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Abstract: Diabetes mellitus (DM) is currently regarded as a global public health crisis for which 

lifelong treatment with conventional drugs present limitations in terms of side effects, accessibility 

and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated 

blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function and insulin 

resistance. If left untreated or when poorly controlled, DM increases the risk of vascular 

complications such as hypertension, nephropathy, neuropathy, retinopathy that can be severely 

debilitating or life-threatening. Plant-based foods represent a promising natural approach for the 

management of T2DM due to the vast array of phytochemicals they contain. Numerous 

epidemiological studies have highlighted the importance of a diet rich in plant-based foods 

(vegetables, fruits, spices, condiments) in the prevention and management of DM. Unlike 

conventional medications, such natural products are widely accessible, affordable, and generally 

free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control 

the hyperglycemia observed in DM, but also supports weight management in obese individuals and 

has broad health benefits. In this review, we provide an overview of the pathogenesis and current 

therapeutic management of DM, with a particular focus on the promising potential of plant-based 

foods. 
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Introduction 

Diabetes mellitus (DM) is a multifactorial metabolic disorder that has emerged as one of the ten 

leading causes of death worldwide [1]. Obesity and insulin resistance or insulin deficiency are the 

major players in the development of DM. If not properly managed, DM may lead to severe late-stage 

complications that include cerebrovascular, peripheral vascular and ischemic heart disease, kidney 

failure and retinal damage [2,3]. Four different main types of diabetes are generally recognized; Type 

1 diabetes (T1DM), Type 2 diabetes (T2DM), gestational diabetes (GDM) and monogenic diabetes, 

the most common of which is maturity-onset diabetes of the young (MODY). T1DM and T2DM are 

the most familiar as they affect a very considerably larger number of patients than other types [4]. 

T1DM, also previously called insulin-dependent DM, is associated with defective insulin secretion as 

a result of destruction of the pancreatic β-cells and is predominant in children and teenagers [5]. 

T2DM which affects about 90% of all cases, was previously known as non-insulin-dependent DM. 
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This primarily affects individuals over 40 years of age, although this is being countered increasingly 

in the young due to increased childhood obesity. This type is characterized by pancreatic β-cell 

failure, causing insulin depletion, as well as insulin resistance in organs. Individuals with T2DM tend 

to be obese and often have a history of gestational diabetes, polycystic ovarian syndrome, 

cardiovascular disease (CVD) and dyslipidemia [5-8]. GDM is associated with pancreatic β-cell 

dysfunction and chronic insulin resistance which can occur during pregnancy. MODY is a rare 

genetic type of DM that commonly emerges during adolescence or early adulthood [4].  

It has been estimated that around 537 million individuals have DM worldwide and that this may 

rise to 783 million by 2040 [9]. Up to 95% of all diabetic individuals are reported to have obesity-

related type 2 diabetes (T2DM). A logistic regression model estimated that in 110 developing 

countries, based on United Nations (UN) population data, there were 366 million people with 

diabetes, and this number is expected to rise to 552 million by 2030 [10-12]. In developing nations like 

India, Nepal, Bhutan, China, Pakistan, Indonesia, the occurrence of T2DM has dramatically increased 

in recent years. In fact, studies have reported that the number of diabetes patients in the low- and 

middle-income countries will drastically increase in next 19 years [12]. A recent study has also 

reported that in Bangladesh alone, 10-15% of the adult population has some form of prediabetes or 

diabetes [13-15]. In these countries, T2DM mostly occurs in individuals between 40 and 59 years of 

age [16], often who have a history of childhood obesity [17]. The common symptoms of T2DM often 

precipitating diagnosis include lethargy, irritation, blurry vision, confusion, polydipsia, polyuria, 

polyphagia, anorexia, vomiting, dehydration, sore muscles, numb feet or hands, foot infection, 

delayed wound healing, kidney failure, cardiovascular diseases, coma and in extreme cases death 

[18-20].  

While insulin is the only therapy for T1DM, patients with T2DM rely primarily on one or more 

of a range of oral hypoglycaemic drugs that include −glucosidase inhibitors, metformin, 

sulfonylureas, meglitinides, thiazolidinediones, amylin analogues, SGLT-2 inhibitors dipeptidyl 

peptidase-4 (DPP-4) inhibitors, GLP-1 mimetics and incretin receptor dual agonists. In cases where 

these medicines are not effective, insulin is then administered [22]. Hypoglycaemia has been 

documented as one of the most severe adverse side effects of antidiabetic treatments. Nausea, 

bloating, gas formation, gastrointestinal disorders, urinary and respiratory tract infection are other 

commonly reported side effects [23]. The use of alternative approaches to better manage DM and its 

late-stage complications is becoming increasingly popular in many devoloping countries such as 

India, Bangladesh, Nepal, Pakistan, Indonesis and China. Integrating edible plants with reputed 

antihyperglycemic activity such as bitter melon, moringa, clove, turmeric, neem, black seeds, or 

cinnamon, to name a few, in the daily diet is an attractive option that may present fewer side effects 

than conventional drugs [12, 24-27]. In this review, we discuss the potential of plant-based dietary 

habits in the management of T2DM and its complications, highlighting the pharmacological effects 

and phytoconstituents relevant to DM of one hundred plant species. The main objective of this review 

is to provide the basis for future research on the antidiabetic potential of the selected plants. 

Methodology 

A systematic review of accessible articles, mostly from the last ten years, was conducted using 

the PubMed, Google Scholar, and Springer databases. Keywords used included “Obesity”, 

“Diabetes”, “Insulin resistance”, “Insulin”, “Blood glucose”, “β-cell”, “Diabetic pathogenesis”, 

“Diabetic complications”, “Antidiabetic drugs”, “Ethnomedicine”, “Antidiabetic activities”, 

“Medicinal plant”, “Herbal Medicine”, “Antidiabetic mechanism” and “Phytoconstituents”. The 

initial search identified 1,500 research articles for review. A total of 671 articles were included in the 

final analysis. All articles were rigorously examined to assess their quality and gather information on 

the pharmacological activity and bioactive phytoconstituents relevant to DM of 100 plants. 

Pathophysiology of Diabetes Mellitus  

Under physiological conditions, macromolecules, such as carbohydrates and lipids, are stored 

in the body so that they can be transformed into energy as and when required. The role of insulin, 
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produced by pancreatic -cells, is to store glucose in the form of glycogen and then signal the liver to 

release glucose from glycogen into the blood when necessary. In DM, this normal physiology is 

altered. DM affects individuals differently depending on their age, sex, weight, race, environment, 

ethnicity, geographical location, and socioeconomic condition [28,29]. The severity of T1DM, for 

example, varies depending on age and genetic predisposition. Among the three subtypes of T1DM, 

the first one (mild severity) occurs mostly in early adolescence while the second type (more severe) 

affects mainly preschool children. The third subtype affects individuals with a predisposition for 

autoimmune diseases (Figure 1) [30-32]. 

 

Figure 1. Severity associated with the three subtypes of T1DM. 

The pathogenesis of T2DM has been linked to underlying genetic factors as well as obesity 

caused by a sedentary lifestyle and poor dietary choices. T2DM is characterized by hyperglycaemia 

linked to hyperlipidemia, persistent inflammation, oxidative stress, mitochondrial dysfunction and 

gut dysbiosis, ultimately leading to β-cell apoptosis and insulin resistance (IR) (Figure 2) [33-37]. As 

T2DM progresses, the production of advanced glycation end products (AGEs) build up in the kidney, 

retina, and blood vessels, which triggers micro- and macrovascular complications [38,39].   

Obese individuals tend to consume more nutrients than needed, leading to an excess of body fat 

and glycogen. Obesity plays a large contribution to the development of T2DM [3]. One study reported 

that around 85% of T2DM patients are obese [40]. Moreover, the lack of regular physical activity in 

T2DM patients has been linked to low circulating levels of irisin, an exercise-modulated myokine that 

improves glucose tolerance through physical activity [41-45]. In some cases, the term "diabesity" is 

used to describe the close link between T2DM and obesity [46]. Overnutrition also causes oxidative 

stress and inactivates glucose transporter-4 (GLUT4) translocation, reducing glucose uptake in cells 

[47]. Obese individuals are more likely to develop IR as a result of a compensatory rise in insulin 

production (hyperinsulinemia). IR involves impaired insulin receptor signaling in tissues such as in 

adipose tissues, which leads to a dysregulation of insulin secretion and storage. This occurs until the 

pancreatic β-cells fail to fulfill the adequate demand of insulin. Hence, glucose cannot enter cells of 

insulin-sensitive peripheral tissues and accumulates in the blood [48-53]. In the context of diabetes 

mellitus (DM), chronic AMPK inhibition becomes a vicious cycle. Nutrient excess, particularly from 

high-fat or high-glucose diets, can impede the AMPK signaling pathway. This leads to chronic 

inflammation, oxidative stress, and hormonal imbalances. This impaired AMPK function further 

worsens insulin resistance (IR) and β-cell dysfunction, key contributors to DM. Symptoms like 

polyphagia (increased hunger) then arise, promoting weight gain and fueling the progression of DM 

[54,55]. Hyperinsulinemia and insulin resistance can also be observed in individuals where the 
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normal function of insulin receptors or the insulin degrading enzyme are impaired due to genetic 

mutations [56-58]. 

The accumulation of lipids such as triacylglycerides (TAG), diacylglycerides (DAG), ceramides, 

acylcarnitine and acyl-CoAs in obese individulas also increases the risk of IR [59-63]. This develops 

via increasing intracellular DAG levels and PKC signaling, which in turn leads to the 

phosphorylation of IRS-1 on serine residues, disrupting normal insulin signaling pathways. This 

disruption impairs the ability of insulin to stimulate glucose uptake and metabolism in tissues like 

muscle, liver, and adipose tissue. Over time, IR leads to β-cell dysfunction and eventually T2DM 

(Figure 3) [63,64]. IR in T2DM patients has also been linked to a rise in pro-inflammatory markers 

such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and C-reactive protein in the 

bloodstream [65-67]. Obesity also affects mitochondria through the generation of NADH and FADH2 

which disrupts the electron transport chain (ETC) and increases ROS production and AGEs. ROS 

induce oxidative stress and hamper the function of intracellular proteins and enzymes, promoting 

fatty acids to form toxic intracellular lipids, reducing mitochondrial energy production, increasing 
IR and β-cell damage. The increased gluconeogenesis in the liver also increases the risk of 

hyperglycaemia and subsequent organ damage [68-72]. This metabolic imbalance alters the structure 

and composition of the extracellular matrix, leading to endothelial dysfunction and increasing the 

risk of atherosclerosis [73]. Finally, gut dysbiosis may also influence IR by modulating glucose 

metabolism. Recent studies have reported that specific changes in the gut microbiota composition 

can either exacerbate or ameliorate insulin sensitivity and glucose tolerance, highlighting its crucial 

role in DM [74,75]. 

 

Figure 2. The role of inflammation, hyperlipidaemia, mitochondrial dysfunction, ROS production, 

and gut dysbiosis in the development of T2DM pathogenesis. 
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Figure 3. Schematic representation of the link between obesity and insulin resistance in T2DM. 

Unsurprisingly, a healthy diet, regular physical activity, appropriate weight loss and even 

occasional fasting can ameliorate IR, β-cell function, insulin secretory capacity and prevent the risk 

of T2DM and its associated complications [76-78].  

Complications of Diabetes Mellitus 

Persistent hyperglycemia, hyperlipidemia, high levels of ROS and pro-inflammatory mediators 

in the bloodstream increase the risk of macrovascular complications such as coronary heart disease 

(CHD), stroke, peripheral artery disease, cardiomyopathy, arrythmia, cerebrovascular disease and 

atherosclerosis [79,80]. Individuals with DM and hypertension are at a higher risk of developing 

cerebrovascular disease, peripheral vascular disease, or early coronary artery disease (CAD) [81-85]. 

Similarly, obesity is considered to be a key risk factor for heart failure (HF), CHD and premature 

mortality [86-88]. Hormones and other circulatory factors including adipokines, growth factors and 

chemokines have been reported to aggravate CVD in T2DM patients [89,90].  

Diabetic patients may also suffer from various microvascular complications including 

neuropathy, nephropathy, retinopathy, foot damage, Alzheimer’s disease and hearing impairment 

[91]. Diabetic peripheral neuropathy, characterized by pain, ulcer, sleep deprivation and depression, 

affects about half of diabetic patients worldwide [91-95]. Factors such as genetic predisposition, age, 

food intake, smoking, alcohol, and other unhealthy lifestyle habits have also been implicated in the 

progression of diabetic peripheral neuropathy [96]. Uncontrolled blood sugar levels damage the 

nerves, diminishing their ability to send signals and weakening the lining of capillaries that supply 

nutrients and oxygen to neurons [97,98]. 

T2DM has been linked to an increased risk of developing Alzheimer's disease due to the 

presence of overlapping neurodegenerative markers in both diseases such as oxidative stress, 

inflammation, and mitochondrial dysfunction [99]. On the other hand, diabetic nephropathy, 

characterized by microalbuminuria, elevated blood glucose, high hemoglobin A1C (HbA1c) and 

hypertension, is prevalent in nearly half of T2DM individuals [100-103]. Diabetic retinopathy is 

another severe complication of T2DM which occurs when excess blood glucose blocks the capillaries 

linked with the retina. This increases the risk of eye disorders such as diabetic cataract, macular 

oedema, dry eye, and may even result in blindness (Figure 4) [104-107].  
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Figure 4. Flow chart of T2DM-associated vascular complications. 

Current Approaches for the Management of T2DM 

A balanced diet, regular physical exercise and the avoidance of high calorific foods is the first 

approach recommended for the management of T2DM and its complications. This is usually 

supplemented by the use of antidiabetic medicines to achieve optimal glycemic control and provide 

long-term relief from DM [105,106]. Current oral antidiabetic drugs include sulfonylureas, 

biguanides, thiazolidinediones, α-glucosidase inhibitors, SGLT2 inhibitors, meglitinides, DPP-IV 

inhibitors and amylin analogues. Sulfonylureas bind to sulfonylurea receptors (SUR) and act by 

blocking ATP-sensitive K+-channels in the pancreatic β-cell plasma membrane, leading to inhibition 

of K+ efflux, membrane depolarization, opening of voltage-gated Ca2+ channels, influx of Ca2+ and 

triggering of insulin secretion by exocytosis [107-109]. However, sulphonylureas present adverse side 

effects such as hypoglycaemia, increased risk of CVD and nausea [110-112]. Meglitinides work in 

similar fashion but affect a slightly different bonding site on SUR [113]. At high doses these agents 

may cause severe hypoglycaemia, upper respiratory tract infection, diarrhea, and headache [113,114]. 

Biguanides inhibit the mitochondrial respiratory chain in the liver, activating the AMPK pathway, 

enhancing insulin sensitivity, suppressing gluconeogenesis and reducing both hepatic glucose 

output as well as glucose entry into the circulation from the intestine [115-118]. Although biguanides 

are very popular antidiabetic drugs, they still cause undesirable effects such as diarrhea, lactic 

acidosis, and hemolytic anemia [119,120]. Thiazolidinediones (TZDs) act by activating the gamma 

isoform of the peroxisome proliferator-activated receptor (PPAR-γ), increasing glucose and lipid 

metabolism, providing energy homeostasis and promoting GLUT4 translocation [121]. Adverse 

effects associated with TZDs include weight gain, hepatotoxicity and even bladder cancer [122]. 

Inhibitors of the α-glucosidase decrease the intestinal activity of this enzyme, delaying carbohydrate 

digestion and absorption, and improving hepatic lipogenesis, triglyceride levels and postprandial 

glucose [123]. However, some of the TZDs have been discontribued due to its increased risk on 

cardiovascular diseases. Alongside that, their use may cause hepatitis, increased flatulence, and other 

gastrointestinal complications [124]. Sodium-glucose cotransporter 2 (SGLT2) inhibitors act to 

promote urinary glucose excretion and not only treat DM, but also reduce inflammation, Na+/H+-

exchange, and hyperuricemia. They elevate lysosomal degradation, autophagy, erythropoietin levels, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2024                   doi:10.20944/preprints202408.1739.v1

https://doi.org/10.20944/preprints202408.1739.v1


 7 

 

and prevent ischemia [125]. Although SGLT-2 drugs have popularity in alleviating diabetes, they still 

carry the risk of side effects including volume depletion, increased urination, acute kidney injury, 

and genitourinary infections [126].  Dipeptidyl-peptidase IV (DPP-4) inhibitors increase the levels of 

incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide 

(GIP). Their side effects include urinary and upper respiratory tract infections as well as headache 

[127].  

In many cases, oral drugs alone are not enough to control the hyperglycemia and injectable 

therapy is required to successfully manage DM. The most common injectable therapy is synthetic 

insulin. Insulin works by binding to the insulin receptor, activating a cascade of intracellular 

signaling events [128,129]. Although, insulin is very effective in DM, it may lead to severe 

hypoglycemia, dizziness, sweating, palpitations, headache, blurred vision, and abdominal pain [129]. 

Amylin analogues, often use in combination with other antidiabetic drugs, inhibit glucagon secretion, 

delay gastric emptying time, and improve postprandial glycemia [130,131]. Their adverse effects 

include severe hypoglycaemia, nausea, and weight loss [130-132. GLP-1 and GIP analogues are also 

used as injectable therapies for DM. GLP-1 drugs stimulate insulin secretion, and inhibit glucagon 

release from pancreatic α-cells, suppress appetite and promote extra pancreatic activity by delaying 

gastric emptying. Scientist are also assuming that there might be connection between progression of 

pancreatitis and C-cell tumor, however, there are still lack of studies related to these conditions [133-

136]. GIP and GLP-1 Dual agonists, such as Mounjaro, enable insulin secretion through activation of 

β-cell GIP receptors and appear to greatly enhance the satiety and weight loss encountered with GLP-

1R activation alone, aiding obesity [135,136]. The most common side effects of these injectables are 

severe nausea, vomiting and body disfiguration due to excess weight loss [136]. An overview of the 

current oral and injectable antidiabetic drugs, their pharmacological actions and adverse side effects 

are presented in Figure 5. 

 

Figure 5. Flow chart of the current oral and injectable antidiabetic drugs, their pharmacological 

actions and adverse side effects. 
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Plant-Based Diets and Their Role in the Prevention and Management of DM  

A lifelong treatment with conventional antidiabetic drugs presents limitations in terms of side 

effects and costs. In this context, plants with antidiabetic activity have become an alternative 

treatment option for many patients as they are generally more accessible, less costly and present 

fewer adverse side effects than manufactured drugs. They are also gaining popularity in scientific 

research as an attractive source for the discovery of new drug templates [137,138]. Numerous 

epidemiological studies have highlighted the importance of a diet rich in plant-based foods 

(vegetables, fruits, spices, condiments) in the prevention and management of diseases, including DM.  

Plant-based foods and their beneficial constituents are often absent in the typical Western diet that 

predominantly features processed foods, red meat, and fast-acting carbohydrates, which contributes 

to the development and progression of T2DM. Dietary fiber-rich herbs and fruits, in particular, have 

been reported to regulate hyperglycemia and mitigate diabetic complications (Table 1) [139]. 

Understanding how these plant-derived constituents affect the pathophysiology of T2DM can 

provide a useful strategy to better prevent this disease and its complications (Figure 6). It can also 

reduce reliance on synthetic antidiabetic drugs [140-142]. 

For example, Aloe vera, neem, holy basil, and betel leaf possess anti-inflammatory and 

hypoglycemic properties that help regulate blood glucose and body weight. Citrus fruits (e.g. lemon, 

orange, pomelo) along with mango, apple, pineapple, and berries (e.g., strawberry, blueberry, 

blackberry, mulberry), are high in fiber and antioxidants. They promote satiety and reduce oxidative 

stress. Stone fruits such as peach, guava, avocado, kiwi, lychee, grapes, jackfruit, dragon fruit, passion 

fruit, star fruit, pomegranate, papaya, fig, watermelon, plum, and java plum, as well as dates and 

apricots, contribute to improve metabolic health. Amla and olives contain unique phytochemicals 

that enhance insulin sensitivity. Tamarind, Bengal currant, cocoa, coconut, cashew nut, almond, 

walnut, and seeds like chia, white sesame, black seeds, cumin, fenugreek, mustard, coriander, and 

nutmeg provide essential fatty acids and micronutrients that are crucial for metabolic function [143-

506]. Fiber-rich grains such as corn, oat, and quinoa, as well as legumes including chickpea, pea, 

kidney bean, mung bean, and soya bean, help maintain steady blood glucose levels and manage 

obesity. Vegetables like bitter gourd, snake gourd, ridge gourd, bottle gourd, sweet potato, moringa, 

okra, taro, asparagus, eggplant, beetroot, pumpkin, cabbage, broccoli, radish, carrot, tomato, 

cucumber, lettuce, spinach, centella leaves, and mushrooms are excellent for their low-calorie, high-

nutrient profiles. Herbs and spices like mint, parsley, celery, rosemary, oregano, curry leaves, bay 

leaves, clove, saffron, cinnamon, red pepper, turmeric, ginger, and garlic enhance the metabolic rate 

and have antidiabetic effects. Onions, tea, coffee, china rose, and vinca rosea also contribute to 

improve glucose metabolism and control body weight. The incorporation of these foods into a 

balanced diet can support the management of T2DM and obesity by promoting better glycemic 

control, enhancing insulin sensitivity, and helping with weight loss (Table 2) [419-625]. 
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Figure 6. Antidiabetic effects of dietary fiber-rich plants and fruits on various organs and tissues.  

Dietary fiber-rich herbs and fruits exhibit antihyperglycemic properties by activating several 

molecular pathways. They may contribute in the regeneration of  pancreatic β-cells; increase insulin 

secretion; enhance insulin sensitivity; increases glucose uptake in tissues; enhance GLUT-4 

translocation; increase glycolysis in the liver; activate the AMPK, PPAR-γ, Akt/Pkb, or PI3K pathways 

in adipose tissue; improve glucokinase activity; reduce insulin resistance; delay intestinal glucose 

absorption; lower fasting blood and postprandial glucose; reduce glucagon secretion and oxidative 

stress; inhibit α-amylase, α-glucosidase and DPP-4, glucose-6-phosphatase enzymatic activity; 

decrease gluconeogenesis; suppress TNF-α and IL-6 release; block ATP-sensitive K+ channels in the 

pancreas and muscle to regulate blood glucose levels. 

Plant-Based Diets, Edible Plants, Dietary Adjuncts and their Phytochemicals for the 

Management of DM and Prevention of DM Complications 

1. Abelmoschus esculentus L. (Okra) 

Abelmoschus esculentus L. (Malvaceae), known as okra, is a nutritious vegetable that is also used 

as a remedy for chronic kidney disease, T2DM, cardiovascular and hypertensive diseases [143]. The 

highly nutritious okra fruit contains oxalic acid, pectin, flavonoids, D-galactose, L-rhamnose and D-

galacturonic acid which are reported to inhibit α-amylase and α-glucosidase enzymes and increase 

GLUT-4 translocation [144,145]. 

2. Actinidia chinensis (Kiwi) 

Actinidia chinensis or kiwi (Actinidiaceae) is a beneficial fruit for dyspepsia, vomiting, loss of 

appetite and diabetes [146]. Kiwi lowers cholesterol, LDL, fasting plasma glucose and postprandial 

glucose levels. It has also been reported to reduce body weight and inhibit the release of pro-

inflammatory cytokines such as interleukin-1(IL-1) and IL-6 in T2DM patients [147]. Kiwi also 
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regulates superoxide dismutase (SOD) and glutathione levels. It inhibits the activity of alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), two enzymes associated with insulin 

resistance and metabolic syndrome. Kiwi also improves serum microRNA-424, nuclear factor 

erythroid 2–related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) as dysregulation 

of these markers may exacerbate oxidative stress, inflammation and disease progression [148]. Kiwi 

is rich in triterpenoids, polyphenols, amino acids and minerals that may exert antidiabetic activity 

owing to hypolipidemic, anti-inflammatory, antioxidant, and antihyperglycemic properties [149]. 

