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Abstract: Diabetes mellitus (DM) is currently regarded as a global public health crisis for which
lifelong treatment with conventional drugs present limitations in terms of side effects, accessibility
and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated
blood glucose levels, hyperlipidemia, chronic inflammation, impaired (-cell function and insulin
resistance. If left untreated or when poorly controlled, DM increases the risk of vascular
complications such as hypertension, nephropathy, neuropathy, retinopathy that can be severely
debilitating or life-threatening. Plant-based foods represent a promising natural approach for the
management of T2DM due to the vast array of phytochemicals they contain. Numerous
epidemiological studies have highlighted the importance of a diet rich in plant-based foods
(vegetables, fruits, spices, condiments) in the prevention and management of DM. Unlike
conventional medications, such natural products are widely accessible, affordable, and generally
free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control
the hyperglycemia observed in DM, but also supports weight management in obese individuals and
has broad health benefits. In this review, we provide an overview of the pathogenesis and current
therapeutic management of DM, with a particular focus on the promising potential of plant-based
foods.
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Introduction

Diabetes mellitus (DM) is a multifactorial metabolic disorder that has emerged as one of the ten
leading causes of death worldwide [1]. Obesity and insulin resistance or insulin deficiency are the
major players in the development of DM. If not properly managed, DM may lead to severe late-stage
complications that include cerebrovascular, peripheral vascular and ischemic heart disease, kidney
failure and retinal damage [2,3]. Four different main types of diabetes are generally recognized; Type
1 diabetes (T1IDM), Type 2 diabetes (T2DM), gestational diabetes (GDM) and monogenic diabetes,
the most common of which is maturity-onset diabetes of the young (MODY). TIDM and T2DM are
the most familiar as they affect a very considerably larger number of patients than other types [4].
T1DM, also previously called insulin-dependent DM, is associated with defective insulin secretion as
a result of destruction of the pancreatic (3-cells and is predominant in children and teenagers [5].
T2DM which affects about 90% of all cases, was previously known as non-insulin-dependent DM.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This primarily affects individuals over 40 years of age, although this is being countered increasingly
in the young due to increased childhood obesity. This type is characterized by pancreatic 3-cell
failure, causing insulin depletion, as well as insulin resistance in organs. Individuals with T2DM tend
to be obese and often have a history of gestational diabetes, polycystic ovarian syndrome,
cardiovascular disease (CVD) and dyslipidemia [5-8]. GDM is associated with pancreatic {3-cell
dysfunction and chronic insulin resistance which can occur during pregnancy. MODY is a rare
genetic type of DM that commonly emerges during adolescence or early adulthood [4].

It has been estimated that around 537 million individuals have DM worldwide and that this may
rise to 783 million by 2040 [9]. Up to 95% of all diabetic individuals are reported to have obesity-
related type 2 diabetes (T2DM). A logistic regression model estimated that in 110 developing
countries, based on United Nations (UN) population data, there were 366 million people with
diabetes, and this number is expected to rise to 552 million by 2030 [10-12]. In developing nations like
India, Nepal, Bhutan, China, Pakistan, Indonesia, the occurrence of T2DM has dramatically increased
in recent years. In fact, studies have reported that the number of diabetes patients in the low- and
middle-income countries will drastically increase in next 19 years [12]. A recent study has also
reported that in Bangladesh alone, 10-15% of the adult population has some form of prediabetes or
diabetes [13-15]. In these countries, T2DM mostly occurs in individuals between 40 and 59 years of
age [16], often who have a history of childhood obesity [17]. The common symptoms of T2DM often
precipitating diagnosis include lethargy, irritation, blurry vision, confusion, polydipsia, polyuria,
polyphagia, anorexia, vomiting, dehydration, sore muscles, numb feet or hands, foot infection,
delayed wound healing, kidney failure, cardiovascular diseases, coma and in extreme cases death
[18-20].

While insulin is the only therapy for T1DM, patients with T2DM rely primarily on one or more
of a range of oral hypoglycaemic drugs that include o-glucosidase inhibitors, metformin,
sulfonylureas, meglitinides, thiazolidinediones, amylin analogues, SGLT-2 inhibitors dipeptidyl
peptidase-4 (DPP-4) inhibitors, GLP-1 mimetics and incretin receptor dual agonists. In cases where
these medicines are not effective, insulin is then administered [22]. Hypoglycaemia has been
documented as one of the most severe adverse side effects of antidiabetic treatments. Nausea,
bloating, gas formation, gastrointestinal disorders, urinary and respiratory tract infection are other
commonly reported side effects [23]. The use of alternative approaches to better manage DM and its
late-stage complications is becoming increasingly popular in many devoloping countries such as
India, Bangladesh, Nepal, Pakistan, Indonesis and China. Integrating edible plants with reputed
antihyperglycemic activity such as bitter melon, moringa, clove, turmeric, neem, black seeds, or
cinnamon, to name a few, in the daily diet is an attractive option that may present fewer side effects
than conventional drugs [12, 24-27]. In this review, we discuss the potential of plant-based dietary
habits in the management of T2DM and its complications, highlighting the pharmacological effects
and phytoconstituents relevant to DM of one hundred plant species. The main objective of this review
is to provide the basis for future research on the antidiabetic potential of the selected plants.

Methodology

A systematic review of accessible articles, mostly from the last ten years, was conducted using
the PubMed, Google Scholar, and Springer databases. Keywords used included “Obesity”,
“Diabetes”, “Insulin resistance”, “Insulin”, “Blood glucose”, “{-cell”, “Diabetic pathogenesis”,
“Diabetic complications”, “Antidiabetic drugs”, “Ethnomedicine”, “Antidiabetic activities”,
“Medicinal plant”, “Herbal Medicine”, “Antidiabetic mechanism” and “Phytoconstituents”. The
initial search identified 1,500 research articles for review. A total of 671 articles were included in the
final analysis. All articles were rigorously examined to assess their quality and gather information on
the pharmacological activity and bioactive phytoconstituents relevant to DM of 100 plants.

Pathophysiology of Diabetes Mellitus

Under physiological conditions, macromolecules, such as carbohydrates and lipids, are stored
in the body so that they can be transformed into energy as and when required. The role of insulin,
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produced by pancreatic B-cells, is to store glucose in the form of glycogen and then signal the liver to
release glucose from glycogen into the blood when necessary. In DM, this normal physiology is
altered. DM affects individuals differently depending on their age, sex, weight, race, environment,
ethnicity, geographical location, and socioeconomic condition [28,29]. The severity of T1DM, for
example, varies depending on age and genetic predisposition. Among the three subtypes of TIDM,
the first one (mild severity) occurs mostly in early adolescence while the second type (more severe)
affects mainly preschool children. The third subtype affects individuals with a predisposition for
autoimmune diseases (Figure 1) [30-32].

Type 1 diabetes

l ! |

‘ First type (mild) ‘ ‘ Second type (severe) ‘ ‘ Third type (severe) ‘

Autoimmune diseases

Do not progress to
Autoimmune diseases

‘ Hypoadrenalism ‘

| Hypothyroidism |

| Anemia |

Dermatitis,
Vitiligo, alopecia

Figure 1. Severity associated with the three subtypes of TIDM.

The pathogenesis of T2DM has been linked to underlying genetic factors as well as obesity
caused by a sedentary lifestyle and poor dietary choices. T2DM is characterized by hyperglycaemia
linked to hyperlipidemia, persistent inflammation, oxidative stress, mitochondrial dysfunction and
gut dysbiosis, ultimately leading to B-cell apoptosis and insulin resistance (IR) (Figure 2) [33-37]. As
T2DM progresses, the production of advanced glycation end products (AGEs) build up in the kidney,
retina, and blood vessels, which triggers micro- and macrovascular complications [38,39].

