let ζ(s)  = Reζ(s) +  Imζ(s) with 

s=  a + ib . The value of the real part is determined by solving the equation, and the process is repeated 

for ζ(1 − s). By identifying the potential roots shared by the two functions, a common value is obtained, leading 

to a =1/2, which represents the real part of the main root of the function ζ(s). By using a standard method and 

with the help of two functions ζ(s) and ζ(1-s), the real part of the root of the zeta function is obtained. To create 

a generator function for prime numbers in terms of b, one can solve the root of the zeta function where it equals 

one (i.e.,ζ(s) = 1) and obtain a relationship between b’ and prime numbers. Giving the value of zeta equal to 

one and s' = a' + ib’, similar to zeta equal to zero, the roots are again placed on the 1/2 line. Then, by using the 

zeta function defined by multiplying prime numbers, we arrive at a new meaningful relation between b’ and 

its corresponding prime number is obtained. 

Keywords: riemann zeta function; number theory; riemann's hypothesis  

 

1. Introduction 

The Riemann Zeta Function embodies both additive and multiplicative structures in a single 

function, making it the most important tool in the study of prime numbers. The Riemann zeta 

function is crucial in number theory and has applications in physics, probability theory, and applied 

statistics. It is named after the German mathematician Bernhard Riemann, who discussed it in the 

memoir "On the Number of Primes Less Than a Given Quantity," published in 1859.[1] Riemann 

knew that the function equals zero for all negative even integers -2,-4,-6, etc.(referred to as trivial 

zeros), and that it has an infinite number of zeros in the critical strip of complex numbers between 

the lines x = 0 and x = 1. Riemann conjectured that all nontrivial zeros are on the critical line, a 

conjecture that later became known as the Riemann hypothesis. In 1900, the German mathematician 

David Hilbert referred to the Riemann Hypothesis as one of the most important questions in all of 

mathematics, as evidenced by its inclusion in his influential list of 23 unsolved problems that he 

presented to 20th-century mathematicians. [2] 

2. Riemann Hypothesis 

The real part of every nontrivial zero of the Riemann zeta function is 1/2. Therefore, if the 

hypothesis is correct, all nontrivial zeros lie on the critical line consisting of the complex numbers 

( 
1

2
±  i b), where b is a real number and i is an imaginary unit. 

2.1. Riemann Zeta Function 

The Riemann zeta function can be expressed in the following form for complex s. 
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ζ(s) =∑
1

ns

∞

n=1

=
1

1s
+
1

2s
+
1

3s
+⋯+

1

ns
+⋯        , Re(s) > 1                                                   (1) 

The Riemann hypothesis discusses zeros outside the region of convergence of this series and 

Euler product. To make sense of the hypothesis, it is necessary to analytically continue the function 

to obtain a form that is valid for all complex s. Because the zeta function is meromorphic, all choices 

of how to perform this analytic continuation will lead to the same result, by the identity theorem. A 

first step in this continuation observes that the series for the zeta function and the Dirichlet eta 

function satisfy the relation within the region of convergence for both series. 

(1 −
2

2s
) ζ(s) = η(s) =∑

(−1)n+1

ns

∞

n=1

=
1

1s
−
1

2s
+
1

3s
−⋯                             , Re(s) > 0                   (2) 

However, the zeta function series on the right converges not just when the real part of s is greater 

than one, but more generally whenever s has a positive real part. Thus, the zeta function can be 

redefined as  η(s)/ (1 −
2

2s
), extending it from Re(s) > 1 to a larger domain: Re(s) > 0, except for the 

points where(1 −
2

2s
) is zero.  

In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the functional equation. 

ζ(s) = 2s πs−1 sin (
πs

2
) Г(1 − 𝑠) ζ(1 − s)                      (3)  

We start by converting relation 2 into a complex form. 

(1 −
2

2s
) ζ(s) = η(s) =∑

(−1)n+1

ns

∞

n=1

                            , Re(s) > 0                                

 s= a + ib              

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−s

∞

n=1

=∑(−1)n+1n−(a+ib)
∞

n=1

=∑(−1)n+1n−a. n−ib                                        (4)

∞

n=1

 

By utilizing the trigonometric relationship, we can convert Riemann’s zeta function from a 

complex form to a sinusoidal form. 

e i θ = cos(θ) + 𝑖 sin(θ)  

n−ib = eln (n
−ib) = e−ib.ln(n) = cos[b ln(n)] − 𝑖 sin[b ln(n)]  

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−a. n−ib  

∞

n=1

=∑(−1)n+1{n−a. cos[b ln(n)] − 𝑖 n−a. sin[b ln(n)]}

∞

n=1

 

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

− 𝑖∑(−1)n+1 n−a. sin[b ln(n)]      

∞

n=1

                             (5) 

Re [(1 −
2

2s
) ζ(s)] = ∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

                                                                                   (6) 

Im [(1 −
2

2s
) ζ(s)] = −∑(−1)n+1 n−a. sin[b ln(n)]      

∞

n=1

                                                         (7) 

If  ζ(s) = 0      then:     Re [(1 −
2

2s
) ζ(s)] = 0      , Im [(1 −

2

2s
) ζ(s)] = 0        (8) 

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

= 0                                                                                                             (9) 

∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

= 0                                                                                                           (10) 
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By using the following trigonometric relation and multiplying both equations 9 and 10 by cos 

(θ) and  

sin(θ), then add them. 

cos(α − β) = (cosα. cos β)+ (sinα . sinβ) 

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

=∑(−1)n+1n−a. cos(θ). cos[b ln(n)]

∞

n=1

= 0                                                                       (11) 

∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

=∑(−1)n+1n−a. sin(θ). sin[b ln(n)]

∞

n=1

= 0                                                                         (12) 

∑(−1)n+1n−a. {cos(θ) . cos[b ln(n)]

∞

n=1

+ sin(θ). sin[b ln(n)]} = 0                                                                                     (13) 

∑(−1)n+1n−a. cos[θ − b ln(n)]

∞

n=1

= 0                                                                                                                                         (14) 

If   θ =
π

4
     ,        Then:        ∑(−1)n+1n−a. cos [

π

4
− b ln(n)

∞

n=1

] = 0                                                          (15) 

Relation 15 is considered a Reference Relation, so that every final relation will be compared with 

it in all stages of the proof. 

In this way, we can write ζ(1 − s) in complex form. 

(1 −
2

21−s
) ζ(1 − s) = η(1 − s) =∑

(−1)n+1

n1−s

∞

n=1

                    , Re(s) > 0                                                       (16) 

 s= a + ib                                 

(1 −
2

21−s
) ζ(1 − s) = ∑(−1)n+1n−1+s

∞

n=1

=∑(−1)n+1n(−1+a+ib)
∞

n=1

=∑(−1)n+1n−1+a. nib                (17)

∞

n=1

 

e i θ = cos(θ) + 𝑖 sin(θ)  

nib = eln (n
ib) = eib.ln(n) = cos[b ln(n)] + 𝑖 sin[b ln(n)]  

(1 −
2

21−s
) ζ(1 − s) = ∑(−1)n+1n−1+a. nib  

∞

n=1

=∑(−1)n+1{n−1+a. cos[b ln(n)] + 𝑖 n−a. sin[b ln(n)]}

∞

n=1

 

(1 −
2

21−s
) ζ(1 − s) = ∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

+ 𝑖∑(−1)n+1 n−1+a. sin[b ln(n)]      

∞

n=1

                 (18) 

Re [(1 −
2

21−s
) ζ(1 − s)] = ∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

                                                                     (19) 

Im [(1 −
2

21−s
) ζ(1 − s)] = ∑(−1)n+1 n−1+a. sin[b ln(n)]      

∞

n=1

                                                (20) 

If  ζ(1 − s) = 0      then:     Re [(1 −
2

21−s
) ζ(1 − s)] = 0      , Im [(1 −

2

21−s
) ζ(1 − s)] = 0     (21) 

∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

= 0                                                                                                       (22) 

∑(−1)n+1 n−1+a. sin[b ln(n)] 

∞

n=1

= 0                                                                                                   (23) 
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2.2. Proof of the Riemann Hypothesis  

2.2.1. Determining the Value of “a” in ζ(s) 

If  ζ(s) = 0      then:     Re [(1 −
2

2s
) ζ(s)] = 0      , Im [(1 −

2

2s
) ζ(s)] = 0                (24) 

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

= 0                                                                                                            (25) 

∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

= 0                                                                                                             (26) 

First, convert equation 9 from cosine to sine, and then add equation 10 to obtain equation 27.  

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

=∑(−1)n+1n−a.

∞

n=1

sin [
π

2
− b ln(n)] =0 

∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

= 0 

∑(−1)n+1n−a. cos[b ln(n)] +∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

∞

n=1

= 0 

∑(−1)n+1n−a.