3. Aegle marmelos (Stone apple) 

Aegle marmelos, also called stone apple/golden apple/bael, is a plant from the Rutaceae family 

traditionally used for inflammation, asthma, hyperglycaemia, colitis, flatulence, dysentery, fever, 

pain, and for hepatitis and fungal infections [150]. Recent studies have indicated that it improves 

insulin production, inhibits glucose absorption, α-amylase activity, and lowers blood glucose levels 

[151]. Some of its phytochemicals, namely p-cymene, oleic acid, linolenic acid, myristic acid and 

retinoic acid have antidiabetic, cardioprotective, antioxidant, and anti-inflammatory properties [152]. 

4. Agaricus bisporus (Mushroom) 

Agaricus bisporus (Agaricaceae) is familiarly known as button mushrooms. It is a valuable 

ethnomedicine for diabetes, cough, influenza, asthma, cancer and hepatic disorders [153,154]. 

Mushrooms have numerous health benefits, with antioxidant, immunoboosting, anticholesterolemic, 

antitumor, and antibacterial properties. They boost natural killer cells to fight infections and tumors. 

The presence of lectins, β-glucans, polyphenols, p-hydroxybenzoic acid, protocatechuic acid, agllic 

acid, cinnamic acid, p-coumaric acid, ferulic acid, chlorogenic acid and catechin in mushroom 

improve hyperglycemia by regulating insulin and glucagon secretion [155-157].  

5. Allium cepa (Onion) 

Allium cepa (Amaryllidaceae) or onion has been used as treatment for wounds, scars, keloids, 

bee stings, dysmenorrhea, vertigo, fainting, migraine, bruises, earache, jaundice, pimples and 

diabetes [158]. Onion significantly decreases α-glucosidase activity, oxidative stress, boosts insulin 

secretion, and protects pancreatic β-cells [159]. Onion has numerous health benefits, beyond its 

antidiabetic properties, it also boasts antioxidant, analgesic, antimicrobial, anti-inflammatory, and 

immune-boosting activity. The presence of quercetin, apigenin, rutin, myricetin, kaempferol, 

catechin, resveratrol, and anthocyanins may contribute to its glucose and cholesterol lowering effects 

[160- 162].  

6. Allium sativum L. (Garlic) 

Allium sativum L. (Amaryllidaceae) or garlic is a popular folk medicine for flu, hypertension, 

high cholesterol, cancer, cardiovascular disease, diarrhea, preeclampsia, arthritis, diabetes and 

kidney stones [163]. Garlic lowers plasma glucose levels, enhances insulin production and insulin 

secretion, improves glucose tolerance and insulin sensitivity, and increases GLUT4 expression 

[164,165]. Garlic is rich in organosulfur phytoconstituents such as ajoene, cysteine, allicin, as well as 

β-resorcylic acid, gallic acid, rutin, quercetin, and protocatechuic acid that exhibit antioxidant, 

renoprotective, and antihyperglycaemic effects. Allicin and quercetin play crucial roles in enhancing 

insulin sensitivity and improving glucose uptake [166-168]. 

7. Aloe barbadensis Mill. (Aloe vera) 

Aloe barbadensis Mill. (Asphodelaceae) has a long history as an ethnomedicine for wounds, 

constipation, skin diseases, colic, worm infestation, hypertension, and diabetes [169,170]. Aloe vera 

improves insulin resistance, body weight, and prediabetic condition via inhibition of fructosamine, 

carbonyl protein and AGEs - such as Nɛ-(carboxymethyl) lysine (CML) - formation, as well as α-

amylase and α-glucosidase inhibitory activity [171,172]. It also reduces fasting and postprandial 

blood glucose, triglycerides, and total cholesterol levels.  The antidiabetic properties of Aloe vera 

have been attributed to the presence of flavonoids, arginine and phenolic acids [170,173-175]. 

8. Anacardium occidentale L. (Cashew nuts) 
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Anacardium occidentale L. (Anacardiaceae), also called cashew nut, has medicinal value in 

alleviating fevers, aches, pains, diarrhea, diabetes, skin irritation and arthritis [176]. Cashew nut is 

reported to decrease hepatic gluconeogenesis, a process in the liver that produces glucose. This helps 

lower blood sugar levels [177]. Studies suggest that specific amino acids (e.g. arginine, isoleucine) 

and fatty acids (e.g. arachidic acid) found in cashew nut, along with other compounds like cyanidin 

and peonidin, may play a role in the activity of cashew nut by enhancing insulin sensitivity, and 

reducing oxidative stress and blood glucose [177,178]. Anacardic acids, also present in cashew nut 

may have a potential role in mitigating diabetic complications as they possess anti-cytotoxic 

(protecting cells), antimicrobial and antibacterial effects. [179]. 

9. Ananas comosus (Pineapple) 

Ananas comosus (Bromeliaceae), also known as pineapple, is traditionally used as a remedy for 

pain, skin diseases, edema, wound, indigestion, diabetes, and blood clotting [180-182]. Pineapple 

leaves, peels and pulp can lower blood sugar and glycated albumin levels, reduce body weight, 

increase insulin secretion, and increase high-density lipoprotein (HDL) cholesterol levels by 

inhibiting HMG-CoA reductase and activating lipoprotein lipase (LPL) [183-185]. Bromelain, one of 

the phytoconstituents of pineapple, has anti-inflammatory, hypoglycaemic, anticoagulant, and 

antioxidant activities [186].  

10. Apium graveolens L. (Celery) 

Apium graveolens L. (Umbelliferrae) or celery is useful for arthritis, spleen dysfunction, diabetes, 

sleep disturbances and CNS disorders [187]. This food source helps maintain healthy blood sugar 

levels by enhancing insulin sensitivity and promoting the translocation of GLUT4 receptors to the 

cell surface followed by enhancing glucose uptake into muscle. This, in turn, can improve 

mitochondrial function and reduce inflammation [188-190]. Celery is rich in quercetin, 

thymoquinone, coumaric acid and gallic acid with anti-inflammatory, anticoagulant, hypolipidemic, 

hepatoprotective and neuroprotective properties [191,192]. 

11. Artocarpus heterophyllus (Jackfruit) 

Artocarpus heterophyllus (Moraceae) or jackfruit is a traditional remedy for wounds, cancer, and 

diabetes [193,194]. Its fruit, bark, seeds, leaves, and root all have antidiabetic properties [195-197]. 

Studies have reported that jackfruit significantly ameliorates body weight, lipid profile, abnormal 

hematological parameters, creatine, bilirubin and urea levels, and reduce albumin levels in diabetic 

rats. It also has inhibitory activity on α-amylase and α-glucosidase enzymes and can improve lipid 

profile (i.e. LDL and HDL cholesterol), fasting and blood glucose levels [198,199]. Phytochemicals 

such as carotenoids, tannins, volatile acids, sterols, chrysin, isoquercetin, and silymarin contribute to 

the pharmacological properties of jackfruit [199]. 

12. Asparagus officinalis (Asparagus) 

Asparagus officinalis (Asparagaceae), known as asparagus, is a remedy for diabetes, asthma, 

rheumatism, liver and kidney diseases [200]. Recent studies suggest that it enhances insulin secretion 

and β-cell function in rat model of T2DM [201]. Asparagus elicits its hypoglycemic properties by 

significantly lowering fasting blood glucose, hepatic glycogen, and triglycerides levels as well as 

reducing body weight [202]. Asparagine, tyrosine, arginine, saponins, resin and tannins are the main 

active phytoconstituents of asparagus. Among them saponins are the main constituent that 

contributes to its hypoglycemic effects as well as antibacterial, anti-inflammatory, antioxidant, 

antidiarrheal and anticarcinogenic properties [203,204].  

13. Avena sativa (Oats) 

Avena sativa (Poaceae) or oat is a popular breakfast meal. Oat is also a remedy for dermatitis, 

cancer, diabetes and cardiovascular disease [205]. One study found that the continuous consumption 

of oatmeal cookies led to significant improvements in blood glucose levels and plasma insulin in 

diabetic rats [369]. β-glucan, oleic acid, linoleic acid, caffeic acid, coumaric acid, gallic acid and 

avenanthramides are the active phytoconstituents of oats. They lower glycosylated HbA1c, fasting 
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and postprandial blood glucose, total cholesterol and LDL-cholesterol levels, as well as improve 

insulin resistance in diabetic patients [206,207]. β-glucan is the major component of oats which 

reduces blood glucose and helps with losing weight [208,209].   

14. Averrhoa carambola L. (Star fruit) 

Averrhoa carambola L. (Oxalidaceae) is commercially known as star fruit. It is abundantly 

consumed in tropical and subtropical countries where it is also traditionally used for chronic 

headache, fever, cough, gastroenteritis, diarrhea, diabetes, skin inflammation, hypertension and 

hyperglycaemia [210-212]. Catechin, epicatechin, procyanidins, gallic acid, protocatechuic acid, 

ferulic acid, rutin, isoquercitrin, quercitrin, C-glycosides, leucoanthocyanidins, and triterpenoids in 

star fruit modulate insulin secretion, glucose uptake and glycogen synthesis [213,214].  

15. Azadirachta indica (Neem) 

Azadirachta indica, known as neem, is a plant from the Meliacae family that is used to cure fever, 

skin ailments, infection, inflammation, diabetes, and dental ailments [215,216]. Its leaves, stem, bark 

and seed oil have been reported to control glycaemia, improve endothelial dysfunction, reduce 

systemic inflammation, enhance glucose transporter 4 (GLUT-4) translocation and inhibit α-

glucosidase. The antidiabetic effects of this plant are likely to be due to the presence of 

phytoconstituents such as nimbidin, nimbin, nimbidol, quercetin and nimbosterone [217-219].  

16. Beta vulgaris (Beetroot) 

Beta vulgaris (Chenopodiaceae) or beetroot is a traditional cure for diabetes, loss of libido, 

stomachaches, arthritis, and constipation [220]. Beetroot shows antidiabetic activity by inhibiting 

gluconeogenesis, glycogenolysis, and α-amylase and α-glucosidase. It is rich in lycopene, betalains 

such as betanin, the flavonoids betagarin, betavulgarin, quercetin and kaempferol, carotenoids and 

coumarins. Among them, betanin is the main constituent that can mitigate diabetic complications 

[221,222].  

17. Brassica juncea (Mustard) 

Brassica juncea (Brassicaceae), known as mustard, is an effective remedy for arthritis, footache, 

lumbago, diabetes and rheumatism [223,224].  Mustard has been reported to control blood sugar 

levels in people with diabetes by enhancing insulin secretion, improving the utilization of glucose, 

and reducing glucose absorption from the gut.  These effects can be attributed to several beneficial 

phytochemicals including chlorogenic acid, kaempferol and other flavonoids, sinigrin, р-coumaric 

acid, vanillic acid, polyphenols, allyl isothiocyanate, cinnamic acid, and aniline [225,226]. 

18. Brassica oleracea var. capitata (Cabbage) 

Brassica oleracea var. capitata or cabbage is a member of the Brassicaceae family. Cabbage is 

traditionally used to prevent injuries, gastritis, peptic ulcers, irritable bowel syndrome, diabetes and 

idiopathic cephalalgia [227]. It shows antihyperglycemic activity via enhancing peripheral insulin 

sensitivity and insulin production by pancreatic β-cells. This has been attributed to the presence of 

myricetin, quercetin, kaempferol, apigenin, luteolin, glycitein, biochanin A and formononetin [227-

229].  

19. Brassica oleracea var. italica (Broccoli) 

Brassica oleracea var. italica (broccoli) is a vegetable from the Brassicaceae family that is well 

known for its antioxidant, antimicrobial, anti-inflammatory, antihyperglycemic and antitumor 

properties [230]. Broccoli increases insulin sensitivity, reduces glucose production, inhibits ROS 

formation and the activity of α-amylase and α-glucosidase, overall contributing to lowering 

hyperglycemia [230,231]. Glucosinolates, isothiocyanates, sulforaphane, sinapic acid, gallic acid, 

chlorogenic acid, apigenin, kaempferol, luteolin, quercetin and myricetin are the major 

phytochemicals found in broccoli that help to manage diabetes by improving insulin sensitivity, 

reducing inflammation, and combating oxidative stress. They also regulate glucose metabolism and 

protect pancreatic β-cells [231].  
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20. Camellia sinensis L. (Tea) 

Camellia sinensis L. or tea from the Theaceae family, is a plant widely consumed as a beverage. It 

is also a reputed remedy for flatulence, indigestion, vomiting, diarrhea, hyperglycemia and stomach 

discomfort [232,233]. Tea alleviates diabetic complications via suppression of insulin resistance, 

reduction of oxidative stress, inhibition of α-amylase and α-glucosidase activity, and regulation of 

cytokines production. It also enhances insulin secretion, glucose tolerance, inhibits glycation and the 

activity of dipeptidyl peptidase-4 (DPP-IV) [232-234]. Tea is a rich source of bioactive compounds 

including theophylline, theanine, proanthocyanidins, caffeine, myricetin, kaempferol, quercetin, 

chlorogenic acid, coumarylquinic acid, theogallin, catechin and epicatechin which exhibit 

antidiabetic activity by enhancing insulin sensitivity, regulating glucose metabolism, reducing 

oxidative stress, and improving pancreatic β-cell function [235]. 

21. Capsicum annuum L. (Red pepper) 

Capsicum annuum L. ( Solanaceae), identified as red pepper, is an ethnomedicine for dyspepsia, 

ulcer, anorexia, gastrointestinal disorders and diabetes [236]. Recent studies reported that it exhibits 

glucose-lowering action via inhibition of gluconeogenesis, activation of AMPK and stimulation of 

both GLUT-4 translocation and glucose uptake in skeletal muscles of obese diabetic rats [237,238]. 

These effects may be attributable to a rich content in carotenoids and flavonoids such as apigenin, 

quercetin, and isoquercetin. Red pepper has a range of other health benefits, including scavenging 

free radicals (antioxidant effect), promoting healthy weight management, reducing inflammation, 

and even potentially offering anticancer properties [239,240].  

22. Carica papaya (Papaya) 

Carica papaya (Caricaseae), commonly called papaya, has been used for centuries to treat high 

blood pressure, dengue, obesity, jaundice, respiratory diseases, malaria, diabetes, and wounds 

[241,242]. Papaya contains phytomolecules, such as papain, quercetin, kaempferol, p-coumaric acid, 

β-carotene, linalool, oleic acid, tannins, saponins, α-tocopherol, that can inhibit α-amylase and α-

glucosidase activity as well as lower oxidative stress and plasma blood glucose levels [243,244].  

23. Carissa carandas (Bengal currant) 

Carissa carandas (Apocynaceae), known as koromcha or Bengal currant, is a remedy for asthma, 

constipation, diarrhea, diabetes, malaria, myopathic spams, fever, epilepsy and seizures [245]. Recent 

studies suggest that Bengal currant significantly reduces diabetes-induced inflammation, and lowers 

blood glucose levels via inhibition of α-amylase and α-glucosidase [246-249]. Lignans, flavonoids, 

steroids, phenolic acids and alkaloids present in Bengal currant have anti-inflammatory, 

antibacterial, antifungal, antioxidant and hepatoprotective effects. Lignans regulate blood glucose 

levels and oxidative stress [248].  

24. Catharanthus roseus L. (Vinca rosea) 

Catharanthus roseus L. (Apocyanaceae), also known as Vinca rosea, is a plant popularly used for 

cancer, diabetes, stomach disorders, kidney, liver, and cardiovascular disorders [250,251]. It is 

reported to exert its antidiabetic effect through increasing β-cell mediated insulin secretion via effect 

on Ca2+ channels. It was also shown to enhance glucose metabolism, protect pancreatic β-cells from 

oxidative stress, and improve insulin sensitivity. Gallic acid, rutin, -coumaric p acid, caffeic acid, 

quercetin, kaempferol, chlorogenic acid, ellagic acid and coumarins are thought to be responsible for 

the anti-hyperglycaemic properties of this plant. The presence of alkaloids in C. roseus has also been 

reported to improve insulin secretion from β-cells [252-254].   

25. Centella asiatica L. (Centella leaves) 

Centella asiatica L. (Apiaceae), referred to as centella leaves, is an excellent ethnomedicine for 

leprosy, lupus, ulcers, eczema, psoriasis, diarrhea, fever, diabetes and anxiety [255]. Centella blocks 

ATP-sensitive K+ channels to enhance insulin secretion and control hyperglycemia [256].  According 

to recent studies, it reduces oxidative stress and inflammation in diabetic patients. Some active 

phytoconstituents in centella leaves include triterpenes (asiaticoside, madecassic acid, 
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madecassoside), centellase, flavonoids (quercetin, kaempferol), phytosterols (campesterol, sitosterol, 

and stigmasterol), ferulic acid and chlorogenic acid [257,258].  

26. Chenopodium quinoa (Quinoa) 

Chenopodium quinoa (Amaranthaceae), or quinoa, is a gluten free high protein cereal reported to 

ameliorates dyslipidemia, diabetes and heart disease [259]. It is regarded as a ‘functional food’ as it 

contains a high amount of essential amino acids, fatty acids, vitamins, minerals and dietary fibers 

[260,261]. Phytosterols, phytoecdysteroids, phenolics, tocophenols, betalains, tannins and glycine 

betaine are the beneficial phytochemicals in quinoa that elicit both antidiabetic and anti-obesity 

effects by inhibiting α-glucosidase, regulating body weight, improving insulin sensitivity, and 

reducing postprandial glycemia and lipid accumulation in skeletal muscle [262-265].  

27. Cicer arietinum L. (Chickpea) 

Cicer arietinum L. (Fabaceae) commonly known as chickpea, is a reputed cure for digestive 

disorders, cancer, cardiovascular disease and diabetes because of its high dietary fiber content. Recent 

findings recognized it as a healthy food staple that exerts hypoglycemic activity via inhibiting α-

amylase, α-glucosidase and dipeptidyl-4 (DPP4) enzymes. Chickpea has high antioxidant properties 

and inhibits the enzymes associated with carbohydrates metabolism [266-268]. It is rich in 

unsaturated fatty acids that help lower blood cholesterol levels, and reduce inflammation and weight 

gain [269]. Its phytoconstituents including uridine, adenosine, tryptophan, 3-hydroxy-olean-ene and 

biochanin contribute to its antihypertensive, antioxidant, hypocholesterolemic and anticancer effects 

[270,271].  

28. Cinnamomum verum (Cinnamon) 

Cinnamomum verum (Lauraceae), also known as cinnamon, is an ethnomedicine used for 

diabetes, nausea, vomiting, flatulence, fever, halitosis, arthritis, coughing, hoarseness, impotence, 

frigidity, cephalalgia, odontalgia, cardiac and urinary disorders [272]. Cinnamon exerts its 

antihyperglycemic effects by increasing GLUT-4 translocation in insulin-sensitive tissues, 

upregulating mitochondrial UCP-1, inhibiting α-glucosidase and stimulating insulin secretion 

[273,274].  Its phytoconstituents including cinnamaldehyde, cinnamates, cinnamic acid, eugenol, 

cinnamyl acetate, β-sitosterol, flavonoids, glucosides, coumarins, vanillic acid and syringic acid have 

antihyperglycaemic and anti-inflammatory properties [272,275]. 

29. Citrullus lanatus (Watermelon) 

Citrullus lanatus (Cucurbitaceae) or watermelon, is a fruit used tradionally to treat 

gastrointestinal disorders, urinary infections, fever, constipation and emetic problems [276,277]. It 

improves glucose transporters (GLUT 2 and GLUT 4) levels, and suppresses oxidative stress as well 

as α-glucosidase and α-amylase activity. Some of the phytoconstituents of watermelon which may 

contribute to its pharmacological action include stigmasterol, rutin, p-coumaric acid, quercetin, 

kaempferol, β-carotene, and α-tocopherol [278,279].   

30. Citrus limon (Lemon) 

Citrus limon (Rutaceae), also known as lemon, is a common ethnomedicine used for cough, scurvy, 

cold, hypertension, fever, rheumatism, sore throat, diabetes, irregular menstruation, and liver 

diseases [280-282]. Lemon exerts antihyperglycaemic activity by increasing insulin sensitivity, 

GLUT4 translocation and glucose uptake, by inhibiting α-glucosidase, protein tyrosine phosphatase, 

aldose reductase and reducing the formation of AGE products [283-285]. Previous studies have 

shown that reduces plasma glucose, LDL, VLDL and total cholesterol, triglycerides, free fatty acids 

and phospholipids levels. Its bioactive constituents include limocitrin, D-limonene, hesperidin and 

naringenin [286,287].  

31. Citrus maxima (Pomelo) 

Citrus maxima (Rutaceae), also called pomelo, is a fruit with a great ethnomedicinal value in 

treating asthma, fever, ulcer, diarrhea, cough, Alzheimer’s disease, diabetes, and insomnia [288]. 

Polemo has α-amylase and α-glucosidase inhibitory activity. It also inhibits the angiotensin I 
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converting enzyme, which notably lowers blood glucose levels and improves diabetic complications 

[289]. Pomelo possesses antioxidant, anti-inflammatory, anti-obesity, and hypolipidemic properties 

in addition to its hypoglycemic effects due to the presence of amino acids, terpenoids, sterols, 

carotenoids, and polyphenols [288-290]. 

32. Citrus reticulata (Orange) 

Citrus reticulata, also known as orange, is a plant from the Rutaceae family, that has been shown 

to be beneficial in the treatment of Alzheimer's disease, cough, phlegm, diabetes, hepatic steatosis, 

and cancer [291-293]. Orange increases the expression of GLUT-4 and β-subunit insulin receptor 

which further helps with insulin sensitivity [294-296]. Orange peel contains flavonoids such as 

hesperidin and naringenin that have antihyperglycaemic, antihyperlipidaemic, anti-obesity and 

antioxidant properties [294,295].  

33. Cocos nucifera (Coconut) 

Cocos nucifera, or coconut, is an important species from the Arecaceae family, commonly used as 

a folk remedy for diarrhea, diabetes, renal diseases, stomachaches, fever, asthma, and sexually 

transmitted diseases [297-300]. Coconut has been reported to regenerate pancreatic β-cells, enhance 

metabolism in adipose tissue, and mitigate insulin resistance, hyperglycemia, dyslipidemia, 

inflammation and oxidative stress [300-303]. It has also been shown to scavenge free radicals, inhibit 

α -amylase and α-glucosidase activity, and ameliorate diabetic complications including diabetic 

neuropathy in streptozotocin-induced diabetic rats [304]. Coconut is rich in amino acids, fibers, 

tannins, resins, flavonoids and alkaloids which may contribute to its insulin-releasing and 

antihyperglycemic effects [300-303]. 

34. Coffea Arabica L. (Coffee) 

Coffea Arabica L. (Rubiaceae) or coffee is another popular health drink. It is also a traditional 

remedy for flu, anemia, diarrhea, intestinal pain, migraine, headache, fever, purulent wounds, 

pharyngitis, diabetes and stomatitis [305]. Coffee exerts antidiabetic effects by improving insulin 

sensitivity, enhancing glucose metabolism, protecting pancreatic β-cells, and reducing the risk of 

T2DM development. It contains caffeine, chlorogenic acids (CGAs), caffeic, p-coumaric, vanillic, 

ferulic, protocatechuic acids, coffeasterin, kaempferol, quercetin, sinapic, quinolic, tannic, pyrogallic 

acids, trigonelline, caffeoylquinic and dicaffeoylquinic which substantially mitigate hyperglycemia, 

α-glucosidase activity and enhance insulin secretion [305-307]. 

35. Colocasia esculenta (Taro) 

Colocasia esculenta (Araceae), or taro, is a remedy for rheumatic pain, diabetes, hypertension and 

pulmonary congestion [308]. It can improve diabetic complications by decreasing blood glucose 

levels and reducing body weight in T2DM patients [309]. Taro contains vitexin, isovitexin, orientin, 

isoorientin, rosmarinic acid, and luteolin which help to reduce blood glucose, inflammation and 

oxidative stress in diabetic patients [310-312].  