Obese individuals tend to consume more nutrients than needed, leading to an excess of body fat
and glycogen. Obesity plays a large contribution to the development of T2DM [3]. One study reported
that around 85% of T2DM patients are obese [40]. Moreover, the lack of regular physical activity in
T2DM patients has been linked to low circulating levels of irisin, an exercise-modulated myokine that
improves glucose tolerance through physical activity [41-45]. In some cases, the term "diabesity" is
used to describe the close link between T2DM and obesity [46]. Overnutrition also causes oxidative
stress and inactivates glucose transporter-4 (GLUT4) translocation, reducing glucose uptake in cells
[47]. Obese individuals are more likely to develop IR as a result of a compensatory rise in insulin
production (hyperinsulinemia). IR involves impaired insulin receptor signaling in tissues such as in
adipose tissues, which leads to a dysregulation of insulin secretion and storage. This occurs until the
pancreatic (3>-cells fail to fulfill the adequate demand of insulin. Hence, glucose cannot enter cells of
insulin-sensitive peripheral tissues and accumulates in the blood [48-53]. In the context of diabetes
mellitus (DM), chronic AMPK inhibition becomes a vicious cycle. Nutrient excess, particularly from
high-fat or high-glucose diets, can impede the AMPK signaling pathway. This leads to chronic
inflammation, oxidative stress, and hormonal imbalances. This impaired AMPK function further
worsens insulin resistance (IR) and {-cell dysfunction, key contributors to DM. Symptoms like
polyphagia (increased hunger) then arise, promoting weight gain and fueling the progression of DM
[54,55]. Hyperinsulinemia and insulin resistance can also be observed in individuals where the
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normal function of insulin receptors or the insulin degrading enzyme are impaired due to genetic
mutations [56-58].

The accumulation of lipids such as triacylglycerides (TAG), diacylglycerides (DAG), ceramides,
acylcarnitine and acyl-CoAs in obese individulas also increases the risk of IR [59-63]. This develops
via increasing intracellular DAG levels and PKC signaling, which in turn leads to the
phosphorylation of IRS-1 on serine residues, disrupting normal insulin signaling pathways. This
disruption impairs the ability of insulin to stimulate glucose uptake and metabolism in tissues like
muscle, liver, and adipose tissue. Over time, IR leads to {3-cell dysfunction and eventually T2DM
(Figure 3) [63,64]. IR in T2DM patients has also been linked to a rise in pro-inflammatory markers
such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a) and C-reactive protein in the
bloodstream [65-67]. Obesity also affects mitochondria through the generation of NADH and FADH>
which disrupts the electron transport chain (ETC) and increases ROS production and AGEs. ROS
induce oxidative stress and hamper the function of intracellular proteins and enzymes, promoting
fatty acids to form toxic intracellular lipids, reducing mitochondrial energy production, increasing
IR and {-cell damage. The increased gluconeogenesis in the liver also increases the risk of
hyperglycaemia and subsequent organ damage [68-72]. This metabolic imbalance alters the structure
and composition of the extracellular matrix, leading to endothelial dysfunction and increasing the
risk of atherosclerosis [73]. Finally, gut dysbiosis may also influence IR by modulating glucose
metabolism. Recent studies have reported that specific changes in the gut microbiota composition
can either exacerbate or ameliorate insulin sensitivity and glucose tolerance, highlighting its crucial
role in DM [74,75].

T2DM Pathogenesis
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Figure 2. The role of inflammation, hyperlipidaemia, mitochondrial dysfunction, ROS production,
and gut dysbiosis in the development of T2DM pathogenesis.
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Figure 3. Schematic representation of the link between obesity and insulin resistance in T2DM.

Unsurprisingly, a healthy diet, regular physical activity, appropriate weight loss and even
occasional fasting can ameliorate IR, 3-cell function, insulin secretory capacity and prevent the risk
of T2DM and its associated complications [76-78].

Complications of Diabetes Mellitus

Persistent hyperglycemia, hyperlipidemia, high levels of ROS and pro-inflammatory mediators
in the bloodstream increase the risk of macrovascular complications such as coronary heart disease
(CHD), stroke, peripheral artery disease, cardiomyopathy, arrythmia, cerebrovascular disease and
atherosclerosis [79,80]. Individuals with DM and hypertension are at a higher risk of developing
cerebrovascular disease, peripheral vascular disease, or early coronary artery disease (CAD) [81-85].
Similarly, obesity is considered to be a key risk factor for heart failure (HF), CHD and premature
mortality [86-88]. Hormones and other circulatory factors including adipokines, growth factors and
chemokines have been reported to aggravate CVD in T2DM patients [89,90].

Diabetic patients may also suffer from various microvascular complications including
neuropathy, nephropathy, retinopathy, foot damage, Alzheimer’s disease and hearing impairment
[91]. Diabetic peripheral neuropathy, characterized by pain, ulcer, sleep deprivation and depression,
affects about half of diabetic patients worldwide [91-95]. Factors such as genetic predisposition, age,
food intake, smoking, alcohol, and other unhealthy lifestyle habits have also been implicated in the
progression of diabetic peripheral neuropathy [96]. Uncontrolled blood sugar levels damage the
nerves, diminishing their ability to send signals and weakening the lining of capillaries that supply
nutrients and oxygen to neurons [97,98].

T2DM has been linked to an increased risk of developing Alzheimer's disease due to the
presence of overlapping neurodegenerative markers in both diseases such as oxidative stress,
inflammation, and mitochondrial dysfunction [99]. On the other hand, diabetic nephropathy,
characterized by microalbuminuria, elevated blood glucose, high hemoglobin A1C (HbAlc) and
hypertension, is prevalent in nearly half of T2DM individuals [100-103]. Diabetic retinopathy is
another severe complication of T2DM which occurs when excess blood glucose blocks the capillaries
linked with the retina. This increases the risk of eye disorders such as diabetic cataract, macular
oedema, dry eye, and may even result in blindness (Figure 4) [104-107].
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Figure 4. Flow chart of T2DM-associated vascular complications.

Current Approaches for the Management of T2DM

A balanced diet, regular physical exercise and the avoidance of high calorific foods is the first
approach recommended for the management of T2DM and its complications. This is usually
supplemented by the use of antidiabetic medicines to achieve optimal glycemic control and provide
long-term relief from DM [105,106]. Current oral antidiabetic drugs include sulfonylureas,
biguanides, thiazolidinediones, a-glucosidase inhibitors, SGLT2 inhibitors, meglitinides, DPP-IV
inhibitors and amylin analogues. Sulfonylureas bind to sulfonylurea receptors (SUR) and act by
blocking ATP-sensitive K*-channels in the pancreatic (3-cell plasma membrane, leading to inhibition
of K*efflux, membrane depolarization, opening of voltage-gated Ca?* channels, influx of Ca? and
triggering of insulin secretion by exocytosis [107-109]. However, sulphonylureas present adverse side
effects such as hypoglycaemia, increased risk of CVD and nausea [110-112]. Meglitinides work in
similar fashion but affect a slightly different bonding site on SUR [113]. At high doses these agents
may cause severe hypoglycaemia, upper respiratory tract infection, diarrhea, and headache [113,114].
Biguanides inhibit the mitochondrial respiratory chain in the liver, activating the AMPK pathway,
enhancing insulin sensitivity, suppressing gluconeogenesis and reducing both hepatic glucose
output as well as glucose entry into the circulation from the intestine [115-118]. Although biguanides
are very popular antidiabetic drugs, they still cause undesirable effects such as diarrhea, lactic
acidosis, and hemolytic anemia [119,120]. Thiazolidinediones (TZDs) act by activating the gamma
isoform of the peroxisome proliferator-activated receptor (PPAR-y), increasing glucose and lipid
metabolism, providing energy homeostasis and promoting GLUT4 translocation [121]. Adverse
effects associated with TZDs include weight gain, hepatotoxicity and even bladder cancer [122].
Inhibitors of the a-glucosidase decrease the intestinal activity of this enzyme, delaying carbohydrate
digestion and absorption, and improving hepatic lipogenesis, triglyceride levels and postprandial
glucose [123]. However, some of the TZDs have been discontribued due to its increased risk on
cardiovascular diseases. Alongside that, their use may cause hepatitis, increased flatulence, and other
gastrointestinal complications [124]. Sodium-glucose cotransporter 2 (SGLT2) inhibitors act to
promote urinary glucose excretion and not only treat DM, but also reduce inflammation, Na*/H*-
exchange, and hyperuricemia. They elevate lysosomal degradation, autophagy, erythropoietin levels,
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and prevent ischemia [125]. Although SGLT-2 drugs have popularity in alleviating diabetes, they still
carry the risk of side effects including volume depletion, increased urination, acute kidney injury,
and genitourinary infections [126]. Dipeptidyl-peptidase IV (DPP-4) inhibitors increase the levels of
incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide
(GIP). Their side effects include urinary and upper respiratory tract infections as well as headache
[127].