∞

n=1

sin [
π

2
− b ln(n)] +∑(−1)n+1n−a. sin[b ln(n)]

∞

n=1

=0 

∑(−1)n+1n−a. {

∞

n=1

sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0                                                                                 (27)  

By expanding equation 27 using the trigonometric relation, we obtain equation 28. 

sin α + sinβ = 2 sin
α + β

2
. cos

α − β

2
 

𝟏−𝐚. { sin [
π

2
− b ln(1)] + sin[b ln(1)]}  

− 𝟐−𝐚. { sin [
π

2
− b ln(2)]

+ sin[b ln(2)]}

+ 𝟑−𝐚. { sin [
π

2
− b ln(3)]

+ sin[b ln(3)]} − ⋯+ 𝐧−𝐚. { sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0 

1− 𝟐−𝐚. {2sin (
π

4
)  cos [

π

4
− b ln(2)]}+𝟑−𝐚. {2 sin (

π

4
)cos[

π

4
−  b ln(3)]} −… 

+ 𝐧−𝐚. {2 sin (
π

4
) cos [

π

4
−  b ln(n)} = 0 

1−𝟐−𝐚. { √𝟐 .cos[
𝛑

𝟒
− b ln(2)]}+𝟑−𝐚. {√𝟐.cos[

𝛑

𝟒
−  b ln(3)]} −…+ 𝐧−𝐚. { √𝟐 cos [

π

4
− b ln(n)]} = 0  (28) 

Divide both sides of equation 28 by √2 

(
1

√2
) −𝟐−𝐚. {cos[

π

4
− b ln(2)]}+𝟑−𝐚. {cos[

π

4
−  b ln(3)]} −…+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0    (29) 

In the second sentence of relation 29, we make a small change because 1 minus 1 equals 0. 
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(
1

√2
) −𝟐−𝐚. {𝟏 − 𝟏 + cos [

π

4
−  b ln(2)]} + 𝟑−𝐚. {cos [

π

4
−  b ln(3)]} − …+  𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 𝟎        

(30) 

−1= −√2 {. 𝟏−𝐚 cos [
π

4
−  b ln(1)]}                                (31) 

With the use of 31, we will have. 

(
1

√2
)−𝟐−𝐚. {1 − √2 {𝟏−𝐚 . cos [

π

4
−  b ln(1)]} − cos [

π

4
−  b ln(2)]}+𝟑−𝐚. {cos [

π

4
−

 b ln(3)]} −…+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 𝟎                               

Once we have defined the relationships, we can revisit the Function, which is similar to relation 

#15. 

{(
𝟏

√𝟐
− 𝟐−𝐚) +  (𝟐−𝐚. √𝟐). 𝟏−𝐚. cos[

π

4
− b ln(1)]} − 

𝟐−𝐚. {cos [
π

4
−  b ln(2)]}+𝟑−𝐚. {cos [

π

4
−  b ln(3)]} −…+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0          (32)     

If the expression (
1

√2
 - 2−a) is equal to zero and the expression (2−a. √2) is equal to one, then 

Equation 32 becomes similar to Relation 15. 

∑(−1)n+1n−a. cos [
π

4
− b ln(n)

∞

n=1

] = 0 

𝟏−𝐚.cos[
π

4
− b ln(1)]} − 𝟐−𝐚. {cos[

π

4
− b ln(2)]} +𝟑−𝐚. {cos [

π

4
−  b ln(3)]} −…+ 

𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 0                                                                                              (33) 

 Therefore,    (
1

√2
) − 2−a=0         and     2−a . √2 =1      ,        then:         a=

1

2
      (34) 

To obtain a, the manipulation of function clauses was only done in the second clause, which 

includes the prefix 2−a . The expression -1+1 is added to it, resulting in a favorable outcome that 

confirms the correctness of Riemann's Hypothesis. However, manipulating the remaining sentences 

yields new values for a, which necessitates checking if there is a root on these new lines. We start 

from equation 29. 

∑(−1)n+1n−a. cos [
π

4
− b ln(n)

∞

n=1

]

= (
1

√2
) − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} + 𝟑−𝐚. {cos [

π

4
−  b ln(3)]} − ⋯

+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]}

= (
√2

2
) − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} + 𝟑−𝐚. {−𝟏 + 𝟏 + cos [

π

4
−  b ln(3)]} − ⋯

+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 0     
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{(
√2

2
) − 𝟑−𝐚} + {𝟑−𝐚. √2} {𝟏−𝐚 cos [

π

4
−  b ln(1)]} − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} 

+𝟑−𝐚. {cos [
π

4
−  b ln(3)]}} − ⋯+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0                                                              (35) 

If the expression  (
√2

2
) − 𝟑−𝐚  equals to zero and the expression 𝟑−𝐚. √2  equals to one, then 

Relation 35 becomes similar to Relation 15. 

If    (
√2

2
) − 3−a =0   ,  3−a. √2 = 1    then:  3−a =

√2

2
   , 3a =√2  ,   a.ln(3)=

1

2
 . ln(2)  

,   a=
ln(2)

ln(32)
                                   (36) 

 Similarly, for the nth sentence we will have: # 

 ∑(−1)n+1n−a. cos [
π

4
− b ln(n)

∞

n=1

]

= (
√2

2
) − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} + 𝟑−𝐚. {cos [

π

4
−  b ln(3)]} − ⋯

+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 0 

(
√2

2
) − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} + 𝟑−𝐚. {cos [

π

4
−  b ln(3)]} − ⋯+ 

𝐧−𝐚. {−𝟏 + 𝟏 + cos [
π

4
−  b ln(n)]} = 0  

∑(−1)n+1n−a. cos [
π

4
− b ln(n)

∞

n=1

]

= {(
√2

2
) − 𝐧−𝐚} + {𝐧−𝐚. √2} {𝟏−𝐚 cos [

π

4
−  b ln(1)]} − 𝟐−𝐚. {cos [

π

4
− b ln(2)]} 

+𝟑−𝐚. {cos [
π

4
−  b ln(3)]}} − ⋯+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0                                                             (37) 

If the expression  (
√2

2
) − 𝐧−𝐚  equals to zero and the expression  𝐧−𝐚. √2  equals to one, then 

Relation 37 becomes similar to Relation 15. 

If    (
√2

2
) − n−a =0   ,  n−a. √2 = 1    then:  n−a =

√2

2
   , na =√2  ,   a. ln(n)=

1

2
 . ln(2)  

,   a=
ln(2)

ln(n2)
                                  (38) 

Graphical Proof:  

By plotting the function at certain points, it is easy to understand that the Zeta Riemann function 

has no roots at these points except for the Re(s) = ½. 
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Figure 1. Plots of |ζ(σ + it)| with  σ = {0,
1

16
,
1

8
,
1

4
 ,
1

2
} and 0 ≤ t ≤ 100. 

 

Figure 2. Plots of |ζ(σ + it)| with  σ = {0,
1

8
 ,
1

2
} and 0 ≤ t ≤ 100. 
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Figure 3. Plots of |ζ(σ + it)| with  σ = {0,
1

2
} and 0 ≤ t ≤ 100. 

2.2.2. Determining the Value of “a” in ζ(1 − s) 

In the strip 0 < Re(s) < 1 this extension of the zeta function satisfies the functional equation. 

ζ(s) =
1

(1 −
2
2s
)
∑

(−1)n+1

ns

∞

n=1

   

=   
1

(1 −
1

2s−1
)
∑

(−1)n+1

ns

∞

n=1

                                                                                          

ζ(s) = 2s πs−1 sin (
πs

2
) Г(1 − 𝑠)ζ(1 − s) 

 ζ(s) = ζ(1 − s)                             ,                 If  ζ(s) = 0  , 
Then: ζ(1 − s) = 0                                                    

 If  ζ(1 − s) = 0      then:     Re [(1 −
2

21−s
) ζ(1 − s)] = 0      , Im [(1 −

2

21−s
) ζ(1 − s)] = 0   

∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

= 0                                                                                                       

∑(−1)n+1 n−1+a. sin[b ln(n)] 

∞

n=1

= 0                                                                                                          

By using the following trigonometric relation and multiplying both equations 37 and 38 by cos 

(θ) and        sin (θ), then add them. 

cos(α − β) = (cosα. cos β)+ (sinα . sinβ) 

∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

=∑(−1)n+1n−1+a. cos(θ). cos[b ln(n)]

∞

n=1

= 0                                  

∑(−1)n+1 n−1+a. sin[b ln(n)] 

∞

n=1

=∑(−1)n+1n−1+a. sin(θ). sin[b ln(n)]

∞

n=1

= 0                                      

0

2

4

6

8

10

12

0 20 40 60 80 100

0 1/2
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∑(−1)n+1n−1+a. {cos(θ) . cos[b ln(n)]

∞

n=1

+ sin(θ). sin[b ln(n)]} = 0                                                        

∑(−1)n+1n−1+a. cos[θ − b ln(n)]

∞

n=1

= 0                                                                                              

If ∶    θ =
π

4
        Then:               ∑(−1)n+1n−1+a. cos[

π

4
− b ln(n)

∞

n=1

] = 0                                                  (39) 

First, convert equation 22 from cosine to sine, and then add equation 23 to obtain equation 40.  

∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

=∑(−1)n+1n−1+a.