36. Coriandrum sativum (Coriander) 

Coriandrum sativum (Apiaceae), known as coriander, is a common garnishing herb and a useful 

tradiotnal remedy for diarrhea, flatulence, colic, indigestion, gastrointestinal diseases and diabetes 

[313]. Coriander is helpful in the management of diabetes as it regenerates pancreatic β cells and 

improves their function. It also inhibits α-glucosidase, thereby slowing digestion of complex 

carbohydrates [313-317]. Moreover, coriander plays a useful role in the management of diabetic 

complications, particularly alleviating diabetic nephropathy and neuropathy through inhibition of 

AGEs formation, inhibition of TNF-α release and reduction of the oxidative stress [314,315]. 

Coriander is rich in flavonoids, tocotrienols, tocopherols, sterols and carotenoids with antidiabetic, 

antioxidant, anti-obesity and anticancer effects [316,317]. 

37. Crocus sativus L. (Saffron) 
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Crocus sativus L. (Iridaceae) or saffron, is a popular food additive as well as an effective remedy 

for central nervous system disorders and for diabetes [318,319].  Saffron is documented to improve 

insulin sensitivity, enhance glucose uptake, inhibit gluconeogenesis, and mitigate against oxidative 

stress, thereby offering a range of antidiabetic benefits. Bioactive constituents of saffron are β 

carotenes, crocetin, crocin, picrocrocin, zeaxanthene and safranal. These exert their glycemic effects 

via α-glucosidase and α-amylase inhibitory activity [318-320]. Crocin, the main bioactive constituent 

of saffron, reduces blood glucose, LDL, cholesterol and triglycerides levels. It also inhibits the release 

of pro-inflammatory cytokines and elevates glutathione levels [321-323]. 

38. Cuminum cyminum L. (Cumin seeds) 

Cuminum cyminum L. (Apiaceae), referred to as cumin, is used as a remedy for diarrhea, 

dyspepsia, epilepsy, toothache, whooping cough, flatulence, indigestion, diabetes and jaundice [324]. 

Cumin has been reported to enhance insulin secretion from pancreatic β-cells, improve insulin 

sensitivity in peripheral tissues by activating insulin signaling, regulate glucose uptake by enhancing 

GLUT4 translocation, and modulate key enzymes involved in glucose metabolism [324-326]. Cumin 

seeds are rich in compounds like cuminaldehyde, safranal, and terpenes (including carvone, 

carvacrol, limonene, and linalool). These are believed to improve blood sugar levels by increasing 

pancreatic insulin and protecting insulin-producing β-cells from damage [325,326].   

39. Cucumis sativus L. (Cucumber) 

Cucumis sativus L. (Cucurbitaceae), known as cucumber, is a vegetable low in calories and with 

a high-water content that is typically served as a salad. It is useful in treating sunburn, skin irritation, 

constipation, thermoplegia, gall bladder stone, hyperdipsia and diabetes [327,328]. It also exhibits 

antihyperlipidemic, antioxidant, analgesic and free radical scavenging effects [583,587]. It is a good 

source of cucurbitacins, cucumerin A and B, cucumegastigmanes I and II, flavonoids such as vitexin, 

orientin, apigenin and isoscoparin which can synergistically improve plasma glucose, glycolysis, 

insulin sensitivity and body weight in diabetes patients [327, 329,330]. Other studies reveal that 

cucumber mat suppress glucagon secretion and gluconeogenesis [330].  

40. Cucurbita pepo L. (Pumpkin) 

Cucurbita pepo L. (Cucurbitaceae), known as pumpkin, is a popular vegetable and folk medicine 

for dermatitis, depression, irritable bladder, intestinal inflammation, prostate enlargement and 

hyperglycaemia [331,332]. Pumpkin seeds have been reported to lower plasma and urine glucose as 

well as triglycerides levels, and increase glutathione levels through upregulation of the Nrf2 and 

P13K levels in T2DM mice [333-335]. Among the constituents of pumpkin seeds, flavonoids, 

alkaloids, polysaccharides, and polyphenols have been reported to enhance insulin secretion. The 

high content of carotenoids, zeaxanthin, and lutein has been implicated with improving insulin 

sensitivity, reducing inflammation, and protecting against oxidative stress [331-335].  

41. Curcuma longa L. (Turmeric) 

Curcuma longa L. (Zingiberaceae), commonly referred to as turmeric, is known as an extremely 

powerful healing agent and aid for cough, diabetes, arthritis, gall bladder stones, dermatitis, cancer, 

intestinal and gastric diseases [336]. Turmeric has multiple reputed health benefits as an antioxidant, 

anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, and immunomodulatory 

agent. A recent study reported that the ingestion of turmeric improved insulin secretion and insulin 

sensitivity, and decreased insulin resistance [337-340]. The presence of caffeic acid, curdione, p-

coumaric acid, demethoxycurcumin, isorhamnetin, valoneic acid, eugenol, isoshyobunone and 

corymbolone in turmeric may contribute to these antidiabetic properties. Furthermore, turmeric is 

rich in curcumin that induces glucose uptake and GLUT2 activity as well as notably promotes insulin 

production [338-340]. 

42. Daucus carota (Carrot) 

Daucus carota (Apiaceae), widely known as carrot, is traditionally used for diarrhea, constipation, 

intestinal inflammation, weakness, illness, diabetes and rickets [341]. Carrot has been reported to 

inhibit glucose absorption by significantly inhibiting α-glucosidase and α-amylase activity, and 
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improve insulin resistance in diabetic patients [342]. Carotenoids such as α and β-carotene, are the 

main phytochemicals in carrot. It also contains polyacetylenes, ascorbic acid, lutein, lycopene, and 

anthocyanins which can enhance insulin sensitivity and pancreatic β-cell function [343,344].  

43. Ficus carica (Fig) 

The fig plant, Ficus carica, belongs to the Moraceae family. It is a useful remedy for dermatitis, 

anemia, diabetes, paralysis, urinary tract infection, ulcers, and liver diseases [345]. Its leaves, pulp, 

stem, and root decrease body weight, LDL and VLDL cholesterol, triglycerides, and postprandial 

glucose levels, as well as inhibit pancreatic β-cell apoptosis via the pancreatic AMPK, C-Jun N-

terminal kinase, p-JNK and caspase-3 pathways [346,347]. The fruit is rich in eugenol, anthocyanins, 

phenolic acids, flavones and flavanols which may be responsible for the antimicrobial, 

neuroprotective, antioxidant, and anti-inflammatory properties of this plant [348-350]. 

44. Fragaria ananassa (Strawberry) 

Fragaria ananassa (Rosaceae) known as strawberry is an effective remedy for wound healing, 

clots, obesity, and diabetes [351]. Strawberry ameliorates peripheral insulin resistance, reduces α-

amylase and α-glucosidase activity, and increases glucose-stimulated insulin release [351-353]. 

Quercetin, kaempferol, rutin, gallic acid, chlorogenic acid, caffeic acid, ellagitannins and gallotannins 

found in strawberry may be responsible for the antioxidant, cardioprotective, antimetabolic 

syndrome, and neuroprotective properties of this plant [351-355]. 

45. Glycine max (Soya bean) 

Glycine max (Fabaceae), also called soya bean, is employed to produce vegetable oils, tofu, soy 

milk and soy sauce. It is also a remedy for osteoporosis, cardiovascular disease and diabetes [356]. It 

contains a high content of proteins which improves diabetes and its complications by modulating 

various cell signaling pathways and regulating glucose homeostasis [357,358]. Soya beans are also 

able to mitigate obesity-induced metabolic disorders [359], as they lower triglycerides levels and have 

fatty acid synthase inhibitory activity which contribute in ameliorating diabetes-related 

complications [360]. Among the soya bean proteins, β-conglycinin is the major constituent that has 

been reported to reduce insulin resistance and improve glucose uptake in skeletal muscles through 

AMPK activation [358].   

46. Helianthus annuus (Sunflower) 

Helianthus annuus (Asteraceae), is commonly known as sunflower. Sunflower seeds are often 

ingested to ameliorate diabetes, nephrotoxicity, cardiovascular disease and hematologic disorders 

[361]. Sunflower is popular for its antitumor, antimicrobial, antioxidant and anti-inflammatory 

effects. Sunflower seeds have been reported to lower body weight, body mass index (BMI), and have 

free radical scavenging activity. They can also reduce AGEs formation and lower fasting blood 

glucose levels [362-364]. Sunflower is rich in flavonoids, alkaloids, saponins, tocopherols, 

carotenoids, tannins, chlorogenic acid and caffeic acid. Tocopherols have been reported to improve 

insulin sensitivity and protect β-cells from oxidative stress [364]. 

47. Hibiscus rosa-sinensis Linn (China rose) 

Hibiscus rosa-sinensis Linn., also called China rose, China hibiscus, rose mallow or shoe flower, 

belongs to the Malvaceae family. It is a popular traditional remedy for tumor, hairloss, infertility, 

diabetes and wound healing [365-367]. It is reported to stimulate pancreatic-β cells, enhancing insulin 

secretion and glycogen accumulation in the liver. The antidiabetic properties of China rose may be 

attributed to its rich content of quercetin, cyanidin, ascorbic acid, gentisic acid, lauric acid, thiamine, 

niacin, margaric acid, calcium oxalate, and hentriacontane. Cyanidin, also present in china rose, has 

been demonstrated to improve endothelial function and oxidative damage [367-369].  

48. Hylocereus undatus (Dragon fruit) 

Hylocereus undatus (Cactaceae), also called dragon fruit or strawberry pear, is ethnomedicinally 

useful as a hypoglycaemic, diuretic, antigastritis, wound healing and laxative agent [370,371]. It 

shows antidiabetic activity by regulating oxidative stress, reducing intestinal glucose absorption and 
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plasma glucose levels, and improving insulin secretion. These effects can be attributed to a several 

phytoconstituents including phthalic acid, α-amyrin, oleic acid, linoleic acid, palmitic acid, gallic 

acid, syringic acid, p-coumaric acid, lycopene, β-carotene and betacyanin [372].  

49. Ipomoea batatas (Sweet potato) 

Ipomoea batatas is a plant of the Convolvulaceae family, also known as sweet potato. This plant 

is a popular ethnomedicine for diabetes, diarrhea, splenosis, stomach distress, anemia, hypertension, 

and throat tumors [373,374]. Anthraquinones, coumarins, flavonoids (quercetin, lutein), saponins, 

tannins, phenolic acids, chlorogenic acid, terpenoids, β-carotene, zeaxanthin, and anthocyanins 

present in sweet potato may also substantially mitigate insulin resistance and regulate blood glucose 

levels by stimulating the production of insulin by pancreatic-β cells [375-377].  

50. Juglans regia L. (Walnut) 

The walnut plant or Juglans regia L. (Juglandaceae) is a reputed remedy for bacterial infection, 

stomachache, thyroid disorders, diabetes, cancer, heart conditions and sinusitis [378]. Its nut is high 

in fiber which makes it one of the best super food to control of diabetes. One study reported that it 

improves glucose uptake, inhibits α-glucosidase, α-amylase and protein tyrosine phosphatase 1B 

(PTP1B) activity, and reduces plasma glucose levels in streptozotocin-induced rats [379]. Gallic acid, 

caffeoylquinic acid, coumaroylquinic, juglone, and quercetin were identified as the potential 

bioactive compounds responsible for the antidiabetic, anti-inflammatory, and antioxidant effects of 

walnut [380,381].  

51. Lactuca sativa (Lettuce) 

Lactuca sativa or lettuce is a leafy vegetable from the Asteraceae family, often served as a salad. 

The leaves and seeds of lettuce are used for treating hyperglycaemia, osteodynia and inflammatory 

conditions [382]. Lettuce inhibits the activity of α-amylase, α-glucosidase and dipeptidyl peptidase-

4 (DPP-4) enzymes. It can regulate postprandial glucose, fasting blood glucose, triglycerides, serum 

insulin, and cholesterol levels. These effects may be due to the presence of flavonoids such as 

quercetin, anthocyanins and hydroxycinnamoyl derivatives [383-386]. 

52. Lagenaria siceraria (Bottle gourd)  

Lagenaria siceraria (Cucurbitaceae) is popularly known as bottle gourd and regarded as a remedy 

for diabetes, jaundice, constipation, flatulence, insomnia, ulcer, piles, colitis, insanity, hypertension, 

congestive cardiac failure, skin diseases and headaches [387,388]. Bottle gourd improves insulin 

production and glucose tolerance, and suppresses intestinal glucose absorption. These effects may be 

attributed to isovitexin, isoorientin, saponarin, fucosterol, campesterol, cucurbitacin B, cucurbitacin 

D, cucurbitacin E, isoquercitrin, kaempferol, gallic acid and protocatechuic acid [389,390].  

53. Laurus nobili (Bay leaves) 

Laurus nobilis or bay leaf is an important spice from the Lauraceae family. It is a popular aid for 

stomachaches, phlegm, cold, sore throat, headache, indigestion, flatulence, eructation, epigastric 

bloating and diabetes [391]. It is reported to decrease serum glucose levels, inhibit α-glucosidase and 

stimulate the production of insulin by pancreatic β-cells. It is rich in phytoconstituents that include 

linalool, sabinene, kaempferol, quercetin, apigenin, luteolin, lauric acid, palmitic acid, linoleic acid 

and the carotenoid lutein [392-394].  

54. Litchi chinensis (Lychee) 

Litchi chinensis (Sapindaceae), or lychee, is a seasonal fruit and useful ethnomedicine for cough, 

ulcer, flatulence, testicular swelling, diabetes, hernia, and obesity [395].  Lychee seeds improve 

insulin resistance, glucose tolerance, and fasting blood glucose and serum triglycerides levels. Lychee 

has antihyperglycemic, antineurotoxic, anti-inflammatory, lipid -owering, insulin secreting and α-

glucosidase inhibitory properties. These effects may be attributed to the presence of flavonoids, 

triterpenes, sterols, and phenolic compounds [396,397].  

55. Luffa acutangula (Ridge gourd) 

Luffa acutangula (Cucurbitaceae), known as ridge gourd, is a valuable traditional medicine for 

diabetes, jaundice, hemorrhoids, urinary bladder stones, granular conjunctivitis, constipation and 
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leprosy. Ridge gourd has been reported to substantially lower serum glucose levels by enhancing 

insulin secretion and peripheral glucose uptake, as well as suppressing glycogenolysis and 

gluconeogenesis in alloxan-induced diabetic rats [398]. These effects may be attributed to its content 

in apigenin, luteolin, myristic acid, α-pinene, carotene, oleanolic acid, β-myrcene and linalool in its 

leaves, seeds and fruit which reduce blood glucose and oxidative stress [399].  

56. Malus domestica (Apple) 

The apple, Malus domestica (Rosaceae), is one of the most widely cultivated and 

commerciallysignificant fruits. It is also a valuable folk medicine for wounds, diabetes, asthma, 

obesity, and cardiovascular disease [400-402]. Apple has been reported to significantly lower plasma 

glucose levels by increasing glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like 

peptide-1(GLP-1). Its antidiabetic effect has been linked with the flavonoid quercetin [403-405]. Apple 

also has antihypertensive, antioxidant, and anti-inflammatory properties which may be attributed to 

several compounds including quercetin, catechin, epicatechin, procyanidin, coumaric acid, 

chlorogenic acid and gallic acid [403-409]. 

57. Mangifera indica (Mango) 

Mangifera indica (Anacardiaceae), known as mango, is a delicious fruit and a plant used in folk 

medicine for asthma, dysentery, anthrax, indigestion, diarrhea, diabetes and colic [410-412]. Mango 

pulps, stems and peels improve postprandial glucose and insulin sensitivity in T2DM patients by 

inhibiting α-amylase and α-glucosidase [413-415]. Mango has been reported to exert antidiabetic 

activity by improving insulin secretion from clonal β-cells and isolated mouse islets, and regulating 

fasting blood glucose, plasma insulin and liver glycogen levels, starch digestion, glucose absorption, 

body weight, and free radical scavenging activity in diabetic rats [414]. Another study in 

streptozotocin-induced diabetic rats, reported its promising ability to decrease postprandial 

hyperglycemia [415]. The mentioned therapeutic effects of mango may be mediated by mangiferin, 

flavonoids, tannins and alkaloids [414]. 

58. Mentha spicata (Mint leaves) 

Mentha spicata, or mint, is a plant from the Lamiaceae family. It is known as a remdy for common 

colds, asthma, fever, obesity, digestive problems, dementia, hypertension, diabetes and insomnia 

[416]. Mint boasts a range of health benefits. Mint leaves increase HDL cholesterol levels, and reduce 

triglycerides, LDL and VLDL cholesterol levels. It has antibacterial, antifungal, antioxidant, 

hepatoprotective, cytotoxic, anti-inflammatory, larvicidal, antigenotoxic, and antiandrogenic effects. 

Its ability to suppress α-amylase and α-glucosidase may be due to the presence of carvone, limonene, 

1,8-cineole, pulegone, β-bourbonene, β-pinene, dihydrocarveol, and piperitone [417,418].  

59. Moringa oleifera Lam. (Moringa) 

Moringa oleifera Lam. (Moringaceae), also known as moringa or the drumstick tree, grows in 

many tropical and subtropical regions. It is regarded as a folk remedy for diabetes, liver disease, 

cancer, inflammation, hypercholesteremia and hypertension [419,420]. Tannins, β-carotene, vitamin 

C, quercetin, and chlorogenic acid in moringa leaves aid diabetes through inhibiton of α‐amylase and 

α‐glucosidase enzymes. They also reduce serum glucose and fasting blood glucose levels [421-423].  

60. Momordica charantia (Bitter gourd) 

Momordica charantia or bitter gourd (Cucurbitaceae) has medicinal value for managing T2DM, 

dyslipidemia, cancer, obesity, malaria, dysentery, hypertension, womb and worm infections [424-

42].7 Bitter gourd suppresses the intestinal absorption of glucose, inhibits gluconeogenesis and 

reduces accumulation of fats in adipocytes. It also activates the HMP and the PPARα pathways, 

regenerates pancreatic β-cells and enhances glucose uptake in skeletal muscles. These effects may be 

attributed to the presence of phytoconstituents such as saponins, triterpenes, flavonoids, ascorbic 

acid and steroids [428-432].  

61. Morus alba (Mulberry)  
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Morus alba (Moraceae), also known as mulberry, is widely used as a remedy for diabetes, 

insomnia, tinnitus, dizziness, and for premature aging. It improves fasting blood glucose, total 

triglycerides, cholesterol and HDL-cholesterol levels via the IRS-2, GLUT4 and Akt pathways [433]. 

Quercetin and isoquercetrin present in mulberry leaves are reported to have insulin-releasing, 

antihyperlipidaemic, antithrombotic, antiobesity, antioxidant, and anti-inflammatory effects, which 

may be beneficial in diabetic complications [434,435]. The bark of mulberry also lowers cholesterol 

and blood glucose levels probably due to the presence of alkaloids, flavonoids, coumarins, 

anthocyanins, benzofurans and phenolic acids [436,437].  

62. Murraya koenigii (Curry leaves) 

Murraya koenigii L. or the curry leaf plant belongs to the Rutaceae family. This plant is popular 

as herbal remedy for piles, inflammation, itching, diabetes and snake bites [438,439]. It has 

antimicrobial, antioxidant, antihyperglycemic, apoptotic, anticarcinogenic, anti-inflammatory and 

antitumor effects. It has been also reported to protect against β-cell damage, enhance antioxidant 

defense systems and reduce oxidative stress, as well as improve blood sugar levels in diabetic rats 

[440]. The bioactive substances such as mahanine, mahanimbine, murrayanol, koenigicine, quercetin, 

apigenin, kaempferol, catechin, and oliolide in curry leaves have been reported to synergistically 

regenerate β-cells, aid diabetic complications, and possess antihyperlipidemic effects [440,441]. 

63. Myristica fragrans Houtt. (Nutmeg) 

Myristica fragrans Houtt. (Myristicaceae), known as nutmeg, is a flavoring spice and reputed folk 

remedy for skin infection, diarrhea, diabetes, Alzheimer’s disease, rheumatism, asthma, cold, cough 

and malaria [442]. Nutmeg demonstrates antidiabetic effects by enhancing insulin sensitivity, 

regulating blood glucose levels, and exhibiting antioxidant properties that protect against oxidative 

stress in diabetes. It strongly inhibits the release of pro-inflammatory cytokines such as IL-6 and TNF-

α, and helps ameliorate β-cell function, inflammation and obesity [443-445]. Nutmeg is a source of 

flavonoids, terpenes, phenylpropanoids, coumarins, lignans, alkanes, and indole alkaloids that can 

elicit antiprotozoal, antimicrobial, immunomodulatory, anxiolytic and neuroprotective effects [442]. 

64. Nigella sativa L. (Black seeds) 

Nigella sativa L. (Ranunculaceae) or black seeds are a reputed herbal remedy for asthma, 

dyslipidemia, diabetes and diarrhea [446]. Black seeds exert antidiabetic effects by reducing 

carbohydrate digestion and absorption in the gut, improving insulin secretion, and enhancing 

glucose tolerance in T2DM animal models. Other antidiabetic effects of black seeds include lowering 

lipid and blood glucose levels, suppressing hepatic gluconeogenesis, inhibiting α-amylase and α-

glucosidase, as well as boosting insulin production and sensitivity. These effects can be attributable 

to phytochemicals that include thymoquinone, thymol, limonene, carvacrol, p-cymene, longifolene, 

α-pinene, linoleic acid, oleic acid, palmitic acid, saponins, and alkaloids. Thymoquinone in black 

seeds is known to enhance insulin secretion and insulin sensitivity through activating the PI3K/Akt 

signaling pathway [447-450].  

65. Ocimum sanctum L (Holy basil) 

Ocimum sanctum L., known as Holy basil or Tulsi, belongs to Lamiaceae family. Tulsi is 

traditionally used for anxiety, cough, asthma, diarrhea, fever, dysentery, arthritis, eye diseases, 

indigestion, back pain, skin disorders, ringworm, insect, snake, scorpion, malaria, vomiting, gastritis, 

diabetes, cardiac and genitourinary infection [451,452]. Tulsi leaves help improve insulin synthesis 

and pancreatic β-cell activity as well as inhibit intestinal glucose absorption. Its phytoconstituents 

such as eugenol, ursolic acid, carvacrol, linalool, caryophyllene, triterpenoids, and tannins may 

contribute to these effects [453,454].  

66. Olea europaea L. (Olive) 

Olea europaea L. (Oleaceae), or olive, is traditionally used to treat diabetes, diarrhea, 

inflammation, urinary tract infection, hypertension intestinal diseases, hemorrhoids and 

rheumatisms [455-457]. It offers a promising range of health benefits such as anti-inflammatory, 

antidiabetic and immunomodulatory properties [458-460]. Olive oil notably prevents hepatic 
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gluconeogenesis and inhibits glucose-6-phosphatase activity. It enhances catalase activity, regulates 

body weight and plasma glucose levels possibly due to the presence of oleanolic acid, cinnamic acid 

and secoiridoid glycosides such as oleuropein [458-460].  

67. Origanum vulgare (Oregano) 

Origanum vulgare (Lamiaceae), known as oregano, is a folk medicine for acne, cystic fibrosis, 

diabetes, and bacterial infections [461,462]. It alleviates diabetic complications, including 

nephropathy, atherosclerosis, and retinopathy, by inhibiting α-glucosidase, thereby reducing the 

breakdown of complex carbohydrates into glucose, and lowering both glycosylation and oxidative 

stress. Moreover, it improves glucose uptake in skeletal muscles by increasing GLUT2 levels, leading 

to better control of blood sugar levels [463]. Oregano is a source of amburoside A, apigenin, luteolin 

7-O-glucuronide, rosmarinic acid and lithospheric acid which have antimicrobial, antifungal, 

antioxidant, anti-inflammatory and antiviral properties [464,465]. 