In many cases, oral drugs alone are not enough to control the hyperglycemia and injectable
therapy is required to successfully manage DM. The most common injectable therapy is synthetic
insulin. Insulin works by binding to the insulin receptor, activating a cascade of intracellular
signaling events [128,129]. Although, insulin is very effective in DM, it may lead to severe
hypoglycemia, dizziness, sweating, palpitations, headache, blurred vision, and abdominal pain [129].
Amylin analogues, often use in combination with other antidiabetic drugs, inhibit glucagon secretion,
delay gastric emptying time, and improve postprandial glycemia [130,131]. Their adverse effects
include severe hypoglycaemia, nausea, and weight loss [130-132. GLP-1 and GIP analogues are also
used as injectable therapies for DM. GLP-1 drugs stimulate insulin secretion, and inhibit glucagon
release from pancreatic a-cells, suppress appetite and promote extra pancreatic activity by delaying
gastric emptying. Scientist are also assuming that there might be connection between progression of
pancreatitis and C-cell tumor, however, there are still lack of studies related to these conditions [133-
136]. GIP and GLP-1 Dual agonists, such as Mounjaro, enable insulin secretion through activation of
[3-cell GIP receptors and appear to greatly enhance the satiety and weight loss encountered with GLP-
1R activation alone, aiding obesity [135,136]. The most common side effects of these injectables are
severe nausea, vomiting and body disfiguration due to excess weight loss [136]. An overview of the
current oral and injectable antidiabetic drugs, their pharmacological actions and adverse side effects
are presented in Figure 5.

Classification Drugs Pharmacological actions Side effects
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Sulfonylurea secretion and potentiate insulin effects in W CVD, exfoliative dermatitis, erythema
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Figure 5. Flow chart of the current oral and injectable antidiabetic drugs, their pharmacological
actions and adverse side effects.
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Plant-Based Diets and Their Role in the Prevention and Management of DM

A lifelong treatment with conventional antidiabetic drugs presents limitations in terms of side
effects and costs. In this context, plants with antidiabetic activity have become an alternative
treatment option for many patients as they are generally more accessible, less costly and present
fewer adverse side effects than manufactured drugs. They are also gaining popularity in scientific
research as an attractive source for the discovery of new drug templates [137,138]. Numerous
epidemiological studies have highlighted the importance of a diet rich in plant-based foods
(vegetables, fruits, spices, condiments) in the prevention and management of diseases, including DM.
Plant-based foods and their beneficial constituents are often absent in the typical Western diet that
predominantly features processed foods, red meat, and fast-acting carbohydrates, which contributes
to the development and progression of T2DM. Dietary fiber-rich herbs and fruits, in particular, have
been reported to regulate hyperglycemia and mitigate diabetic complications (Table 1) [139].
Understanding how these plant-derived constituents affect the pathophysiology of T2DM can
provide a useful strategy to better prevent this disease and its complications (Figure 6). It can also
reduce reliance on synthetic antidiabetic drugs [140-142].

For example, Aloe vera, neem, holy basil, and betel leaf possess anti-inflammatory and
hypoglycemic properties that help regulate blood glucose and body weight. Citrus fruits (e.g. lemon,
orange, pomelo) along with mango, apple, pineapple, and berries (e.g., strawberry, blueberry,
blackberry, mulberry), are high in fiber and antioxidants. They promote satiety and reduce oxidative
stress. Stone fruits such as peach, guava, avocado, kiwi, lychee, grapes, jackfruit, dragon fruit, passion
fruit, star fruit, pomegranate, papaya, fig, watermelon, plum, and java plum, as well as dates and
apricots, contribute to improve metabolic health. Amla and olives contain unique phytochemicals
that enhance insulin sensitivity. Tamarind, Bengal currant, cocoa, coconut, cashew nut, almond,
walnut, and seeds like chia, white sesame, black seeds, cumin, fenugreek, mustard, coriander, and
nutmeg provide essential fatty acids and micronutrients that are crucial for metabolic function [143-
506]. Fiber-rich grains such as corn, oat, and quinoa, as well as legumes including chickpea, pea,
kidney bean, mung bean, and soya bean, help maintain steady blood glucose levels and manage
obesity. Vegetables like bitter gourd, snake gourd, ridge gourd, bottle gourd, sweet potato, moringa,
okra, taro, asparagus, eggplant, beetroot, pumpkin, cabbage, broccoli, radish, carrot, tomato,
cucumber, lettuce, spinach, centella leaves, and mushrooms are excellent for their low-calorie, high-
nutrient profiles. Herbs and spices like mint, parsley, celery, rosemary, oregano, curry leaves, bay
leaves, clove, saffron, cinnamon, red pepper, turmeric, ginger, and garlic enhance the metabolic rate
and have antidiabetic effects. Onions, tea, coffee, china rose, and vinca rosea also contribute to
improve glucose metabolism and control body weight. The incorporation of these foods into a
balanced diet can support the management of T2DM and obesity by promoting better glycemic
control, enhancing insulin sensitivity, and helping with weight loss (Table 2) [419-625].
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Figure 6. Antidiabetic effects of dietary fiber-rich plants and fruits on various organs and tissues.

/ \ Adipose tissue
P _

//....

Dietary fiber-rich herbs and fruits exhibit antihyperglycemic properties by activating several
molecular pathways. They may contribute in the regeneration of pancreatic (3-cells; increase insulin
secretion; enhance insulin sensitivity; increases glucose uptake in tissues; enhance GLUT-4
translocation; increase glycolysis in the liver; activate the AMPK, PPAR-y, Akt/Pkb, or PI3K pathways
in adipose tissue; improve glucokinase activity; reduce insulin resistance; delay intestinal glucose
absorption; lower fasting blood and postprandial glucose; reduce glucagon secretion and oxidative
stress; inhibit a-amylase, a-glucosidase and DPP-4, glucose-6-phosphatase enzymatic activity;
decrease gluconeogenesis; suppress TNF-a and IL-6 release; block ATP-sensitive K+ channels in the
pancreas and muscle to regulate blood glucose levels.

Plant-Based Diets, Edible Plants, Dietary Adjuncts and their Phytochemicals for the
Management of DM and Prevention of DM Complications

1. Abelmoschus esculentus L. (Okra)

Abelmoschus esculentus L. (Malvaceae), known as okra, is a nutritious vegetable that is also used
as a remedy for chronic kidney disease, T2DM, cardiovascular and hypertensive diseases [143]. The
highly nutritious okra fruit contains oxalic acid, pectin, flavonoids, D-galactose, L-rhamnose and D-
galacturonic acid which are reported to inhibit a-amylase and a-glucosidase enzymes and increase
GLUT-4 translocation [144,145].

2. Actinidia chinensis (Kiwi)

Actinidia chinensis or kiwi (Actinidiaceae) is a beneficial fruit for dyspepsia, vomiting, loss of
appetite and diabetes [146]. Kiwi lowers cholesterol, LDL, fasting plasma glucose and postprandial
glucose levels. It has also been reported to reduce body weight and inhibit the release of pro-
inflammatory cytokines such as interleukin-1(IL-1) and IL-6 in T2DM patients [147]. Kiwi also


https://doi.org/10.20944/preprints202408.1739.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2024 doi:10.20944/preprints202408.1739.v1

10

regulates superoxide dismutase (SOD) and glutathione levels. It inhibits the activity of alanine
aminotransferase (ALT) and aspartate aminotransferase (AST), two enzymes associated with insulin
resistance and metabolic syndrome. Kiwi also improves serum microRNA-424, nuclear factor
erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) as dysregulation
of these markers may exacerbate oxidative stress, inflammation and disease progression [148]. Kiwi
is rich in triterpenoids, polyphenols, amino acids and minerals that may exert antidiabetic activity
owing to hypolipidemic, anti-inflammatory, antioxidant, and antihyperglycemic properties [149].