∞

n=1

sin [
π

2
− b ln(n)] =0 

∑(−1)n+1n−1+a. sin[b ln(n)]

∞

n=1

= 0 

∑(−1)n+1n−1+a. cos[b ln(n)] +∑(−1)n+1n−1+a. sin[b ln(n)]

∞

n=1

∞

n=1

= 0 

∑(−1)n+1n−1+a.

∞

n=1

sin [
π

2
− b ln(n)] +∑(−1)n+1n−1+a. sin[b ln(n)]

∞

n=1

=0 

∑(−1)n+1n−1+a. {

∞

n=1

sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0                                                                         (40)  

By expanding equation 40 using the trigonometric relation, we obtain equation 41. 

sin α + sinβ = 2 sin
α + β

2
. cos

α − β

2
 

𝟏−1+a. { sin [
π

2
− b ln(1)] + sin[b ln(1)]}  

− 𝟐−1+a. { sin [
π

2
− b ln(2)]

+ sin[b ln(2)]}

+ 𝟑−1+a. { sin [
π

2
− b ln(3)]

+ sin[b ln(3)]} − ⋯+ 𝐧−1+a. { sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0 

1− 𝟐−1+a. {2sin (
π

4
)  cos [

π

4
− b ln(2)]}+𝟑−1+a. {2 sin (

π

4
)cos[

π

4
−  b ln(3)]} −… 

+ 𝐧−1+a. {2 sin (
π

4
) cos [

π

4
−  b ln(n)} = 0 

1−𝟐−1+a. { √𝟐 .cos[
𝛑

𝟒
− b ln(2)]}+𝟑−1+a. {√𝟐.cos[

𝛑

𝟒
−  b ln(3)]} −…+ 𝐧−1+a. { √𝟐 cos [

π

4
− b ln(n)]} = 0  

(41) 

Divide both sides of equation 41 by √2. 

(
1

√2
) −𝟐−1+a. {cos[

π

4
− b ln(2)]}+𝟑−1+a. {cos[

π

4
−  b ln(3)]} −…+ 𝐧−1+a. {cos [

π

4
−  b ln(n)]} = 0 (42) 

In the second sentence of relation 42, we make a small change because 1 minus 1 equals 0. 

(
1

√2
) −𝟐−1+a. {𝟏 − 𝟏 + cos [

π

4
−  b ln(2)]}+𝟑−1+a. {cos [

π

4
−  b ln(3)]} −…+ 𝐧−1+a. {cos [

π

4
−  b ln(n)]} =

𝟎      (43)                      
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−1= −√2 {𝟏−𝟏+𝐚 cos [
π

4
−  b ln(1)]}                       (44) 

With the use of 44, we will have more options. 

(
1

√2
) −𝟐−1+a. {1 − √2 {𝟏−𝐚 . cos [

π

4
−  b ln(1)]} − cos [

π

4
−  b ln(2)]} + 𝟑−1+a. {cos [

π

4
−

 b ln(3)]} −…+ 𝐧−1+a. {cos [
π

4
−  b ln(n)]} = 𝟎                    

Once we have defined the relationships, we can revisit the function, which is similar to relation 

#39. 

{(
𝟏

√𝟐
− 𝟐−1+a) + (𝟐−1+a. √𝟐). 𝟏−𝐚. cos[

π

4
− b ln(1)]} − 

𝟐−1+a. {cos [
π

4
−  b ln(2)]}+𝟑−1+a. {cos [

π

4
−  b ln(3)]} −…+ 𝐧−1+a. {cos [

π

4
−  b ln(n)]} = 0       (45) 

If the expression  
1

√2
− 𝟐−1+a  equals to zero and the expression 𝟐−1+a. √2 equals to one, then 

Relation 45 becomes similar to Relation 39. 

∑(−1)n+1n−1+a. cos [
π

4
− b ln(n)

∞

n=1

] = 0 

 𝟏−𝟏+𝐚.cos[
π

4
− b ln(1)]} − 𝟐−1+a. {cos[

π

4
− b ln(2)]} +𝟑−1+a. {cos [

π

4
−  b ln(3)]} −…+ 

𝐧−1+a. {cos [
π

4
−  b ln(n)]} = 0                                                                                                                   (46) 

 Therefore,    (
1

√2
) − 𝟐−1+a=0         and     𝟐−1+a . √2 =1      ,        then:         a=

1

2
                      (47) 

To obtain a, the manipulation of function clauses was only done in the second clause, which 

includes the prefix 2−a . The expression -1+1 is added to it, resulting in a favorable outcome that 

confirms the correctness of Riemann's Hypothesis. However, manipulating the remaining sentences 

yields new values for a, which necessitates checking if there is a root on these new lines. We start 

from Relation 42. 

∑(−1)n+1n−1+a. cos [
π

4
− b ln(n)

∞

n=1

]

= (
√2

2
) − 𝟐−1+a. {cos [

π

4
− b ln(2)]} + 𝟑−1+a. {cos [

π

4
−  b ln(3)]} − ⋯

+ 𝐧−1+a. {cos [
π

4
−  b ln(n)]}

= (
√2

2
) − 𝟐−1+a. {cos [

π

4
− b ln(2)]} + 𝟑−1+a. {−𝟏 + 𝟏 + cos [

π

4
−  b ln(3)]} − ⋯

+ 𝐧−1+a. {cos [
π

4
−  b ln(n)]} = 0     

 {(
√2

2
) − 𝟑−1+a} + {𝟑−1+a. √2} {𝟏−𝟏+𝐚 cos [

π

4
−  b ln(1)]} − 𝟐−1+a. {cos [

π

4
− b ln(2)]}

+ 𝟑−1+a. {cos [
π

4
−  b ln(3)]}} − ⋯+ 𝐧−1+a. {cos [

π

4
−  b ln(n)]} = 0                   (48) 

If the expression (
√2

2
) − 𝟑−1+a equals to zero and the expression 𝟑−1+a. √2 equals to one, then 

Equation 48 becomes similar to Relation 42. 
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If  (
√2

2
) − 3−1+a  =0 , 3−1+a. √2 = 1,then:  3−1+a  =

√2

2
    3a  =

3√2

2
 , a.ln(3)=

1

2
 .  ln(2) + ln (

3

2
)  , 

a=
ln(2)

ln(32)
 + ln (

3

2
) / ln(3)                               

 Similarly, for the nth sentence we will have: # 

∑ (−1)n+1n−1+a. cos [
π

4
− b ln(n)

∞

n=1
] = (

√2

2
) − 𝟐−1+a. {cos [

π

4
− b ln(2)]} + 𝟑−1+a. {cos [

π

4
−  b ln(3)]} −

⋯+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 0                                                                                                     (49) 

∑(−1)n+1n−1+a. cos [
π

4
− b ln(n)

∞

n=1

]

= (
√2

2
) − 𝟐−1+a. {cos [

π

4
− b ln(2)]} + 𝟑−1+a. {cos [

π

4
−  b ln(3)]} − ⋯+ 

𝐧−1+a. {−𝟏 + 𝟏 + cos [
π

4
−  b ln(n)]} = 0  

∑(−1)n+1n−1+a. cos [
π

4
− b ln(n)

∞

n=1

]

= {(
√2

2
) − 𝐧−1+a} + {𝐧−1+a. √2} {𝟏−𝟏+𝐚 cos [

π

4
−  b ln(1)]}

− 𝟐−1+a. {cos [
π

4
− b ln(2)]} 

+𝟑−1+a. {cos [
π

4
−  b ln(3)]}} − ⋯+ 𝐧−1+a. {cos [

π

4
−  b ln(n)]} = 0                                                 (50) 

If the expression (
√2

2
) − 𝐧−1+a equals to zero and the expression  𝐧−1+a. √2 equals to one, then 

Equation 50 becomes similar to Relation 42. 

If    (
√2

2
) − 𝐧−1+a =0   ,  𝐧−1+a. √2 = 1    then:  𝐧−1+a =

√2

2
   , na =n

√2

2
   ,a.ln(n)=

1

2
 . ln(2) +

ln (
n

2
) 

   a=
ln(2)

ln(n2)
+ ln (

n

2
) / ln(n)                   (51) 

Analytical Proof:  

According to Table 2, the root of ζ(1-s) lies between 1/2 and 1 if 0 < Re(s) ≤ 1/2, which is not 

possible. Therefore, values of a ≠ 1/2 cannot be the real part of the root of the zeta function. Thus, the 

function only has roots on the line Re(s) = 1/2. On the other hand, comparing of Tables 1 and 2, shows 

that the only common root between ζ(s) and ζ(1-s) is a=1/2. 

Table 1. potential values of the real part “s”, 0 < a ≤  
1

2
   , for  ζ(s) = 0. 

n 2 3 4 5 6 7 8 … m 

a 
1

2
 0.315464 

1

4
 0.215338 0.193426 0.178103 

1

6
 … 

ln(2)

ln(m2)
 

Table 2. potential values of the real part “s”,  
1

2
  ≤ a <  1    for ζ(1 − s) = 0. 

n 2 3 4 … 8 … m 

a 
1

2
 0.684534 

3

4
 … 

5

6
 … a=

ln(2)

ln(m2)
+ ln (

m

2
) / ln(m)  
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or         a=1−
ln(2)

ln(m2)
 

2.2.3. The Final Proof of the Riemann Hypothesis  

The complex form of equations (5 and 18) for ζ(s) and ζ(1 − s) are written. 