68. Passiflora edulis (Passion fruit)  

Passiflora edulis (Passifloraceae), commonly known as passion fruit, is used as an ethnomedicine 

for cough, diabetes, dysmenorrhea, dysentery, arthralgia, and constipation [466,467]. Previous 

studies have shown that it reduces weight gain, lipid accumulation, and improves insulin sensitivity 

and glucose tolerance via the Sirt1 and p-AMPK pathways. [468,469]. It contains more than 110 

bioactive constituents including piceatannol, tocopherols, β-carotene and other carotenoids, gallic 

acid, flavonoids such as rutin and quercetin, coumaric acid, which have antidiabetic, antioxidant, 

antihypertensive, antimicrobial, hepatoprotective and lung-protective qualities [467,470-474]. A 

reduction in blood glucose levels has been linked to the presence of piceatannol, present in high 

amounts in passion fruit [467].  

69. Persea americana (Avocado)  

Persea americana (Lauraceae) or avocado is a popular fruit and a remedy traditionally used to 

manage cardiovascular diseases and diabetes [475]. Avocado has been reported to lower blood 

glucose levels, regulate glucose uptake in the liver and skeletal muscles as well as restore intracellular 

energy homeostasis through activation of the PKB/Akt pathway [476]. Histopathological analysis of 

diabetic rats also revealed regeneration of clonal pancreatic β-cells following avocado treatment. 

Avocado seed, bark, and leaf extracts contain flavonoids, alkaloids, saponins, tannins, and glycosides, 

which are known for their antihyperglycemic properties [477-479].  

70. Petroselinum crispum (Parsley) 

Petroselinum crispum (parsley) is a plant form the Apiaceae family. As well as being a culinary 

herb, it is an ethnomedicine traditionally used for diabetes, urinary tract infection, dysmenorrhea, 

hypertension, dermatitis and gastrointestinal disorders [480]. Parsley exerts long-lasting control of 

sugar levels by regulating plasma glucose, body weight, and electrolyte (sodium and potassium) 

balance. It also promotes glucose uptake in muscles by inhibiting gluconeogenesis (sugar production) 

and stimulating glycolysis (sugar breakdown) [481,482]. The main bioactive constituents of parsley 

are coumarins, phthalides, phenylpropanoids, and tocopherols with antimicrobial, antihepatotoxic, 

antihypertensive, antihyperlipidemic, hypouricemic, and antioxidative properties [483]. 

71. Phaseolus vulgaris L. (Kidney bean) 

Phaseolus vulgaris L. (Fabaceae), or kidney beans, is another nutritious legume crop, 

ethnomedicinally used for wounds, pharyngitis, fever, obesity, diabetes, cancer and vaginal 

infections [484,485]. Beyond their potential to lower blood sugar levels, kidney beans exhibit a range 

of other health benefits, including anti-obesity and anti-inflammatory properties [484-486]. They are 

a potential source of protocatechuic acid, p‐coumaric acid, procyanidin, myricetin, naringenin, gallic 

acid, quercetin, catechin, kaempferol, and ferulic acid which may contribute to alleviating diabetic 

complications via inhibiting α-glucosidase, enhancing insulin sensitivity in peripheral tissues, 

delaying the absorption of glucose, and reducing gluconeogenesis [486,487].  

72. Phoenix dactylifera (Date) 
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Phoenix dactylifera or date palm is a flowering plant belonging to the Arecaceae family. Date 

palm, is a traditional medicine for fever, inflammation, nervous disorders and dementia [488]. In-

vitro studies demonstrated that date fruit has α-glucosidase and α-amylase inhibitory activity, 

reduces the intestinal absorption of glucose, improves pancreatic β-cell function, insulin secretion 

and β-cells number [489,490]. The antihyperglycaemic, antioxidant, anti-inflammatory, 

hepatoprotective, and nephroprotective properties of date palm may be attributable to its vast array 

of phytochemicals that include oleic acid, linoleic acid, catechin, epicatechin, anthocyanin, ellagic 

acid, gallic acid, p-coumaric acid, coumarins, quercetin, rutin, myricetin, apigenin, naringenin, and 

chlorogenic acid [488,491]. 

73. Phyllanthus emblica L. (Amla) 

Phyllanthus emblica L. (Phyllanthaceae), commonly called indian gooseberry or amla, is a remedy 

for cough, peptic ulcer, skin diseases, jaundice, diarrhea, dysentery, diabetes, cardiac disorders, and 

premature aging [492,493]. Recent studies suggest that the fruit, bark, leaves and roots of amla 

significantly reduce plasma glucose levels through inhibition of α-amylase and α-glucosidase activity 

and activation of the AMPK signaling pathway. The main phytoconstituents in amla such as gallic 

acid, ellagic acid, pectin, quercetin, linoleic, oleic acid, and myristic acid, which are effective in 

reducing inflammation, blood glucose levels, and increasing insulin sensitivity [494,495].  

74. Piper betle L. (Betel leaf) 

Piper betle L. (Piperaceae), also known as betel leaf, is widely used as a folk medicine for wounds, 

bronchitis, diabetes, cough, indigestion in children, headaches, arthritis, and joint pain [496]. It 

increases insulin production, improves glucose tolerance and decreases blood glucose levels 

substantially [497]. Betel leaf contains many phytoconstituents such as eugenol, selinene, 

hydroxychavicol, cadinene, caryophyllene, estragole, linalool, and other terpenes, phenols, steroids, 

saponins and tannins which may play an important role in the management of diabetic complications 

[498,499].  

75. Pisum sativum L. (Pea) 

Pisum sativum L., known as pea, is a plant that belongs to the Fabaceae family.  Pea is a reputed 

remedy for diabetes, gastrointestinal disorders, hyperlipidaemia and blood diseases [500]. 

Phytoconstituents such as quercetin, ellagic acid, coumaric acid, β-sitosterol, β-amyrin, catechin, 

myricetin, vanillic acid, and kaempferol may be responsible for the antidiabetic properties of pea. It 

remarkably improves plasma glucose levels, glucose tolerance, glucose uptake, and glucose 

homeostasis and diabetic complications [501,502]. It is also known to alleviate weight loss, 

polyphagia, and triglycerides and LDL cholesterol levels via interacting with AMPK, α-glucosidase, 

IRS-1 and IRS-2 [503].  

76. Prunus armeniaca L. (Apricot) 

Prunus armeniaca L. (Rosaceae), known as apricot, is a promising antidiabetic, cardioprotective, 

hepatoprotective, nephroprotective, antioxidant, antimicrobial, anti-inflammatory, anticancer and 

antiviral remedy [504,505]. Apricot has been reported to stimulate insulin secretion, reduce oxidative 

stress and show α-glucosidase inhibitory activity in alloxan-induced diabetic mice. It is rich in 

coumaric acid, benzyl glycosides, cyanogenic glycosides, vanillin, catechin, epicatechin, 

neochlorogenic acid, chlorogenic acid, rutin, quercetin and lutein [505,506]. 

77. Prunus domestica (Plum) 

Prunus domestica (Rosaceae), or plum, is a fruit and a beneficial ethnomedicine for anemia, 

Alzheimer’s disease, irregular menstruation, diabetes and constipation [507-509]. Recent studies 

reported that plum reduces oxidative stress and inhibits α-glucosidase, α-amylase, pancreatic lipase 

and HMG-CoA reductase, lowering LDL, cholesterol and triglycerides levels [510,511]. Catechin, 

epicatechin, chlorogenic acid, kaempferol, quercetin, and β-carotene present in plum may contribute 

to its antihyperglycaemic, anti-inflammatory, antioxidant and lipid-lowering properties [512-514]. 

78. Prunus dulcis (Almond)  
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Prunus dulcis, or almond, is a plant from the Rosaceae family that is used as a remedy for 

neurogical and respiratory disorders, diabetes and urinary tract infection [515]. Almond has a high 

fiber content which help in ameliorating diabetes by suppressing appetite, and lowering blood sugar 

levels via increasing insulin production and decreasing stomach emptying time. Its pharmacological 

effects include antioxidant, anti-inflammatory, hepatoprotective, anxiolytic and nerve-improving. 

Almond is rich in oleic acid, linoleic acid, p-coumaric acid, anthocyanins, kaempferol, quercetin, and 

chlorogenic acid [515,516].   

79. Prunus persica (Peach) 

Prunus persica or peach is a species from the Rosaceae family, that is very useful in improving 

blood circulation, blood clotting, constipation, and diabetes [517]. Peach inhibits α-glucosidase and 

α-amylase activity and enhances insulin production by increasing the regeneration of pancreatic islet 

β-cells [518,519]. Various bioactive compounds in peaches such as procyanidins, epicatechin, 

catechin, chlorogenic acid, quercetin and kaempferol play a vital role in the secretion of insulin from 

clonal pancreatic β-cells and have demonstrated of DPP-IV inhibitory activity [518, 520].  

80. Punica granatum (Pomegranate) 

Punica granatum or pomegranate (Lythraceae) is traditionally used for dysentery, diarrhea, piles, 

bronchitis, biliousness, and diabetes [521,522]. Recent studies have shown that it can stimulate insulin 

secretion, enhance glucose transporter type 4 (GLUT-4) translocation, and regulate blood glucose 

levels. The phytoconstituents isolated from pomegranate such as ellagic acid, gallotannins, 

anthocyanins, quercetin, kaempferol, luteolin glycosides, linolenic, arachidic, and palmitoleic acids 

may contribute to the insulin-releasing and glucose-lowering properties of this plant [523,524].  

81. Psidium guajava (Guava) 

Psidium guajava (Myrtaceae), commonly known as guava, is widely used for dysentery, diabetes, 

and diarrhea [525-527]. Studies conducted on its leaves have revealed that it activates the AMPK and 

PI3K/AKT signaling pathways, improves hepatic glycogen accumulation, regulates the activity of 

superoxide dismutase (SOD), glucose transporter 2 (GLUT-2) and fasting blood sugar levels [528-

531]. The antidiabetic activity of guava may be attributed to compounds such as quercetin, avicularin, 

guaijaverin, tannins, and triterpenes [532,533]. 

82. Raphanus sativus L. (Radish)   

Raphanus sativus L. (Brassicaceae), also called radish, has been employed as an effective remedy 

for diabetes, jaundice, gastric disorders, dyspepsia and liver enlargement since ancient times [534]. 

Radish seeds significantly decrease hyperglycemia via reducing insulin resistance, limiting intestinal 

glucose absorption and increasing glucose uptake in skeletal muscles [535]. Myricetin, catechin, 

epicatechin, quercetin, p-coumaric acid, β-carotene, camphene, anthocyanin, glucosinolates and 

isothiocyanate are some of the phytoconstituents in radish which that have been demonstrated to 

possess antioxidant, anti-inflammatory and radical-scavenging activity [536,537]. 

83. Rosmarinus officinalis L (Rosemary) 

Rosmarinus officinalis L., familiar as rosemary, is an important herb from the Lamiaceae family, 

and is commonly recognized as a flavor enhancer, food preservative, wound healer, 

antihyperglycemic and analgesic agent. It is also efficacious against mycosis, alopecia, ultraviolet 

damage, skin cancer, inflammatory diseases and diabetes [538,539]. Rosemary has been suggested to 

act via several pathways to improve blood sugar control. It reduces Irs1 protein, which can contribute 

to insulin resistance. It also recruits GLUT-4 receptors to the surface of muscle cells, facilitating 

glucose uptake from the bloodstream. Additionally, it activates pathways (pAKT and pAMPK) that 

promote glucose uptake and inhibit gluconeogenesis. These overall effects improve glucose 

utilization, leading to lower blood sugar levels [540-542]. Moreover, rosemary contains several types 

of flavonoids, carnosol, carnosoic, rosmarinic, ursolic, oleanolic, micromeric acids. The presence of 

bio active compounds may be responsible for its antimicriobial antitumor, antithrombotic, 

antidepressant and antioxidant effects [543,544]. 

84. Rubus fruticosus (Blackberry) 
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Rubus fruticosus or blackberry is a member of the Rosaceae family and well-known for its use in 

mouthwash to relieve gum inflammation and mouth ulcers. It is also used for sore throat, respiratory 

disorders, anemia, diarrhea, dysentery, cystitis, diabetes and hemorrhoids [545]. Blackberry has α-

amylase, α-glucosidase and β-glucosidase inhibitory activity, and reduces oxidative stress. This has 

been associated with its high content in anthocyanins, cyanidins, kaempferol, quercetin, myricetin, 

p-coumaric acid, rutin and gallic acid [546-548].  

85. Salvia hispanica L. (Chia seeds) 

Salvia hispanica L. (Lamiaceae), also known as Chia seeds, have a high nutritional and medicinal 

value. They are used to treat indigestion, hyperlipidemia and diabetes [549,550]. Chia seeds decrease 

fasting plasma glucose and LDL-cholesterol levels, inhibit the production of pro-inflammatory 

cytokines (e.g. IL-6, Interleukin-2, TNF-α), reduce body weight, and have α-amylase and α-

glucosidase inhibitory activity [551,552]. They are a source of myricetin, quercetin, kaempferol, 

chlorogenic acid, and caffeic acid that have hepatoprotective, antidiabetic antihypertensive, and 

antioxidant effects. They also contain omega-3 fatty acids which can enhance insulin sensitivity and 

reduce inflammation [553].  

86. Sesamum indicum (White sesame seeds) 

Sesame seeds, also called Sesamum indicum (Pedaliaceae), are traditionally used for wounds, 

amenorrhea, ulcer, asthma, hemorrhoids, inflammation, and diabetes [554,555]. Sesamin, the main 

bioactive compound in sesame seeds, can significantly ameliorate diabetes by enhancing insulin 

sensitivity, reducing inflammation, boosting antioxidant defenses, and regulating lipid metabolism 

[556]. Other phytochemicals in sesame seeds include other lignans such as sesamolin, and 

phytosterols.  These are reported to decrease fasting and postprandial blood glucose, reduce 

cholesterol and oxidative stress, and improve renal disorders, fat metabolism, cell viability and 

insulin secretion [557-559]. 

87. Solanum lycopersicum L. (Tomato) 

Solanum lycopersicum L. (Solanaceae) or tomato is vastly produced for consumption worldwide 

and is also a beneficial remedy for dermatitis, cancer, hypertension and hyperglycemia [560-562]. The 

underlying mechanisms of its hypoglycemic effects are through regulation of the PI3K/Akt, FOXO1, 

and PPAR-γ signaling pathways. Tomato enhance insulin signaling, improves glucose uptake, and 

modulates lipid metabolism [562].  Due to its high lycopene content, tomato may help mitigate 

diabetes-induced inflammation. Additionally, the presence of carotenoids may also contribute to 

improving insulin sensitivity [563,564]. Tomato also contains ferulic acid, β-carotene, tomatine, 

kaempferol, quercetin, naringenin, p-coumaric acid, and caffeic acid which exert antioxidant, anti-

inflammatory, antihyperglycemic and neuroprotective effects [565,566]. 

88. Solanum melongena (Eggplant)  

Solanum melongena (Solanaceae) or eggplant is a nutritious vegetable and an efficient remedy for 

arthritis, diabetes, dyslipidemia, bronchitis and asthma [567]. It has been reported to inhibit α-

amylase and α-glucosidase enzymes, inhibit gluconeogenesis, increase the translocation of GLUT4, 

increase glucose uptake in skeletal muscle and reduce fatty acids, triglycerides and cholesterol levels 

[568]. The bioactive constituents present in eggplant include thiamin, niacin, chlorogenic acid, 

saponins, solasodine, delphinidin. These constituents have been associated with anti-inflammatory, 

antioxidant, antihypertensive, antihyperlipidemic, anti-obesity and hepatoprotective effects [569-

571]. 

89. Spinacia oleracea (Spinach) 

Spinacia oleracea (spinach) belongs to the Chenopodiaceae family. It is a folk remedy for bloody 

stools, diarrhea, stomachaches, obesity and diabetes [572]. It notably improves diabetic retinopathy 

and hyperglycemia by modulating multiple pathways such as inhibition of excess AGE and carbonyl 

group production, glycation, and thiol group depletion in bovine serum albumin [573]. Spinach aids 

insulin resistance by inhibition of increased serum C-reactive protein, tumor necrosis factor (TNF)-α 
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and Interleukin-6 [574]. Moreover, it is rich in β-carotenoids, lutein, zeaxanthin, vitamins and 

minerals that also exert hypoglycemic, hypolipidemic, anti-obesity and antioxidant effects [575-577]. 

90. Syzygium aromaticum (Clove) 

Syzygium aromaticum flower buds (Myrtaceae), typically known as clove, is a seasoning spice 

and an efficacious aid for increased gastritis, diabetes and indigestion [578].  Clove is reported to 

improve insulin sensitivity, inhibit aldose reductase to prevent diabetic complications such as 

neuropathy, nephropathy, regulate SIRT1 to enhance glucose metabolism, and promote muscle 

glucose uptake, all of which assist management of diabetes. Phytoconstituents in clove include 

alkaloids, terpenes, tannins, phenolics, steroids, flavonoids, glycosides and saponins which may 

mitigate diabetic complications by decreasing insulin resistance [578-581]. Among them, eugenol 

acetate, eugenol and gallic acid act via PPAR-γ activation, aldose reductase inhibition, sirtuin 1 

(SIRT1) regulation and muscle glycolysis [579-581].  

91. Syzygium cumini (Java plum)  

Syzygium cumini (Java plum) belongs to the Myrtaceae family and is used to treat asthma, 

bronchitis, sore throat, biliousness, dysentery, diabetes, and ulcers [582]. Its pharmacological actions, 

such as stimulating clonal pancreatic β-cells to release insulin, have been compared to those of 

sulfonylureas and biguanides [583]. A recent study reported that Java plum seeds are effective in 

reducing plasma and urine glucose levels in diabetic rabbits [584]. The Java plum is a good source of 

phytoconstituents such as anthocyanins, malvidin-3-glucoside, petunidin-3-glucoside, ellagic acid, 

and the flavonoids isoquercetin, kaempferol and myricetin which may be responsible for its 

antioxidant, antibacterial, gastroprotective and antidiarrheal properties [582]. 

92. Tamarindus indica L. (Tamarind) 

Tamarindus indica L., also known as tamarind belongs to Fabaceae family. This plant is mostly 

cultivated in the Indian sub-continent and other tropical regions. It is known to effectively treat 

inflammation, stomach pain, sore throats, rheumatism, wound, diarrhea, dysentery, fever, malaria, 

respiratory conditions, constipation, and eye diseases [585]. Beyond its culinary uses, tamarind offers 

a range of health benefits due to its antioxidant and anti-inflammatory properties that aid digestion 

and the expulsion of mucus [585-588]. The presence of apigenin, anthocyanin, procyanidin, catechin, 

epicatechin, taxifolin, eriodyctiol, and naringenin help to control DM by inhibiting the activity of α-

amylase and α-glucosidase [586-588]. Among them, catechin, anthocyanin and epicatechin notably 

lower blood glucose levels via glucose-6-phosphatase inhibitory activity, improving blood glucose 

tolerance and promoting the regeneration of β-cells [589].  

93. Theobroma cacao (Cocoa) 

Theobroma cacao (Malvaceae) is typically known as cocoa beans and commercially processed to 

make chocolate particularly dark chocolate. It is a reputed remedy for measles, malaria, toothache 

and diabetes. Its antidiabetic effect is via improving insulin secretion, GLUT4 translocation and 

glucose uptake [590,591]. Moreover, it exerts inhibitory activity on α-amylase and α-glucosidase, 

reduces ROS generation, increases GSH and Nrf2, thereby enhancing insulin secretion and β-cell 

survival [592,593]. Flavonoids, procyanidins, catechin and epicatechin have been implicated in 

mitigating diabetic complications and have demonstrated antioxidant, anti-inflammatory and 

hepatoprotective effects [594,595]. 

94. Trichosanthes cucumerina L. (Snake gourd) 

Trichosanthes cucumerina L. (Cucurbitaceae) or snake gourd is an ethnomedicine for diabetes, 

bronchitis, headache, cathartic, anthelmintic, indigestion, ulcers, stomach and skin disorders 

[596,597]. The roots, fruit, seeds and leaf juice of snake gourd simulate β-cell insulin secretion, 

enhance glucose uptake in peripheral tissues and reduce intestinal glucose absorption. This 

antihyperglycaemic effect may be attribute to its rich content in carotenoids, gallic acid, 

neochlorogenic acid, caffeic acid, p-coumaric acid, rutin, kaempferol, quercetin, ursolic acid and 

oleanolic acid [596-598].  
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95. Trigonella foenum-graecum (Fenugreek seeds) 

Trigonella foenum-graecum (Fabaceae), or fenugreek seeds are reputed as an effective tonic for 

ulcer, sinusitis, hay fever, diarrhea, diabetes and kidney diseases [599]. Studies have documented 

their antidiabetic activity with promising reduction in fasting and postprandial blood glucose, 

enhancement in glucose uptake, glucose tolerance and peripheral insulin action [600,601]. 

Phytoconstituents in fenugreek seeds such as steroids, alkaloids, flavonoids, polyphenols, saponins 

have anti-obesity, antihyperlipidemic, antioxidant, anticancer, anti-inflammatory and antifungal 

properties. Specific phytochemicals, including trigonelline, diosgenin, and galactomannan, have 

been shown to enhance insulin sensitivity, improve glucose metabolism, and reduce blood sugar 

levels [599-602]. 

96. Vaccinium corymbosum (Blueberry) 

Vaccinium corymbosum (Ericaceae), also called blueberry, is a widely used fruit with medicinal 

properties that are useful for cold, inflammation, cardiovascular diseases, diabetes, and ocular 

disorders [603,604]. It exerts its antidiabetic activity by inhibiting α-amylase and α-glucosidase 

activity and ameliorating diabetic retinopathy [604,605]. It is rich in pectin, anthocyanins, 

anthocyanidins, protocatechuic acid and petunidin which may contribute to its antidiabetic, 

antiobesity, antioxidant, cardioprotective, neuroprotective and immunomodulatory effects [605].  

97. Vigna radiata (Mung bean) 

Vigna radiata (Leguminosae), or mung bean, is an important legume crop with high nutrient 

value and a helpful remedy for heat stroke, gastrointestinal disorders, dermatitis, hyperglycemia, 

hypertension, hyperlipidemia and melanogenesis [606,607].  Mung bean significantly reduces serum 

glucose, total cholesterol and triglycerides levels. It also inhibits gluconeogenesis, glycolysis, as well 

as α-glucosidase and α-amylase activity [608-610]. Mung bean is a rich source of proteins, vitamins, 

minerals and bioactive compounds that include quercetin, myricetin, kaempferol, catechin, vitexin, 

isovitexin, coumaric acid, luteolin, caffeic and gallic acid which all together help enhance insulin 

sensitivity, reduce oxidative stress and blood glucose levels [611,612].  

98. Vitis vinifera (Grapes) 

Vitis vinifera (Vitaceae), commonly called grapes, can aid in diarrhea, wounds, hepatitis, 

stomachaches, cardiovascular diseases, varicose veins, hemorrhoids, atherosclerosis, and diabetes 

[613]. It is known for regenerating clonal pancreatic β-cells and regulating plasma glucose levels by 

inhibiting the intestinal absorption of glucose [614]. The phytomolecules found in grapes such as 

triterpenoid acids, gallic acid, catechin, epicatechin, gallocatechin, p-coumaric and ferulic acids may 

contribute to its anti-inflammatory, antioxidant, anticholesterolemic and glucose-lowering properties 

[615]. 

99. Zea mays (Corn)  

Zea mays (Poaceae) or corn, is a popular ethnomedicine for malaria, bladder stone, heart diseases 

and diabetes [616,617]. Corn is a superfood which is rich in fiber and nutrients. Recent findings reveal 

that corn silk (extended stigma of Z. mays flower) improve insulin resistance via lowering LDL-

cholesterol, total cholesterol, triglycerides, and malondialdehyde levels. It also reduces body weight 

and the accumulation of lipids in the liver [618]. Moreover, corn possesses antioxidant, anti-

inflammatory, antimutagenic, anti-angiogenesis and anticarcinogenetic properties.  One in vivo 

study revealed that the flavonoid glycoside hirsutrin was the main constituent beneficial in diabetic 

complications through suppressing aldose reductase and the formation of galactitol [619]. The 

antidiabetic properties of corn have been attributed to flavonoids, alkaloids, saponins, phenols, 

tannins, and phytosterols that could inhibit α-amylase and α-glucosidase and aid diabetic 

nephropathy [620,621].  

