Submitted:
21 August 2024
Posted:
21 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cannabinoids May Increase the Efficacy of Standard Tumour Therapy and Limit Resistance Development
2.1. CBD, Combined with Platinum Drugs, May Reduce Tumour Growth
2.2. CBD Enhances the Anti-Tumour Effect of Doxorubicin and Other Anthracycline Drugs In Vivo
2.3. CBD can Increase the Efficacy of the Antimetabolite Gemcitabine
2.4. Combinations of CBD with Hormonal Anti-Cancer Agents are Promising
2.5. Combinations of THC or Medical Cannabis with Immune Checkpoint Inhibitors Improve the Survival of Mice in a Non-Small Cell Lung Cancer Model
2.6. Taxanes: CBD Enhances the Activity of Paclitaxel
2.7. Alkylating Substances: Combinations of Cannabinoids with Temozolomide Enhance Therapeutic Effects and May Reduce Resistance
3. Alleviation of Side Effects of Cancer and Anti-Tumour Therapy
3.1. Anxiety: CBD Reduces Anxiety; THC has a Biphasic Effect
3.2. Appetite Stimulation, Weight Loss: THC Reduces Anorexia and Cachexia
3.3. Chemotherapy-Induced Nausea and Vomiting (CINV): THC Suppresses Nausea/Vomiting/Retching to a Similar Extent as Newer Antiemetics
3.4. Chemotherapy-Induced Peripheral Neuropathic Pain (CIPN): CBD and THC Prevent the Development of Allodynia In Vivo; Effects are Substance-Specific
3.5. Pain: Studies Suggest a Reduction of Opioid Dosages, but the True Implications of Cannabinoids in Treatment of Tumour Pain Remain Controversial
3.6. CBD May Protect Organs Against Chemotherapy-Induced Toxicity
3.6.1. CBD is Cardioprotective In Vivo
3.6.2. CBD Protects the Lung and Brain Against Toxic Effects of Methotrexate In Vivo
3.6.3. CBD Reduces Renal Damage In Vivo
3.6.4. Mucositis: CBD Reduces the Severity of Therapy-Induced Oral Mucositis In Vivo
3.6.5. Ototoxic Hearing Loss: The Role of Cannabinoids Needs Further Research
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, J.; Xu, L.; Sun, J.; Song, M.; Wang, L.; Yuan, S.; Zhu, Y.; Wan, Z.; Larsson, S.; Tsilidis, K.; et al. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncology 2023, 2, e000049. [Google Scholar] [CrossRef]
- James, N.D.; Tannock, I.; N’Dow, J.; Feng, F.; Gillessen, S.; Ali, S.A.; Trujillo, B.; Al-Lazikani, B.; Attard, G.; Bray, F.; et al. The Lancet Commission on prostate cancer: planning for the surge in cases. Lancet 2024, 403, 1683–722. [Google Scholar] [CrossRef] [PubMed]
- Kander Justin. Cannabis for the treatment of cancer. The anticancer activity of phytocannabinoids and endocannabinoids. Denis Hill Editor. 7th ed. Kindle Edition; 2021.
- Amin, S.; Chae, S.W.; Kawamoto, C.T.; Phillips, K.T.; Pokhrel, P. Cannabis use among cancer patients and survivors in the United States: a systematic review. JNCI Cancer Spectr. 2024, 8, pkae004. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Cannabidiol (CBD) in cancer management. Cancers (Basel) 2022, 14, 885. [Google Scholar] [CrossRef] [PubMed]
- Pergam, S.A.; Woodfield, M.C.; Lee, C.M.; Cheng, G.S.; Baker, K.K. : Marquis, S.R.; Fann, J.R. Cannabis use among patients at a comprehensive cancer center in a state with legalized medicinal and recreational use. Cancer 2017, 123, 4488–1497. [Google Scholar] [CrossRef]
- Salz, T.; Meza, A.M.; Chino, F.; Mao, J.J.; Raghunathan, N.J.; Jinna, S.; Brens, J.; Furberg, H.; Korenstein, D. Cannabis use among recently treated cancer patients: perceptions and experiences. Support Care Cancer 2023, 31, 545. [Google Scholar] [CrossRef]
- Osaghae, I.; Chido-Amajuoyi, O.G.; Khalifa, B.A.A.; Rajesh, T.; Shete, S. Cannabis use among cancer survivors: use pattern, product type, and timing of use. Cancers (Basel) 2023, 15, 5822. [Google Scholar] [CrossRef]
- Munson, A.E.; Harris, L.S.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. (1975) Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst. 1975, 55, 597–602. [Google Scholar] [CrossRef]
- Nahler, G. Cannabidiol and other phytocannabinoids as cancer therapeutics. Pharmaceut. Med. 2022, 36, 99–129. [Google Scholar] [CrossRef]
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration. Int. J. Oncol. 2017, 51, 369–377. [Google Scholar] [CrossRef]
- Liu, W.M.; Fowler, D.W.; Dalgleish, A.G. Cannabis-derived substances in cancer therapy--an emerging anti-inflammatory role for the cannabinoids. Curr. Clin. Pharmacol. 2010, 5(4), 281–287. [Google Scholar] [CrossRef]
- Scott, K.A.; Dalgleish, A.G.; Liu, W.M. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol Cancer Ther 2014, 13, 2955–2967. [Google Scholar] [CrossRef] [PubMed]
- De Petrocellis, L.; Ligresti, A.; Schiano Moriello, A.; Iappelli, M.; Verde, R.; Stott, C.G.; Cristino, L.; Orlando, P.; Di Marzo, V. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br. J. Pharmacol. 2013, 168, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Sainz-Cort, A.; Muller-Sanchez, C.; Espel, E. Anti-proliferative and cytotoxic effect of cannabidiol on human cancer cell lines in presence of serum. BMC Res Notes. 2020, 13, 389. [Google Scholar] [CrossRef]
- Jacobsson, S.O.; Rongård, E.; Stridh, M.; Tiger, G.; Fowler, C.J. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability. Biochem. Pharmacol. 2000, 60, 1807–1813. [Google Scholar] [CrossRef]
- Whynot, E.G.; Tomko, A.M.; Dupré, D.J. Anticancer properties of cannabidiol and Δ9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines. J. Cannabis Res. 2023, 5, 7. [Google Scholar] [CrossRef]
- Buchtova, T.; Beresova, L.; Chroma, K.; Pluhacek, T.; Beres, T.; Kaczorova, D.; Tarkowski, P.; Bartek, J.; Mistrik, M. Cannabis-derived products antagonize platinum drugs by altered cellular transport. Biomed. Pharmacother. 2023, 163, 114801. [Google Scholar] [CrossRef]
- Deng, L.; Ng, L.; Ozawa, T.; Stella, N. Quantitative analyses of synergistic responses between cannabidiol and DNA-damaging agents on the proliferation and viability of glioblastoma and neural progenitor cells in culture. J. Pharmacol. Exp. Ther. 2017, 360, 215–224. [Google Scholar] [CrossRef]
- Marzeda, P.; Wroblewska-Luczka, P.; Drozd, M.; Florek-Luszczki, M.; Zaluska-Ogryzek, K.; Luszczki, J. Cannabidiol interacts antagonistically with cisplatin and additively with mitoxantrone in various melanoma cell lines—An isobolographic analysis. Int. J. Mol. Sci. 2022, 23, 6752. [Google Scholar] [CrossRef]
- Henley, A.B.; Nunn, A.V.; Frost, G.S.; Bell, J.D. Cannabidiol (CBD) priming enhances cisplatin killing of cancer cells. Proceedings of the 6th European Workshop on Cannabinoid Research, 018P Trinity College Dublin, Ireland, P059, 2013. https://realmofcaring.org/wp-content/uploads/2020/12/Cannabidiol-CBD-Priming-Enhances-Cisplatin-Killing-Of-Cancer-Cells.pdf.