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

− 𝑖∑(−1)n+1 n−a. sin[b ln(n)]      

∞

n=1

 

(1 −
2

21−s
) ζ(1 − s) = ∑(−1)n+1n−1+a. cos[b ln(n)]

∞

n=1

+ 𝑖∑(−1)n+1 n−1+a. sin[b ln(n)] 

∞

n=1

 

ζ(s) = 0    

Re [(1 −
2

2s
) ζ(s)] = 0      , Im [(1 −

2

2s
) ζ(s)] = 0 

Re [(1 −
2

2s
) ζ(s)] = ∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

= 0                                                                                       

Im [(1 −
2

2s
) ζ(s)] = ∑(−1)n+1 n−a. sin[b ln(n)]

∞

n=1

= 0       

ζ(1 − s) = 0 

Re [(1 −
2

21−s
) ζ(1 − s)] = 0      , Im [(1 −

2

21−s
) ζ(1 − s)] = 0 

Re [(1 −
2

21−s
) ζ(1 − s)] = ∑(−1)n+1n−1+a. cos[b ln(n)] =

∞

n=1

∑(−1)n+1n−1+2a. n−a cos[b ln(n)]

∞

n=1

= 0 

Im [(1 −
2

21−s
) ζ(1 − s)] = ∑(−1)n+1 n−1+a. sin[b ln(n)] 

∞

n=1

=∑(−1)n+1 n−1+2a. n−a. sin[b ln(n)]

∞

n=1

= 0 

ζ(s) = ζ(1 − s) = 0 

Re [(1 −
2

2s
) ζ(s)] = Re [(1 −

2

21−s
) ζ(1 − s)] = 0 

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

=∑(−1)n+1n−1+2a. n−a cos[b ln(n)]

∞

n=1

= 0                                            (52) 

Im [(1 −
2

2s
) ζ(s)] = Im [(1 −

2

21−s
) ζ(1 − s)] = 0 

∑(−1)n+1 n−a. sin[b ln(n)]

∞

n=1

=∑(−1)n+1 n−1+2a. n−a. sin[b ln(n)]

∞

n=1

= 0                                                       (53) 

By comparing both sides of equations 52 and 53, we can determine the value of "a". 

n−1+2a  = 1 ,   − 1 + 2a = 0   ,    a =  
1

2
                           (54) 

Additionally, both the positive and negative values of b can be used in equations 9 and 10.  

∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

= 0                ,               ∑(−1)n+1n−a. cos[(−b) ln(n)]

∞

n=1

= 0 

∑(−1)n+1n−a. sin [b ln(n)]

∞

n=1

= 0               ,                ∑(−1)n+1n−a. sin [(−b) ln(n)]

∞

n=1

= 0                 

Therefore, both b and -b are valid for the function. The general solution to the equation will 

be s =
1

2
 ± ib. 
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If we repeat this entire process with relation 1, we will obtain the same result with slight changes 

in the details (Shown in Appendix A). 

2.3.4. Determining the Value of “b” 

We start from Equation 2 to prove that the relation between the zeta function and prime numbers 

(Euler's relation) is true for Re(s)>0. 

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−s

∞

n=1

                                                             , Re(s) > 0                                

(1 −
2

2s
) ζ(s) = ∑(−1)n+1n−s

∞

n=1

 =
1

1s
−
1

2s
+
1

3s
−
1

4s
+
1

5s
−
1

6s
+
1

7s
−
1

8s
+
1

9s
−⋯ 

(
1

2s
) (1 −

2

2s
) ζ(s) =

1

2s
−
1

4s
+
1

6s
−
1

8s
+

1

10s
−

1

12s
+

1

14s
−

1

16s
+

1

18s
−⋯ 

(1 −
1

2s
) (1 −

2

2s
) ζ(s)

= 1 −
2

2s
+
1

3s
+
1

5s
−
2

6s
+
1

7s
+
1

9s
−

2

10s
+

1

11s
+

1

13s
−

2

14s
+

1

15s
+

1

17s
−

2

18s
+

1

19s

+⋯ 

(
1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s) =

1

3s
−
2

6s
+
1

9s
+

1

15s
−

2

18s
+

1

21s
+

1

27s
−

2

30s
+

1

33s
+

1

39s
−⋯ 

(1 −
1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s)

= 1 −
2

2s
+
1

5s
+
1

7s
−

2

10s
+

1

11s
+

1

13s
−

2

14s
+

1

17s
+

1

19s
−

2

22s
+

1

23s
+⋯ 

(1 −
1

5s
) (1 −

1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s) = 1 −

2

2s
+
1

7s
+

1

11s
+

1

13s
−

2

14s
+

1

17s
+

1

19s
−

2

22s
+

1

23s
+⋯ 

(1 −
1

7s
) (1 −

1

5s
) (1 −

1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s) = 1 −

2

2s
+

1

11s
+

1

13s
+

1

17s
+

1

19s
−

2

22s
+

1

23s
+⋯ 

(1 −
1

11s
) (1 −

1

7s
) (1 −

1

5s
) (1 −

1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s) = 1 −

2

2s
+

1

13s
+

1

17s
+

1

19s
+

1

23s
+⋯ 

…(1 −
1

13s
) (1 −

1

11s
) (1 −

1

7s
) (1 −

1

5s
) (1 −

1

3s
) (1 −

1

2s
) (1 −

2

2s
) ζ(s) = (1 −

2

2s
) 

(1 −
2

2s
) can be removed from both sides of the above equation because (1 − 2

2s
) ≠ 0 . So 

we will have: 

…(1 −
1

13s
) (1 −

1

11s
) (1 −

1

7s
) (1 −

1

5s
) (1 −

1

3s
) (1 −

1

2s
) ζ(s) = 1 

ζ(s) =
1

(1 −
1
2s
)
.

1

(1 −
1
3s
)
.

1

(1 −
1
5s
)
.

1

(1 −
1
7s
)
.

1

(1 −
1
11s

)
.

1

(1 −
1
13s

)
… =∏(

1

1 −
1
PS

)    ,

Re(s) > 0       
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ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
PS

)                   , 𝑠 =
1

2
+ ib                                                        

∏(
1

1 −
1
PS

) =
1

1 −
1
PS

=
PS

PS − 1
=

P
1
2
+ib

P
1
2
+ib − 1

=
Pib

Pib −
1

√P

           

 Pib = eln (P
ib) = eib.ln(P) = cos[b ln(P)] + i sin[b ln(P)] 

Pib

Pib −
1

√P

=

(1 −
cos(b ln(P))

√P
 ) + 𝑖 (−

sin(b ln(P))

√P
 )

(1 +
1
P
−
2 cos(b ln(P))

√P
 )

                                                 (55)  

To determine the root of the equation, we set the value of ζ(s) equal to zero and simplify the 

equation . 

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

) = ∏

(

 
 
(1 −

cos(b ln(P))

√P
 ) − 𝑖 (

sin(b ln(P))

√P
 )

(1 +
1
P
−
2 cos(b ln(P))

√P
 )

)

 
 
= 0                        (56)    

When solving the equation, terms with a factor of 
1

√P
 are placed on the left, while the remaining 

terms with a factor of one are placed on the right. Expressions that involve the multiplication of 

multiple primes in the denominator of the fraction are ignored with high confidence, compared to 

expressions that have only one prime in the denominator. The complete proof of the relationship 

between prime numbers and the generalized zeta function is given in Appendix B 

Therefore, the final form of the equation will be as follows. 

∑
1

√P
. cos[b ln(P)] + 𝑖∑

1

√P
. sin[b ln(P)]

∞

P=2

∞

P=2

 = 1                                                          (57) 

∑
1

√P
. cos[b ln(P)] = 1   ,                                     ∑

1

√P
. sin[b ln(P)] = 0

∞

P=2

∞

P=2

                                  (58) 

2.2.5. Results 

The correctness of Riemann's hypothesis has been proven by accurately determining that a=1/2. 

The real part of every nontrivial zero of the Riemann zeta function is Re(s) = 1/2.  Thus, the hypothesis 

is correct, and all the nontrivial zeros lie on the critical line consisting of the complex numbers a ±ib, 

where a= 1/2 is a real number and b is the imaginary number. 

In general, the following relationships hold for the zeta function. 