3. Aegle marmelos (Stone apple)

Aegle marmelos, also called stone apple/golden apple/bael, is a plant from the Rutaceae family
traditionally used for inflammation, asthma, hyperglycaemia, colitis, flatulence, dysentery, fever,
pain, and for hepatitis and fungal infections [150]. Recent studies have indicated that it improves
insulin production, inhibits glucose absorption, a-amylase activity, and lowers blood glucose levels
[151]. Some of its phytochemicals, namely p-cymene, oleic acid, linolenic acid, myristic acid and
retinoic acid have antidiabetic, cardioprotective, antioxidant, and anti-inflammatory properties [152].

4. Agaricus bisporus (Mushroom)

Agaricus bisporus (Agaricaceae) is familiarly known as button mushrooms. It is a valuable
ethnomedicine for diabetes, cough, influenza, asthma, cancer and hepatic disorders [153,154].
Mushrooms have numerous health benefits, with antioxidant, immunoboosting, anticholesterolemic,
antitumor, and antibacterial properties. They boost natural killer cells to fight infections and tumors.
The presence of lectins, (3-glucans, polyphenols, p-hydroxybenzoic acid, protocatechuic acid, agllic
acid, cinnamic acid, p-coumaric acid, ferulic acid, chlorogenic acid and catechin in mushroom
improve hyperglycemia by regulating insulin and glucagon secretion [155-157].

5. Allium cepa (Onion)

Allium cepa (Amaryllidaceae) or onion has been used as treatment for wounds, scars, keloids,
bee stings, dysmenorrhea, vertigo, fainting, migraine, bruises, earache, jaundice, pimples and
diabetes [158]. Onion significantly decreases a-glucosidase activity, oxidative stress, boosts insulin
secretion, and protects pancreatic (3-cells [159]. Onion has numerous health benefits, beyond its
antidiabetic properties, it also boasts antioxidant, analgesic, antimicrobial, anti-inflammatory, and
immune-boosting activity. The presence of quercetin, apigenin, rutin, myricetin, kaempferol,
catechin, resveratrol, and anthocyanins may contribute to its glucose and cholesterol lowering effects
[160- 162].

6. Allium sativum L. (Garlic)

Allium sativum L. (Amaryllidaceae) or garlic is a popular folk medicine for flu, hypertension,
high cholesterol, cancer, cardiovascular disease, diarrhea, preeclampsia, arthritis, diabetes and
kidney stones [163]. Garlic lowers plasma glucose levels, enhances insulin production and insulin
secretion, improves glucose tolerance and insulin sensitivity, and increases GLUT4 expression
[164,165]. Garlic is rich in organosulfur phytoconstituents such as ajoene, cysteine, allicin, as well as
B-resorcylic acid, gallic acid, rutin, quercetin, and protocatechuic acid that exhibit antioxidant,
renoprotective, and antihyperglycaemic effects. Allicin and quercetin play crucial roles in enhancing
insulin sensitivity and improving glucose uptake [166-168].

7. Aloe barbadensis Mill. (Aloe vera)

Aloe barbadensis Mill. (Asphodelaceae) has a long history as an ethnomedicine for wounds,
constipation, skin diseases, colic, worm infestation, hypertension, and diabetes [169,170]. Aloe vera
improves insulin resistance, body weight, and prediabetic condition via inhibition of fructosamine,
carbonyl protein and AGEs - such as Né-(carboxymethyl) lysine (CML) - formation, as well as a-
amylase and a-glucosidase inhibitory activity [171,172]. It also reduces fasting and postprandial
blood glucose, triglycerides, and total cholesterol levels. The antidiabetic properties of Aloe vera
have been attributed to the presence of flavonoids, arginine and phenolic acids [170,173-175].

8. Anacardium occidentale L. (Cashew nuts)
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Anacardium occidentale L. (Anacardiaceae), also called cashew nut, has medicinal value in
alleviating fevers, aches, pains, diarrhea, diabetes, skin irritation and arthritis [176]. Cashew nut is
reported to decrease hepatic gluconeogenesis, a process in the liver that produces glucose. This helps
lower blood sugar levels [177]. Studies suggest that specific amino acids (e.g. arginine, isoleucine)
and fatty acids (e.g. arachidic acid) found in cashew nut, along with other compounds like cyanidin
and peonidin, may play a role in the activity of cashew nut by enhancing insulin sensitivity, and
reducing oxidative stress and blood glucose [177,178]. Anacardic acids, also present in cashew nut
may have a potential role in mitigating diabetic complications as they possess anti-cytotoxic
(protecting cells), antimicrobial and antibacterial effects. [179].

9. Ananas comosus (Pineapple)

Ananas comosus (Bromeliaceae), also known as pineapple, is traditionally used as a remedy for
pain, skin diseases, edema, wound, indigestion, diabetes, and blood clotting [180-182]. Pineapple
leaves, peels and pulp can lower blood sugar and glycated albumin levels, reduce body weight,
increase insulin secretion, and increase high-density lipoprotein (HDL) cholesterol levels by
inhibiting HMG-CoA reductase and activating lipoprotein lipase (LPL) [183-185]. Bromelain, one of
the phytoconstituents of pineapple, has anti-inflammatory, hypoglycaemic, anticoagulant, and
antioxidant activities [186].

10. Apium graveolens L. (Celery)

Apium graveolens L. (Umbelliferrae) or celery is useful for arthritis, spleen dysfunction, diabetes,
sleep disturbances and CNS disorders [187]. This food source helps maintain healthy blood sugar
levels by enhancing insulin sensitivity and promoting the translocation of GLUT4 receptors to the
cell surface followed by enhancing glucose uptake into muscle. This, in turn, can improve
mitochondrial function and reduce inflammation [188-190]. Celery is rich in quercetin,
thymoquinone, coumaric acid and gallic acid with anti-inflammatory, anticoagulant, hypolipidemic,
hepatoprotective and neuroprotective properties [191,192].

11. Artocarpus heterophyllus (Jackfruit)

Artocarpus heterophyllus (Moraceae) or jackfruit is a traditional remedy for wounds, cancer, and
diabetes [193,194]. Its fruit, bark, seeds, leaves, and root all have antidiabetic properties [195-197].
Studies have reported that jackfruit significantly ameliorates body weight, lipid profile, abnormal
hematological parameters, creatine, bilirubin and urea levels, and reduce albumin levels in diabetic
rats. It also has inhibitory activity on a-amylase and a-glucosidase enzymes and can improve lipid
profile (i.e. LDL and HDL cholesterol), fasting and blood glucose levels [198,199]. Phytochemicals
such as carotenoids, tannins, volatile acids, sterols, chrysin, isoquercetin, and silymarin contribute to
the pharmacological properties of jackfruit [199].

12. Asparagus officinalis (Asparagus)

Asparagus officinalis (Asparagaceae), known as asparagus, is a remedy for diabetes, asthma,
rheumatism, liver and kidney diseases [200]. Recent studies suggest that it enhances insulin secretion
and (3-cell function in rat model of T2DM [201]. Asparagus elicits its hypoglycemic properties by
significantly lowering fasting blood glucose, hepatic glycogen, and triglycerides levels as well as
reducing body weight [202]. Asparagine, tyrosine, arginine, saponins, resin and tannins are the main
active phytoconstituents of asparagus. Among them saponins are the main constituent that
contributes to its hypoglycemic effects as well as antibacterial, anti-inflammatory, antioxidant,
antidiarrheal and anticarcinogenic properties [203,204].

13. Awvena sativa (Oats)

Avena sativa (Poaceae) or oat is a popular breakfast meal. Oat is also a remedy for dermatitis,
cancer, diabetes and cardiovascular disease [205]. One study found that the continuous consumption
of oatmeal cookies led to significant improvements in blood glucose levels and plasma insulin in
diabetic rats [369]. p-glucan, oleic acid, linoleic acid, caffeic acid, coumaric acid, gallic acid and
avenanthramides are the active phytoconstituents of oats. They lower glycosylated HbAlc, fasting
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and postprandial blood glucose, total cholesterol and LDL-cholesterol levels, as well as improve
insulin resistance in diabetic patients [206,207]. B-glucan is the major component of oats which
reduces blood glucose and helps with losing weight [208,209].