- Go, Y.Y.; Kim, S.R.; Kim, D.Y.; Chae, S.W.; Song, J.J. Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci. Rep. 2020, 10, 20622. [Google Scholar] [CrossRef]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; Garcia-Taboada, E.; Wade, J.; Smith, S.; Guzman, M.; Perez-Gomez, E.; et al. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef]
- Wei, T.; Chen, L.; Shi, P.; Wang, C.; Peng, Y.; Yang, J.; Liao, X.; Yang, P.; Gao, C. Platinum (IV) drugs with cannabidiol inducing mitochondrial dysfunction and synergistically enhancing anti-tumor effects. Inorg. Biochem. 2024, 254, 112515. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, B.G. , Kim, D.Y., Kim, B.R., Kim, J.L., Park, S.H., Na, Y.J., Jo, M.J., Yun, H.K., Jeong, Y.A., et al. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3- and SOD2-Induced autophagy in human colorectal cancer cells. Cancers 2019, 11, 781. [Google Scholar] [CrossRef]
- Misri, S.; Kaul, K.; Mishra, S.; Charan, M.; Verma, A.K.; Barr, M.P.; Ahirwar, D.K.; Ganju, R.K. Cannabidiol inhibits tumorigenesis in cisplatin-resistant non-small cell lung cancer via TRPV2. Cancers (Basel) 2022, 14, 1181. [Google Scholar] [CrossRef]
- Hamad, H.; Brinkmann Olsen, B. Cannabidiol induces cell death in human lung cancer cells and cancer stem cells. Pharmaceuticals (Basel) 2021, 4, 1169. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Kommineni, N.; Surapaneni, S.K.; Kalvala, A.; Yaun, X.; Gebeyehu, A.; Arthur, P.; Duke, L.C.; York, S.B.; Bagde, A.; et al. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int. J. Pharm. 2021, 607, 120943. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.L.; Panetta, J.A.; Hoskins, J.M.; Bebawy, M.; Roufogalis, B.D.; Allen, J.D.; Arnold, J.C. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem. Pharmacol. 2006, 71, 1146–154. [Google Scholar] [CrossRef]
- Zhu, H.J.; Wang, J.S.; Markowitz, J.S.; et al. Characterization of P-glycoprotein inhibition by major cannabinoids from Marijuana. J. Pharmacol. Exp. Ther. 2006, 317, 850–857. [Google Scholar] [CrossRef]
- Kalvala, A.K.; Nimma, R.; Bagde, A.; Surapaneni, S.K.; Patel, N.; Arthur, P.; Sun, L.; Singh, R.; Kommineni, N.; Nathani, A.; et al. The role of cannabidiol and tetrahydrocannabivarin to overcome doxorubicin resistance in MDA-MB-231 xenografts in athymic nude mice. Biochemie 2023, 208, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Mangoato, I.M.; Mahadevappa, C.P.; Matsabisa, M.G. Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro. Synergy 2019, 9, 100056. [CrossRef]
- Fox, E.J. Mechanism of action of mitoxantrone. Neurology 2004, 63(12 Suppl 6):S15-S8. [CrossRef]
- Holland, M.L. , Lau, D.T.T., Allen, J.D., Arnold, J.C. The multidrug transporter Abcg2 (Bcrp) is inhibited by plant-derived cannabinoids. Br. J. Pharmacol. 2007, 152, 815–824. [Google Scholar] [CrossRef]
- de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef] [PubMed]
- Prester, L.; Mikolic, A.; Juric, A.; Fuchs, N.; Neuberg, M.; Vrdoljak, A.L.; Karaconji, I.B. 2018 Effects of Δ9-tetrahydrocannabinol on irinotecan-induced clinical effects in rats. Chem. Biol. Interact. 2018, 294, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Vrdoljak, A.L.; Fuchs, N.; Mikolic, A.; et al. Irinotecan and D9-tetrahydrocannabinol interactions in rat liver: A preliminary evaluation using biochemical and genotoxicity markers. Molecules 2018, 23, 1332. [Google Scholar] [CrossRef]
- Kerstjens, M.; Castro, P.G.; Pinhancos, S.S.; Schneider, P.; Wander, P.; Pieters, R.; Stam, R.W. Irinotecan induces disease remission in xenograft mouse models of pediatric MLL-rearranged acute lymphoblastic leukemia. Biomedicines 2021, 9(7), 711. [Google Scholar] [CrossRef]
- Zunec, S.; Karaconji, I.B.; Catalinac, M.; Juric, A.; Katic, A.; Kozina, G.; Micek, V.; Neuberg, M.; Vrdoljak, A.L. Effects of concomitant use of THC and irinotecan on tumour growth and biochemical markers in a syngeneic mouse model of colon cancer. Arh. Hig. Rada Toksikol. 2023, 74, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Engels, F.K.; de Jong, F.A.; Sparreboom, A.; Mathot, R.A.A.; Loos, W.J.; Kitzen, J.J.E.M.; de Bruijn, P.; Verweij, J.; Mathijssen, R.H.J. Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. Oncologist 2007, 12, 291–300. [Google Scholar] [CrossRef]
- Donadelli, M; Dando, I.; Zaniboni, T.; Costanzo, C.; Salla Pozza, E.; Scupoli, M.T.; Scarpa, A.; Zappavigna, S.; Marra, M.; Abbruuese, A.; et al. 2011 Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2011, 2(4), e152. [CrossRef]
- Ferro, R.; Adamska, A.; Lattanzio, R.; Mavrommati, I.; Edling, C.E.; Arifin, S.A.; Fyffe, C.A.; Sala, G.; Sacchetto, L.; Chiorino, G.; et al. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine. Oncogene 2018, 37, 6368–6382. [Google Scholar] [CrossRef]
- Adamska, A.; Elaskalani, O.; Emmanouilidi, A.; Kim, M. , Razak, Abdol, B, N., Metharom, P., Falasca, M. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv. Biol. Regul. 2018, 68, 77–87. [Google Scholar] [CrossRef]
- Likar, R.; Nahler, G. Cannabidiol possibly improves survival of patients with pancreatic cancer: A case series. Clin. Oncol. Res. 2020, 2613–4942. [Google Scholar] [CrossRef]
- Dobovisek, L.; Krstanovic, F.; Borstnar, S.; Debeljak, N. Cannabinoids and hormone receptor-positive breast cancer treatment. Cancers (Basel) 2020, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Franks, L.N.; Ford, B.M.; Prather, P.L. Selective estrogen receptor modulators: cannabinoid receptor inverse agonists with differential CB1 and CB2 selectivity. Front. Pharmacol. 2016, 7, 503. [Google Scholar] [CrossRef]
- Thomas A, Baillie GL, Phillips AM, et al: Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. British J. Pharmacol. 2007; 150; 613–623.