100. Zingiber officinale (Ginger) 

Zingiber officinale (Zingiberaceae), commonly called ginger, is a traditional treatment for 

muscular aches, arthritis, rheumatism, diabetes, hypertension, infections and helminthiasis [622]. 
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Ginger plays a significant role in regulating blood sugar levels by promoting the actions of GLUT-4 

and PPAR-γ, which help muscles absorb glucose more efficiently. It also protects insulin-producing 

β-cells in the pancreas [623]. Ginger is rich in various compounds (e.g. gingerols) that have a range 

of pharmacological effects, including anti-inflammatory, neuro-and cardio-protective properties 

[624]. 
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Table 1. Traditional uses, pharmacological actions and phytoconstituents of dietary plants. 

Dietary plants 
Plant Parts Used Traditional uses Pharmacological actions Diabetic model Treatment Dose 

Duration of 

treatment 
Phytochemicals References 

Scientific name Common name 

1. Abelmoschus  esculentus L. Okra Fruit, roots 

Chronic kidney disease, 

T2DM, cardiovascular 

diseases 

Blood glucose↓, TC↓, 

TG↓, LDL-C↓, VLDL↓, 

HDL↑, body weight↓, α-

amylase and α-

glucosidase activity↓ 

 

STZ-induced 

T2DM mice 

200-400 

mg/kg/day 
56 days 

Oxalic acid, iodine, 

pectin, flavonoids, 

saponins, alkaloidsd-

galactose, L-rhamnose, 

D-galacturonic 

[143-145,625] 

2.  Actinidia chinensis Kiwi Fruit 
Dyspepsia, vomiting, 

loss of appetite, diabetes 

serum microRNA-424↑, 

Keap1↑, Nrf2↑, IL-6↓, IL-

1↓, SOD↑, GSH↑, ALT↓, 

AST↓, inflammation ↓ 

T2DM patients 

(50-70 years old) 
10mg/kg/day 270 days 

Triterpenoids, 

polyphenols, β-carotene, 

lutein, xanthophylls, 

amino acids 

[146-149] 

3. Aegle marmelos L. Stone apple Fruit 

Inflammation, asthma, 

hyperglycemia, 

febrifuge, hepatitis, 

analgesic, antifungal 

agent, colitis, flatulence, 

dysentery, fever 

Glucose tolerance↑, α-

amylase and α-

glucosidase activities↓, 

insulin secretion↑, 

intestinal glucose 

absorption↓, BMI↓, 

polydipsia↓, 

polyphagia↓ 

STZ-induced 

T2DM 

diabetic rats 

250-500 

mg/kg/day 
28 days 

Marmelosin, psoralen, 

limonene, citronellal, 

citral, marmin, 

skimmianine, aegelin, 

fagarine, lupeol, cineol, 

halfordiol, citronellal, 

cuminaldehyde, eugenol, 

marmesinin 

[150-152] 

4. Agaricus bisporus Mushroom Rhizome 

Cold, cough, influenza, 

asthma, cancer, diabetes, 

hepatic disorders 

Blood glucose↓, TC↓, 

TG↓, LDL-C↓, insulin 

secretion↑, glucagon 

secretion↓ 

STZ-induced 

Sprague-Dawley 

rats 

200mg/kg/day 21 days 

Lectins, β-glucans, 

polyphenols, p-

hydroxybenzoic acid, 

protocatechuic acid, 

gallic acid, cinnamic, p-

coumaric acid, ferulic 

acid, chlorogenic acid 

and catechin 

[153-157] 

5. Allium cepa Onion Fruit 

Wound healing, scars, 

keloids, bee sting 

inflammation, 

dysmenorrhea, vertigo, 

fainting, migraine, 

bruises, earache, 

jaundice, pimples, 

diabetes 

Blood glucose↓, FBG↓, 

TC↓, TG↓ α-amylase and 

α-glucosidase activity↓, 

insulin secretion↑, 

β-cell protection↑, 

oxidative stress↓ 

Alloxan- 

induced diabetic 

rats 

200-300 

mg/kg/day 
42 days 

Quercetin, lectin, 

steroids, catechol, 

thiocyanate, isoflavones, 

humulone, quercetin, 

apigenin, rutin, 

myricetin, kaempferol, 

catechin, resveratrol, 

ajoene, phenolics, 

phenolic acids and 

anthocyanins 

[158-162] 
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6. Allium sativum L. Garlic Fruit 

Cold, fever, headache, 

abdominal pain, sinus 

congestion, gout, 

rheumatism, 

hemorrhoids, asthma, 

bronchitis, cancers, 

cough cardiovascular 

diseases, arthritis, 

tuberculosis, rhinitis, 

malaria, dermatitis, 

enlarged spleen, fistula, 

UTI, kidney stone 

Blood glucose↓, TC↓, 

TG↓, GLUT-4 activity↑, 

β-cell function↑, glucose 

uptake↑, creatinine↓, uric 

acid↓, urea↓, AST and 

ALT↓, insulin 

sensitivity↑, insulin 

secretion ↑, insulin 

production ↑, glucose 

tolerance↑, 

STZ-induced 

Wistar rats 

100-500 

mg/kg/day 
14 days 

AJoene, cysteine, allicin, 

β-resorcylic acid, gallic 

acid, rutin, 

protocatechuic acid, 

quercetin 

[163-168] 

7. Aloe barbadensis Mill. Aloe vera Leaves 

Wound healing, 

constipation, colic, worm 

infestation, dermatitis, 

hypertension 

FBG ↓, TG↓, TC↓, AGE 

formation ↓, body 

weight, diabetic 

nephropathy↓ 

STZ-induced 

Wistar rats 
300 mg/kg/day 49 days 

Flavonoids, acemannam, 

flavones, quinone, 

galactan, pectin, ornanic 

acids 

[169-175,626] 

8. Anacardium occidentale L. Cashew nut Nut, leaves, bark 

Fevers, aches, pains, 

diarrhea, diabetes, skin 

irritations, arthritis 

Blood glucose↓, SOD↑, 

IR↓, gluconeogenesis↓, 

insulin secretion ↑ 

 

Alloxan- induced 

Wistar rats 

100-250 

mg/kg/ day 
40 hours 

Arginine, isoleucine, 

leucine, lysine, arachidic 

acid, lignoceric acid, 

gadoleic acid, linolenic 

acid, cyanidin, peonidin, 

anacardic acid, cardanol, 

limonene, lactone, 

palmitic acid 

[176-179] 

9. Ananas comosus L. Pineapple Fruit, peel, leaves 

Pain, skin diseases, 

edema, wound, 

indigestion, diabetes and 

blood clotting 

IR↓, insulin sensitivity↑, 

HDL-c↑, HbA1c↓, body 

weight↓, LPL activity↑, 

HMGCoA reductase 

activity↓ 

Alloxan- induced 

Wistar rats 

400 mg/kg/ 

day 
15 days 

Bromelain, flavonoids, 

coumaric acid, ellagic 

acid, ferulic acid, 

chlorogenic acid 

[180-186] 

10. Apium graveolens Celery 
Leaves, seeds, 

roots 

Arthritis, spleen 

dysfunction, diabetes, 

sleep disturbances, CNS 

disorders 

Blood glucose↓, PPBG↓, 

plasma insulin↑, GLUT-4 

transloaction↑, 

mitochondrial 

dysfunction↓, insulin 

sensitivity↑, 

inflammation↓ 

Elderly diabetic 

patients above 60 

years 

250mg/kg/3 times a 

day 
12 days 

Quercetin, 

thymoquinone, 

frocoumarin coumaric 

acid, gallic acid, 

flavonoids, alkaloids, 

steroids, limonene, 

selinene, glycosides 

[187-192,627] 

11. Artocarpus heterophyllus Jackfruit 
Fruit, leaves, bark, 

seeds, roots 

Wound healing, cancer, 

diabetes 

PPBG↓, FBG↓, IR↓, 

HbA1c↓, α-amylase and 

α-glucosidase activities↓, 

HDL-c↑, LDL↓ 

T2DM patients 

(18-60) 
30000 mg/kg/day 84 days 

Carotenoids, tannins, 

volatile acids, sterols, 

chrysin, silymarin, 

isoquercetin 

[195-199] 
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12. Asparagus officinalis Asparagus Stem 
Asthma, liver, rheumatic, 

kidney, bladder diseases 

Blood glucose↓, β-cell 

function↓, FBG↓, TG↓, 

serum insulin↑, body 

weight↓, hepatic 

glycogen↓ 

STZ-induced 

Wistar rats 

250-500 

mg/kg/day 
28 days 

Asparagine, tyrosine, 

arginine, flavonoid, 

saponin, resin, tannin 

[200-204] 

13. Avena sativa Oats Grains 

Dermatitis, cancer, 

diabetes, cardiovascular 

disease 

PPBG↓, HbA1c↓, body 

weight↓, HDL↑, MDA↓, 

FBG↓, IR↓, TC↓, TG↓, 

LDquinol-C↓, SOD↑ 

T2DM patients 

(50-70 years) 
1 IU/kg/ day 28 days 

β-glucan, tocopherols, 

tocotrienols, phenolic 

acids, sterols, selenium, 

avenanthramides 

[205-209,628] 

14. Averrhoa carambola L. Star fruit Fruit 

Chronic headache, fever, 

cough, gastroenteritis, 

diarrhea, diabetes, 

ringworm infections, 

skin inflammations 

hypertension, 

hyperglycemia 

Blood glucose↓, TG↓, 

TC↓, FFAs↓, serum 

insulin↑, glucose 

uptake↑, glycogen 

synthesis ↑ 

STZ-induced 

Kunming mice 

150-1200 

mg/kg/day 
21 days 

Catechin, epicatechin, 

procyanidins, gallic acid, 

protocatechuic acid, 

ferulic acid, rutin, 

isoquercitrin, quercitrin, 

anthocyanin, 

anthocyanidin, 

leucoanthocyanidins, 

triterpenoids 

[210-214,629] 

15. Azadirachta indica Neem 
Leaves, stem, bark, 

flower, roots, fruit 

Fever, skin diseases, 

infection, inflammation 

and dental disorders 

PPBG↓, FBG↓, HbA1c↓, 

IR↓, endothelial 

function↑, oxidative 

stress ↓, systemic 

inflammation ↓ 

T2DM patients 

(30-65 years old) 

125-500 mg 

/kg/twice a day 
84 days 

Nimbidin, nimbin, 

nimbidol, quercetin 

nimbosteron, saponin, 

tannin, flavonoids 

[215-219] 

16. Beta vulgaris Beetroot Fruit 

Dandruff, loss of libido, 

stomachaches, diabetes, 

arthritis, constipation 

Blood glucose↓, HbA1c↓, 

FBG↓, TC↓, TG↓, LDL-

C↓, IR↓, HDL↑, ALT↓, 

AST↓, gluconeogenesis↓, 

α-amylase and α-

glucosidase activity↓ 

 

T2DM patients 

(57±4.5 years) 

100000 mg/kg/ 

day 
56 days 

Betalains, betanin, 

carotenoids, coumarins, 

sesquiterpenoids, 

betagarin, betavulgarin, 

quercetin, kaempherol, 

tiliroside, astragalin, 

rhamnocitrin, rhamnetin, 

betavulgarosides, 

betacyanin 

[220-222,630] 

17. Brassica juncea Mustard Seeds 

Arthritis, foot-ache, 

lumbago, diabetes, 

rheumatism 

Blood glucose↓, FBG↓, 

TC↓, TG↓, prediabetic 

IR↓, glucose tolerance↑, 

insulin secretion↑, 

intestinal glucose 

absorption↓ 

Fructose- induced 

Sprague Dawley 

rats 

100mg/kg/day 30 days 

Chlorogenic acid, 

sinigrin, р-coumaric acid, 

vanillic acid, flavonoids, 

chlorogenic acid, 

polyphenols, allyl 

isothiocyanate, cinnamic 

acid, kaempferol 

[223-226] 

18. Brassica 

oleracea var. capitata 
Cabbage Flower 

gastritis, peptic ulcers, 

irritable bowel 

FBG↓, TC↓, TG↓, LDL-

C↓, HDL↑, insulin 

Alloxan- induced 

diabetic rabbits. 
500mg/kg/day 30 days 

Myricetin, quercetin, 

kaempferol, apigenin, 

luteolin, cyanidin 

[227-229] 
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syndrome, diabetes, 

idiopathic cephalalgia 

sensitivity↑, β-cell 

function↑ 

daidzein, genistein, 

glycitein, biochanin A, 

formononetin 

19. Brassica oleracea var. italica Broccoli 
Flower 

 

Xerophthalmia, 

hyperlipidemia, 

fibromyalgia, cancer, 

diabetes 

Blood glucose↓, lipid 

peroxidation↓, IL-6↓, 

TNF-α↓, HbA1c↓, insulin 

sensitivity↑, β-cell 

function↑, glucose 

production ↓. 

T2DM Albino 

Wistar Rats 
400mg/kg/day 42 days 

Glucosinolates, 

isothiocyanates, 

sulforaphane, sinapic 

acid, gallic acid, vanillic 

acid, p-coumaric acid, 

ferulic acid, chlorogenic 

acid, apigenin, 

kaempferol, luteolin, 

quercetin and myricetin 

[230-231,631] 

20. Camellia sinensis Tea Leaves 

Flatulence, indigestion, 

vomiting, obesity, 

diarrhea, hyperglycemia, 

stomach discomfort 

Blood glucose↓, IR↓, 

MDA↓, oxidative stress, 

inflammatory 

cytokines↓, α-amylase 

and α-glucosidase 

activity↓, insulin release 

↑, glycation ↓, glucose 

tolerance↑ 

STZ-induced 

Wistar rats 

100-200 

mg/kg/day 
28 days 

Caffeine, theanine, 

proanthocyanidins, 

myricetin, kaempferol, 

quercetin, chlorogenic 

acid, coumarylquinic 

acid, theogallin, 

catechins, epicatechin 

[232-235,632] 

21. Capsicum annuum L. Red pepper Seeds 

Dyspepsia, ulcer, 

anorexia, GERD and 

diabetes. 

FBG↓, HbA1c↓, 

inflammatory 

cytokines↓, TG↓, TNF-

α↓, IL-6↓, plasma 

insulin↑, 

gluconeogenesis↓, 

AMPK↑, FOXO1↑, 

glucose uptake↑, GLUT-

4 translocation↑ 

High fat died 

induced 

C57BL/KsJ 

200mg/kg/day 56 days 

Lycopene, flavonoids, 

carotenoids, flavones, 

apigenin, quercetin, 

isoquercetin, capsinoids, 

polyphenols 

[236-240] 

22. Carica papaya Papaya Fruit, seeds, leaves 

Hypertension, fever 

(dengue), obesity, 

jaundice, UTI, ulcer, 

constipation, bronchitis, 

cough, diarrhea, asthma, 

piles, malaria, wound 

healing 

Blood glucose↓, TG↓, 

TC↓, α-amylase and α-

glucosidase activities↓, 

oxidative stress ↓ 

STZ-induced 

Wistar rats 

750-3000 

mg/100mL/ 

day 

28 days 

Papain, quercetin, 

kaempferol, p-coumaric 

acid, carpinine, carpaine, 

choline, β-carotene, 

linalool, oleic acid, 

linolenic acid 

[241-244] 

23. Carissa carandas Bengal currant Fruits 

Anorexia, brain disease, 

cough, asthma, 

constipation, diarrhea, 

diabetes, pain, 

pharyngitis, scabies, 

leprosy, malaria, 

Blood glucose↓, 

inflammation↓, 

α-amylase and α-

glucosidase activity↓ 

Alloxan- induced 

Swiss albino rats 
400 mg/kg 1 day 

Lignans, flavonoids, 

steroid, phenolic acids 

alkaloids 

[245-249] 
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myopathic spams, fever, 

epilepsy, seizures 

24. Catharanthus roseus L. Vinca Rosea Flowers, leaves 

Cancer, diabetes, 

stomach disorders, 

kidney, liver, 

cardiovascular disorders 

Blood glucose↓, insulin 

secretion↑, 

β-cell function↑, TC↓, 

creatinine↓ 

Alloxan- induced 

Albino rabbits 

0.5-1mg 

/kg/day 

 

24 hours 

Gallic acid, rutin, p-

coumaric acid, 

ajmalicine, vindoline, 

catharanthine, 

vinblastine, vincristine, 

caffeic acid, quercetin, 

kaempferol, syringic 

acid, chlorogenic acid, 

ellagic acid, coumarins 

[250-254] 

25. Centella asiatica Centella leaves Leaves 

Leprosy, lupus, varicose 

ulcers, eczema, psoriasis, 

diarrhea, fever, 

amenorrhea, female 

genitourinary tract 

infections, diabetes, 

anxiety 

Blood glucose↓, 

insulin sensitivity↑, 

oxidative stress↓, 

inflammation↓ 

STZ-induced 

Sprague-Dawley 

500-1000 

mg/kg/day 
14 days 

Asiaticoside, madecassic 

acid, madecassoside, 

centellase, quercetin, 

kaempferol, phytosterol 

[255-258] 

26. Chenopodium quinoa Quinoa Grains 
Dyslipidemia, diabetes, 

heart disease 

Blood glucose↓, FBG↓, 

IR↓, TC↓, TG↓, LDL-C↓, 

α-glucosidase activity↓, 

lipid accumulation↓, 

glucose tolerance↑, 

insulin sensitivity↑ 

High fat diet 

induced C57BL/6J 

mice 

2000 mg/kg/day 84 days 

Saponins, phytosterols, 

phytoecdysteroids, 

phenolics, tocophenols, 

betalains, tannins, 

glycine betaine 

[259-265] 

27. Cicer arietinum Chickpea Grains 

Digestive diseases, 

cancer, cardiovascular 

disease, diabetes 

Blood glucose↓, 

inflammation↓, organ 

function↑, intestinal 

dysbiosis↓, α-amylase, 

α-glucosidase and DPP4 

activity↓, carbohydrate 

metabolism↑, body 

weight↓ 

 

STZ-induced HFF 

rats 
3000 mg/kg/day 28 days 

Uridine, adenosine, 

tryptophan, 3-hydroxy-

olean-ene, biochanin 

[266-271,633] 

28. Cinnamomum verum Cinnamon Bark 

Nausea, vomiting, fever, 

halitosis, arthritis, 

coughing, hoarseness, 

frigidity, cramps, 

intestinal spasms, 

bronchitis, asthma, 

odontalgia, cardiac 

diseases, diarrhea, 

vaginitis, neuralgia, 

Blood glucose↓, GLUT-4 

translocation↑, glucose 

uptake↑, Mitochondrial 

UCP-1↑, insulin 

secretion↑, α-glucosidase 

activity↓, 

STZ-induced 

Wistar rats 

30mg/kg/ 

Day 
22 days 

cinnamaldehyde, 

cinnamates, cinnamic 

acid, eugenol, cinnamyl 

acetate, cubebene, 

terpinolene, linalool, 

linalyl acetate, benzyl 

cinnamate, piperitone, β-

sitosterol, flavanol, 

glucosides, coumarin, 

[272-275] 
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rheumatism, piles, 

urinary disease 

protocatechuic acid, 

vanillic acid, syringic 

acid 

29. Citrullus lanatus L. Water-melon Fruit, seeds 

Gastrointestinal 

disorders, urinary 

disorders, aphrodisiac, 

fever, laxative, emetic 

FBG↓, serum lipid 

profile↓, glucose-6-

phosphatase↓, lipid 

peroxidation↓, GLUT4↑, 

GLUT2↑, hexokinase 

activity↑ 

Alloxan- induced 

Wistar Albino 

rats 

500-1000 

mg/kg/day 
14 days 

Stigmasterol, quinic acid, 

malic acid, epicatechin, 

caffeic acid, rutin, p-

coumaric acid, quercetin, 

ferulic acid, scopoletin, 

apigenin, kaempferol, β 

carotene, citrulline, 

lycopene, α tocopherol 

[276-279] 

30. Citrus limon Lemon Fruit, peel, leaves 

Cough, scurvy, cold, 

fever, rheumatism, sore 

throat, diabetes, irregular 

menstruation 

Serum glucose↓, body 

weight↓, TC↓, TG↓, 

LDL↓, 

VLDL↓, GSH↑, insulin 

sensitivity↑, GLUT-4 

translocation↑, AGE 

formation↓, 

Glucose uptake↑ 

 

STZ-induced 

Wistar rats 

200-400 

mg/kg/day 
15 days 

Limocitrin, hesperidin, 

diosmin, hesperetin, 

didymin, naringin, 

naringenin, tangeretin, 

rutine, quercetin, β-

pinene, γ-terpinene, D-

limonene, ferulic acid 

[280-287] 

31. Citrus maxima Pomelo Fruit, peel 

Asthma, fever, ulcer, 

diarrhea, cough, 

Alzheimer’s disease, 

diabetes, insomnia 

Blood glucose↓, TG↓, 

TC↓, HDL↑, LDL↓, α-

amylase, α-glucosidase 

and angiotensin I-

converting enzyme 

activity↓, body weight↓, 

glucose tolerance ↑ 

Alloxan- induced 

diabetic rats 

200-600 

mg/kg/day 
14 days 

Terpenoids, sterols, 

carotenoids, polyphenols, 

chlorogenic acid, ferulic 

acid, caffeic acid, gallic 

acid, ρ-coumaric acid. 