ζ(s) = 0      then:     Re [(1 −
2

2s
) ζ(s)] = 0      , Im [(1 −

2

2s
) ζ(s)] = 0 ,   s= a + ib 

 a= 
1

2
        ,     b = Unknown                                                    
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Re [(1 −
2

2s
) ζ(s)] = ∑(−1)n+1n−a. cos[b ln(n)]

∞

n=1

                                                                   

Im [(1 −
2

2s
) ζ(s)] = −∑(−1)n+1 n−a. sin[b ln(n)]      

∞

n=1

                                                    

∑
(−1)n+1

√n
. cos[b ln(n)] − 𝑖∑

(−1)n+1

√n
. sin[b ln(n)]

∞

n=1

∞

n=1

 = 0                                                                        

∑
(−1)n+1

√n
. cos[b ln(n)] = 0   ,                   ∑

(−1)n+1

√n
. sin[b ln(n)]

∞

n=1

= 0

∞

n=1

 

∑
1

√P
. cos[b ln(P)] + 𝑖∑

1

√P
. sin[b ln(P)]

∞

P=2

∞

P=2

 = 1                                        

∑
1

√P
. cos[b ln(P)] = 1   ,                            ∑

1

√P
. sin[b ln(P)] = 0

∞

P=2

∞

P=2

 

 

3. The Generator Function of Prime Numbers 

First, we set the value of the original zeta function to 1. Using the trigonometric relationship, we 

convert it into a complex form and consider the real part as 1 and the imaginary part as 0. By summing 

the two real and imaginary components, we reach a value of a = 1/2.To find b’, we utilize the 

multiplicative form of prime numbers and set the value to 1 resulting in a new sinusoidal form of the 

real and imaginary parts which includes two parameters b’ and P. In this case, the amplitude of the 

zeta function is 1. With the correct assumption, the true value can be considered equal to the cosine 

of the arbitrary angle theta, and its imaginary part equal to the sine of the same angle. By using the 

relationship between the sine and cosine of the theta angle and solving the resulting equation, we 

obtained a correct relationship between b’ and the prime number corresponding to it. 

The Riemann zeta function can be expressed in the following form for complex s. 

ζ(s) = ∑n−s
∞

n=1

=∑n−(a+ib)
∞

n=1

=∑n−a. n−ib                                                                          (59)

∞

n=1

 

s= a + ib                                              

By utilizing the trigonometric relationship provided, we are able to convert the shape of 

Riemann’s zeta function from complex to sinusoidal form.          

e i θ = cos(θ) + 𝑖 sin(θ)  

n−ib = eln (n
−ib) = e−ib.ln(n) = cos[b ln(n)] − 𝑖 sin[b ln(n)]  

ζ(s) = ∑n−a. n−ib
∞

n=1

=∑{n−a. cos[b ln(n)] − 𝑖 n−a. sin[b ln(n)]}

∞

n=1

 

ζ(s) = ∑n−a. cos[b ln(n)]

∞

n=1

− 𝑖∑n−a. sin[b ln(n)]      

∞

n=1
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3.1. Determining the Value of a’ 

ζ(s) = 1      then:     Re[ζ(s)] = 1     , Im[ζ(s)] = 0   , s' = a' + ib’ 

∑n−a′. cos[b′ ln(n)]

∞

n=1

− i∑n−a′. sin [b′ ln(n)]

∞

n=1

= 1                                                                      (60)   

∑n−a
′
. cos[b′ln(n)]

∞

n=1

= 1               ,        ∑n−a
′
. sin [b′ln(n)]

∞

n=1

= 0                                                  (61a, 61b) 

We multiply both equations 61a and 61b by cos(θ) and sin(θ) respectively, and then add them 

together. 

∑n−a′. cos(θ) . cos[b′ ln(n)]

∞

n=1

= cos(θ)                                                                                    

∑n−a′. sin(θ) . sin[b′ ln(n)]

∞

n=1

= 0                                                                                           

∑n−a′. {cos(θ) . cos[b′ ln(n)]

∞

n=1

+ sin(θ) . sin[b′ ln(n)]} = cos(θ)                                                                            

∑n−a′. cos[θ − b′ ln(n)]

∞

n=1

= cos(θ)                                                                                                     (62)  

If ∶    θ =
π

4
        Then:               ∑n−a′. cos [

π

4
− b′ ln(n)]

∞

n=1

=
√2

2
                                             (63) 

We add the two relations 61a and 61b together to obtain relation 63. 

∑n−a′. cos[b′ ln(n)]

∞

n=1

=∑n−a′.

∞

n=1

sin [
π

2
− b′ ln(n)] = 1 

∑n−a′. sin [b′ ln(n)]

∞

n=1

= 0 

∑n−a′. sin [
π

2
− b′ ln(n)] +∑n−a. sin[b′ ln(n)] = 1

∞

n=1

∞

n=1

 

∑n−a′. {

∞

n=1

sin[b′ ln(n)]+sin [
π

2
− b′ ln(n)]} = 1                                                                               (64) 

By expanding equation 64 using the trigonometric relation, we obtain equation 61. 

sin α + sinβ = 2 sin
α + β

2
. cos

α − β

2
 

∑n−a′. {

∞

n=1

sin[b′ ln(n)]+sin [
π

2
− b′ ln(n)]}

= 2∑n−a′.

∞

n=1

sin [
π

4
] . cos [

π

4
− b′ ln(n)] =√2∑n−a′

∞

n=1

. cos [
π

4
− b′ln(n)] = 1 

∑n−a′
∞

n=1

. cos [
π

4
− b′ ln(n)] =

√2

2
 

𝟏−𝐚′. cos [
π

4
− b′ln(1)]

+  𝟐−𝐚′. cos [
π

4
− b′ ln(2)] +𝟑−𝐚′. cos [

π

4
− b′ ln(3)]+ …+𝐧−𝐚′. cos [

π

4
− b′ln(n)] = 

√2

2
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√2

2
+ 2−a

′
. cos [

π

4
− b′ln(2)] +3−a

′
. cos [

π

4
− b′ln(3)]+ …+n−a

′
. cos [

π

4
− b′ ln(n)] = 

√2

2
                   (65) 

In the second sentence of relation 65, we make a small change because -1+1 equals 0. 

 
√2

2
+ 𝟐−𝐚′ {−1 + 1 + cos [

π

4
−  b′ ln(2)]}+𝟑−𝐚′. cos [

π

4
− b′ ln(3)] +⋯+𝐧−𝐚′. cos [

π

4
− b′ln(n)] = 

√2

2
      

1=√2 {𝟏−𝐚′.cos[
𝛑

𝟒
− b′ ln(1)]}                          (66) 

With the use of 66, we will have it. 

{
√2

2
− 2−a′}+{(2−a′ . √2).𝟏−𝐚′.cos[

𝛑

𝟒
− b′ ln(1)]}+ 𝟐−𝐚′. {cos [

π

4
−  b′ ln(2)]}+𝟑−𝐚′ {cos [

π

4
−  b′ ln(3)]}+… 

+ 𝐧−𝐚
′
. {cos [

π

4
− b′ln(n)]} =

√2

2
                                                                    (67) 

Once we have defined the relationships, we can revisit the function, which is similar to relation 

#59. 

If the expression (
1

√2
  - 2−a) is equal to zero and the expression (2−a. √2) is equal to one, then 

Relation 67 becomes similar to Relation 63. 

𝟏−𝐚′.cos[
𝛑

𝟒
− b′ ln(1)]}+ 𝟐−𝐚′. {cos [

π

4
−  b′ ln(2)]}+𝟑−𝐚′ {cos [

π

4
−  b′ ln(3)]}+… 

+ 𝐧−𝐚′. {cos [
π

4
−  b′ ln(n)]} = ∑n−a′. cos [

π

4
− b′ ln(n)]

∞

n=1

=
√2

2
                                                    (68) 

Therefore,   √2
2
− 2−a′=0         and     2−a′ . √2 =1      , then:      a’=

1

2
                               (69) 

Additionally, both the positive and negative values of b can be applied in equations 61.  

∑n−a′. cos[b′ ln(n)]

∞

n=1

= 1                ,               ∑n−a′. cos[(−b′) ln(n)]

∞

n=1

= 1 

∑n−a′. sin [b′ ln(n)]

∞

n=1

= 0               ,                ∑n−a′. sin [(−b′) ln(n)]

∞

n=1

= 0           

Therefore, both b′ and -b’ are valid for the function. The general solution to the equation will 

be s′ =
1

2
± ib′. 

By substituting a =1/2, relations 60 and 61 are transformed into the following relations. Then by 

numerically solving the equation, we can determine the values of b’. 

∑
1

√n
. cos[b′ ln(n)]

∞

n=1

− 𝑖∑
1

√n
. sin [b′ ln(n)]

∞

n=1

= 1                                                                  (70) 

∑
1

√n
. cos[b′ ln(n)]

∞

n=1

= 1                   ,      −∑
1

√n
. sin [b′ ln(n)]

∞

n=1

= 0                                  (71) 

Similar to the proof presented in Section 2.2.4, the relation of prime numbers with the 

generalized zeta function is given in Appendix C. 
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ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
PS

)                   , 𝑠′ =
1

2
+ ib′                                                         (72) 

∏(
1

1 −
1
PS

) =
1

1 −
1
PS

=
PS

PS − 1
=

P
1
2
+ib′

P
1
2
+ib′ − 1

=
Pib′

Pib′ −
1

√P

           

 ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

) = ∏

(

 
 
(1 −

cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )

)

 
 
= 1            

                         

   (73) 

When solving the equation, terms with a factor of 
1

√P
 are placed on the left, while the remaining 

terms with a factor of one are placed on the right. Expressions that involve the multiplication of 

multiple primes in the denominator of the fraction are ignored with high confidence, compared to 

expressions that have only one prime in the denominator. 