- Garcia-Morales, L.; Mendoza-Rodriguez, M.G.; Ramirez, J.T.; Meza, I. CBD inhibits in vivo development of human breast cancer tumors. Int. J. Mol. Sci. 2023, 24, 13235. [Google Scholar] [CrossRef]
- Lu, W.J.; Desta, Z.; Flockhart, D.A. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res. Treat. 2012, 131, 473–481. [Google Scholar] [CrossRef]
- Chang, M. Tamoxifen resistance in breast cancer. Biomol. Therap. 2012, 20, 256. [Google Scholar] [CrossRef]
- Parihar, V.; Rogers, A.; Blain, A.M.; Zacharias, S.R.K.; Patterson, L.L.; Siyam, M.A.M. Reduction in tamoxifen metabolites endoxifen and N-desmethyltamoxifen with chronic administration of low dose cannabidiol: a CYP3A4 and CYP2D6 drug interaction. J. Pharm. Pract. 2022, 35, 322–326. [Google Scholar] [CrossRef]
- Buijs, S.M.; Braal, C.L.; Buck, S.A.J.; van Maanen, N.F.; van der Meijden-Erkelens, L.M.; Kuijper-Tissot van Patot, H.A.; Oomen-de Hoop, E.; Saes, L.; van den Boogerd, S.J.; Struik, L.E.M. ¸ et al. CBD-oil as a potential solution in case of severe tamoxifen-related side effects. npj Breast Cancer 2023, 9, 63. [Google Scholar] [CrossRef]
- Almada, M.; Amaral, C.; Oliveira, A.; Fernandes, P.A.; Ramos, M.J.; Fonesca, B.M.; Correia-da-Silva, G.; Teixeira, N. Cannabidiol (CBD) but not tetrahydrocannabinol (THC) dysregulate in vitro decidualization of human endometrial stromal cells by disruption of estrogen signaling. Reprod. Toxicol. 2020, 93, 75–82. [Google Scholar] [CrossRef]
- Almeida, C.F.; Teixeira, N.; Valente, M.J.; Vinggaard, A.M.; Correia-da-Silv, G.; Amaral, C. Cannabidiol as a promising adjuvant therapy for estrogen receptor-positive breast tumors: unveiling its benefits with aromatase inhibitors. Cancers (Basel) 2023, 15, 2517. [Google Scholar] [CrossRef]
- Amaral, C.; Trouille, F.M.; Almeida, C.F.; Correia-da-Silva, G.; Teixeira, N. Unveiling the mechanism of action behind the anti-cancer properties of cannabinoids in ER+ breast cancer cells: Impact on aromatase and steroid receptors. J. Steroid Biochem. Mol. Biol. 2021, 210, 105876. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Augusto, T.; Correia-da-Silva, G.; Teixera, N.; Amaral, C. PS181. The effects of cannabinoids in exemestane-resistant breast cancer cells. Abstracts / Porto Biomed. J. 2017, 2(5), 221-222.
- Younus, J.; Kligman, L. Management of aromatase inhibitor-induced arthralgia. Curr. Oncol. 2010, 17, 87–90. [Google Scholar] [CrossRef]
- Fleege, N.M.G.; Miller,E.; Kidwell, K.M.; Scheu, K.L.; Kemmer, K.A.; Boehnke, K.; Henry, N.L. The impact of cannabidiol (CBD) on aromatase inhibitor (AI)-associated musculoskeletal symptoms (AIMSS). Meeting Abstract: 2024 ASCO Annual Meeting. J. Clin.l Oncol. 2024, 42. [CrossRef]
- Kim, B.G.; Kim, B.R.; Kim, D.Y.; Yun, H.; Kim, D.; Kim, W.Y.; Kang, S.; Oh, SC. Abstract 5548: Cannabidiol enhances efficacy of atezolizumab via upregulation of PD-L1 expression by cGAS-STING pathway in triple negative breast cancer cells. Cancer Res. 2024, 84, 5548. [Google Scholar] [CrossRef]
- Waissengrin, B.; Leshem, Y.; Taya, M.; et al. The use of medical cannabis concomitantly with immune-check point inhibitors (ICI) in Non-Small Cell Lung Cancer (NSCLC): A sigh of relief? Eur. J. Cancer 2023, 180, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Taha, T.; Meiri, D.; Talhamy, S.; Wollner, M.; Peer, A.; Bar-Sela, G. Cannabis impacts tumor response rate to nivolumab in patients with advanced malignancies. Oncologist 2019, 24, 549–554. [Google Scholar] [CrossRef]
- Piper, B.J.; Tian, M.; Saini, P.; Higazy, A.; Graham, J.; Carbe, C.J.; Bordonaro, M. Immunotherapy and cannabis: A harmful drug interaction or Reefer Madness? Cancers (Basel) 2024, 16, 1245. [Google Scholar] [CrossRef]
- Likar, R.; Koestenberger, M.; Stutschnig, M.; Nahler, G. Cannabidiol may prolong survival in patients with glioblastoma multiforme. Cancer Diagnosis and Prognosis 2021, 1, 77–82. [Google Scholar] [CrossRef]
- Richtig, G.; Kienzl, M.; Rittchen, S.; Roula, D.; Eberle, J.; Sarif, Z.; Pichler, M.; Hoefler, G.; Heinemann, A. Cannabinoids reduce melanoma cell viability and do not interfere with commonly used targeted therapy in metastatic melanoma in vivo and in vitro. Biology (Basel) 2023, 12(5), 706. [Google Scholar] [CrossRef]
- Fraguas-Sanchez AI, Fernandez-Carballido, A.; Delie, F.; Cohen, M.; Martin-Sabroso, C.; Mezzanzanica, D.; Figini, M.; Satta, A.; Torres-Suarez, A. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur. J. Pharm. Biopharm. 2020, 154, 246–258. [CrossRef]
- Fraguas-Sanchez, A.I.; Fernandez-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suarez, A. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm. 2019, 574, 118916. [Google Scholar] [CrossRef]
- Miyato, H.; Kitayama, J.; Yamashita, H.; Souma, D.; Asakage, M.; Yamada, J.; Nagawa, H. Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines. J. Surg. Res. 2009, 155, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Sales, A.J.; Guimaraes, F.S.; Joca, S.R.L. CBD modulates DNA methylation in the prefrontal cortex and hippocampus of mice exposed to forced swim. Behav. Brain Res. 2020, 388, 112627. [Google Scholar] [CrossRef]
- Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O.; Žvar Baškoviˇc, B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; et al. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells 2021, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Koltai, H.; Shalev, N. Anti-cancer activity of Cannabis sativa phytocannabinoids: molecular mechanisms and potential in the fight against ovarian cancer and stem cells. Cancers (Basel) 2022, 14, 4299. [Google Scholar] [CrossRef]
- Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; et al. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 2021, 17, 3592–3606. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Valero, I.; Saiz-Ladera C, Torres S, Salazar-Roa M, Garcia-Taboada E, Hernandez Tiedra S, Garcia-Taboada, E.; Rodriguez-Fornes, F.; Barba, M.; de Leon, D.D.; et al. Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem. Pharmacol. 2018, 157, 266–274. [CrossRef]
- López-Valero, I.; Torres, S.; Salazar-Roa, M.; Garcia-Taboada, E.; Hernandez Tiedra, S.; Guzman, M.; Sepulveda, J.M.; Velasco, G.; Lorente, M. Optimization of a preclinical therapy of cannabinoids in combination with temozolomide against glioma. Biochem. Pharmacol. 2018, 157, 275–284. [Google Scholar] [CrossRef]
- Torres, S.; Lorente, M.; Rodriguez-Fornes, F.; Hernandez-Tiedra, S.à; Salazar, M.; Garcia-Taboada , E.; Barcia, J.; Guzman, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 2011, 10(1), 90–103. [CrossRef]
- Twelves, C.; Sabel, M.; Checketts, D.; Miller, S.; Tay, B.; Jove, M.; Brazil, L.; Short, S.C. on behalf of the GWCA1208 study group. A phase 1b randomised, placebo-controlled trial of nabiximols cannabinoid oromucosal spray with temozolomide in patients with recurrent glioblastoma. Br. J. Cancer 2021, 124, 1379–1387. [Google Scholar] [CrossRef]
- Stark, D.P.H.; House, A. Anxiety in cancer patients. Br. J. Cancer 2000, 83(10), 1261–1267. [Google Scholar] [CrossRef]
- Raymundi, A.M.; da Silva, T.R.; Sohn, J.M.B.; Bertoglio, L.J.; Stern, C.A. Effects of Δ9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 2020, 20(1), 420. [Google Scholar] [CrossRef]
- Ferro, M.; Escalante, P.; Graubard, P. The role of cannabidiol in the inflammatory process and its properties as an alternative therapy - a review (meta-analysis). Innovare Journal of Medical Sciences 2020, 8, 18–24. [Google Scholar] [CrossRef]
