Preprint Article Version 1 This version is not peer-reviewed

3D Printed K-band Radar Stealth Lightweight Material with Lotus Leaf Structure

Version 1 : Received: 22 August 2024 / Approved: 22 August 2024 / Online: 23 August 2024 (04:10:17 CEST)

How to cite: Liu, C.; Xu, Y.; Huang, B.; Zhang, W.; Wang, Y. 3D Printed K-band Radar Stealth Lightweight Material with Lotus Leaf Structure. Preprints 2024, 2024081671. https://doi.org/10.20944/preprints202408.1671.v1 Liu, C.; Xu, Y.; Huang, B.; Zhang, W.; Wang, Y. 3D Printed K-band Radar Stealth Lightweight Material with Lotus Leaf Structure. Preprints 2024, 2024081671. https://doi.org/10.20944/preprints202408.1671.v1

Abstract

K-band radar waves have high penetration and low attenuation coefficients. However, the wavelength of this radar wave is relatively short; thus, designing and preparing both broadband and wide-angle radar wave absorbers in this band presents considerable challenges. In this study, a resin-based K-band radar wave absorber with a biomimetic lotus leaf structure was designed and formed by UV curing. Here, microscale lotus leaf papillae and antireflection structures were prepared using a DLP 3D printer, and the contact angle between the material and water droplets was increased from 56° to 130°. In addition, the influence of the geometric parameters of the lotus leaf antireflection structure on the electromagnetic absorption performance and mechanical strength was investigated. After simulation optimization, the maximum electromagnetic loss of the lotus leaf structure 3D printed sample was −32.3 dB, and the electromagnetic loss was below −10 dB in the 20.8–26.5 GHz frequency range. When the radar incidence angle was 60°, the maximum electromagnetic loss was still less than −10 dB. The designed lotus leaf structure has a higher mechanical energy absorption per unit volume (337.22 KJ/m3) and per unit mass (0.55 KJ/Kg) than commonly used honeycomb lightweight structures during the elastic deformation stage, and we expect that the designed structure can be used as an effective lightweight material for K-band radar stealth.

Keywords

K-band radar stealth; UV cured polymer composites; 3D printing technology; biomimetic lotus leaf antireflection structure; self-cleaning surface; lightweight material

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.