Therefore, the final form of the equation will be as follows. 

∑
1

√P
cos(b′ln(P)) − 𝑖∑

1

√P
sin(b′ln(P))

∞

P=2

∞

P=2

 = 0                                                                      (74) 

∑
1

√P
cos(b′ln(P)) = 0   ,                        −∑

1

√P
sin(b′ln(P))

∞

P=2

= 0

∞

P=2

                                                           

3.2. Definition of the Generating Function of Prime Numbers 

The real and imaginary components of equation 69 can be thought of as the cosine and sine of a 

trigonometric angle.  

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

) = ∏

(

 
 
(1 −

cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )

)

 
 
= 1                          (75) 

 If    cos[2π − θp] =

(1 −
cos(b′ ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

     , Then:       sin[2π − θp] = √1 − cos2(2π − θp) 
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 sin[2π − θp] =

√
  
  
  
  
 

1 − {

(1 −
cos(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )

}2

= √

1
P
(1 − cos2(b′ln(P)) )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )2

= 

(
sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )

  

2π − θp = cos−1

(

 
 

(1 −
cos(b′ ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )
)

 
 
           , 𝑜𝑟      2π − θp

= sin−1

(

 
 

(
sin(b′ ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )
)

 
 

 

We can use the trigonometric relationship of the sum of the squares of sine and cosine to then 

obtain an independent relationship between b’ and the prime number . 

cos2(2π − θp) + sin2(2π − θp) = 1        ,      

(1 −
cos(b′ ln(P))

√P
 )

2

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

2  +

(
sin(b′ ln(P))

√P
 )

2

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

2  

= 1 

(1 −
2cos(b′ ln(P))

√P
+
cos2(b′ ln(P))

P
)

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

2  +

(
sin2(b′ ln(P))

P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

2  = 1 

(1 +
1
P
−
2 cos(b′ ln(P))

√P
)

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

2 = 1             , (1 +
1

P
−
2 cos(b′ ln(P))

√P
) = (1 +

1

P
−
2 cos(b′ ln(P))

√P
 )

2
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(1 +
1

P
−
2 cos(b′ ln(P))

√P
 )

2

− (1 +
1

P
−
2 cos(b′ ln(P))

√P
)

= (1 +
1

P
−
2 cos(b′ ln(P))

√P
) . (

1

P
−
2 cos(b′ ln(P))

√P
) = 0 

1 +
1

P
−
2 cos(b′ln(P))

√P
= 0     , 1 +

1

P
=
2 cos(b′ ln(P))

√P
   ,   cos(b′ ln(P)) =

√P

2
. (1 +

1

P
)  > 1   

(
1

P
−
2 cos(b′ln(P))

√P
) = 0     ,

1

P
=
2 cos(b′ln(P))

√P
       

cos(b′ln(P)) = (
1

2√P
)  ,   b′ln(P) = arccos (

1

2√P
)    ,     b′ =

1

ln(P)
arccos (

1

2√P
) ,     |ζ(s)| = 1             (76) 

3.4. Results 

To find the values of b’, you can numerically solve equation 67 and then calculate the 

corresponding prime number using equation 76. 

In general, the following relationships hold for the zeta function. 

ζ(s) = 1      then:     Re[ζ(s)] = 1      , Im[ζ(s)] = 0   , s'= a' + i b’ 

a′ =  
1

2
   ,                   b′ =

1

ln(P)
arccos (

1

2√P
)                          

∑
1

√n
. cos[b′ ln(n)] − 𝑖∑

1

√n
. sin[b′ ln(n)]

∞

n=1

∞

n=1

 = 1                                                                 

∑
1

√n
. cos[b′ ln(n)] = 1   ,                  −∑

1

√n
. sin[b′ ln(n)]

∞

n=1

= 0

∞

n=1

 

∑
1

√P
. cos[b′ ln(P)] − 𝑖∑

1

√P
. sin[b′ ln(P)]

∞

P=2

∞

P=2

 = 0                                                                               

∑
1

√P
. cos[b′ ln(P)] = 0   ,                −∑

1

√P
. sin[b′ ln(P)] = 0

∞

P=2

∞

P=2

 

4. Conclusions 

In this article, we began by attempting to prove the Riemann hypothesis. We started by working 

with the initial form of the function and then transformed it into its complex form. To find the roots 

of the function’s real and imaginary values, we set it equal to zero. By considering s = a ± ib, we were 

able to derive the phase-shifted form of the equation using trigonometric relations. Next, we 

combined the real and imaginary parts of the equations (relations 9 and 10), expanded the resulting 

equation, and compared it with the phase-shifted state. This process led to obtaining two simple 
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equations for values of a. Solving these equations revealed that the value is equal to 1/2. Additionally, 

we applied the values of b and -b in equations 9 and 10, confirming that all roots of the equation lie 

on the 1/2  line, resulting in s = a ± ib.  

It seems that obtaining a prime number generator through the zero root of Riemann's zeta 

function is not possible. To create a prime number generator function in terms of b’, one can solve 

the root of the zeta function where it equals one (i.e.,ζ(s) = 1) and establish a relationship between 

b’ and prime numbers. By setting the value of zeta equal to one and s' = a' + ib’, similar to zeta equal 

to zero, the roots are once again placed on the 1/2 line. Moving forward, we will perform operations 

on equation 69, which represents the complex form of the ∏ function. We assume that the real 

component is the cosine θp function and the imaginary component is the sine θp function. By using 

the trigonometric relationship that the square of the sine plus the square of the cosine equals one, we 

can derive an independent relationship between b’ and P. Therefore, if the value of b’ can be obtained 

from equation 61 as a numerical solution, then by using the relationship between b’ and P, referred 

to as the generating function of the prime number (relation 76), the prime number corresponding to 

b’ can be easily obtained. 
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name] at https://www.claymath.org /[ sites/default/files/ezeta.pdf], reference number [1]. 
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Appendix A 

The Riemann zeta function can be expressed in the following form for complex s: 

ζ(s) = ∑n−s
∞

n=1

=∑n−(a+ib)
∞

n=1

=∑n−a. n−ib                                                                                                        (1)

∞

n=1

 

s= a + ib                                                            (2) 

By using the following trigonometric relationship, we can transform the shape of Riemann’s zeta 

function from complex to sinusoidal form.         eiθ = cos(θ) + i sin(θ) 

n−ib = eln (n
−ib) = e−ib.Ln(n) = cos[b ln(n)] − i sin[b ln(n)]  

ζ(s) = ∑n−a. n−ib
∞

n=1

=∑n−a. cos[b ln(n)] − i n−a. sin[b ln(n)]

∞

n=1

 

ζ(s) = ∑n−a. cos[b ln(n)]

∞

n=1

− 𝑖∑n−a. sin[b ln(n)]      

∞

n=1

                                                                                       (3) 

Re[ζ(s)] = ∑n−a. cos[b ln(n)]

∞

n=1

                                                                                                                                   (4) 

Im[ζ(s)] = −∑n−a. sin[b ln(n)]                                                                                                                                (5)

∞

n=1

 

if ζ(s) = 0      then:     Re[ζ(s)] = 0      , Im[ζ(s)] = 0                  (6) 

∑n−a. cos[b ln(n)]

∞

n=1

= 0                                                                                                                                                 (7) 

∑n−a. sin [b ln(n)]

∞

n=1

= 0                                                                                   (8)        

Before we begin proving the hypothesis, we first obtain the Phase-shifted Riemann relation 

using the following trigonometric relation, which we will reference at the end of the discussion. 

cos(α ± β) = (cosα. cos β)∓ (sinα . sinβ) 

sin(α ± β) = (sin α . cos β)± (cosα . sinβ) 

Multiply both equations 7 and 8 by cos[θ] and  sin[θ] , then add them together: 
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∑n−a. cos[b ln(n)]

∞

n=1

=∑n−a. cos[b ln(n)]

∞

n=1

. cos[θ] = 0                                                              (9)      

∑n−a. sin[b ln(n)]

∞

n=1

=∑n−a. sin[b ln(n)]

∞

n=1

. sin[θ] = 0                                                                   (10) 

∑n−a. sin[b ln(n)]

∞

n=1

=∑n−a. sin[b ln(n)]

∞

n=1

. cos[θ] = 0                                                                       (11)   

 ∑n−a. cos[b ln(n)]

∞

n=1

=∑n−a. cos[b ln(n)]

∞

n=1

. sin[θ] = 0                                                                    (12) 

∑n−a. {cos[b ln(n)]

∞

n=1

. cos(θ)] ∓ sin[[b ln(n)]. sin(θ)]} = 0                                                       (13) 

∑n−a. cos[(θ) ± b ln(n)]

∞

n=1

= 0                                                                                                         (14) 

For example:                                ∑ n−a. cos [
π

4
− b ln(n)]

∞

n=1
= 0 

ζ(s) = 0      then:     Re[ζ(s)] = 0      , Im[ζ(s)] = 0                                                                     (15) 

∑n−a. cos[b ln(n)]

∞

n=1

= 0                   ,                    ∑n−a. sin [b ln(n)]

∞

n=1

= 0 

We combine relations 7 and 8 to obtain relation 16 

∑n−a. cos[b ln(n)]

∞

n=1

=∑n−a.