- Fliegel, D.K.; Lichenstein, S.D. Systematic literature review of human studies assessing the efficacy of cannabidiol for social anxiety. Psychiatry Res. Commun. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Bidwell, L.C.; Willett, R.M.; Skrzynski, C.; Lisano, J.; Torres, M.O.; Giordano, G.; Hutchison. K.E.; Bryan, A.D. Acute and extended anxiolytic effects of cannabidiol in cannabis flower: A quasi-experimental ad libitum use study. Cannabis Cannabinoid Res. 2024 Jan 22. [CrossRef]
- Narayan, A.J.; Downey, L.A.; Manning, B.; Hayley, A.C. Cannabinoid treatments for anxiety: A systematic review and consideration of the impact of sleep disturbance. Neurosci. Biobehav. Rev. 2022, 143, 104941. [Google Scholar] [CrossRef]
- Alessandria G, Meli, R.; Infante, M.T.; Vestito, L.; Capello, E.; Bandini, F. Long-term assessment of the cognitive effects of nabiximols in patients with multiple sclerosis: A pilot study. Clin. Neurol. Neurosurg. 2020, 196, 105990. [CrossRef] [PubMed]
- Hutten NRPW, Arkell, T.R.; Vinckenbosch, F.; Schepers, J.; Kevin, R.C.; Theunissen, E.L.; Kuypers, K.P.C.; McGregor, I.S.; Ramaekers, J.G. Cannabis containing equivalent concentrations of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) induces less state anxiety than THC-dominant cannabis. Psychopharmacology (Berl). 2022, 239, 3731–3741. [CrossRef]
- Hopkinson, J.B.; Wright, D.N.M.; McDonald, J.W.; Corner, J. The prevalence of concern about weight loss and change in eating habits in people with advanced cancer. J. Pain Symptom Manage. 2006, 32, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Brisbois, T.D.; de Kock, I.H.; Watanabe, S.M.; Mirhosseini, M.; Lamoureux, D.C.; Chasen, M.; MacDonald, N.; Baracos, V.E.; Wismer, W.V. Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: results of a randomized, double-blind, placebo-controlled pilot trial. Annals of Oncology. 2011, 22, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.S.; Martel, F. Effects of Cannabidiol on appetite and body weight: A systematic review. Clin. Drug Investig. 2022, 42(11), 909–919. [Google Scholar] [CrossRef]
- Dominiak, H.S.H.; Hasselsteen, S.D.; Nielsen, S.W.; Andersen, J.R.; Herrstedt, J. Prevention of taste alterations in patients with cancer receiving paclitaxel- or oxaliplatin-based chemotherapy-a pilot trial of cannabidiol. Nutrients 2023, 15, 3014. [Google Scholar] [CrossRef]
- Meiri, E.; Jhangiani, H.; Vredenburgh, J.J.; Barbato, L.M.; Carter, F.J.; Yang, H.M.; Baranowski, V. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr. Med. Res. Opin. 2007, 23, 533–543. [Google Scholar] [CrossRef]
- Smith, L.A.; Azariah, F.; Lavender, V.T.C.; Stoner, N.S.; Bettiol, S. Cannabinoids for nausea and vomiting in adults with cancer receiving chemotherapy (Review). Cochrane Database Syst. Rev. 2015, 2015, CD009464. [Google Scholar] [CrossRef] [PubMed]
- Mersiades, A.: Kirby, A.: Stockler, M.; Tognela, A. Cannabis extract for secondary prevention of chemotherapy-induced nausea and vomiting: Results of a phase II/III, placebo-controlled, randomised trial. J. Clin. Oncol. 2023, 41, 12019. [CrossRef]
- Grimison, P.; Mersiades, A.; Kirby, A.; Lintzeris, N.; Morton, R.; Haber, P.; Olver, I.; Walsh, A.; McGregor, I.; Cheung, Y.; et al. Oral THC:CBD cannabis extract for refractory chemotherapy-induced nausea and vomiting: a randomised, placebo-controlled, phase II crossover trial. Ann. Oncol. 2020, 31, 1553–1560. [Google Scholar] [CrossRef] [PubMed]
- Sukpiriyagul, A.; Chartchaiyarerk, R.; Tabtipwon, P.; Smanchat, B.; Prommas, S.; Bhamarapravatana, K.; Suwannarurk, K. Oral tetrahydrocannabinol (THC):cannabinoid (CBD) cannabis extract adjuvant for reducing chemotherapy-induced nausea and vomiting (CINV): A randomized, double-blinded, placebo-controlled, crossover trial. Int. J. Women′s Health 2023, 15, 1345–1352. [Google Scholar] [CrossRef]
- Zikos, T.A.; Nguyen, L.; Kamal, A.; et al. Marijuana, ondansetron, and promethazine are perceived as most effective treatments for gastrointestinal nausea. Dig. Dis. Sci. 2020, 65, 3280–3286. [Google Scholar] [CrossRef]
- Fehninger, J.; Brodsky, A.L.; Kim, A.; Pothuri, B. Medical marijuana utilization in gynecologic cancer patients. Gynecol. Oncol. Rep. 2021, 37, 100820. [Google Scholar] [CrossRef]
- Hatfield, J.; Suthar, K.; Meyer, T.A.; Wong, L. The use of cannabinoids in palliating cancer-related symptoms: a narrative review. Proc. (Bayl. Univ. Med. Cent.). 2024, 37, 288–294. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Parker, L.A.; Burton, P.; Mechoulam, R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 2004, 174, 254–259. [Google Scholar] [CrossRef]
- Rock, E.M.; Bolognini, D.; Limebeer, C.L.; et al. Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus. Br. J. Pharmacol. 2012, 165, 2620–2634. [Google Scholar] [CrossRef]
- Ward, S.J.; Ramirez, M.D.; Neelakantan, H.; Walker, E.A. Cannabidiol prevents the development of cold and mechanical allodynia in paclitaxel-treated female C57Bl6 mice. Anesth. Analg. 2011, 113, 947–950. [Google Scholar] [CrossRef]
- Ward, S.J.; McAllister, S.D.; Kawamura, R.; Murase, R.; Neelakantan, H.; Walker, EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br. J. Pharmacol. 2014, 171(3), 636–645. [Google Scholar] [CrossRef] [PubMed]
- King, K.M.; Myers, A.M.; Soroka-Monzo, A.J.; Tuma, R.F.; Tallarida, R.J.; Walker, E.A.; Ward, S.J. Single and combined effects of Δ9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br.J. Pharmacol. 2017, 174, 2832–2841. [Google Scholar] [CrossRef] [PubMed]
- Kalvala, A.K.; Bagde, A.; Arthur, P.; Surapaneni, S.K.; Ramesh, N.; Nathani, A.; Singh, M. Role of cannabidiol and tetrahydrocannabivarin on paclitaxel-induced neuropathic pain in rodents. Int. Immunopharmacol. 2022, 107, 108693. [Google Scholar] [CrossRef] [PubMed]
- Alkislar, I.; Miller, A.R.; Hohmann, A.G.; Sadaka, A.H.; Cai, X.; Kulkarni, P.; Ferris, C.F. Inhaled cannabis suppresses chemotherapy-induced neuropathic nociception by decoupling the Raphe Nucleus: A Functional Imaging Study in rats. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 479–489. [Google Scholar] [CrossRef]
- Lynch, M.E.; Cesar-Rittenberg, P.; Hohmann, A.G. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J. of Pain and Symptom Manage. 2014, 47, 166–173. [Google Scholar] [CrossRef]
- Waissengrin B, Mirelman, D.; Pelles, S.; et al. Effect of cannabis on oxaliplatin-induced peripheral neuropathy among oncology patients: a retrospective analysis. Ther. Adv. Med. Oncol. 2021, 13, 1758835921990203. [CrossRef]
- Abraham AD, Leung, E.J.Y.; Wong, B.A.; Rivera, Z.M.G.; Kruse, L.C.; Clark, J.J.; Land, B.B. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacol. 2020, 45, 1105–1114. [CrossRef]
- Xu, D. H., Cullen, B. D., Tang, M., Fang, Y. (2020). The effectiveness of topical cannabidiol oil in symptomatic relief of peripheral neuropathy of the lower extremities. Current pharmaceutical biotechnology 2020, 21, 390–402. [CrossRef]
- D'Andre, S.; McAllister, S.; Nagi, J.; Giridhar, K.V.; Ruiz-Macias, E.; Loprinzi, C. Topical cannabinoids for treating chemotherapy-induced neuropathy: A case series. Integr. Cancer Ther. 2021, 20, 1–8. [Google Scholar] [CrossRef]
- Halbritter, K. Cannabidiol - Lokale Anwendung bei Chemotherapie-induzierter Neuropathie. PHYTO Therapie 2018, 3/18:22-23. [Cannabidiol - local administration for chemotherapy-induced neuropathy; Article in German]. https://www.phytotherapie.at/PT-AUSTRIA/2018/PT0318.pdf.