14. Averrhoa carambola L. (Star fruit)

Averrhoa carambola L. (Oxalidaceae) is commercially known as star fruit. It is abundantly
consumed in tropical and subtropical countries where it is also traditionally used for chronic
headache, fever, cough, gastroenteritis, diarrhea, diabetes, skin inflammation, hypertension and
hyperglycaemia [210-212]. Catechin, epicatechin, procyanidins, gallic acid, protocatechuic acid,
ferulic acid, rutin, isoquercitrin, quercitrin, C-glycosides, leucoanthocyanidins, and triterpenoids in
star fruit modulate insulin secretion, glucose uptake and glycogen synthesis [213,214].

15. Azadirachta indica (Neem)

Azadirachta indica, known as neem, is a plant from the Meliacae family that is used to cure fever,
skin ailments, infection, inflammation, diabetes, and dental ailments [215,216]. Its leaves, stem, bark
and seed oil have been reported to control glycaemia, improve endothelial dysfunction, reduce
systemic inflammation, enhance glucose transporter 4 (GLUT-4) translocation and inhibit a-
glucosidase. The antidiabetic effects of this plant are likely to be due to the presence of
phytoconstituents such as nimbidin, nimbin, nimbidol, quercetin and nimbosterone [217-219].

16. Beta vulgaris (Beetroot)

Beta vulgaris (Chenopodiaceae) or beetroot is a traditional cure for diabetes, loss of libido,
stomachaches, arthritis, and constipation [220]. Beetroot shows antidiabetic activity by inhibiting
gluconeogenesis, glycogenolysis, and a-amylase and a-glucosidase. It is rich in lycopene, betalains
such as betanin, the flavonoids betagarin, betavulgarin, quercetin and kaempferol, carotenoids and
coumarins. Among them, betanin is the main constituent that can mitigate diabetic complications
[221,222].

17. Brassica juncea (Mustard)

Brassica juncea (Brassicaceae), known as mustard, is an effective remedy for arthritis, footache,
lumbago, diabetes and rheumatism [223,224]. Mustard has been reported to control blood sugar
levels in people with diabetes by enhancing insulin secretion, improving the utilization of glucose,
and reducing glucose absorption from the gut. These effects can be attributed to several beneficial
phytochemicals including chlorogenic acid, kaempferol and other flavonoids, sinigrin, p-coumaric
acid, vanillic acid, polyphenols, allyl isothiocyanate, cinnamic acid, and aniline [225,226].

18. Brassica oleracea var. capitata (Cabbage)

Brassica oleracea var. capitata or cabbage is a member of the Brassicaceae family. Cabbage is
traditionally used to prevent injuries, gastritis, peptic ulcers, irritable bowel syndrome, diabetes and
idiopathic cephalalgia [227]. It shows antihyperglycemic activity via enhancing peripheral insulin
sensitivity and insulin production by pancreatic (3-cells. This has been attributed to the presence of
myricetin, quercetin, kaempferol, apigenin, luteolin, glycitein, biochanin A and formononetin [227-
229].

19. Brassica oleracea var. italica (Broccoli)

Brassica oleracea var. italica (broccoli) is a vegetable from the Brassicaceae family that is well
known for its antioxidant, antimicrobial, anti-inflammatory, antihyperglycemic and antitumor
properties [230]. Broccoli increases insulin sensitivity, reduces glucose production, inhibits ROS
formation and the activity of a-amylase and «a-glucosidase, overall contributing to lowering
hyperglycemia [230,231]. Glucosinolates, isothiocyanates, sulforaphane, sinapic acid, gallic acid,
chlorogenic acid, apigenin, kaempferol, luteolin, quercetin and myricetin are the major
phytochemicals found in broccoli that help to manage diabetes by improving insulin sensitivity,
reducing inflammation, and combating oxidative stress. They also regulate glucose metabolism and
protect pancreatic [3-cells [231].
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20. Camellia sinensis L. (Tea)

Camellia sinensis L. or tea from the Theaceae family, is a plant widely consumed as a beverage. It
is also a reputed remedy for flatulence, indigestion, vomiting, diarrhea, hyperglycemia and stomach
discomfort [232,233]. Tea alleviates diabetic complications via suppression of insulin resistance,
reduction of oxidative stress, inhibition of a-amylase and a-glucosidase activity, and regulation of
cytokines production. It also enhances insulin secretion, glucose tolerance, inhibits glycation and the
activity of dipeptidyl peptidase-4 (DPP-1V) [232-234]. Tea is a rich source of bioactive compounds
including theophylline, theanine, proanthocyanidins, caffeine, myricetin, kaempferol, quercetin,
chlorogenic acid, coumarylquinic acid, theogallin, catechin and epicatechin which exhibit
antidiabetic activity by enhancing insulin sensitivity, regulating glucose metabolism, reducing
oxidative stress, and improving pancreatic 3-cell function [235].

21. Capsicum annuum L. (Red pepper)

Capsicum annuum L. ( Solanaceae), identified as red pepper, is an ethnomedicine for dyspepsia,
ulcer, anorexia, gastrointestinal disorders and diabetes [236]. Recent studies reported that it exhibits
glucose-lowering action via inhibition of gluconeogenesis, activation of AMPK and stimulation of
both GLUT-4 translocation and glucose uptake in skeletal muscles of obese diabetic rats [237,238].
These effects may be attributable to a rich content in carotenoids and flavonoids such as apigenin,
quercetin, and isoquercetin. Red pepper has a range of other health benefits, including scavenging
free radicals (antioxidant effect), promoting healthy weight management, reducing inflammation,
and even potentially offering anticancer properties [239,240].

22. Carica papaya (Papaya)

Carica papaya (Caricaseae), commonly called papaya, has been used for centuries to treat high
blood pressure, dengue, obesity, jaundice, respiratory diseases, malaria, diabetes, and wounds
[241,242]. Papaya contains phytomolecules, such as papain, quercetin, kaempferol, p-coumaric acid,
[-carotene, linalool, oleic acid, tannins, saponins, a-tocopherol, that can inhibit a-amylase and a-
glucosidase activity as well as lower oxidative stress and plasma blood glucose levels [243,244].

23. Carissa carandas (Bengal currant)

Carissa carandas (Apocynaceae), known as koromcha or Bengal currant, is a remedy for asthma,
constipation, diarrhea, diabetes, malaria, myopathic spams, fever, epilepsy and seizures [245]. Recent
studies suggest that Bengal currant significantly reduces diabetes-induced inflammation, and lowers
blood glucose levels via inhibition of a-amylase and a-glucosidase [246-249]. Lignans, flavonoids,
steroids, phenolic acids and alkaloids present in Bengal currant have anti-inflammatory,
antibacterial, antifungal, antioxidant and hepatoprotective effects. Lignans regulate blood glucose
levels and oxidative stress [248].

24. Catharanthus roseus L. (Vinca rosea)

Catharanthus roseus L. (Apocyanaceae), also known as Vinca rosea, is a plant popularly used for
cancer, diabetes, stomach disorders, kidney, liver, and cardiovascular disorders [250,251]. It is
reported to exert its antidiabetic effect through increasing -cell mediated insulin secretion via effect
on Ca? channels. It was also shown to enhance glucose metabolism, protect pancreatic (3-cells from
oxidative stress, and improve insulin sensitivity. Gallic acid, rutin, -coumaric p acid, caffeic acid,
quercetin, kaempferol, chlorogenic acid, ellagic acid and coumarins are thought to be responsible for
the anti-hyperglycaemic properties of this plant. The presence of alkaloids in C. roseus has also been
reported to improve insulin secretion from (-cells [252-254].

25. Centella asiatica L. (Centella leaves)

Centella asiatica L. (Apiaceae), referred to as centella leaves, is an excellent ethnomedicine for
leprosy, lupus, ulcers, eczema, psoriasis, diarrhea, fever, diabetes and anxiety [255]. Centella blocks
ATP-sensitive K* channels to enhance insulin secretion and control hyperglycemia [256]. According
to recent studies, it reduces oxidative stress and inflammation in diabetic patients. Some active
phytoconstituents in centella leaves include triterpenes (asiaticoside, madecassic acid,
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madecassoside), centellase, flavonoids (quercetin, kaempferol), phytosterols (campesterol, sitosterol,
and stigmasterol), ferulic acid and chlorogenic acid [257,258].