∞

n=1

sin [
π

2
− b ln(n)] =0 

∑n−a. sin [b ln(n)]

∞

n=1

= 0 

∑n−a. cos[b ln(n)] +∑n−a. sin[b ln(n)] = 0

∞

n=1

∞

n=1

 

∑n−a.

∞

n=1

sin [
π

2
− b ln(n)] +∑n−a. sin[b ln(n)] = 0

∞

n=1

 

∑n−a. {

∞

n=1

sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0                                                                                   (16)  

By expanding the relation 16 using the following trigonometric relation, we get: 

(sin α ± sin β) = 2 [sin(α ± β)/2].  [cos(α ∓ β)/2] 

𝟏−𝐚. { sin [
π

2
− b ln(1)] + sin[b ln(1)]}

+ 𝟐−𝐚. { sin [
π

2
− b ln(2)]

+ sin[b ln(2)]}

+ 𝟑−𝐚. { sin [
π

2
− b ln(3)]

+ sin[b ln(3)]} + ⋯+ 𝐧−𝐚. { sin [
π

2
− b ln(n)] + sin[b ln(n)]} = 0 

1+𝟐−𝐚. {2 sin (
π

4
).cos[

π

4
− b ln(2)]}+𝟑−𝐚. {2 sin (

π

4
).cos[

π

4
−  b ln(3)]}+… 
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+ 𝐧−𝐚. {2 sin (
π

4
) . cos [

π

4
−  b ln(n)} = 0 

1+𝟐−𝐚. { √𝟐 .cos[
𝛑

𝟒
− b ln(2)]}+𝟑−𝐚. {√𝟐.cos[

𝛑

𝟒
−  b ln(3)]}+…+ 𝐧−𝐚. { √𝟐 cos [

π

4
− b ln(n)]} = 0  (17) 

Divide both sides of equation 17 by √2 

 

(
1

√2
) + 𝟐−𝐚. {cos[

π

4
− b ln(2)]}+𝟑−𝐚. {cos[

π

4
−  b ln(3)]}+…+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0     (18) 

In the second sentence of relation 18, we make a small change because -1+1 equals 0. 

(
1

√2
) +𝟐−𝐚. {−𝟏 + 𝟏 +cos[

𝛑

𝟒
− b ln(2)]}+𝟑−𝐚. {𝐜𝐨𝐬[

𝛑

𝟒
−  b ln(3)]}+…+ 𝐧−𝐚. {𝐜𝐨𝐬 [

𝛑

𝟒
−  b ln(n)]} = 𝟎 (19) 

1= √2{𝟏−𝐚.cos[
𝛑

𝟒
− b ln(1)]}                                    (20) 

With the use of 20, we will have. 

{
𝟏

√𝟐
− 𝟐−𝐚}+{(𝟐−𝐚  ∗ √𝟐).𝟏−𝐚.cos[

𝛑

𝟒
− b ln(1)]}+ 𝟐−𝐚. {cos[

π

4
− b ln(2)]}+𝟑−𝐚. {cos[

π

4
−  b ln(3)]}+… 

+ 𝐧−𝐚. {cos [
π

4
−  b ln(n)]} = 0 

Once we have defined the relationships, we can revisit the Phase-Shifted Riemann Zeta 

Function, which is similar to relation #14. 

(
𝟏

√𝟐
− 𝟐−𝐚) + (𝟐−𝐚 ∗ √𝟐).𝟏−𝐚.cos[

π

4
− b ln(1)]}+ 

𝟐−𝐚. {cos [
π

4
−  b ln(2)]} +𝟑−𝐚. {cos [

π

4
−  b ln(3)]}+…+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0 

If the expression (
1

√2
 - 2−a) is equal to zero and the expression (2−a ∗ √2) is equal to one, then 

equation becomes the Phase-Shifted Riemann Zeta Function (Relation 14). 

𝟏−𝐚.cos[
π

4
− b ln(1)]}+ 𝟐−𝐚. {cos[

π

4
− b ln(2)]}+𝟑−𝐚. {cos [

π

4
−  b ln(3)]}+…+ 𝐧−𝐚. {cos [

π

4
−  b ln(n)]} = 0 

∑n−a. cos [
π

4
− b ln(n)]

∞

n=1

= 0                                                                                                (21) 

Therefore,    (
1

√2
) − 2−a=0         and     2−a ∗ √2 =1      ,        then:         a=

1

2
         (22) 

Appendix B 

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
PS

)                   , 𝑠 =
1

2
+ ib                                                                      (1) 

∏(
1

1 −
1
PS

) =
1

1 −
1
PS

=
PS

PS − 1
=

P
1
2
+ib

P
1
2
+ib − 1

=
Pib

Pib −
1

√P

           

 Pib = eln (P
ib) = eib.ln(P) = cos[b ln(P)] + i sin[b ln(P)] 
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Pib

Pib −
1

√P

=
cos[b ln(P)] + i sin[b ln(P)]

cos[b ln(P)] + i sin[b ln(P)] −
1

√P

=
cos[b ln(P)] + i sin[b ln(P)]

(cos[b ln(P)] −
1

√P
) + i sin[b ln(P)]

=
cos[b ln(P)] + i sin[b ln(P)]

(cos[b ln(P)] −
1

√P
) + i sin[b ln(P)]

.

(cos[b ln(P)] −
1

√P
) − i sin[b ln(P)]

(cos[b ln(P)] −
1

√P
) − i sin[b ln(P)]

=

[cos2(bln(P)) −
cos(b ln(P))

√P
+ sin2(b ln(P))] + i [ sin(bln(P)). cos(b ln(P)) − sin(b ln(P)). cos(b ln(P)) −

sin(b ln(P))

√P
]

 (cos[b ln(P)] −
1

√P
)2 + (sin[b ln(P)] )2

 

Pib

Pib −
1

√P

=

(1 −
cos(b ln(P))

√P
 ) + 𝑖 (−

sin(b ln(P))

√P
 )

(1 +
1
P
−
2 cos(b ln(P))

√P
 )

                                                                        (2)  

ζ(s) = ∑n−s
∞

n=1

= ∏(
1

1 −
1
ps

) =   ∏

(

 
 
(1 −

cos(b ln(P))

√P
 ) − 𝑖 (

sin(b ln(P))

√P
 )

(1 +
1
P
−
2 cos(b ln(P))

√P
 )

)

 
 
                          (3) 

To determine the root of the equation, we set the value of ζ(s) equal to zero and simplify the 

equation . 

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

) = ∏

(

 
 
(1 −

cos(b ln(P))

√P
 ) − 𝑖 (

sin(b ln(P))

√P
 )

(1 +
1
P
−
2 cos(b ln(P))

√P
 )

)

 
 
= 0               (4)    

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

)

= 

(

 
 
(1 −

cos(b ln(P1))

√P1
 ) − 𝑖 (

sin(b ln(P1))

√P1
 )

(1 +
1
P1

−
2 cos(b ln(P1))

√P1
 )

)

 
 

(

 
 
(1 −

cos(b ln(P2))

√P2
 ) − 𝑖 (

sin(b ln(P2))

√P2
 )

(1 +
1
P2

−
2 cos(b ln(P2))

√P2
 )

)

 
 

 

…

(

 
 
(1 −

cos(b ln(Pn))

√Pn
 ) − 𝑖 (

sin(b ln(Pn))

√Pn
 )

(1 +
1
Pn

−
2 cos(b ln(Pn))

√Pn
 )

)

 
 
= 0 

((1 −
cos(b ln(P1))

√P1
 ) − 𝑖 (

sin(b ln(P1))

√P1
 ))((1 −

cos(b ln(P2))

√P2
 )

− 𝑖 (
sin(b ln(P2))

√P2
 ))…((1 −

cos(b ln(Pn))

√Pn
 ) − 𝑖(

sin(b ln(Pn))

√Pn
 )) = 0 
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To simplify the multiplication process,  the expression is changed from complex to exponential  

form. 

(1 −
cos(b ln(Pn))

√Pn
 ) − 𝑖 (

sin(b ln(Pn))

√Pn
 ) = 1 −

1

√Pn
[cos(b ln(Pn)) + 𝑖 sin(b ln(Pn))]

= 1 −
1

√Pn
. eib ln(Pn) 

∏(
1

1 −
1
ps

) = (1 −
1

√P1
. eib ln(P1)) (1 −

1

√P2
. eib ln(P2)) (1 −

1

√P3
. eib ln(P3))… (1 −

1

√Pn
. eib ln(Pn))

= 0 

∏(
1

1 −
1
ps

) = (1 −
1

√P1
. eib ln(P1) −

1

√P2
. eib ln(P2) +

1

√P1. √P2
. eib[ln(P1)+ ln(P2)]) (1

−
1

√P3
. eib ln(P3))…(1 −

1

√Pn
. eib ln(Pn)) = 0 

∏(
1

1 −
1
ps

) = (1 −
1

√P1
. eib ln(P1) −

1

√P2
. eibln(P2) −

1

√P3
. eib ln(P3) −⋯−

1

√Pn
. eib ln(Pn)

±
1

√P1. P3…Pn
. eib[ln(P1)+ ln(P3)+⋯+ln(Pn)] ∓

1

√P2. P3…Pn
. eib[ln(P2)+ ln(P3)+⋯+ln(Pn)] ±⋯

∓
1

√Pn − 1. Pn
. eib[ln(Pn−1)+ln(Pn)] ±

1

√P1. P2. P3…Pn
. eib[ln(P1)+ ln(P2)+ ln(P3)+⋯+ln(Pn)])  

= 0 

When rearranging the terms of the equation, the terms with a factor of  
1

√P
  are placed on the 

left side, while the remaining terms with the number one are included on the right side. 