- WHO guidelines for the pharmacological and radiotherapeutic management of cancer pain in adults and adolescents. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications-detail-redirect/9789241550390.
- Giordano, G.; Martin-Willett, R.; Gibson, L.P.; Camdige, D.R.; Bowle, D.W.; Hutchison, K.E.; Bryan, A.D. Cannabis use in cancer patients: acute and sustained associations with pain, cognition, and quality of life. Explor. Med. 2023, 4, 254–271. [Google Scholar] [CrossRef]
- Krok-Schoen, J.L.; Plascak, J.; Newton, A.M.; Strassels, S.A.; Adib, A.; Adley, N.C.; Hays, J.L.; Wagener, T.; Stevens, E.E.; Brasky, T.M. Current cannabis use and pain management among US cancer patients. Support Care Cancer 2024, 32, 111. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, N.J.; Brens, J.; Vemuri, S.; et al. In the weeds: a retrospective study of patient interest in and experience with cannabis at a cancer center. Support Care Cancer. 2022, 30, 7491–7497. [Google Scholar] [CrossRef] [PubMed]
- Aprikian, S.; Kasvis, P.; Vigano, M.L.; Hachem, Y.; Canac-Marquis, M.; Vigano, A. Medical cannabis is effective for cancer-related pain: Quebec Cannabis Registry results. BMJ Support. Palliat. Care 2024, 13, e1285–e1291. [Google Scholar] [CrossRef]
- Capano, A.; Weaver, R.; Burkman, E. Evaluation of the effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: a prospective cohort study. Postgrad. Med. 2020, 132(1), 56–61. [Google Scholar] [CrossRef] [PubMed]
- Le K, Au, J.; Hua, J.; Le, K.D.R. The therapeutic potential of cannabidiol in revolutionising opioid use disorder management. Cureus 2023, 15. [CrossRef]
- Lichtman, A.H.; Lux, E.A.; McQuade, R.; Rossetti, S.; Sanchez, R.; Sun, W.; Wright, S.; Kornyeyeva, E.; Fallon, M.T. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom Manage. 2018, 55(2), 179-188.e1, 2018. [CrossRef]
- Suzuki J, Martin, B.; Prostko, S.; Chai, P.R.; Weiss, R.D. Cannabidiol effect on cue-induced craving for individuals with opioid use disorder treated with buprenorphine: A small proof-of-concept open-label study. Integr. Med. Rep. 2022, 1, 157–163. [CrossRef]
- Bebee, B.; Taylor, D.M.; Bourke, E.; Pollack, K.; Foster, L.; Ching, M.; Wong, A. The CANBACK trial: a randomised, controlled clinical trial of oral cannabidiol for people presenting to the emergency department with acute low back pain. Med. J. Aust. 2021, 214, 370–375. [Google Scholar] [CrossRef]
- Johnson, J.R.; Burnell-Nugent, M.; Lossignol, D.; Ganae-Motan, E.D.; Potts, R.; Fallon, M.T. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manag. 2010, 39, 167–179. [Google Scholar] [CrossRef]
- Portenoy, R.K.; Ganae-Motan, E.D.; Allende, S.; Yanagihara, R.; Shaiova, L.; Weinstein, S.; McQuade, R.; Wright, S.; Fallon, M.T. Nabiximols for Opioid-Treated Cancer Patients with Poorly-Controlled Chronic Pain: A Randomized, Placebo-Controlled, Graded-Dose Trial. J. Pain. 2012, 13(5), 438–49. [Google Scholar] [CrossRef]
- Häuser, W.; Welsch, P.; Radbruch, L.; Fisher, E.; Bell, R.F.; Moore, R.A. Cannabis-based medicines and medical cannabis for adults with cancer pain (Review). Cochrane Database Syst. Rev. 2023, 6, CD014915. [Google Scholar] [CrossRef]
- Nielsen, S.; Picco, L.; Murnion, B.; Winters, B.; Matheson, J.; Graham, M.; Campbell, G.; Parvaresh, L.; Khor, K.E.; Betz-Stablein, B.; et al. Opioid-sparing effect of cannabinoids for analgesia: an updated systematic review and meta-analysis of preclinical and clinical studies. Neuropsychopharmacology 2022, 47(7), 1315–1330. [Google Scholar] [CrossRef]
- Pantoja-Ruiz, C.; Restrepo-Jimenez, P.; Castaneda-Cardona, C.; Ferreiros, A.; Rosselli, D. Cannabis and pain: a scoping review. Braz. J. Anesthesiol. 2022, 72, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, K.F.; Gagnier, J.J.; Matallana, L.; Williams, D.A. Substituting Cannabidiol for Opioids and Pain Medications Among Individuals with Fibromyalgia: a Large Online Survey. J. Pain 2021, 22, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Miroshnychenko, A.; Shergill, Y.; Ashoorion, V.; Rehmann, Y.; Couban, R.J.; Buckley, D.N.; Thabane, L.; Bhandari, M.; Guyatt, G.H.; et al. Opioid-sparing effects of medical cannabis or cannabinoids for chronic pain: a systematic review and meta-analysis of randomised and observational studies. BMJ Open. 2021, 11(7), e047717. [Google Scholar] [CrossRef] [PubMed]
- Sihota, A.; Smith, B.K.; Ahmed, S.A.; et al. Consensus-based recommendations for titrating cannabinoids and tapering opioids for chronic pain control. Int. J. Clin. Pract. 2021, 75, e13871. [Google Scholar] [CrossRef]
- Pai, V.B.; Nahata, M.C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef]
- Fouad, A.A.; Albuali, W.H.; Al-Mulhim, A.S.; Jresat, I. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 347–57. [Google Scholar] [CrossRef]
- Hao, E.; Mukhopadhyay, P.; Cao, Z.; Erdelyi, K.; Holovac, E.; Liaudet, L.; Lee, W.S.; Hasko, G.; Mechoulam, R.; Pacher, P. Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 2015, 21, 38–45. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Tarwacka, P.; Krzywonos-Zawadzka, A.; Olejnik, A.; Laprairie, R.; Noszczyk-Nowak, A.; Sawicki, G.; Bil-Lula, I. Δ9-Tetrahydrocannabinol (Δ9-THC) improves ischemia/reperfusion heart dysfunction and might serve as a cardioprotective agent in the future treatment. Front. Biosci. (Landmark Ed). 2022, 27, 114. [Google Scholar] [CrossRef]
- Gonca, E.; Darici, F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 76–83. [Google Scholar] [CrossRef]
- Rajesh, M.; Mukhopadhyay, P.; Bátkai, S.; et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. American College of Cardiology 2010, 56(25), 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Waldman, M.; Hochhauser, E.; Fishbein, M.; et al. An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem. Pharmacol. 2013, 85, 1626–33. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.K.; Hepburn, C.Y.; Kane, K.A.; Wainwright, C.L. Acute administration of cannabidiol in vivo suppresses ischaemia-induced cardiac arrhythmias and reduces infarct size when given at reperfusion. Br. J. Pharmacol. 2010, 160, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, Z.; Zhang, Z.; et al. Protective effect and mechanism of cannabidiol on myocardial injury in exhaustive exercise training mice. Chem. Biol. Interact. 2022, 365, 110079. [Google Scholar] [CrossRef]
- Ozmen, O.; Milletsever, A.; Tasan, S.; Selcuk, E.; Savran, M. The effects of cannabidiol against Methotrexate-induced lung damage. Basic Clin. Pharmacol. Toxicol. 2024, 134, 695–703. [Google Scholar] [CrossRef]