26. Chenopodium quinoa (Quinoa)

Chenopodium quinoa (Amaranthaceae), or quinoa, is a gluten free high protein cereal reported to
ameliorates dyslipidemia, diabetes and heart disease [259]. It is regarded as a ‘functional food” as it
contains a high amount of essential amino acids, fatty acids, vitamins, minerals and dietary fibers
[260,261]. Phytosterols, phytoecdysteroids, phenolics, tocophenols, betalains, tannins and glycine
betaine are the beneficial phytochemicals in quinoa that elicit both antidiabetic and anti-obesity
effects by inhibiting a-glucosidase, regulating body weight, improving insulin sensitivity, and
reducing postprandial glycemia and lipid accumulation in skeletal muscle [262-265].

27. Cicer arietinum L. (Chickpea)

Cicer arietinum L. (Fabaceae) commonly known as chickpea, is a reputed cure for digestive
disorders, cancer, cardiovascular disease and diabetes because of its high dietary fiber content. Recent
findings recognized it as a healthy food staple that exerts hypoglycemic activity via inhibiting oa-
amylase, a-glucosidase and dipeptidyl-4 (DPP4) enzymes. Chickpea has high antioxidant properties
and inhibits the enzymes associated with carbohydrates metabolism [266-268]. It is rich in
unsaturated fatty acids that help lower blood cholesterol levels, and reduce inflammation and weight
gain [269]. Its phytoconstituents including uridine, adenosine, tryptophan, 3-hydroxy-olean-ene and
biochanin contribute to its antihypertensive, antioxidant, hypocholesterolemic and anticancer effects
[270,271].

28. Cinnamomum verum (Cinnamon)

Cinnamomum verum (Lauraceae), also known as cinnamon, is an ethnomedicine used for
diabetes, nausea, vomiting, flatulence, fever, halitosis, arthritis, coughing, hoarseness, impotence,
frigidity, cephalalgia, odontalgia, cardiac and urinary disorders [272]. Cinnamon exerts its
antihyperglycemic effects by increasing GLUT-4 translocation in insulin-sensitive tissues,
upregulating mitochondrial UCP-1, inhibiting a-glucosidase and stimulating insulin secretion
[273,274]. Its phytoconstituents including cinnamaldehyde, cinnamates, cinnamic acid, eugenol,
cinnamyl acetate, [3-sitosterol, flavonoids, glucosides, coumarins, vanillic acid and syringic acid have
antihyperglycaemic and anti-inflammatory properties [272,275].

29. Citrullus lanatus (Watermelon)

Citrullus lanatus (Cucurbitaceae) or watermelon, is a fruit used tradionally to treat
gastrointestinal disorders, urinary infections, fever, constipation and emetic problems [276,277]. It
improves glucose transporters (GLUT 2 and GLUT 4) levels, and suppresses oxidative stress as well
as a-glucosidase and a-amylase activity. Some of the phytoconstituents of watermelon which may
contribute to its pharmacological action include stigmasterol, rutin, p-coumaric acid, quercetin,
kaempferol, 3-carotene, and a-tocopherol [278,279].

30. Citrus limon (Lemon)

Citrus limon (Rutaceae), also known as lemon, is a common ethnomedicine used for cough, scurvy,
cold, hypertension, fever, rheumatism, sore throat, diabetes, irregular menstruation, and liver
diseases [280-282]. Lemon exerts antihyperglycaemic activity by increasing insulin sensitivity,
GLUT4 translocation and glucose uptake, by inhibiting a-glucosidase, protein tyrosine phosphatase,
aldose reductase and reducing the formation of AGE products [283-285]. Previous studies have
shown that reduces plasma glucose, LDL, VLDL and total cholesterol, triglycerides, free fatty acids
and phospholipids levels. Its bioactive constituents include limocitrin, D-limonene, hesperidin and
naringenin [286,287].

31. Citrus maxima (Pomelo)

Citrus maxima (Rutaceae), also called pomelo, is a fruit with a great ethnomedicinal value in
treating asthma, fever, ulcer, diarrhea, cough, Alzheimer’s disease, diabetes, and insomnia [288].
Polemo has a-amylase and a-glucosidase inhibitory activity. It also inhibits the angiotensin I
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converting enzyme, which notably lowers blood glucose levels and improves diabetic complications
[289]. Pomelo possesses antioxidant, anti-inflammatory, anti-obesity, and hypolipidemic properties
in addition to its hypoglycemic effects due to the presence of amino acids, terpenoids, sterols,
carotenoids, and polyphenols [288-290].

32. Citrus reticulata (Orange)

Citrus reticulata, also known as orange, is a plant from the Rutaceae family, that has been shown
to be beneficial in the treatment of Alzheimer's disease, cough, phlegm, diabetes, hepatic steatosis,
and cancer [291-293]. Orange increases the expression of GLUT-4 and {3-subunit insulin receptor
which further helps with insulin sensitivity [294-296]. Orange peel contains flavonoids such as
hesperidin and naringenin that have antihyperglycaemic, antihyperlipidaemic, anti-obesity and
antioxidant properties [294,295].

33. Cocos nucifera (Coconut)

Cocos nucifera, or coconut, is an important species from the Arecaceae family, commonly used as
a folk remedy for diarrhea, diabetes, renal diseases, stomachaches, fever, asthma, and sexually
transmitted diseases [297-300]. Coconut has been reported to regenerate pancreatic 3-cells, enhance
metabolism in adipose tissue, and mitigate insulin resistance, hyperglycemia, dyslipidemia,
inflammation and oxidative stress [300-303]. It has also been shown to scavenge free radicals, inhibit
a -amylase and a-glucosidase activity, and ameliorate diabetic complications including diabetic
neuropathy in streptozotocin-induced diabetic rats [304]. Coconut is rich in amino acids, fibers,
tannins, resins, flavonoids and alkaloids which may contribute to its insulin-releasing and
antihyperglycemic effects [300-303].

34. Coffea Arabica L. (Coffee)

Coffea Arabica L. (Rubiaceae) or coffee is another popular health drink. It is also a traditional
remedy for flu, anemia, diarrhea, intestinal pain, migraine, headache, fever, purulent wounds,
pharyngitis, diabetes and stomatitis [305]. Coffee exerts antidiabetic effects by improving insulin
sensitivity, enhancing glucose metabolism, protecting pancreatic (3-cells, and reducing the risk of
T2DM development. It contains caffeine, chlorogenic acids (CGAs), caffeic, p-coumaric, vanillic,
ferulic, protocatechuic acids, coffeasterin, kaempferol, quercetin, sinapic, quinolic, tannic, pyrogallic
acids, trigonelline, caffeoylquinic and dicaffeoylquinic which substantially mitigate hyperglycemia,
a-glucosidase activity and enhance insulin secretion [305-307].

35. Colocasia esculenta (Taro)

Colocasia esculenta (Araceae), or taro, is a remedy for rheumatic pain, diabetes, hypertension and
pulmonary congestion [308]. It can improve diabetic complications by decreasing blood glucose
levels and reducing body weight in T2DM patients [309]. Taro contains vitexin, isovitexin, orientin,
isoorientin, rosmarinic acid, and luteolin which help to reduce blood glucose, inflammation and
oxidative stress in diabetic patients [310-312].

36. Coriandrum sativum (Coriander)

Coriandrum sativum (Apiaceae), known as coriander, is a common garnishing herb and a useful
tradiotnal remedy for diarrhea, flatulence, colic, indigestion, gastrointestinal diseases and diabetes
[313]. Coriander is helpful in the management of diabetes as it regenerates pancreatic (3 cells and
improves their function. It also inhibits a-glucosidase, thereby slowing digestion of complex
carbohydrates [313-317]. Moreover, coriander plays a useful role in the management of diabetic
complications, particularly alleviating diabetic nephropathy and neuropathy through inhibition of
AGEs formation, inhibition of TNF-a release and reduction of the oxidative stress [314,315].
Coriander is rich in flavonoids, tocotrienols, tocopherols, sterols and carotenoids with antidiabetic,
antioxidant, anti-obesity and anticancer effects [316,317].

37. Crocus sativus L. (Saffron)
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Crocus sativus L. (Iridaceae) or saffron, is a popular food additive as well as an effective remedy
for central nervous system disorders and for diabetes [318,319]. Saffron is documented to improve
insulin sensitivity, enhance glucose uptake, inhibit gluconeogenesis, and mitigate against oxidative
stress, thereby offering a range of antidiabetic benefits. Bioactive constituents of saffron are 3
carotenes, crocetin, crocin, picrocrocin, zeaxanthene and safranal. These exert their glycemic effects
via a-glucosidase and a-amylase inhibitory activity [318-320]. Crocin, the main bioactive constituent
of saffron, reduces blood glucose, LDL, cholesterol and triglycerides levels. It also inhibits the release
of pro-inflammatory cytokines and elevates glutathione levels [321-323].