[288-290,634] 

32. Citrus reticulata Orange Fruit, peel 

Alzheimer’s disease, 

cough, phlegm, diabetes, 

hepatic steatosis, cancer 

mRNA expression ↑, 

GLUT-4 translocation↑, 

insulin sensitivity↑, 

serum fructosamine 

level ↓, glucose 

tolerance↑ 

STZ-induced 

Wistar rats 
100mg/kg/day 28 days 

Flavonoids hesperidin, 

quercetin, naringin, 

nobiletin, tangeretin 

[291-295] 

33. Cocos nucifera Coconut Fruit, husk, water 

Diarrhea, diabetes, 

dermatitis, renal 

diseases, stomachaches, 

fever, asthma, abscesses, 

amenorrhea, gonorrhea, 

menstrual disorders 

Blood glucose↓, α-

amylase and α-

glucosidase activity ↓, 

DPPH free radicals↓, 

IR↓, oxidative stress↓, 

neuropathy↓, β-cell 

regeneration ↑ 

STZ-induced 

Wistar rats 

250-500 

mg/kg/day 
28 days 

Chlorogenic, gallic, 

ferulic, salicylic, 

coumaric acids, 

glycosides, rutin, 

quercetin, vanillin, 

catechin, epicatechin, 

neochlorogenic acid, 

chlorogenic acid, lutein 

[297-304] 
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34. Coffea Arabica L. Coffee 
Leaves, fruit, 

beans 

Flu, anemia, edema, 

asthenia., asthma, 

backache, cough, 

jaundice, diarrhea, 

intestinal pain, migraine, 

headache, fever, purulent 

wounds, pharyngitis, 

diabetes, stomatitis 

Blood glucose↓, insulin 

secretion↑, α-amylase 

and α-glucosidase 

activity↓, 

nephropathy↓, plasma 

insulin↑, IR↓, TG↓ 

STZ-induced 

Wistar rats 

1000mg/ 

kg/day 

 

90 days 

Chlorogenic acids, 

caffeic, p-coumaric, 

vanillic, ferulic, 

protocatechuic acids, 

flavonoids, alkaloids, 

caffeine, sitosterol, 

stigmasterol, coffeasterin, 

kaempherol, quercetin, 

sinapic, quinolic, 

trigonelline, 

caffeoylquinic, 

dicaffeoylquinic 

[305-307,635] 

35. Colocasia esculenta Taro Stem, leaves 

Rheumatic pain, 

diabetes, hypertension, 

pulmonary congestion 

Blood glucose↓, HbA1c↓, 

TC↓, TG↓, LDL-C↓, 

VLDL↓, HDL↑, body 

weight↓ 

STZ-induced 

Wistar rats 

405-810 

mg/kg/day 
28 days 

Tannins, phytates, 

oxalates, tryptophan, 

chlorogenic acid, 

anthraquinone, vitexin, 

catechins, apigenin, 

cinnamic acids, 

isovitexin, orientin, 

isoorientin, rosmarinic 

acid 

[308-312] 

36. Coriandrum sativum Coriander Seeds, leaves 

Diarrhea, flatulence, 

colic, indigestion, 

gastrointestinal diseases, 

diabetes 

Diabetic neuropathy↓, 

Blood glucose↓, MDA↓, 

GSH↑, SOD↑, TC↓, TG↓, 

LDL-C↓, AGEs 

formation↓, lipid 

peroxidation↓, oxidative 

stress↓, TNF-α↓ 

STZ-NA induced 

Wistar rats 

100-400 

mg/kg/day 
45 days 

Flavonoid, tocopherol, 

tocotrienol sterol, 

carotenoids, terpenoids, 

steroids, saponin, tannin, 

alkaloids 

[313-317] 

37. Crocus sativus L. Saffron Flower stigma 

CNS diseases, diabetes, 

obesity, cancer, 

dyslipidemia 

Blood glucose↓, MDA↓, 

NO↓, GSH↑, SOD↑, TC↓, 

TG↓, LDL-C↓, α-amylase 

and α-glucosidase 

activity↓, inflammation↓ 

STZ-induced 

Wistar rats 

10-40mg 

/kg/day 
28 days 

Crocin, β carotenes, 

crocetin, picrocrocin, 

zeaxanthene, safranal 

[318-323] 

38. Cuminum Cyminum L. Cumin seeds Seeds 

Diarrhea, dyspepsia, 

epilepsy, toothache, 

whooping cough, 

flatulence, indigestion, 

diabetes, jaundice 

Blood glucose↓, AGEs 

formation↓, HbA1c↓, 

creatinine↓, blood urea 

nitrogen↓, serum 

insulin↑, oxidative 

stress↓, 

nephropathy↓ 

STZ-induced 

Wistar rats 

200-600 

mg/kg/day 
28 days 

Carvacrol, carvone, α-

pinene, limonene, γ-

terpinene, linalool, 

carvenone, p-cymene, 

cumin aldehyde, 

limonene, α- and β-

pinene, terpinene,s 

safranal and linalool 

[324-326] 
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39. Cucumis sativus Cucumber Fruit, seeds 

Sunburn, skin irritation, 

constipation, 

thermoplegia, gall 

bladder stone, 

hyperdipsia, diabetes 

Blood glucose↓ IR↓, 

body weight↓, insulin 

sensitivity↑, 

gluconeogenesis↓, 

glucagon secretion↓ 

STZ-induced 

Wistar rats 

200-800 mg 

/kg/day 
9 days 

Cucurbitacin, cucumerin, 

cucumegastigmanes 

vitexin, orientin, 

apigenin, isoscoparin 

[327-330] 

40. Cucurbita pepo L. Pumpkin Fruit, seeds 

Dermatitis, depression, 

irritable bladder, 

intestinal inflammation, 

prostate enlargement, 

hyperglycemia 

Blood glucose↓, TC↓, 

TG↓, LDL-C↓, HDL↑, 

IR↓, ROS↓, SOD↑, GSH↑, 

MDA↓ 

STZ-induced 

T2DM mice 
400mg/kg/day 56 days 

β-carotene, zeaxanthin, 

lutein,flavonoids, 

alkaloids, 

polysaccharides, 

polyphenols 

[331-335] 

41. Curcuma longa L. Turmeric Fruit 

Cough, diabetes, 

arthritis, gall bladder 

stones, dermatitis, 

cancer, intestinal, 

stomachic diseases 

Blood glucose↓, FBG↓, 

insulin sensitivity↑, β-

cell function↑, IR↓, 

GLUT-2 activity↑, 

insulin secretion↑, 

glucose uptake↑ 

STZ-Na induced 

Wistar rats 

30-60 

mg/kg/day 
30 days 

Caffeic acid, curdione, 

coumaric, caffeic acid, 

casuarinin, curcuminol, 

isorhamnetin, valoneic 

acid, eugenol, 

corymbolone, 

demethoxycurcumin 

[336-340] 

42. Daucus carota Carrot Fruit 

Diarrhea, constipation, 

intestinal inflammation, 

weakness, illness, 

diabetes, rickets 

Blood glucose↓ IR↓, 

Obesity↓, body weight↓, 

BMI↓, α-amylase and α-

glucosidase activity↓ 

 

High fructose 

induced Wistar 

rats 

50ml/kg/ day 56 days 

Carotenoid, 

polyacetylenes, ascorbic 

acid, α and β-carotene, 

lutein, lycopene, 

anthocyanins 

[341-344,636] 

43. Ficus carica Fig 
Fruit, leaves, bark, 

roots 

Dermatitis, leprosy, 

cancer, anemia, diabetes, 

paralysis, urinary tract 

infection, ulcer, liver 

diseases 

FBG↓, PPBG↓, TG↓, 

HDL↑, LDL↓, VLDL↓, 

TC↓, pancreatic β-cell 

apoptosis↓, pancreatic 

AMPK↑, caspase-3↓, 

body weight ↓ 

STZ-induced 

C57BL/6 mice 
2000 mg/kg/day 42 days 

Eugenol, anthocyanins, 

volatile compounds, 

phenolic acids, flavones, 

flavanols 

[345-350] 

44. Fragaria ananassa Strawberry Fruit, leaves 

Wound healing, platelet 

aggregation, obesity, 

diabetes 

Blood glucose↓, IR↓, 

insulin secretion↑, α-

amylase and α-

glucosidase activities↓, 

plasma creatinine↓, 

MDA↓, TNF-α↓, IL-6↓, 

caspase-3↓ 

STZ-induced 

Albino rats 

50-200 

mg/kg/day 
30 days 

Quercetin, kaempferol, 

rutin, gallic acid, 

chlorogenic acid, caffeic 

acid, ellagitannins, 

octadecatrienoic acid, 

vitamin C and E, folic 

acid, carotenoids, 

anthocyanins, 

gallotannins 

[351-355,637] 

45. Glycine max Soya bean Seeds, leaves 

Osteoporosis, 

cardiovascular disease, 

diabetes 

Blood glucose↓, FBG↓, 

IR↓, TC↓, TG↓, LDL-C↓, 

α-glucosidase activity↓, 

HbA1c↓, HDL↑, body 

T2DM obese 

patients 

(43-51 years) 

2000 mg/kg/day 84 days 

β-conglycinin, phenolic 

acids, flavonoids, 

isoflavones, saponins, 

phytosterols, 

sphingolipids 

[356-360,638] 
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weight↓, glucose 

uptake↑ 

46. Helianthus annuus Sunflower Flowers, seeds 

Diabetes, nephrotoxicity, 

cardiovascular disease, 

hematologic disorders 

Blood glucose↓, 

nephropathy↓, FBG↓, 

BMI↓, body weight↓, 

AGEs formation↓, 

DPPH↓, NO↓, urea↓ 

Alloxan- 

Induced 

Albino rats 

150-600 

mg/kg/day 

 

21 days 

Flavonoids, alkaloids, 

saponins, tocopherols, 

carotenoids, saponins, 

tannins, chlorogenic acid 

and caffeic acid 

[361-364,] 

47. Hibiscus rosa-sinensis Linn. China rose Flowers, leaves 

Tumor, hairloss, 

infertility, diabetes, 

wounds 

Blood glucose↓, insulin 

secretion↑, β-cell 

function↑, TC↓, TG↓, 

hepatic glycogen↓, SOD↑ 

STZ-induced 

Long Evans rats 

250-500 

mg/kg/day 

 

28 days 

Quercetin, cyanidin, 

ascorbic acid, genistic 

acid, lauric acid, 

thiamine, niacin, 

margaric acid, calcium 

oxalate, hentriacontane 

[365-369] 

48. Hylocereus undatus Dragon fruit Fruit, seeds 
Diuretic, healing agent, 

laxative, gastritis aid 

Blood glucose↓, MDA↓, 

FBG↓, SOD↑, GLUT2↑, 

oxidative stress↓ 

STZ-induced 

Sprague Dawley 

rats 

250-500 

mg/kg/day 
35 days 

Lycopene, β-carotene, 

betacyanin,oleic acid, 

octacosane, phthalic acid, 

eicosane, 

tetratriacontane, 

tacosane, campesterol 

linoleic acid, palmitic 

acid, gallic acid, syringic 

acid, protocatechuic acid, 

p-coumaric acid 

[370-372,639] 

49. Ipomoea batatas Sweet potato Fruit 

Aphrodisiac, burns, 

catarrh, diarrhea, fever, 

nausea, splenosis, 

stomach distress, 

anemia, tumors, 

hypertension, , 

prostatitis, asthma, 

Blood glucose↓, IR↓, 

Insulin sensitivity↑, 

glucose tolerance↑, 

insulin secretion↑ 

T2DM patients 

(58±8 years) 
4000 mg/kg/day 42 days 

Anthraquinones, 

coumarins, flavonoids, 

saponins, tannins, 

phenolic acids, quercetin, 

chlorogenic acid, 

terpenoids, β-carotene, 

zeaxanthin, lutein, 

anthocyanins 

[373-377,640] 

 

50. Juglans regia L. Walnut Nut, leaves 

Curing bacterial 

infections, stomachaches, 

thyroid issues, diabetes. 

cancer, heart conditions, 

sinusitis 

Blood glucose↓, α-

amylase and α-

glucosidase activity↓, 

PTP1B↓ 

STZ-induced 

Wistar rats 

25-100 

mg/kg/day 
28 days 

tocopherol, gallic acid, 

protocatechuic acid, 

caffeic acid, chlorogenic 

acid, catechin, vanillic 

acid, epicatechin, p-

coumaric acid, 

isoquercitrin, quercetin, 

luteolin, kaempferol and 

apigenin 

[378-381] 
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51. Lactuca sativa Lettuce Leaves 

Hyperglycemia, 

osteodynia, 

inflammations 

FBG↓, TC↓, TG↓, LDL-

C↓, HDL↑, β-cell 

function↑, SOD↑, GSH↑, 

glucose production ↑ 

STZ-induced 

Wistar rats 
50mg/kg/ day 28 days 

flavonoids, quercetin, 

flavonols, anthocyanins, 

hydroxycinnamoyl 

derivatives 

[382-386] 

52. Lagenaria siceraria Bottle gourd Fruit, leaves, seeds 

Jaundice, diabetes, 

constipation, flatulence, 

insomnia, ulcer, piles, 

colitis, insanity, 

hypertension, congestive 

cardiac failure, skin 

diseases, headaches 

Blood glucose↓, HbA1c↓, 

FBG↓, body weight ↓, 

TC↓, TG↓, insulin 

production↑, glucose 

tolerance↑, intestinal 

glucose absorption↓ 

STZ-induced 

Wistar rats 
400mg/kg/day 15 days 

Isovitexin, isoorientin, 

saponarin, fucosterol, 

campesterol, cucurbitacin 

B, cucurbitacin D, 

cucurbitacin E, 

isoquercitrin, 

kaempferol, gallic acid 

and protocatechuic acid 

[387-390] 

53. Laurus nobilis Bay leaves Leaves 

Stomachaches, phlegm, 

cold, sore throat, 

headache, indigestion, 

flatulence, eructation, 

epigastric bloating, 

diabetes 

Blood glucose↓, β-cell 

function↑, α-glucosidase 

activity↓, Insulin 

production↑, 

β-cell regeneration↑ 

STZ-induced 

Wistar rats 
200mg/kg/day 28 days 

Kaempferol, syringic 

acid, quercetin, apigenin, 

luteolin, lauric acid, 

palmitic acid, linoleic 

acid, lutein, eugenol 

[391-394] 

54. Litchi chinensis Lychee Fruit, seeds 

Cough, ulcer, flatulence, 

testicular swelling, 

diabetes, hernia, obesity 

Blood glucose↓, FBG↓, 

renoprotection↑, IR↓, 

glucose tolerance↑, TG↓, 

α-glucosidase activity↓ 

Alloxan- induced 

Wistar rats 
2.6 mg/kg/day 30 days 

Flavonoids, triterpenes, 

sterols, phenolic 

compounds 

[395-397] 

55. Luffa acutangula Ridge gourd Fruit, seeds 

Jaundice, hemorrhoids, 

dysentery, headache, 

ringworm infection, 

insect bite, urinary 

bladder stone, granular 

conjunctivitis, 

constipation, leprosy, 

diabetes 

Blood glucose↓, HbA1c↓, 

FBG↓, ALT↓, AST↓, TC↓, 

TG↓, LDL-C↓, VLDL↓, 

gluconeogenesis↓ 

STZ-induced 

Wistar rats 

200-400 

mg/kg/day 
21 days 

Luffaculin, luffangulin, 

apigenin, luteolin, 

myristic acid, palmitic 

acid, oleic acid, linoleic 

acid, oleanolic acid, 

machaelinic acid, α-

thujene, terpinene 

[398,399,641] 

56. Malus domestica Borkh Apple Fruit, peel 

Wound healing, diabetes, 

asthma, obesity, 

cardiovascular disease 

Blood pressure↓, 

endothelial function↑, 

lipid homeostasis↑, 

insulin resistance ↓ 

HFHF-fed ICR 

mice 

250 mg/kg/ 

day 
28 days 

Procyanidins, flavonoids, 

chlorogenic acids, 

hydroxycinnamic acids, 

anthocyanins, quercetins 

[400-409,642] 

57. Mangifera indica Mango 
Fruit, peel, bark, 

seeds 

Asthma, tetanus, 

polyuria, dysentery, 

anthrax, indigestion, 

tumor, tympanites, 

diarrhea, colic 

FBG↓, HbA1c↓, serum 

fructosamine level↓, 

plasma insulin ↑, α-

amylase and α-

glucosidase activities↓, 

PPBG ↓ 

STZ-induced 

Wistar rats 
100-200 mg/kg/day 60 days 

Mangiferins, carotenoids, 

flavonoids, anthocyanins, 

gallic acid, 

protocatechuic acid, 

chlorogenic acid, ferulic 

acid 

[410-415] 

58. Mentha spicata Mint leaves Leaves 
Cough, cold, asthma, 

fever, obesity, dementia, 

FBG↓, TC↓, TG↓, LDL-

C↓, VLDL↓ MDA↓, body 

Alloxan- induced 

Wistar rats 
300mg/kg/day 21 days 

Carvone, limonene, 1,8-

cineole, pulegone, β-
[416-418, 643] 
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hypertension, abdominal 

pain, headache, 

menstrual pain, 

depression, insomnia 

weight↓, HDL↑, α-

amylase and α-

glucosidase activity↓ 

bourbonene, β-pinene, 

dihydrocarveol, α-

phellandrene, borneol, 

linalool, germacrene D 

and piperitone 

59. Moringa oleifera Lam. Moringa Fruit, leaves 

Diabetes, liver disease, 

cancer, inflammation, 

hypercholesteremi, 

hypertension 

Blood glucose↓, hepatic 

functions↑, FBG↓, TC↓, 

TG↓, LDL-C↓, VLDL↓, 

HDL↑, α-amylase and α-

glucosidase activity↓ 

 

High fat died 

induced C57BL/6 

mice. 

200mg/kg/day 21 days 

Tannins, βcarotene, 

vitamin C, quercetin, 

alkaloids, saponins, 

steroids, phenolic acids, 

glucosinolates, 

flavonoids, terpenes 

[419-423] 

60. Momordica charantia Bitter gourd Fruit, leaves, seeds 

T2DM, dyslipidemia, 

cancer, obesity, malaria, 

dysentery, hypertension, 

worm infections 

Blood glucose↓, 

fructosamine↓, IR↓, TC↓, 

TG↓, insulin secretion↑, 

HDL↑, MDA↓, GSH↑, 

glucose uptake↑, β-cell 

function↑ 

STZ-induced 

Albino rats 

10 mL/kg/ 

day 
21 days 

Saponins, triterpenes, 

flavonoids, ascorbic 

acids, steroids, tannins, 

alkaloids, cardiac 

glycosides, phlobatinnins 

anthraquinones 

[424-432] 

61. Morus alba L. Mulberry Fruit, leaves 

Insomnia, tinnitus, 

dizziness, premature 

aging, diabetes 

FBG↓, IR↓, TG↓, HDL↑, 

LDL↓, TC↓, GLUT-4 

translocation↑ 

STZ-induced HFF 

Wistar rats 
400 mg/kg/ day 49 days 

Quercetin, isoquercetin 

alkaloids, polyphenols, 

flavonoids, anthocyanins 

[434-437] 

62. Murraya koenigii L. Curry leaves Leaves 

Piles, inflammation, 

itching, fresh cuts, 

dysentery, bruises, 

edema, body aches, 

diabetes, snakebites 

Blood glucose↓, MDA↓, 

GSH↑, IR↓, β-cell 

regeneration↑ 

STZ-NA induced 

Sprague Dawley 

rats 

200-400 

mg/kg/day 
28 days 

Mahanine, mahanimbine, 

murrayanol, koenimbine, 

koenigicine, koenigine, 

murrayone, isomahanine, 

glycozoline, mukonicine, 

murrayazolinol, 

murrayacine, quercetin, 

apigenin, kaempferol, 

catechin 

[438-441] 

63. Myristica fragrans Houtt. Nutmeg Fruit, seeds 

Skin infection, diarrhea, 

diabetes, Alzheimer’s 

diseases, rheumatism, 

asthma, cold, cough, 

malaria 

Blood glucose↓, serum 

insulin↑, oxidative 

stress↓, β-cell function↑, 

AMPK↑, IL-6↓, TNF-α↓ 

Chlorpromazine-

induced obese 

Swiss albino mice 

50-450 

mg/kg/day 
7 days 

Flavonoids, terpenes, 

phenylpropanoids, 

coumarin, lignans, 

alkanes and indole 

alkaloids 

[442-445] 

64. Nigella sativa L. Black seeds Seeds 
Asthma, dyslipidemia, 

diabetes, diarrhea 

Blood glucose↓, α-

amylase and α-

glucosidase activity↓, 

serum lipids↓ insulin 

sensitivity↑, 

gluconeogenesis↓ 

STZ-induced 

Swiss albino mice 

100-700 

mg/kg/day 
28 days 

Thymoquinone, thymol, 

limonene, carvacrol, p-

cymene, longifolene, α-

pinene, linoleic acid, oleic 

acid, palmitic acid, 

saponins, flavonoids, 

alkaloids 

[446-450] 
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65. Ocimum sanctum L. Holy basil Leaves, seeds 

Anxiety, cough, asthma, 

diarrhea, fever, 

dysentery, arthritis, eye 

diseases, skin diseases, 

malaria, vomiting, 

cardiac and 

genitourinary infection 

TC↓, TG↓, LDL↓, 

VLDL↓, atherogenic 

index ↓, GSH ↑, 

Insulin production↑, 

intestinal glucose 

absorption↓ 

 

Alloxan- induced 

diabetic rabbits 

0.8 mg/kg/ 

Day 
28 days 

Eugenol, euginal, 

urosolic acid, carvacrol, 

linalool, caryophyllene, 

triterpenoids, tannins 

[451-454,644] 

66. Olea europaea L. Olive Fruit, leaves 

Diabetes, diarrhea, 

inflammation, urinary 

tract infection, intestinal 

diseases, hemorrhoids, 

rheumatisms 

Blood glucose↓, 

inflammatory 

cytokines↓, body 

weight↓, 

gluconeogenesis↓, 

glucose-6-phosphatase 

enzyme activity↓ 

STZ-induced 

Wistar rats 

200-400 

mg/kg/day 
70 days 

Flavonoids, secoiridoids, 

hydroxytyrosol and 

tyrosol, cinnamic acid 

[455-460] 

67. Origanum vulgare Oregano Leaves 

Acne, cystic fibrosis, 

diabetes, bacterial 

infections 

Blood glucose↓, glucose 

uptake↑, GLUT2↑, α-

amylase and α-

glucosidase activity↓, 

oxidative stress↓ 

STZ-induced 

Diabetic rats 

20mg/kg/ 

Day 
15 days 

Amburoside, apigenin, 

luteolin 7-O-glucuronide, 

rosmarinic acid and 

lithospheric acid 

[461-465,645] 

68. Passiflora edulis Passion fruit Fruit, peel 

Cough, diabetes, 

dysmenorrhea, 

dysentery, arthralgia, 

constipation 

Blood glucose↓, TG↓, 

TC↓, interleukins↓, body 

weight↓, insulin 

sensitivity ↑, glucose 

tolerance ↑ 

Cafeteria diet 

induced C57BL/6 

mice 

15% of PEPF (P. 

edulis peel flour) in 

CAF diet 

112 days 

Piceatannol, flavonoids, 

triterpenoids, 

tocopherols, linoleic acid, 

vitexin, carotenoid, 

orientin, isoorientin, 

gallic acid, rutin, 

quercetin, ascorbic acid 

[466-474] 

69. Persea americana Mill. Avocado 
Fruit, leaves, 

seeds, bark 

Cardiovascular diseases, 

diabetes 

Blood glucose↓, 

metabolic state ↑, 

activation of Akt/Pkb, 

glucose uptake↑, β-cell 

regeneration↑, HDL-c↑, 

LDL↓ 

STZ-induced 

Wistar rats 

150-300 mg 

/kg/day 
28 days 

Flavonoids, alkaloids, 

saponins, tannins, 

carbohydrates, 

glycosides 

[475-479] 

70. Petroselinum crispum Parsley 
Leaves, seeds, 

roots 

Otitis, urinary tract 

infection, dysmenorrhea, 

hypertension, diabetes, 

dermatitis, 

gastrointestinal disorders 

Blood glucose↓, NEG↓, 

lipid peroxidation↓, 

body weight↓, GSH↓, 

insulin sensitivity↑, 

gluconeogenesis↓ 

STZ-induced 

Swiss albino mice 
200 mg/kg/day 42 days 

Courmarins, phthalides, 

phenyl propanoids, 

tocopherols, apigenin, 

myristicin, apiol 

[480-483] 

71. Phaseolus vulgaris L. Kidney bean Seeds 

Wound healing, 

pharyngitis, fever, 

unpleasant body odor, 

obesity, diabetes, vaginal 

infection 

Blood glucose↓, insulin 

sensitivity↑,  TC↓, TG↓, 

gluconeogenesis↓, α-

glucosidase activity↓ 

STZ-induced 

Wistar rats 
150mg/kg/day 40 days 

Protocatechuic acid, p‐

coumaric acid, 

procyanidin, myricetin, 

naringenin, gallic acid, 

[484-487] 
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quercetin, catechin, 

kaempferol, ferulic acid 

72. Phoenix dactylifera L. Date Fruit, leaves 

Fever, inflammation, 

nervous disorders, loss 

of consciousness, 

dementia 

Blood glucose↓, serum 

insulin↑, MDA↓, TNF-

α↓, CRP↓ 

STZ-induced 

diabetic rats 
200 mg/kg/ day 30 days 

Ellagic acid, gallic acid, 

p-coumaric acid, 

apigenin, naringin, gallic 

acid, catechin, ferulic 

acid, sinapic acid, 

epicatechin, vanillic acid, 

coumarin, quercetin, 

rutin, myricetin, luteolin, 

kaempferol, 

isorhamnetin, rhamnetin, 

β-sitosterol, 

isorhamnetin, 

procyanidin, 

protocatechuic acid 

[488-491,646] 