- Unlu, M.D.; Asci, H.; Tepebasi, M.Y.; Arlioglu, I.; Huseynov, I.; Ozmen, O.; Sezer, S.; Demirci, S. The ameliorative effects of cannabidiol on methotrexate-induced neuroinflammation and neuronal apoptosis via inhibiting endoplasmic reticulum and mitochondrial stress. J. Biochem. Mol. Toxicol. 2024, 38, e23571. [Google Scholar] [CrossRef]
- Pan, H.; Mukhopadhyay; P:, Rajesh; M:, Patel, V.; Mukhopadhyay, B.; Gao, B.; Hasko, G.; Pacher, P. Cannabidiol attenuates cisplatin-Induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J Pharmacol Exp Ther. 2009; 328(3):708-714. [CrossRef]
- Soliman, N.A.; El Dahmy, S.I.; Shalaby, A.A.; et al. Prospective affirmative therapeutics of cannabidiol oil mitigates doxorubicin-induced abnormalities in kidney function, inflammation, and renal tissue changes. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 3897–3906. [Google Scholar] [CrossRef] [PubMed]
- Hokmabadi, V.; Khalili, A.; Hashemi, S.A.; Hedayatyanfard, K.; Parvari, S.; Changizi-Ashtiyani, S.; Bayat, G. Cannabidiol interacts with the FXR/Nrf2 pathway and changes the CB1/CB2 receptors ratio in gentamicin-induced kidney injury in rats. Iran. J. Basic Med. Sci. 2023, 26, 343–350. [Google Scholar] [CrossRef]
- Li, J.; Zhu, C.; Zhang, Y.; Guan, C.; Wang, Q.; Ding, Y.; Hu, X. Incidence and Risk Factors for Radiotherapy-Induced Oral Mucositis Among Patients With Nasopharyngeal Carcinoma: A Meta-Analysis. Asian Nurs. Res. (Korean Soc. Nurs. Sci). 2023, 17, 70–82. [Google Scholar] [CrossRef]
- Cuba, F.; Salum, F.G.; Guimaraes, F.S. Cherubini, K.; Borghetti, R.L.; Zancanaro de Figueiredo M.A. Cannabidiol on 5-FU-induced oral mucositis in mice. Oral Dis. 2020, 26, 1483–1493. [Google Scholar] [CrossRef]
- Li, L.; Xuan, Y.; Zhu, B.; Wang, X.; Tian, X.; Zhao, L.; Wang, Y.; Jiang, X.; Wen, N. Protective effects of cannabidiol on chemotherapy-induced oral mucositis via the Nrf2/Keap1/ARE signaling pathways. Oxid. Med. Cell Longev. 2022, 25, 2022:4619760. [Google Scholar] [CrossRef]
- Ferreira, B.P.; Costa, G.; Mascarenhas-Melo, F.; et al. Skin applications of cannabidiol: sources, effects, delivery systems, marketed formulations and safety. Phytochem. Rev. 2023, 22, 781–828. [Google Scholar] [CrossRef]
- Dillard, L.K.; Lope-Perez, L.; Martinez, R.X.; Fullerton, A.M.; Chadha, S.; McMahon, C.M. Global burden of ototoxic hearing loss associated with platinum-based cancer treatment: A systematic review and meta-analysis. Cancer Epidemiol. 2022, 79, 102203. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, P.; Dhukhwa, A.; Shechan, K.; Al Aameri, R.F.H.; Borse, V.; Ghosh, S.; Sheth, S.; Mamillapalli, C.; Rybak, L.; Ramkumar, V.; et al. Capsaicin protects against cisplatin ototoxicity by changing the STAT3/STAT1 ratio and activating cannabinoid (CB2) receptors in the cochlea. Sci. Rep. 2019, 9, 4131. [Google Scholar] [CrossRef] [PubMed]
- He Y, Zheng, Z.; Liu, C.; Li, W.; Zhao, L.; Nie, G.; Li H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm. Sin. B. 2022, 12, 1305–1321. [CrossRef] [PubMed]
- Domingos LB, Silva, N.R.; Chaves Filho, A.J.M.; Sales, A.J.; Starnawska, A.; Joca, S. Regulation of DNA methylation by cannabidiol and its implications for psychiatry: New insights from in vivo and in silico models. Genes (Basel) 2022, 13, 2165. [CrossRef] [PubMed]
- Wanner, N.M.; Colwell, M.; Drown, C.; Faulk, C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. Environ.Mol. Mutagen. 2020, 61, 890–900. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Vlajkovic, S.M. 2023 Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24(22), 16545. [Google Scholar] [CrossRef]
- Morrison, G.; Crockett, J.; Blakey, G.; Sommerville, K. A phase I, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 1009–1031. [Google Scholar] [CrossRef]
| Anti-neoplastic Drug | Cannabi-noid Adjunct | Comments | Ref. |
|---|---|---|---|
|
Cisplatin (2.5 mg CIS i.p./kg/w) |
CBD 5 mg p.o./kg, 4x/w, 4 w (sequence not stated) |
human head and neck squamous cells (FaDu) s.c. xenografts, BALB/c nude mice; estimated tumour volume: CBD+cisplatin ~300mm3 < CBD ~600mm3 < cisplatin ~800mm3 < vehicle ~1.500mm3; tumour weight after CBD+cisplatin was about 75% lower than in the vehicle-treated group. When FaDu cells were injected into tongues, CBD alone (5 mg i.p./kg, 3x/w) also reduced tumour growth by more than 60%. | [22] |
| Cisplatin (3mg CIS i.p./kg, 3x weekly) | THC 45mg p.o. /kg, or THCe (with 45mg THC/kg) 3-times weekly | Breast cancer, s.c. xenografts (triple negative human MDA-MB-231 cells, female nude mice); tumour volume after 30 days: CIS+THCe < CIS < THCe < THC < vehicle; |
[23] |
| Doxorubicin (2 mg DOX i.v./kg, 2x/w, 2 w) | CBD-EV (5 mg i.p./ kg, 2x/w, 2w) or free CBD (5 and 10 mg i.p./kg, 2x/w, 2w) | Breast cancer s.c. xenografts, (triple negative, MDA-MB-231cells, female athymic Envigo nude mice); CBD, one day before DOX, sensitized tumour cells, enhanced effect of combination. The tumour volume after 2 weeks, extracellular vesicles (EV): CBD-EV+DOX < CBD (5mg/kg)+DOX < DOX < CBD (10mg/kg) ≈ CBD-EV (5mg/kg) < EVs/controls); tumour volume with the CBD-EV+DOX combination was at least 50% lower than the average tumour volume in control animals | [28] |
| Irinotecan (IRI) single MTD dose (100 mg i.p. /kg) on day 1 | THC (7 mg p.o./kg/d); (sequence not stated) |
healthy male Wistar rats; haematological and biochemical tests on day 1, 3, 7; the combination demonstrated a decrease of neutrophils and a tendency to decrease leucocyte counts, but alleviated the IRI induced elevation of aspartate amino-transferase (AST); diarrhea was not observed; serum level of bilirubin and triglycerides were lower after combined treatment then after individual THC or IRI; no signif. effect on erythrocytes and platelets | [36] |
| Irinotecan (IRI) (60 mg i.p./kg on day 1, 5) | THC (7 mg p.o./kg /d, 7d) (sequence not stated) | colon cancer, s.c. xenografts, (syngeneic CT26.WT cells, male BALB/c mice); tumour volume on D7: irinotecan < IRI+THC < control < THC; tumour volume decreased with IRI by -27 %, with IRI+THC by -14%; THC reduced the efficacy of IRI; | [39] |
| Irinotecan (IRI) (mostly 600 mg, 90-minute i.v. infusion) | Medicinal cannabis 200 ml of herbal tea (1 g/l), daily | 10 days after the 1st infusion of IRI, patients with metastatic cancer started with cannabis tea (Bedrocan) for 15 consecutive days; 21 days after the 1st infusion, patients received a second treatment with IRI, this time as concomitant treatment to Bedrocan; 12 patients were evaluated; Bedrocan administration did not significantly influence exposure to and clearance of IRI | [40] |