38. Cuminum cyminum L. (Cumin seeds)

Cuminum cyminum L. (Apiaceae), referred to as cumin, is used as a remedy for diarrhea,
dyspepsia, epilepsy, toothache, whooping cough, flatulence, indigestion, diabetes and jaundice [324].
Cumin has been reported to enhance insulin secretion from pancreatic 3-cells, improve insulin
sensitivity in peripheral tissues by activating insulin signaling, regulate glucose uptake by enhancing
GLUT4 translocation, and modulate key enzymes involved in glucose metabolism [324-326]. Cumin
seeds are rich in compounds like cuminaldehyde, safranal, and terpenes (including carvone,
carvacrol, limonene, and linalool). These are believed to improve blood sugar levels by increasing
pancreatic insulin and protecting insulin-producing (3-cells from damage [325,326].

39. Cucumis sativus L. (Cucumber)

Cucumis sativus L. (Cucurbitaceae), known as cucumber, is a vegetable low in calories and with
a high-water content that is typically served as a salad. It is useful in treating sunburn, skin irritation,
constipation, thermoplegia, gall bladder stone, hyperdipsia and diabetes [327,328]. It also exhibits
antihyperlipidemic, antioxidant, analgesic and free radical scavenging effects [583,587]. It is a good
source of cucurbitacins, cucumerin A and B, cucumegastigmanes I and 1, flavonoids such as vitexin,
orientin, apigenin and isoscoparin which can synergistically improve plasma glucose, glycolysis,
insulin sensitivity and body weight in diabetes patients [327, 329,330]. Other studies reveal that
cucumber mat suppress glucagon secretion and gluconeogenesis [330].

40. Cucurbita pepo L. (Pumpkin)

Cucurbita pepo L. (Cucurbitaceae), known as pumpkin, is a popular vegetable and folk medicine
for dermatitis, depression, irritable bladder, intestinal inflammation, prostate enlargement and
hyperglycaemia [331,332]. Pumpkin seeds have been reported to lower plasma and urine glucose as
well as triglycerides levels, and increase glutathione levels through upregulation of the Nrf2 and
P13K levels in T2DM mice [333-335]. Among the constituents of pumpkin seeds, flavonoids,
alkaloids, polysaccharides, and polyphenols have been reported to enhance insulin secretion. The
high content of carotenoids, zeaxanthin, and lutein has been implicated with improving insulin
sensitivity, reducing inflammation, and protecting against oxidative stress [331-335].

41. Curcuma longa L. (Turmeric)

Curcuma longa L. (Zingiberaceae), commonly referred to as turmeric, is known as an extremely
powerful healing agent and aid for cough, diabetes, arthritis, gall bladder stones, dermatitis, cancer,
intestinal and gastric diseases [336]. Turmeric has multiple reputed health benefits as an antioxidant,
anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, and immunomodulatory
agent. A recent study reported that the ingestion of turmeric improved insulin secretion and insulin
sensitivity, and decreased insulin resistance [337-340]. The presence of caffeic acid, curdione, p-
coumaric acid, demethoxycurcumin, isorhamnetin, valoneic acid, eugenol, isoshyobunone and
corymbolone in turmeric may contribute to these antidiabetic properties. Furthermore, turmeric is
rich in curcumin that induces glucose uptake and GLUT2 activity as well as notably promotes insulin
production [338-340].

42. Daucus carota (Carrot)

Daucus carota (Apiaceae), widely known as carrot, is traditionally used for diarrhea, constipation,
intestinal inflammation, weakness, illness, diabetes and rickets [341]. Carrot has been reported to
inhibit glucose absorption by significantly inhibiting a-glucosidase and a-amylase activity, and
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improve insulin resistance in diabetic patients [342]. Carotenoids such as a and 3-carotene, are the
main phytochemicals in carrot. It also contains polyacetylenes, ascorbic acid, lutein, lycopene, and
anthocyanins which can enhance insulin sensitivity and pancreatic (3-cell function [343,344].

43. Ficus carica (Fig)

The fig plant, Ficus carica, belongs to the Moraceae family. It is a useful remedy for dermatitis,
anemia, diabetes, paralysis, urinary tract infection, ulcers, and liver diseases [345]. Its leaves, pulp,
stem, and root decrease body weight, LDL and VLDL cholesterol, triglycerides, and postprandial
glucose levels, as well as inhibit pancreatic (3-cell apoptosis via the pancreatic AMPK, C-Jun N-
terminal kinase, p-JNK and caspase-3 pathways [346,347]. The fruit is rich in eugenol, anthocyanins,
phenolic acids, flavones and flavanols which may be responsible for the antimicrobial,
neuroprotective, antioxidant, and anti-inflammatory properties of this plant [348-350].

44. Fragaria ananassa (Strawberry)

Fragaria ananassa (Rosaceae) known as strawberry is an effective remedy for wound healing,
clots, obesity, and diabetes [351]. Strawberry ameliorates peripheral insulin resistance, reduces a-
amylase and a-glucosidase activity, and increases glucose-stimulated insulin release [351-353].
Quercetin, kaempferol, rutin, gallic acid, chlorogenic acid, caffeic acid, ellagitannins and gallotannins
found in strawberry may be responsible for the antioxidant, cardioprotective, antimetabolic
syndrome, and neuroprotective properties of this plant [351-355].

45. Glycine max (Soya bean)

Glycine max (Fabaceae), also called soya bean, is employed to produce vegetable oils, tofu, soy
milk and soy sauce. It is also a remedy for osteoporosis, cardiovascular disease and diabetes [356]. It
contains a high content of proteins which improves diabetes and its complications by modulating
various cell signaling pathways and regulating glucose homeostasis [357,358]. Soya beans are also
able to mitigate obesity-induced metabolic disorders [359], as they lower triglycerides levels and have
fatty acid synthase inhibitory activity which contribute in ameliorating diabetes-related
complications [360]. Among the soya bean proteins, [3-conglycinin is the major constituent that has
been reported to reduce insulin resistance and improve glucose uptake in skeletal muscles through
AMPK activation [358].

46. Helianthus annuus (Sunflower)

Helianthus annuus (Asteraceae), is commonly known as sunflower. Sunflower seeds are often
ingested to ameliorate diabetes, nephrotoxicity, cardiovascular disease and hematologic disorders
[361]. Sunflower is popular for its antitumor, antimicrobial, antioxidant and anti-inflammatory
effects. Sunflower seeds have been reported to lower body weight, body mass index (BMI), and have
free radical scavenging activity. They can also reduce AGEs formation and lower fasting blood
glucose levels [362-364]. Sunflower is rich in flavonoids, alkaloids, saponins, tocopherols,
carotenoids, tannins, chlorogenic acid and caffeic acid. Tocopherols have been reported to improve
insulin sensitivity and protect (3-cells from oxidative stress [364].

47. Hibiscus rosa-sinensis Linn (China rose)

Hibiscus rosa-sinensis Linn., also called China rose, China hibiscus, rose mallow or shoe flower,
belongs to the Malvaceae family. It is a popular traditional remedy for tumor, hairloss, infertility,
diabetes and wound healing [365-367]. It is reported to stimulate pancreatic-{3 cells, enhancing insulin
secretion and glycogen accumulation in the liver. The antidiabetic properties of China rose may be
attributed to its rich content of quercetin, cyanidin, ascorbic acid, gentisic acid, lauric acid, thiamine,
niacin, margaric acid, calcium oxalate, and hentriacontane. Cyanidin, also present in china rose, has
been demonstrated to improve endothelial function and oxidative damage [367-369].

48. Hylocereus undatus (Dragon fruit)

Hylocereus undatus (Cactaceae), also called dragon fruit or strawberry pear, is ethnomedicinally
useful as a hypoglycaemic, diuretic, antigastritis, wound healing and laxative agent [370,371]. It
shows antidiabetic activity by regulating oxidative stress, reducing intestinal glucose absorption and
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plasma glucose levels, and improving insulin secretion. These effects can be attributed to a several
phytoconstituents including phthalic acid, a-amyrin, oleic acid, linoleic acid, palmitic acid, gallic
acid, syringic acid, p-coumaric acid, lycopene, 3-carotene and betacyanin [372].