73.Phyllanthus emblica L. Amla 
Fruit, leaves, bark, 

roots 

Cold, fever, cough, 

hyperacidity, peptic 

ulcer, erysipelas, 

jaundice, diarrhea, 

dysentery, leprosy, 

hemorrhages, 

hematogenesis, anemia, 

asthma, bronchitis, colic, 

dyspepsia, hepatopathy, 

leucorrhea, menorrhagia 

Blood glucose↓, TG↓, 

TC↓, LDL↓, HDL↑, α-

amylase and α-

glucosidase activities↓, 

AMPK↑ 

STZ-induced 

Wistar rats 
25-75 mg /kg/day 28 days 

Phyllembelic acid, gallic 

acid, ellagic acid, pectin, 

quercetin, linolenic, 

linoleic, oleic, stearic, 

palmitic, myristic acid, 

tannins, chebulic, 

chebulagic, chebulinic 

acids, alkaloids 

phyllantidine, 

phyllantine, lupeol, 

leucodelphinidin. 

corilagin, digallic acid, 

kaempferol and zeatin 

[492-495,647] 

74. Piper betle L. Betel leaf Leaves 

Wound healing, 

bronchitis, diabetes, 

cough, indigestion in 

children, headaches, 

arthritis, 

FBG↓, HbA1c↓, IR↓, 

insulin production↑, 

glucokinase activity↑ 

STZ-induced 

Wistar rats 

75-150mg 

/kg/day 
30 days 

Estragole, linalool, safrol, 

terpenes, phenols, 

steroids, saponins, 

tannins 

[496-499] 

75. Pisum sativum L. Pea Seeds 

Blood purifying, 

wrinkled skin, acne, 

phlegm, intestinal 

inflammation, 

constipation, diabetes 

Blood glucose↓, HbA1c↓, 

NO↓, plasma insulin ↑, 

glucose homeostasis↑, 

glucose tolerance↑, 

polyphagia↓, TG↓, LDL-

C↓, α-glucosidase 

activity↓, body weight↓ 

STZ-induced ICR 

mice 

100-400mg 

/kg/day 
42 days 

Flavonoid, quercetin, 

ellagic acid, coumaric 

acid, β-sitosterol, β-

amyrin, catechin, 

myricetin, vanillic acid, 

kaempferol 

[500-503] 
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76. Prunus armeniaca L. Apricot Fruit, leaves 

Cancer, atherosclerosis, 

angina, retinopathy, 

nephropathy, 

hypertension, diabetes 

Blood glucose↓, FBG↓, α-

glucosidase activity↓, 

HbA1c↓, insulin 

secretion↑, oxidative 

stress ↓ 

Alloxan- induced 

Swiss mice 
2-8 mg/kg/day 56 days 

Chlorogenic, gallic, 

ferulic, salicylic, 

coumaric acids, 

glycosides, rutin, 

quercetin, vanillin, 

catechin, epicatechin, 

neochlorogenic acid, 

chlorogenic acid, lutein 

[504-506] 

77. Prunus domestica Plum Fruit 

Anemia, neurasthenia, 

leukorrhea, Alzheimer’s 

disease, irregular 

menstruation, anxiety, 

diabetes, constipation 

Blood glucose↓, TG↓, 

TC↓, LDL↓, α-amylase 

and α-glucosidase 

activities↓, HMGCoA 

reductase↓, oxidative 

stress ↓ 

STZ-induced 

Swiss Albino 

mice 

50 mg/kg/day 20 days 

Chlorogenic acid, 

neochlorogenic acid, 

tocopherols, β-carotenes, 

quercetin, myricetin, 

kaempferol, citric acid, 

malic acid 

[507-514] 

78. Prunus dulcis Almonds Nut 

CNS disorders, 

respiratory disorders, 

diabetes, urinary tract 

infections 

FBG↓, TC↓, TG↓, LDL↓, 

stomach emptying, 

time↓, insulin 

production↑ 

T2DM patients 

(n=58 years) 
60000 mg/kg/ day 84 days 

Oleic acid, linoleic acid, 

palmitic acid, arachidic 

acid, anthocyanin, 

kaempferol, quercetin, 

isorhamnetin, 

galactosidase, 

chlorogenic acid 

[515-516] 

79. Prunus persica L. Peach Fruit, peel, leaves 

Enhancing blood 

circulation, blood 

clotting, constipation, 

diabetes 

Body weight↓, lipid 

metabolism↑, 

lipogenesis↓, fatty acid 

oxidation↑, α-amylase 

and α-glucosidase 

activities↓, β-cell 

regeneration↑ 

HFF C57BL/6 

male mice 

200-600 

mg/kg/day 
56 days 

Procyanidin, epicatechin, 

catechin, prunin, 

phloridzin, naringenin, 

neochlorogenic acid, 

caffeoylquinic acid, 

chlorogenic acid, 

quercetin, aucubin, 

kaempferol, prunitrin 

[517-520,648] 

80. Punica granatum Pome-granate Fruit, peel, seeds 

Dysentery, diarrhea, 

piles, bronchitis, 

biliousness, diabetes 

Blood glucose↓, TG↓, 

TC↓, HDL↑, LDL↓, 

intestinal glucose 

absorption↓, GLUT-4 

translocation ↑ 

Alloxan- induced 

Albino eats 
500 mg/kg/ day 14 days 

Ellagic acid, gallotannins, 

anthocyanins, quercetin, 

kaempferol, luteolin 

glycosides, punicalin, 

punicafolin, luteolin, 

apigenin, anthocyanins, 

linoleic, oleic, palmitic, 

stearic, linolenic, 

arachidic and palmitoleic 

acids 

[521-524] 

81. Psidium guajava L. Guava Fruit, leaves 
Dysentery, diabetes and 

diarrhea 

PPBG↓, FBG↓, HbA1c↓, 

IR↓, TG↓, TC↓, α-

amylase and α-

Prediabetes and 

mild T2DM 

patients 

190 mg/kg 

3 times a day 
84 days 

Quercetin, avicularin, 

apigenin, guaijaverin, 

kaempferol, hyperin, 

[525-533] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2024                   doi:10.20944/preprints202408.1739.v1

https://doi.org/10.20944/preprints202408.1739.v1


 42 

 

glucosidase activities↓, 

malondialdehyde↓ 

myricetin, gallic acid, 

catechin, epicatechin, 

chlorogenic acid, 

epigallocatechin gallate, 

caffeic acid 

82. Raphanus sativus L. Radish Fruit, leaves 

Gallbladder stone, 

jaundice, flatulence, 

indigestion, various 

gastric ailments, piles, 

constipation, indigestion, 

colic, dyspepsia, liver 

enlargement, diabetes 

IR↓, intestinal glucose 

absorption↓, glucose 

uptake↑, glycoalbumin↓, 

fructosamine ↓ 

STZ-induced 

T2DM rats 

2.2% of the diet/ 

day 
21 days 

Myricetin, catechin, 

epicatechin, quercetin, 

vanillic acid, sinapic acid, 

p-coumaric acid, β-

carotene, camphene, 

piperitone, carvacrol, 

linoleic acid, oleic acid, 

anthocyanin 

[534-537] 

83. Rosmarinus officinalis L. Rosemary Leaves 

Mycosis, alopecia, 

ultraviolet damage, skin 

cancer, inflammatory 

diseases, diabetes 

FBG↓, TC↓, TG↓, LDL-

C↓, GLUT-4 

translocation↑, HDL↑, 

Irs1↓, IR↓, 

gluconeogenesis↓, 

glucose uptake↑ 

STZ-induced 

Wistar rats 
4000 mg/kg/day 28 days 

Flavonoids, carnosol, 

carnosoic, rosmarinic, 

ursolic, oleanolic, 

micromeric acids 

[538-544] 

84. Rubus fruticosus Blackberry Fruit, leaves 

Mouthwash, gum 

inflammations, mouth 

ulcers, sore throat, 

respiratory disorders, 

anemia, diarrhea, 

dysentery, cystitis, 

diabetes, hemorrhoids 

Blood glucose↓, α-

amylase and α-

glucosidase activities↓, 

oxidative stress↓ 

STZ-induced 

Sprague–Dawley 

rats 

300 mg/L/day 35 days 

Anthocyanins, malvidin, 

pelargonidin, cyanidins, 

kaempferol, quercetin, 

myricetin, p-coumaric 

acid, ferulic acid, rutin, 

coumarins, gallic acid 

[545-548] 

85. Salvia hispanica L. Chia seeds Seeds 

Indigestion, 

hyperlipidemia, diabetes 

mellitus 

Blood glucose↓, HbA1c↓, 

FBG↓, macrovascular 

complications↓, body 

weight↓, inflammatory 

cytokines↓, TC↓, TG↓, 

LDL-C↓, α-amylase and 

α-glucosidase activity↓ 

T2DM patients 

(n=42) 
40000 mg/kg/day 84 days 

Myricetin, quercetin, 

chlorogenic acid, 

kaempferol and caffeic 

acid 

[549-553] 

86. Sesamum indicum 
White sesame 

seeds 
Seeds 

Wound healing, 

amenorrhea, ulcer, 

asthma, hemorrhoids, 

inflammations, diabetes 

Blood glucose↓, HbA1c↓, 

FBG↓, TC↓, PPBG↓, 

oxidative stress↓, IR↓ 

nephropathy↓ 

T2DM patients 

(18-60 years) 
30 mg/kg/day 90 days 

Sesamin, sesaminol, 

gamma tocopherol, 

cephalin, flavonoids, 

phenolic acids, alkaloids, 

tannins, saponins, 

steroids, terpenoids 

[554-559] 

87. Solanum lycopersicum L. Tomato Fruit 

Dermatitis, cancer, 

hypertension, 

hyperglycemia 

Blood glucose↓ IR↓, 

SOD↑, GSH↑, MDA↓, 

inflammation↓ 

STZ-induced 

T2DM rats 

30-270mg 

/kg/day 
56 days 

Lycopene, carotenoids, 

homovanillic acid, 

chlorogenic acid, 

[560-566,649] 
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tomatine, kaempferol, 

quercetin, naringenin, p-

coumaric acid, caffeic 

acid 

88. Solanum melongena Eggplant Fruit, leaves 

Arthritis, diabetes, 

dyslipidemia, bronchitis, 

asthma 

Blood glucose↓, TC↓, 

TG↓, LDL-C↓, VLDL↓, 

HDL↑, oxidative stress↓, 

MDA↓, α-glucosidase 

activity↓, GLUT-4 

translocation↑, glucose 

uptake↑, 

gluconeogenesis↓ 

Alloxan-induced 

diabetic rats 

100-300 

mg/kg/day 
20 days 

Solasodine, thiamin, 

niacin, chlorogenic acid, 

saponins, delphinidin, 

anthocyanin, phenols, 

[567-571] 

89. Spinacia oleracea Spinach Leaves 

Remedy for bloody 

stools, diarrhea, 

stomachaches, obesity, 

diabetes 

Retinopathy↓, MDA↓, 

inflammation↓, oxidative 

stress↓, AGEs 

formation↓, lipid 

peroxidation↓, IL-6↓, 

TNF-α↓, IR↓ 

STZ-induced 

Wistar rats 
400mg/kg/day 84 days 

β-carotenoids, lutein, 

carotenoids, zeaxanthin, 

vitamins, minerals 

[572-577] 

90. Syzygium aromaticum Clove Flower buds 
Flatulence, diarrhea, 

diabetes, indigestion 

Blood glucose↓, PPAR-γ 

binding↑, aldose 

reductase↓ 

Diabetic KK-Ay 

mice 
657mg/kg/day 21 days 

Eugenol acetate, eugenol, 

gallic acid, terpenes, 

tannins, phenolics, 

steroids, flavonoids, 

glycosides and saponins 

[578-581,650] 

91. Syzygium cumini L. Java plum Fruit, seeds, bark 

Asthma, bronchitis, sore 

throat, biliousness, 

dysentery, diabetes, 

ulcers 

Blood glucose↓, TG↓, 

TC↓, LDL↓, HDL↑, 

HMGCoA reductase↓, β 

cells function ↑, urine 

glucose↓ 

Alloxan- induced 

diabetic Albino 

rabbits 

100 mg/kg/day 15 days 

Anthocyanins, glucoside, 

isoquercetin, ellagic acid, 

kaemferol, myricetin 

[582-584] 

92. Tamarindus indica L. Tamarind Fruit, leaves, seeds 

Inflammation, stomach 

pain, throat pain, 

rheumatism, wound, 

diarrhea, dysentery, 

fever, malaria, 

respiratory tract 

infection, constipation, 

cell cytotoxicity, 

gonorrhea, eye diseases 

Blood glucose↓, body 

weight ↓, glucose 

tolerance ↑, β-cell 

function↑, glucose 

tolerance↑, β-cells 

regeneration↑ 

Alloxan- induced 

Wistar albino rats 

100-250 

mg/kg/day 
14 days 

Apigenin, anthocyanin, 

procyanidin, catechin, 

epicatechin, taxifolin, 

eriodyctiol, naringenin 

[585-589] 

93. Theobroma cacao Cocoa Fruit, husk, seeds 

Measles, malaria, 

toothache as well as 

diabetes though 

improving insulin 

secretion, GLUT4 

Blood glucose↓, insulin 

secretion ↑, ATP↑, GSH↑, 

Nrf2↑ 

α-amylase and α-

glucosidase activity ↓ 

STZ-induced 

Sprague Dawley 

rats 

2.5 mg/mL 
4 hours 

 

Flavonoids, 

procyanidins, catechin, 

epicatechin, theobromine, 

caffeine 

[590-595] 
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translocation, glucose 

uptake 

94. Trichosanthes cucumerina L. Snake gourd 
Fruit, leaves, 

seeds, roots 

Bronchitis, headache, 

cathartic, anthelmintic, 

stomach disorders, 

indigestion, bilious 

fevers, boils, sores, 

eczema, dermatitis, 

psoriasis, ulcers, diabetes 

FBG↓, IR↓, TC↓, TG↓, 

LDL-C↓, insulin 

secretion↑, intestinal 

glucose absorption ↓ 

STZ-induced 

Albino rats 
750mg/kg/day 28 days 

Gallic acid, 

neochlorogenic acid, 

caffeic acid, p-coumaric 

acid, trans-ferulic acid, 

catechin hydrate, 

epicatechin, procyanidin 

A2, procyanidin B2, 

rutin, kaempferol, 

quercetin, ursolic acid, 

oleanolic acid 

[596-598] 

95. Trigonella foenum-graecum 
Fenugreek 

seeds 
Seeds 

Ulcer, sinusitis, hay 

fever, diarrhea, diabetes, 

kidney diseases 

Blood glucose↓, PPBG↓, 

FBG↓, glucose uptake↑, 

glucose tolerance↑, 

insulin sensitivity↑, 

intestinal glucose 

absorption↓ 

STZ-induced 

Long evans rats 

500 mg/kg/ 

Day 
28 days 

Steroids, alkaloids, 

flavonoids, polyphenols, 

saponins 

[599-602] 

97. Vaccinium corymbosum Blueberry Fruit, leaves 

Cold, inflammation, 

cardiovascular diseases, 

diabetes, ocular 

dysfunction 

Blood glucose↓, IR↓, 

insulin secretion↑, 

retinopathy, α-amylase 

and α-glucosidase 

activities↓ 

STZ-induced 

Wistar rats 

870 mg leaves/kg/ 

day and 430 mg 

leaves +1300 mg 

fresh fruits 

/kg/day 

56 days 

Anthocyanins, pectin, 

anthocyanidins, 

delphinidin, peonidin, 

malvidin, cyanidin, 

chlorogenic acid, malic 

acid, protocatechuic acid, 

petunidin 

[603-605,651] 

49. Vigna radiata Mung bean Seeds 

Heat stroke, 

gastrointestinal 

disorders, dermatitis, 

hyperglycemia, 

hypertension, 

hyperlipidemia, 

melanogenesis 

Blood glucose↓, TG↓, 

LDL↓, NO↓, α-amylase 

and α-glucosidase 

activity↓ 

Alloxan-induced 

Balb/c mice 
200-100mg/kg/day 10 days 

Flavonoids, quercetin, 

myricetin, kaempferol, 

catechin, vitexin, 

isovitexin, coumaric acid 

luteolin, caffeic and gallic 

acid 

[606-612,652] 

98. Vitis vinifera L. Grapes Fruit, seeds, peel 

Diarrhea, hepatitis, 

stomachaches, varicose 

veins, hemorrhoids, 

atherosclerosis, diabetes, 

high blood pressure, 

heavy menstrual 

bleeding, uterine 

bleeding, constipation 

Blood glucose↓, 

oxidative stress↓, β-cell 

regeneration↑, intestinal 

glucose absorption ↓ 

STZ-induced 

Wistar rats 

250-500 

mg/kg/day 
15 days 

Triterpenoid acids, 

oleanolic, betulinic acids, 

stilbenoid, gallic acid, 

catechin, epicatechin, 

gallocatechin, p-

coumaric, caffeic and 

ferulic acids 

[613-615] 
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99. Zea mays Corn Grains, husk 
Malaria, bladder stone, 

heart diseases, diabetes 

body weight↓, FBG↓, 

IR↓, TC↓, TG↓, LDL-C↓, 

HDL↑, MDA↓, SOD↑, 

oxidative stress↓, 

α-amylase and α-

glucosidase activity↓ 

STZ-induced HFF 

rats 

300-1200 

mg/kg/day 
28 days 

Flavonoids, alkaloids, 

saponins, phenols, 

tannins, phytosterols 

[616-621] 

100. Zingiber officinale Ginger Fruit 

Muscular aches, pains, 

sore throats, cramps, 

constipation, indigestion, 

vomiting, arthritis, 

rheumatism, diabetes, 

sprains, hypertension, 

dementia, fever, 

infectious diseases, 

helminthiasis 

Blood glucose↓, TC↓, TG, 

β-cell function↑, GLUT-4 

activity↑, β-cell 

function↑, PPAR-γ↑, 

glucose uptake↑, 

creatinine↓, body 

weight↓, urea↓ 

STZ-induced 

Sprague Dawley 

rats 

500 mg/kg/day 49 days 

β-phellandrene, 

camphene, cineole, 

geraniol, curcumene, 

citral, terpineol, borneol, 

α-zingiberene, zingiberol, 

gingerols, shogaols 3-

dihydroshogaols, 

paradols, 

dihydroparadols, 

gingerdiols, 

diarylheptanoids, 

isogingerol, isoshogaol  

gingerdiones 

[622-624,653] 

Table 2. Phytoconstituents in dietary plants and their role in T2DM. 

Dietary plants Plant parts Phytochemicals Pharmacological actions Reference 

1. Abelmoschus esculentus L. Fruit, roots Flavonoids, pectin, saponins, alkaloids 
Lowers blood glucose and lipids, reduces insulin resistance, 

and enhances GLUT-4 translocation  
[143-145] 

2.  Actinidia chinensis  Fruit  Triterpenoids, flavonoids, phenolic acids 
Lowers serum glucose, inflammatory cytokines, blood 

lipids 
[146-149] 

3. Aegle marmelos L. Fruit  
Oleic acid, p-cymene, linolenic acid, retinoic acid, myristic 

acid 

Enhances glucose tolerance and insulin sensitivity, 

suppresses α-amylase and α-glucosidase, delays intestinal 

glucose absorption  

[150-152,654] 

4. Agaricus bisporus Rhizome 
Catechin, lectin, β-glucans, Gallic acid, p-coumaric acid, 

Ferulic acid, Chlorogenic acid 

Regulates insulin and glucagon secretion, reduces body 

weight and serum glucose 
[153-157] 

5.. Allium cepa Fruit  
Quercetin, lectin, steroids, catechol, isoflavones, humulone, 

apigenin, rutin, myricetin, kaempferol, catechin 

Decreases α-glucosidase activity, oxidative stress, boosts 

insulin and adiponectin secretion, protects β-cells 
[158-162] 

6. Allium sativum L. Fruit  
Allicin, β-resorcylic acid, gallic acid, rutin, protocatechuic 

acid, quercetin 

Enhances insulin production, insulin secretion, glucose 

tolerance, insulin sensitivity and GLUT-4 expression 
[163-168] 

7. Aloe barbadensis Mill. Leaves Flavonoids, proanthocyanidins, phenolic acids 
Inhibits the glycation process, AGE formation and α-

amylase, α-glucosidase enzyme activity 
[169-175] 

8. Anacardium occidentale L. Nut, leaves, bark 

Kaempferol, anacardic acid, quercetin, linolenic acid, gallic 

acid, myricetin, catechin, protocatechuic acid, 

epigallocatechin, naringenin, epicatechin 

Inhibits glutamine-fructose-6-phosphate aminotransferase 

1 (GFAT1) and dipeptidyl peptidase-4 (DPP-4) activity 
[176-179,655] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2024                   doi:10.20944/preprints202408.1739.v1

https://doi.org/10.20944/preprints202408.1739.v1


 46 

 

9. Ananas comosus L. Fruit, peel, leaves 
Sinapic acid, daucosterol, coumarin, tannins, flavonoids, 

benzofuran, stillbenoid 

Improves insulin sensitivity and body weight, inhibits 

HMGCoA reductase activity 
[180-186] 

10. Apium graveolens  Leaves, seeds, roots Quercetin, thymoquinone, coumaric acid, gallic acid  
Improves insulin sensitivity, GLUT-4 translocation, 

mitochondrial dysfunction and inflammation 
[187-192] 

11. Artocarpus heterophyllus Fruit, leaves, bark, seeds, roots Carotenoid, tannins, sterols, Chysin, isoquercetine 
Decreases postprandial glucose, blood lipids, and inhibits 

α-amylase and α-glucosidase  
[195-199] 

12. Asparagus officinalis Stem Asparagine, tyrosine, arginine, flavonoid, saponin, resin 
Improves insulin secretion, insulin sensitivity, β-cell 

function and lowers blood glucose 
[200-204] 

13. Avena sativa Grains 
β-glucan, oleic, linoleic acids, caffeic acids, coumaric acids, 

gallic acids, avenanthramides  

Reduces glycosylated HbA1c, fasting blood glucose, 

postprandial glucose, insulin resistance 
[205-209,656] 

14. Averrhoa carambola L. Fruit 
Anthocyanins, rutin, triterpenoids, quercetin, catechin, 

epicatechin 

Elevates insulin secretion, glucose uptake in skeletal 

muscles and glycogen synthesis 
[210-214] 

15. Azadirachta indica 
Leaves, stem, bark, flower, 

roots, fruit 

Nimbidin, nimbin, nimbidol, quercetin, nimbosterone, ferulic 

acid, limonene, oleuropeoside 

Inhibits α-glucosidase and glucokinase, stimulates insulin 

secretion  
[215-219] 

16. Beta vulgaris Fruit  
Lycopene, betalains, betagarin, betavulgarin, quercetin, 

kaempherol, betanins, carotenoid, coumarin 

Inhibits α-amylase and α-glucosidase, gluconeogenesis, 

glycogenesis, and reduces serum glucose and lipids 
[220-222] 

17. Brassica juncea Seeds 
Chlorogenic acid, cinnamic acid, kaempferol, flavonoid, 

coumaric acid, vanillic acid  

Improves blood glucose, glucose tolerance, insulin 

secretion and inhibits intestinal glucose absorption  
[223-226] 

18. Brassica oleracea var. capitata Flower 
Myricetin, quercetin, kaempferol, apigenin, luteolin, 

Anthocyanidin 

Increases insulin sensitivity, β-cell function and lowers 

blood glucose 
[227-229] 

19. Brassica oleracea var. italica 
Flower 

 

Chlorogenic acid, apigenin, kaempferol, luteolin, quercetin 

and myricetin 

Reduces ROS formation and oxidative stress, inhibits α-

amylase and α-glucosidase, enhances insulin sensitivity 

and β-cell function 

[230-231] 

21. Camellia sinensis Leaves  

Theanine, proanthocyanidins, caffeine, myricetin, 

kaempferol, quercetin, chlorogenic acid, Catechins, 

epicatechin 

Attenuates insulin resistance and oxidative stress, inhibits 

α-amylase and α-glucosidase, regulates inflammatory 

cytokines production 

[232-235] 

20. Capsicum annuum L. Seeds 
Flavonoids, carotenoids, flavones, apigenin, quercetin and 

isoquercetin 

Activates AMPK, increases GLUT4 translocation, glucose 

uptake in skeletal muscle and inhibits gluconeogenesis  
[236-240] 