|
Gemcitabine (GEM) (100mg i.p./kg, every 3 days) |
CBD (100mg i.p./kg/d until death) | Pancreatic ductal adenocarcinoma, KPC mice; mice receiving CBD+GEM survived 2.8 times longer than mice not given any treatment (1.3 times longer with CBD and 1.4 times longer with GEM alone); mean survival: no treatment 18.6 days < CBD 25.4 days (+37%) < GEM 27.8 (+49%) < CBD+GEM 52.7 days (+183%) | [42] |
| Gemcitabine + paclitaxel | CBD (mainly 400 mg/day) | 6 of 9 patients with pancreatic cancer received CBD in addition to standard chemotherapy (mostly gemcitabine + paclitaxel), one patient received one cycle of paclitaxel, followed by one cycle of irinotecan-calcium folinate, 5-fluoruracil; two patients received only cannabinoids; overall survival was about 11 months | [44] |
|
Tamoxifen (2.5 mg TAM i.p./kg, 3x weekly); lapatinib (100 mg LAPA/kg) daily, oral gavage |
THC 45mg p.o. /kg, or THCe (with 45mg THC/kg) 3-times weekly | human breast cancer, s.c. xenografts (female nude mice) T47D-cells (ER+/PR+/ HER2−), tumour volume: TAM+THCe < THCe ≈ TAM < syn.THC < vehicle; triple positive BT474- cells, (ER+/PR+/HER2+), tumour volume: THCe < LAPA+THCe < LAPA < THC < control; |
[23] |
| Tamoxifen | CBD (below 50 mg/day) |
Concomitant oral CBD decreases the AUC of the active metabolite endoxifen; it seems to be unlikely that this affects the clinical efficacy of tamoxifen. Conversely, endocrine complaints and adverse effects improved significantly in patients | [51,52] |
| Aromatase inhibitors; 71.8% of patients received anastrozole, 20.5% exemestane, 7.7% letrozole | CBD (titrated up to 2x 100 mg p.o./d over 4 weeks, then at the maximum dose) | An observational study did not report a negative impact of a combined treatment; conversely, CBD alleviated the symptoms of arthralgia pain. Of 28 patients completing the 15-weeks study, 17 (60.7%) reported a ≥2-point improvement in the Brief Pain Inventory (BPI) between baseline and week 15. In addition, there was a significant improvement in PROMIS T score at week 15 in both physical function and ability to participate in social roles and activities | [58] |
|
Bicalu-tamide (BIC) 25–50 mg p.o./kg, 3x per week |
CBD-BDS, 1-10-100 mg i.p./kg/d; |
Prostate cancer, s.c. xenografts, (LNCaP, androgen-receptor positive/AR+, athymic nude mice); CBD–BDS (~65% CBD) enhanced efficacy of BIC on LNCaP (no significant difference between 25 and 50 mg BIC) | [14] |
|
Trametinib (MEKi) |
CBD:THC = 1:1 (7.5 mg/kg/d, 21 days | Melanoma (A2058 cells, s.c. injection, NSG mice); CBD+THC (7.5mg/kg/d, 21d) reduced melanoma growth by about 50%, MEKi alone by about 75% compared to vehicle; the addition of CBD+THC to MEKi did not increase the effect of MEKi further; tumour volume D22: vehicle > CBD+THC > CBD+THC+MEKi ≈ MEKi. |
[64] |
| anti-PD-1 antibodies, Pembrolizumab | THC, medical cannabis, assumed to be THC-rich | tumour-bearing mice (CT26 non-small cell lung cancer cells) survived significantly longer with a combined anti-PD-1 antibody + THC therapy (control 21 days, < THC 24 days, < anti-PD-1 antibody 31 days < THC+anti-PD-1 antibody 54 days); patients with metastatic NSCLC were treated with Pembrolizumab as a first-line monotherapy; no negative impact of cannabis on the activity of Pembrolizumab as treatment for advanced NSCLC was observed | [60] |
|
Docetaxel (DOC) 5 mg i.v./kg once weekly |
CBD-BDS (~65% CBD), 100 mg i.p./kg/day; |
Prostate cancer, s.c. xenografts, (DU-145, androgen-receptor negative/AR-, athymic nude mice); CBD–BDS enhanced the efficacy of DOC on DU-145 xenografts; CBD–BDS at the highest concentration tested (100 mg i.p./kg) reduced the tumour growth of LNCaP (androgen-receptor positive/AR+) xenografts similar to that of DOC (5 mg·i.v./kg), although it reduced the inhibitory effect of DOC | [14] |
| Paclitaxel | CBD micro-particles | In an animal model of ovarian cancer or MDA-MB-231-derived breast cancer, combined treatment of paclitaxel with CBD (administered as solution daily over 10 days or as a single administration of a topical microparticle formulation) showed a 2-fold higher tumour growth inhibition compared to a 1.5-fold decrease with paclitaxel alone | [65,66] |
| Temozolomid (20 mg TMZ/kg) for 21 days | CBD (15 mg i.p./kg) for 21 consecutive days | orthotopic model of human glioma (U87) in nude mice. Animals were treated with CBD or TMZ or both. Mice receiving the combination lived significantly longer than with TMZ or CBD alone (0% survival: CBD+TMZ 84 days > TMZ 60 days > CBD 55 days > control 50 days) | [71] |
| TMZ | THC+ CBD (nabiximols-like extracts, p.o. | nabiximols-like extract, combined with TMZ produced a strong antitumoral effect in both xenografts (s.c. xenograft and intracranial glioma cell-derived tumour xenograft, U87MG) tumour volume: TMZ+THC+CBD < TMZ < THC+CBD < control). A higher portion of CBD (THC:CBD = 1:5) seems to increase the effect; a combination of nabiximols-like extracts (THC:CBD ≈ 1:1) with BCNU (carmustine) did not show a stronger effect than individual treatments | [72,73]. |
| standard radio-chemo-therapy (mostly TMZ) | CBD (mainly 400 mg/day). | case series of 15 patients; mean overall survival was 30.9 months which is twice as long as has been commonly reported; three patients (20%) were still alive after more than 5 years [80]. | [63] |
| TMZ 5 mg/kg/d, peritumoral injections, for 14 days | THC 15 mg/kg/d, peritumoral, for 14 days | Human glioma U87MG s.c. xenograft, nude mice; tumour volume on day 15: THC+TMZ < TMZ < THC; compared to vehicle, tumour growth was signif. reduced with both, TMZ and THC; a tumour-decrease was only observed with the combined treatment with THC+TMZ; a combination CBD+TMZ was not tested. | [74] |
| TMZ up to one year |
nabiximols oro-mucosal spray (mean 7.5 sprays/day) | Survival at 1 year was 83% for nabiximols- (10/12) versus 44% (4/9 subjects) for placebo-treated patients, and 50% for patients treated with nabiximols versus 22% for those treated with placebo at 2 years. Median survival was > 550 days with CBD:THC treatment (not significant) and 369 days in the placebo group; | [75] |
| Side Effect | Canna-binoid | Comments | Ref. |
|---|---|---|---|
| Anxiety | THC | THC shows a pronounced biphasic effect; a dose of 10 mg THC or above increased anxiety | [77] |
| CBD | CBD demonstrated anxiolytic effects | [78,79] | |