1

√P1
. eib ln(P1) +

1

√P2
. eib ln(P2) +

1

√P3
. eib ln(P3) +⋯+

1

√Pn
. eib ln(Pn)

= 1 ±
1

√P1. P3…Pn
. eib[ln(P1)+ ln(P3)+⋯+ln(Pn)] ±

1

√P2. P3…Pn
. eib[ln(P2)+ ln(P3)+⋯+ln(Pn)]

±⋯∓
1

√Pn − 1. Pn
. eib[ln(Pn−1)+ln(Pn)]

±
1

√P1. P2. P3…Pn
. eib[ln(P1)+ ln(P2)+ ln(P3)+⋯+ln(Pn)] 

With high confidence, expressions involving the multiplication of several prime numbers in the 

denominator of the fraction can be ignored compared to expressions containing only one prime 

number in the denominator. 

1

√P1
. eib ln(P1) +

1

√P2
. eib ln(P2) +

1

√P3
. eib ln(P3) +⋯+

1

√Pn
. eib ln(Pn) = 1                                        (5) 

1

√P1
( cos(b ln(P1)) + i sin(b ln(P1))) +

1

√P2
(cos(b ln(P2)) ) + 𝑖 sin(b ln(P2))) + ⋯

+
1

√Pn
(cos(b ln(Pn)) ) + 𝑖 sin(b ln(Pn))) = 1 

[
1

√P1
cos(b ln(P1)) +

1

√P2
cos(b ln(P2)) + ⋯+

1

√Pn
cos(b ln(Pn))] + 𝑖[

1

√P1
sin(b ln(P1))

+
1

√P2
sin(b ln(P2)) + ⋯+

1

√Pn
sin(b ln(Pn))] = 1 

Therefore, the final form of the equation will be as follows. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202408.1439.v2

https://doi.org/10.20944/preprints202408.1439.v2


 26 

 

∑
1

√P
. cos[b ln(P)] + 𝑖∑

1

√P
. sin[b ln(P)]

∞

P=2

∞

P=2

 = 1                                                                                           (6) 

∑
1

√P
. cos[b ln(P)] = 1   ,                                     ∑

1

√P
. sin[b ln(P)] = 0

∞

P=2

∞

P=2

                                            (7) 

Appendix C  

ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
PS

)                   , 𝑠′ =
1

2
+ ib′                                                                                (1) 

∏(
1

1 −
1
PS

) =
1

1 −
1
PS

=
PS

PS − 1
=

P
1
2
+ib′

P
1
2
+ib′ − 1

=
Pib′

Pib′ −
1

√P

           

 Pib′ = eln (P
ib′) = eib′.ln(P) = cos[b′ ln(P)] + i sin[b′ ln(P)] 

Pib′

Pib′ −
1

√P

=
cos[b′ ln(P)] + i sin[b′ ln(P)]

cos[b′ ln(P)] + i sin[b′ ln(P)] −
1

√P

=
cos[b′ ln(P)] + i sin[b′ ln(P)]

(cos[b′ ln(P)] −
1

√P
) + i sin[b′ ln(P)]

=
cos[b′ ln(P)] + i sin[b′ ln(P)]

(cos[b′ ln(P)] −
1

√P
) + i sin[b′ ln(P)]

.

(cos[b′ ln(P)] −
1

√P
) − i sin[b′ ln(P)]

(cos[b′ ln(P)] −
1

√P
) − i sin[b′ ln(P)]

=

(cos2(b′ ln(P)) −
cos(b′ ln(P))

√P
+ sin2(b′ ln(P))] + i [ sin(b′ ln(P)). cos(b′ ln(P)) − sin(b′ ln(P)). cos(b′ ln(P)) −

sin(b′ ln(P))

√P
 )

 (cos[b′ ln(P)] −
1

√P
)2 + (sin[b′ ln(P)] )2

 

Pib

Pib −
1

√P

=

(1 −
cos(b′ ln(P))

√P
 ) + 𝑖 (−

sin(b′ ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )
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ζ(s) = ∑n−s
∞

n=1

=∏(
1

1 −
1
ps

) = ∏

(

 
 
(1 −

cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ln(P))

√P
 )

)

 
 
                                (2) 

(1 −
cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

=

(1 −
cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

((1 −
cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )) ((1 −

cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 ))

=
1

((1 −
cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 ))

 

∏

(

 
 
(1 −

cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

(1 +
1
P
−
2 cos(b′ ln(P))

√P
 )

)

 
 

=∏

(

  
 

(1 −
cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 )

((1 −
cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 ) ) . ((1 −

cos(b′ln(P))

√P
 ) − 𝑖 (

sin(b′ln(P))

√P
 ) )

)

  
 

=∏

(

 
 1

(1 −
cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 )
)

 
 
= 1          

It can be concluded that 

∏((1 −
cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 )) = 1                                                                                  (3) 

To simplify the multiplication process,  the expression is converted from complex to exponential  

form. 

(1 −
cos(b′ln(Pn))

√Pn
 ) + 𝑖 (

sin(b′ln(Pn))

√Pn
 ) = 1 −

1

√Pn
[cos(b′ln(Pn)) − 𝑖 sin(b′ln(Pn))]

= 1 −
1

√Pn
. e−ib′ ln(Pn) 

∏((1 −
cos(b′ln(P))

√P
 ) + 𝑖 (

sin(b′ln(P))

√P
 ))

=(1 −
1

√P1
e−ib′ ln(P1)) (1 −

1

√P2
e−ib′ ln(P2)) (1 −

1

√P3
e−ib′ ln(P3))…(1

−
1

√Pn
e−ib

′ln(Pn)) = 1 
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(1 −
1

√P1
. e−ib′ ln(P1) −

1

√P2
. e−ib′ ln(P2) +

1

√P1. P2
. e−ib′[ln(P1)+ ln(P2)]) (1 −

1

√P3
. e−ib′ ln(P3))…(1

−
1

√Pn
. e−ib′ ln(Pn))

= (1 −
1

√P1
e−ib ln(P1) −

1

√P2
e−ib

′ln(P2) −
1

√P3
e−ib′ ln(P3) −⋯−

1

√Pn
. e−ib′ ln(Pn)

±
1

√P1. P3…Pn
e−ib′[ln(P1)+ ln(P3)+⋯+ln(Pn)] ∓

1

√P2. P3…Pn
e−ib′[ln(P2)+ ln(P3)+⋯+ln(Pn)]

±⋯∓
1

√Pn − 1. Pn
e−ib′[ln(Pn−1)+ln(Pn)]

±
1

√P1. P2. P3…Pn
e−ib′[ln(P1)+ ln(P2)+ ln(P3)+⋯+ln(Pn)])  = 1 

When rearranging the terms of the equation, the terms with a factor of 
1

√P
  are placed on the left 

side, while the remaining terms with a factor one are included on the right side. 

With high confidence, expressions involving the multiplication of several prime numbers in the 

denominator of the fraction can be ignored when compared to expressions containing only one prime 

number in the denominator. 

1

√P1
. e−ib′ ln(P1) +

1

√P2
. eib′ ln(P2) +

1

√P3
. e−ib′ ln(P3) +⋯+

1

√Pn
. e−ib′ ln(Pn) = 0                                     (4) 

1

√P1
(cos(b′ln(P1)) − 𝑖 sin(b′ln(P1))) +

1

√P2
(cos(b′ln(P2)) − 𝑖 sin(b′ln(P2)))

+
1

√P3
(cos(b′ln(P3)) − 𝑖 sin(b′ln(P3))) + ⋯+

1

√Pn
(cos(b′ln(Pn)) − 𝑖 sin(b′ln(Pn)))

= (
1

√P1
cos(b′ln(P1)) +

1

√P2
cos(b′ln(P2))+⋯+

1

√Pn
cos(b′ln(Pn)))

− 𝑖 (
1

√P1
sin(b′ln(P1)) +

1

√P2
sin(b′ln(P2))+⋯+

1

√Pn
sin(b′ln(Pn))) = 0 

Therefore, the final form of the equation will be as follows. 

∑
1

√P
cos(b′ln(P)) − 𝑖∑

1

√P
sin(b′ln(P))

∞

P=2

∞

P=2

 = 0                                                                                     (5) 

∑
1

√P
cos(b′ln(P)) = 0   ,                        −∑

1

√P
sin(b′ln(P))

∞

P=2

= 0

∞

P=2
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