22. Carica papaya Fruit, seeds, leaves 

Saponins, alkaloids, kaempferol, flavonoids, phenols, 

terpenoids, 

steroids, quercetin, caffeic acid 

Decreases α-amylase and α-glucosidase activity, oxidative 

stress and plasma blood glucose 
[241-244] 

23. Carissa carandas Fruits  Lignans, flavonoids, Steroid, phenolic acid 
Inhibits α-amylase and α-glucosidase, pro-inflammatory 

cytokine release, and lowers blood glucose 
[245-249] 

24. Catharanthus roseus L. Flowers, leaves 
Gallic acid, rutin, p-coumaric acid, caffeic acid, quercetin, 

kaempferol, chlorogenic acid, ellagic acid, coumarin 

Increases insulin secretion and β-cell function, decreases 

blood glucose and lipids 
[250-254] 

25. Centella asiatica  Leaves  Centallase, quercetine, kaempferilm triterpene, ferulic acid 
Decreases oxidative and inflammatory stress, body weight, 

serum glucose and lipids 
[255-258] 

26. Chenopodium quinoa Grains 
Phytosterols, phytoecdysteroids, phenolics, 

tocophenols, betalains, tannins, glycine betaines 

Inhibits α-glucosidase, improves insulin sensitivity, lowers 

postprandial glycemia 
[259-265] 

27. Cicer arietinum  Grains 
Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, 

biochanin 

Inhibits α-amylase, α-glucosidase and dipeptidyl-4 (DPP4) 

enzymes 
[266-271] 
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28. Cinnamomum verum Bark  
Cinnamaldehyde, cinnamates, cinnamic acid, eugenol, 

cinnamyl acetate, linalool 

Enhances β-cell function, insulin secretion, GLUT-4 

translocation and inhibits α-amylase and α-glucosidase 
[272-275] 

29. Citrullus lanatus L. Fruit, seeds 
Lycopene, apigenin, kaempferol, rutin, p-coumaric acid, 

quercetin, ferulic acid 

Inhibits α-amylase and α-glucosidase activity, enhances 

GLUT4 and GLUT2 translocation, and lowers blood 

glucose 

[276-279] 

30. Citrus limon Fruit, peel, leaves Limocitrin, D-limonene, hesperidin, naringenin, flavonoid  
Decreases blood glucose and body weight and enhances 

GLUT4 translocation 
[280-287] 

31. Citrus maxima Fruit, peel Carotenoids, terpenoids, sterols, alkaloids, phenolics 

Facilitates weight loss, inhibits α-amylase and α-

glucosidase, increases glucose tolerance and aids diabetic 

nephropathy 

[288-290] 

32. Citrus reticulata Fruit, peel Hesperidin, quercetin, flavonoids, tannins, anthraquinones 

Enhances mRNA expression, 

GLUT-4 translocation, insulin sensitivity and glucose 

tolerance  

[291-295] 

33. Cocos nucifera Fruit, husk, water Tannins, resins, flavonoid, alkaloids 
Inhibits α-amylase and α-glucosidase activity, regenerate 

β-cells and aids diabetic neuropathy 
[297-304] 

34. Coffea Arabica L. Leaves, fruit, beans 

Coffeasterin, caffeine, caffeic acid, p-coumaric acid, vanillic 

acid, ferulic acid, sitosterol, stigmasterol, kaempherol, 

quercetin, sinapic acid 

Regenerates β-cells, inhibits α-glucosidase and enhances 

insulin secretion 
[305-307] 

35. Colocasia esculenta Stem, leaves 
Viexin, isovitexin, orientin, isoorientin, rosmarinic acid, 

luteolin 

Lowers blood glucose levels, oxidative stress and 

inflammation, inhibits aldose reductase and aids diabetic 

neuropathy 

[308-312,657] 

36. Coriandrum sativum Seeds, leaves Flavonoids, tocol, carotenoid, saponins 
Inhibits TNF-α, IL-6, AGEs formation and aids diabetic 

neuropathy and nephropathy  
[313-317] 

37. Crocus sativus L. Flower stigma 
Safranal, β carotenes, crocetin, crocin, picrocrocin, 

zeaxanthene 

Inhibits α-glucosidase and α-amylase, lowers blood 

glucose, lipids and inflammatory cytokines 
[318-323] 

38. Cuminum Cyminum L. Seeds Cumin aldehyde, safranal, linalool, carvone, carvacrol  
Protects β-cells, improves insulin secretion, lowers blood 

glucose  
[324-326] 

39. Cucumis sativus  Fruit, seeds 
Cucurbitacin, cucumerin A and B, cucumegastigmanes I and 

II, orientin, apigenin 

Reduces glucagon secretion, gluconeogenesis, glycolysis, 

enhances insulin sensitivity 
[327-330] 

40. Cucurbita pepo L. Fruit, seeds β-carotene, lutein flavonoids, zeaxanthin, alkaloid 
Lowers glucose in blood and urine, enhances glucose 

sensitivity, glutathione, reduces lipid levels 
[331-335] 

41. Curcuma longa L. Fruit  
Turmerine, turmerone, Cucurmin, curcuminol, 

demethoxycurcumin, caffeic acid, sinapic acid 

Induces glucose uptake, GLUT-2 activity and insulin 

production, increases insulin secretion, insulin sensitivity, 

decreases insulin resistance 

[336-340,658] 

42. Daucus carota Fruit  
α and β-carotene, lutein, lycopene, anthocyanins, ascorbic 

acid 

Regulates hyperglycemia, improves insulin resistance, 

delays intestinal glucose absorption, inhibits α-amylase 

and α-glucosidase  

[341-344] 

43. Ficus carica Fruit, leaves, bark, roots Eugenol, anthocyanins, phenolic acids, flavones, flavanols 
Reduces postprandial glucose, plasma lipids, body weight, 

and β-cell apoptosis 
[345-350] 

44. Fragaria ananassa Fruit, leaves 
Quercetin, kaempferol, p-coumaric acid, p-tyrosol, methyl 

gallate, rutin 

Ameliorates peripheral insulin resistance, inhibits α-

amylase and α-glucosidase activity, increases insulin 

production 

[351-355]  
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45. Glycine max Seeds, leaves β-conglycinin, flavonoids, saponins, phytosterols 
Decreases insulin resistance, enhances glucose uptake in 

skeletal muscles through AMPK activation 
[356-360] 

46. Helianthus annuus Flowers, seeds 
Flavonoids, tocopherols, carotenoids, saponins, tannins, 

chlorogenic acid, caffeic acid 

Reduces body weight, BMI, oxidative stress, AGEs 

formation and fasting blood glucose  
[361-364] 

47. Hibiscus rosa-sinensis Linn. Flowers, leaves  
Quercetin, cyanidin, ascorbic acid, genistic acid, lauric acid, 

thiamine, niacin 

Stimulates β-cells, enhances insulin secretion and glycogen 

accumulation in the liver 
[365-369] 

48. Hylocereus undatus Fruit, seeds 
Oleic acid, gallic acid, lycopene, p-coumaric acid, linoleic acid, 

β-carotene 

Attenuates plasma glucose, endothelial dysfunction, 

oxidative stress, intestinal glucose absorption, and boosts 

insulin sensitivity   

[370-372] 

49. Ipomoea batatas Fruit  
Anthraquinones, coumarins, flavonoids, saponins, tannins, 

quercetin, chlorogenic acid, terpenoids 

Mitigates insulin secretion, serum glucose, enhances β-cell 

function and insulin production 

[373-377] 

 

50. Juglans regia L. Nut, leaves 
Gallic acid, caffeoylquinic acid, coumaroylquinic, juglone, 

quercetin 

Increases glucose uptake, inhibits α-glucosidase, α-amylase 

and protein tyrosine phosphatase 1B (PTP1B) activity 
[378-381,659] 

51. Lactuca sativa Leaves  
Flavonoids, quercetin, flavonols, anthocyanins, lutein, β-

carotene 

Inhibits α-amylase, α-glucosidase and DPP-4, improves 

postprandial glucose and blood lipids 
[382-386] 

52. Lagenaria siceraria Fruit, leaves, seeds 
cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin, 

kaempferol, gallic acid 

Improves glucose tolerance, insulin production, and 

inhibits intestinal glucose absorption 
[387-390] 

53. Laurus nobilis Leaves  
Eugenol, kaempferol, syringic acid, quercetin, apigenin, 

luteolin 

Enhances β-cell function, insulin sensitivity and inhibits α-

amylase and α-glucosidase 
[391-394] 

54. Litchi chinensis Fruit, seeds Sterols, triterpenoids, flavonoids, phenolics 
Improves insulin resistance, serum triglyceride level, 

glucose tolerance and inhibits α-glucosidase activity  
[395-397] 

55. Luffa acutangula Fruit, seeds 
Apigenin, luteolin, myristic acid, α-pinene, carotene, oleanolic 

acid, β-myrcene, linalool 

Enhances insulin secretion, suppresses glycogenolysis and 

gluconeogenesis 
[398,399] 

56. Malus domestica Borkh  Fruit, peel 
Quercetin, pectin, flavonols, flavanols, catechin epicatechin, 

cyanidin galactoside 

Improves endothelial function, lipid homeostasis, insulin 

resistance, and lowers serum glucose 
[400-409] 

57. Mangifera indica Fruit, peel, bark, seeds Mangiferin, rhamnetin, catechin, epicatechin, gallic acid 
Increases insulin sensitivity, lowers postprandial glucose, 

inhibits α-amylase and α-glucosidase  
[410-415] 

58. Mentha spicata Leaves  Limonene, carvone, linalool, piperitone  
Suppresses α-amylase and α-glucosidase activity, oxidative 

stress, and decreases blood glucose and lipids 
[416-418] 

59. Moringa oleifera Lam. Fruit, leaves 
Anthocyanins, sitogluside, tannin, anthraquinones, β-

carotene 

Inhibits α‐amylase and α‐glucosidase, lowers postprandial 

glucose and cholesterol, and improves lipid metabolism  
[419-423,660] 

60. Momordica charantia Fruit, leaves, seeds 
Triterpene, proteid, steroids, flavonoids, ascorbic acid, 

saponins 

Regenerates β-cells, increases glucose uptake in skeletal 

muscle and suppresses intestinal glucose absorption 
[424-432] 

61. Morus alba L. Fruit, leaves Quercetin, isoquercetin, stillbenoids, flavonoids 
Enhances insulin secretion, lowers blood glucose, blood 

lipids and promotes GLUT-4 translocation 
[434-437] 

62. Murraya koenigii L. Leaves  Murrayanol, mahanimbine, kaemferol, catechin, apgenin 
Regenerates β-cells, inhibits α-amylase and α-glucosidase, 

lowers blood glucose 
[438-441] 

63. Myristica fragrans Houtt. Fruit, seeds Lignan, flavonoids, terpenes, coumarin  
Inhibits TNF-α and IL-6 release, ameliorates blood glucose, 

β-cell function, inflammation and obesity 
[442-445] 

64. Nigella sativa L. Seeds  
Thymoquinone, thymol, limonene, carvacrol, p-cymene, 

linoleic acid, oleic acid  

Inhibits hepatic gluconeogenesis, α-amylase and α-

glucosidase, increases insulin sensitivity 
[446-450] 
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65. Ocimum sanctum L. Leaves, seeds  Ursolic acid, eugenol, carvacrol, linalool, caryophyllene 
Lowers serum glucose and albumin, increases insulin 

secretion and lipid metabolism, regenerates β cells 
[451-454,661] 

66. Olea europaea L. Fruit, leaves 
Secoiridoid glycoside, oleuropein, oleanolic acid, flavonoid, 

cinnamic acid  

Enhances glucose tolerance, reduces body weight, inhibits 

gluconeogenesis and lowers plasma glucose 
[455-460] 

67. Origanum vulgare Leaves  Rosmarinic acid, apigenin, luteolin 

Increases glucose uptake in skeletal muscle, GLUT-2, 

decreases blood glucose, oxidative stress,inhibits α-

amylase and α-glucosidase  

[461-465] 

68. Passiflora edulis Fruit, peel  
Piceatannol, flavonoids, tocopherols, carotenoid, gallic acid, 

rutin 

Improves serum glucose, insulin sensitivity, glucose 

tolerance, glucose uptake in skeletal muscle, and reduces 

lipid accumulation and body weight  

[466-474] 

69. Persea americana Mill. Fruit, leaves, seeds, bark  Myricetin, luteolin, gallic acid, ascorbic acid  
Activates PI3K to facilitate insulin action, inhibits α-

amylase and α-glucosidase  
[475-479] 

70. Petroselinum crispum Leaves, seeds, roots  Coumarins, tocopherols, apigenin, myristicin 

Regulates plasma glucose, body weight, glutathione levels, 

increases glucose uptake in skeletal muscles and inhibits 

gluconeogenesis  

[480-483] 

71. Phaseolus vulgaris L. Seeds 
p‐coumaric acid, myricetin, naringenin, gallic acid, quercetin, 

catechin, kaempferol, ferulic acid 

Suppresses α-glucosidase activity, gluconeogenesis, delays 

the absorption of glucose, increases insulin sensitivity  
[484-487] 

72. Phoenix dactylifera L. Fruit, leaves 
Flavonoids, oleic acid, linoleic acid, catechin, epicatechin, 

apigenin, naringenin, anthocyanin  

Enhances β-cell function, insulin secretion, decreases blood 

glucose, inhibits α-amylase and α-glucosidase  
[488-491] 

73.Phyllanthus emblica L. Fruit, leaves, bark, roots 
Gallic acid, ellagic acid, pectin, quercetin, linoleic, oleic acid, 

myristic acid, 

Inhibits α-amylase and α-glucosidase, activates AMPK and 

lowers blood glucose 
[492-495] 

74. Piper betle L. Leaves Eugenol, selinene, hydroxychavicol, cadinene, caryophyllene 
Elevates insulin production and glucose usage, activates 

glucokinase and lowers plasma glucose 
[496-499] 

75. Pisum sativum L. Seeds 
Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene, 

biochanin 

Inhibits α-amylase, α-glucosidase and dipeptidyl-4 (DPP4) 

enzymes 
[500-503] 

76. Prunus armeniaca L. Fruit, leaves 
Quercetin, ferulic acid, chlorogenic acid, lutein, catechin, 

epicatechin 

Stimulates insulin secretion, decreases oxidative stress, 

inhibits α-amylase and α-glucosidase  
[504-506] 

77. Prunus domestica Fruit Catechin, epicatechin, chlorogenic acid, kaempferol, quercetin 
Inhibits HMGCoA reductase and α-amylase, lowers blood 

glucose, lipids, and oxidative stress  
[507-514] 

78. Prunus dulcis Nut 
Oleic acid, linoleic acid, P-coumaric acid, anthocyanin, 

kaempferol, quercetin, chlorogenic acid 

Increases insulin production and decreases stomach 

emptying time 
[515-516] 

79. Prunus persica L. Fruit, peel, leaves 
Naringenin, ferulic acid, Chlorogenic acid, astragalin, 

carotenoid, anthocyanin, caffeic acid 

Ameliorates insulin secretion, pancreatic β-cell 

regeneration and inhibits α-amylase and α-glucosidase  
[517-520] 

80. Punica granatum Fruit, peel, seeds 
Punicalin, punicsfolin, apigenin, quercetin, ellagic acid, 

gallotannins, anthocyanins, luteolin, kaempferol, lycopene 

Enhances insulin sensitivity, insulin production, GLUT-4 

translocation, and lowers blood glucose 
[521-524] 

81. Psidium guajava L. Fruit, leaves Quercetin, avicularin, guaijaverin, tannins, triterpenes 

Decreases plasma glucose, gluconeogenesis, triglycerides, 

total cholesterol, and increases glucose uptake in skeletal 

muscle 

[525-533,662] 

82. Raphanus sativus L. Fruit, leaves 
Myricetin, catechin, epicatechin, quercetin, vanillic acid, Oleic 

acid, p-coumaric acid, β-carotene 

Inhibits intestinal glucose absorption, increases glucose 

uptake in skeletal muscle, and lowers blood glucose 
[534-537] 

83. Rosmarinus officinalis L. Leaves Rosmarinic acid, ursolic acid, oleonic acid, carnosol 
Enhances insulin sensitivity, GLUT-4 translocation, glucose 

uptake in skeletal muscle, and inhibits gluconeogenesis  
[538-544]  
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84. Rubus fruticosus Fruit, leaves 
anthocyanins, malvidins, pelargonidin, cyanidins, 

kaempferol, quercetin 

Lowers blood glucose, inhibits α-amylase and α-

glucosidase  
[545-548] 

85. Salvia hispanica L. Seeds  
Omega-3 fatty acid, myricetin, quercetin, chlorogenic acid, 

kaempferol, caffeic acid 

Inhibits α-amylase and α-glucosidase, reduces body 

weight, inflammatory cytokines release, blood glucose and 

lipids 

[549-553] 

86. Sesamum indicum Seeds  
Sesamin, sesaminol, tocopherol, flavonoids, saponins, 

steroids, terpenoids  

Attenuates postprandial glucose and oxidative stress, 

improves insulin secretion, glutathione levels and lipid 

metabolism 

[554-559] 

87. Solanum lycopersicum L. Fruit 
Lycopene, tomatine, kaempferol, quercetin, chlorogenic acid, 

β-carotene, naringenin 

Attenuates plasma glucose, inflammation, insulin 

resistance via PI3K/Akt, FOXO1, PPAR-γ regulation  
[560-566] 

88. Solanum melongena Fruit, leaves 
Thiamin, niacin, flavonoids, saponins, tannins, triterpenoids, 

anthraquinones 

Enhances glucose uptake in skeletal muscles, GLUT-4 

translocation, reduces gluconeogenesis, α-amylase, α-

glucosidase enzymes and hyperlipidemia  

[567-571] 

89. Spinacia oleracea Leaves  β-carotenoids, lutein, carotenoids, zeaxanthin 
Reduces serum C-reactive protein, TNF α, IL-6, excess 

AGEs production, and aids in retinopathy 
[572-577] 

90. Syzygium aromaticum Flower buds Eugenol, gallic acid, ferulic acid, catechin, quercetin 
Inhibits α-amylase, α-glucosidase and aldose reductase, 

lowers blood glucose and activates PPAR-γ 
[578-581] 

91. Syzygium cumini L. Fruit, seeds, bark 
Anthocyanins, isoquercetin, ellagic acid, kaempferols, 

myricetin 

Regenerates β-cells, improves insulin production and 

lowers glucose in plasma and urine 
[582-584,663] 

92. Tamarindus indica L. Fruit, leaves, seeds Catechin, anthocyanin, epicatechin, apigenin 

Lowers blood glucose, inhibits α-amylase and α-

glucosidase, elevates glucose tolerance and regenerate β-

cells 

[585-589] 

93. Theobroma cacao Fruit, husk, seeds Catechin, epicatechin, procyanidin, saponins, terpenoids 

Protects β-cells, inhibits α-amylase and α-glucosidase, 

elevates ATP, GSH, Nrf2 and glucose uptake in skeletal 

muscle 

[590-595] 

94. Trichosanthes cucumerina L. Fruit, leaves, seeds, roots 

Carotenoids, gallic acid, neochlorogenic acid, caffeic acid, p-

coumaric acid, rutin, kaempferol, quercetin, ursolic, oleanolic 

acids 

Simulates insulin secretion, enhances the peripheral use of 

glucose and prevents intestinal glucose absorption 
[596-598] 

95. Trigonella foenum-graecum Seeds Steroids, alkaloids, flavonoids, polyphenols, saponins 
Decreases blood glucose, enhances glucose uptake, insulin 

sensitivity and glucose tolerance 
[599-602] 

96. Vaccinium corymbosum Fruit, leaves  
Anthocyanins, pectin, anthocyanidins, delphinidin, peonidin, 

malvidins 

Suppresses α-amylase and α-glucosidase activity and aids 

diabetic retinopathy 
[603-605] 

97. Vigna radiata Seeds 
quercetin, myricetin, kaempferol, catechin, coumaric acid, 

luteolin, caffeic, gallic acid 

Hinders gluconeogenesis, glycolysis, inhibits α-glucosidase 

and α-amylase  
[606-612] 

98. Vitis vinifera L. Fruit, seeds, peel 
Catechin, epicatechin, epicatechin gallate, quercetin, 

myricetin, resveratrol  

Regenerates β-cells, lowers blood glucose, inhibits 

intestinal glucose absorption and facilitates glycogen 

synthesis 

[613-615,664] 

99. Zea mays Grains, husk  
Hirsutrin, flavonoids, alkaloids, saponins, phenols, tannins, 

phytosterols 

Ameliorates diabetic complications by suppressing aldose 

reductase and reducing galactitol formation, inhibits α-

amylase and α-glucosidase activity 

[616-621] 

100. Zingiber officinale Fruit  
Vanilloids, gingerol, paradol, shogaols, zingerone, 

gingerdiols, 

Activates GLUT-4 and PPAR-γ, protects β-cells, facilitate 

glucose uptake in tissues 
[622-623] 
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Conclusion and Future Perspectives 

Plant-based dietary adjunct represent a promising natural approach for the management of 

T2DM due to the vast array of phytochemicals they contain. Unlike conventional medications, such 

natural products are widely accessible, affordable, and generally free from adverse effects. 

Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed 

in DM, but also supports weight management in obese individuals and has broad health benefits 

[665-667]. The plants highlighted in this review can interact with a variety of ways to regulate blood 

glucose and restore insulin sensitivity. In addition, it is important to mention that fiber-rich plants 

also play a role in obesity management [668-670]. To date, the majority of scientific studies on 

antidiabetic plants have been carried out in vitro and/or in vivo. More research is needed to identify 

the antidiabetic potential of the plants selected in this review in patients with diabetes. Furthermore, 

more research is needed to better understand the identity and mechanism of action of the active 

phytoconstituents at the molecular level.  We also need to determine what the future holds for the 

potential exploitation of these natural products for development of new and safer pharmaceuticals 

that could assist the treatment of DM and its complications. 
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Abbreviation 

AGEs  Advanced Glycation End Products 

ALT  Alanine Aminotransferase 

AMPK   AMP-activated Protein Kinase 

AST  Aspartate Aminotransferase 

ATP  Adenosine triphosphate 

BMI  Body Mass Index 

DAGs   Diacylglycerols 

DM   Diabetes Mellitus 

DPP-4   Dipeptidyl Peptidase-4 

DPPH   2,2-Diphenyl-1-picrylhydrazyl 

ER  Endoplasmic Reticulum 

ETC   Electron Transport Chain 

FOXO1   Forkhead Box O1 

GIT   Gastrointestinal Tract 

GLP-1   Glucagon-Like Peptide-1 

GLUT-4   Glucose Transporter type 4 

GLUT2   Glucose Transporter 2 

GSH   Glutathione 

HbA1c  Glycated Hemoglobin 

HDL  High-Density Lipoprotein 
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IL-1   Interleukin-1 

IL-6   Interleukin-6 

IRS-1   Insulin Receptor Substrate 1 

IRS-2   Insulin Receptor Substrate 2 

IR   Insulin Resistance 

Keap1   Kelch-Like ECH-Associated Protein 1 

LDL-c   Low-Density Lipoprotein Cholesterol 

LPL   Lipoprotein Lipase 

MDA  Malondialdehyde 

Nrf2  Nuclear Factor Erythroid 2-Related Factor 2 

NO Nitric Oxide 

PI3K/AKT  Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway 

PKB/Akt  Protein Kinase B/Protein Kinase B 

PKC   Protein Kinase C 

PPAR-γ   Peroxisome Proliferator-Activated Receptor gamma 

PPBG   Postprandial Blood Glucose 

PPAR-γ  Peroxisome Proliferator-Activated Receptor-gamma 

PTP1B   Protein Tyrosine Phosphatase 1B 

ROS   Reactive Oxygen Species 

SGLT2   Sodium-Glucose Cotransporter 2 

SOD  Superoxide Dismutase 

SUR   Sulfonylurea Receptors 

TC   Total Cholesterol 

TG   Triglycerides 

TNF-α   Tumor Necrosis Factor-alpha 

UCP-1  Uncoupling Protein 1 

VLDL   Very Low-Density Lipoprotein 
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