|
THC+ CBD |
nabiximols-like combinations of THC+CBD did not reduce anxiety or depression in patients | [82] | |
|
Appetite/ weight loss |
THC | THC (dronabinol) has received marketing authorisation for “anorexia associated with weight loss in patients with AIDS”; it is also used in cancer patients to stimulate the appetite and reduce weight loss (SmPC, current version). | [85] |
| CBD | higher dosages of CBD (20 mg/kg) reduce the appetite and/or body weight or body mass index whereas low doses (2x 100 mg/day, 13 weeks or 5 mg/kg) had no effect on appetite and anthropometric parameters. CBD may positively influence taste alterations induced by chemotherapy | [87] | |
| Chemo-therapy-induced nausea /vomiting (CINV) | THC | CINV that failed to respond adequately to conventional antiemetic treatments is an authorised indication for THC (dronabinol); (SmPC, current version). | [88] |
| CBD | There are no experiences in man; in animal models, CBD produced a biphasic effect suppressing vomiting induced by cisplatin (20 mg/kg but not by 40 mg/kg) at 5 or 10 mg/kg and potentiating it at 40 mg CBD/kg | [96,97] | |
|
THC + CBD |
THC+CBD (2.5mg each) on day -1 to day 5 reduced CINV in adults who experienced CINV during moderate and highly emetogenic i.v. chemotherapy regimens despite guideline-consistent anti-emetic prophylaxis. Complete response was significantly higher with THC+CBD (24% versus 8% with placebo) | [90] | |
| Chemo-therapy-induced peripheral neuropathic pain (CIPN) |
CBD, THC, THC + CBD (1:1), tetra-hydro-cannabivarin (THCV) |
Pretreatment with CBD, THC and their combination reduced the mechanical sensitivity induced by paclitaxel (8.0 mg·i.p./kg) in mice; CBD and THC showed very similar dose–response curves with two apparent peaks in efficacy, one within a dose range of 1.0–2.5 mg/kg and the other within the 10–20 mg/kg range. A 1:1 combination of per se ineffective doses of CBD and THC (each 0.16 mg/kg) was also effective. CBD (1.25–10.0 mg/kg) attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC (10 mg/kg) significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. A low dose combination of CBD+THC (each 0.16 mg/kg) significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity. When cannabinoids were administered after the last dose of paclitaxel (8 mg/kg, i.p., every other day for four injections; C57BL/6J female mice), CBD (10 mg i.p./kg, twice a week for six weeks) and THCV (15 mg i.p./kg) reduced thermal and mechanical hyperalgesia induced by paclitaxel to a similar extent; the combination being even more effective; inhalation of THC predominant cannabis produced antinociception in both paclitaxel- and vehicle-treated animals (rat model) |
[98,99,100,101,102] |
| Nabixi-mols | A randomized, placebo-controlled crossover study in 16 patients with established chemotherapy-induced neuropathic pain that received nabiximols, found only a weak difference in favour of nabiximols that did not reach statistical significance. | [103] | |
| Cannabis (no further details) | a retrospective analysis of medical records of 513 patients treated with oxaliplatin and 5-fluorouracil-based combinations of which 248 patients were treated with cannabis (265 served as controls) demonstrated a remarkable effect of cannabis against CIPN. CIPN grade 2–3 was nearly half as frequent in cannabis-exposed patients compared to a group not receiving cannabis; effect was more pronounced when patients received cannabis prior chemotherapy. | ||
| OTC creams with THC and/or CBD | A small randomised, placebo-controlled investigated the effect of a topical CBD (applied four times daily over 4 weeks) on neuropathic pain of various origin including chemotherapy. At the end of the 4-weeks blinded treatment neuropathic pain (such as intense, sharp and cold sensations) decreased significantly by about 30% to 70% in the CBD group (10 to 15% with placebo). Two case series also suggest a possible benefit of topical cannabinoids | [106,107,108]. | |
|
Cancer pain, opioids |
preclinical and observational studies demonstrate the potential opioid-sparing effects of THC in the context of general analgesia, in contrast to higher-quality RCTs that did not provide evidence of opioid-sparing effects; studies with a low risk of bias showed that for adults with advanced cancer, the addition of cannabinoids to opioids did not reduce cancer pain | [121,122,123]. | |
| CBD | CBD (400 mg/d) did not reduce oxycodone use (5 mg every 6 h, with additional rescue dosing as required) and was not superior to placebo as an adjunct medication for relieving acute, non-traumatic low back pain | [118] | |
| Cue-induced opioid craving | CBD | Over half of the patients (53%) with chronic pain and on a stable opioid dose were able to reduce or eliminate their opioids by taking soft gels of a CBD-rich hemp extract Treatment duration of this open study was 8 weeks. In a small proof-of-concept open-label study it was found that CBD (600 mg once daily for 3 consecutive days) could reduce cue-reactivity among patients with opioid-use disorder (OUD) who were not receiving medications for OUD | [113,114,115,116,117]. |
| Cardio-protection | CBD | In two animal models, CBD administered before doxorubicin, attenuated cardiotoxic effects | [128,129] |
| Protection of lung and brain | CBD | In a study with rats, lesions induced by a single dose of methotrexate (20 mg i.p./kg) could be reversed with CBD (5 mg i.p./kg for 7 days). CBD normalised histopathological and immunohistochemical changes in all regions, in the lung and in the brain | [136,137] |
| Renal protection | CBD | In a mouse model, CBD (2.5 – 5 - 10 mg i.p./kg/day) dose-dependently attenuated the cisplatin-induced renal dysfunction (highest effect with 10 mg CBD/kg/day i.p.) starting from 1.5 h before cisplatin (single dose, 20 mg i.p./kg), and was still effective if administered 12 h after exposure; it markedly attenuated the cisplatin-induced oxidative/nitrosative stress, inflammation, and cell death in the kidney. Similar effects were observed in a study with rats; renal damage, induced by injection of doxorubicin was attenuated by a pretreatment with CBD (26 mg p.o./kg for 2 weeks) . | [138,139] |
| Mucositis | CBD | synthetic CBD (3, 10, and 30 mg i.p./kg/day, starting on day 4), CBD reduced dose-dependently the severity of oral lesions and loss of weight induced by 5-FU in a murine model; | [142,143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