49. Ipomoea batatas (Sweet potato)

Ipomoen batatas is a plant of the Convolvulaceae family, also known as sweet potato. This plant
is a popular ethnomedicine for diabetes, diarrhea, splenosis, stomach distress, anemia, hypertension,
and throat tumors [373,374]. Anthraquinones, coumarins, flavonoids (quercetin, lutein), saponins,
tannins, phenolic acids, chlorogenic acid, terpenoids, [-carotene, zeaxanthin, and anthocyanins
present in sweet potato may also substantially mitigate insulin resistance and regulate blood glucose
levels by stimulating the production of insulin by pancreatic- cells [375-377].

50. Juglans regia L. (Walnut)

The walnut plant or Juglans regia L. (Juglandaceae) is a reputed remedy for bacterial infection,
stomachache, thyroid disorders, diabetes, cancer, heart conditions and sinusitis [378]. Its nut is high
in fiber which makes it one of the best super food to control of diabetes. One study reported that it
improves glucose uptake, inhibits a-glucosidase, a-amylase and protein tyrosine phosphatase 1B
(PTP1B) activity, and reduces plasma glucose levels in streptozotocin-induced rats [379]. Gallic acid,
caffeoylquinic acid, coumaroylquinic, juglone, and quercetin were identified as the potential
bioactive compounds responsible for the antidiabetic, anti-inflammatory, and antioxidant effects of
walnut [380,381].

51. Lactuca sativa (Lettuce)

Lactuca sativa or lettuce is a leafy vegetable from the Asteraceae family, often served as a salad.
The leaves and seeds of lettuce are used for treating hyperglycaemia, osteodynia and inflammatory
conditions [382]. Lettuce inhibits the activity of a-amylase, a-glucosidase and dipeptidyl peptidase-
4 (DPP-4) enzymes. It can regulate postprandial glucose, fasting blood glucose, triglycerides, serum
insulin, and cholesterol levels. These effects may be due to the presence of flavonoids such as
quercetin, anthocyanins and hydroxycinnamoyl derivatives [383-386].

52. Lagenaria siceraria (Bottle gourd)

Lagenaria siceraria (Cucurbitaceae) is popularly known as bottle gourd and regarded as a remedy
for diabetes, jaundice, constipation, flatulence, insomnia, ulcer, piles, colitis, insanity, hypertension,
congestive cardiac failure, skin diseases and headaches [387,388]. Bottle gourd improves insulin
production and glucose tolerance, and suppresses intestinal glucose absorption. These effects may be
attributed to isovitexin, isoorientin, saponarin, fucosterol, campesterol, cucurbitacin B, cucurbitacin
D, cucurbitacin E, isoquercitrin, kaempferol, gallic acid and protocatechuic acid [389,390].

53. Laurus nobili (Bay leaves)

Laurus nobilis or bay leaf is an important spice from the Lauraceae family. It is a popular aid for
stomachaches, phlegm, cold, sore throat, headache, indigestion, flatulence, eructation, epigastric
bloating and diabetes [391]. It is reported to decrease serum glucose levels, inhibit a-glucosidase and
stimulate the production of insulin by pancreatic (3-cells. It is rich in phytoconstituents that include
linalool, sabinene, kaempferol, quercetin, apigenin, luteolin, lauric acid, palmitic acid, linoleic acid
and the carotenoid lutein [392-394].

54. Litchi chinensis (Lychee)

Litchi chinensis (Sapindaceae), or lychee, is a seasonal fruit and useful ethnomedicine for cough,
ulcer, flatulence, testicular swelling, diabetes, hernia, and obesity [395]. Lychee seeds improve
insulin resistance, glucose tolerance, and fasting blood glucose and serum triglycerides levels. Lychee
has antihyperglycemic, antineurotoxic, anti-inflammatory, lipid -owering, insulin secreting and a-
glucosidase inhibitory properties. These effects may be attributed to the presence of flavonoids,
triterpenes, sterols, and phenolic compounds [396,397].

55. Luffa acutangula (Ridge gourd)

Luffa acutangula (Cucurbitaceae), known as ridge gourd, is a valuable traditional medicine for
diabetes, jaundice, hemorrhoids, urinary bladder stones, granular conjunctivitis, constipation and
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leprosy. Ridge gourd has been reported to substantially lower serum glucose levels by enhancing
insulin secretion and peripheral glucose uptake, as well as suppressing glycogenolysis and
gluconeogenesis in alloxan-induced diabetic rats [398]. These effects may be attributed to its content
in apigenin, luteolin, myristic acid, a-pinene, carotene, oleanolic acid, -myrcene and linalool in its
leaves, seeds and fruit which reduce blood glucose and oxidative stress [399].

56. Malus domestica (Apple)

The apple, Malus domestica (Rosaceae), is one of the most widely cultivated and
commerciallysignificant fruits. It is also a valuable folk medicine for wounds, diabetes, asthma,
obesity, and cardiovascular disease [400-402]. Apple has been reported to significantly lower plasma
glucose levels by increasing glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like
peptide-1(GLP-1). Its antidiabetic effect has been linked with the flavonoid quercetin [403-405]. Apple
also has antihypertensive, antioxidant, and anti-inflammatory properties which may be attributed to
several compounds including quercetin, catechin, epicatechin, procyanidin, coumaric acid,
chlorogenic acid and gallic acid [403-409].

57. Mangifera indica (Mango)

Mangifera indica (Anacardiaceae), known as mango, is a delicious fruit and a plant used in folk
medicine for asthma, dysentery, anthrax, indigestion, diarrhea, diabetes and colic [410-412]. Mango
pulps, stems and peels improve postprandial glucose and insulin sensitivity in T2DM patients by
inhibiting a-amylase and a-glucosidase [413-415]. Mango has been reported to exert antidiabetic
activity by improving insulin secretion from clonal (3-cells and isolated mouse islets, and regulating
fasting blood glucose, plasma insulin and liver glycogen levels, starch digestion, glucose absorption,
body weight, and free radical scavenging activity in diabetic rats [414]. Another study in
streptozotocin-induced diabetic rats, reported its promising ability to decrease postprandial
hyperglycemia [415]. The mentioned therapeutic effects of mango may be mediated by mangiferin,
flavonoids, tannins and alkaloids [414].

58. Mentha spicata (Mint leaves)

Mentha spicata, or mint, is a plant from the Lamiaceae family. It is known as a remdy for common
colds, asthma, fever, obesity, digestive problems, dementia, hypertension, diabetes and insomnia
[416]. Mint boasts a range of health benefits. Mint leaves increase HDL cholesterol levels, and reduce
triglycerides, LDL and VLDL cholesterol levels. It has antibacterial, antifungal, antioxidant,
hepatoprotective, cytotoxic, anti-inflammatory, larvicidal, antigenotoxic, and antiandrogenic effects.
Its ability to suppress a-amylase and a-glucosidase may be due to the presence of carvone, limonene,
1,8-cineole, pulegone, 3-bourbonene, B-pinene, dihydrocarveol, and piperitone [417,418].

59. Moringa oleifera Lam. (Moringa)

Moringa oleifera Lam. (Moringaceae), also known as moringa or the drumstick tree, grows in
many tropical and subtropical regions. It is regarded as a folk remedy for diabetes, liver disease,
cancer, inflammation, hypercholesteremia and hypertension [419,420]. Tannins, [3-carotene, vitamin
C, quercetin, and chlorogenic acid in moringa leaves aid diabetes through inhibiton of a-amylase and
a-glucosidase enzymes. They also reduce serum glucose and fasting blood glucose levels [421-423].

60. Momordica charantia (Bitter gourd)

Momordica charantia or bitter gourd (Cucurbitaceae) has medicinal value for managing T2DM,
dyslipidemia, cancer, obesity, malaria, dysentery, hypertension, womb and worm infections [424-
42].7 Bitter gourd suppresses the intestinal absorption of glucose, inhibits gluconeogenesis and
reduces accumulation of fats in adipocytes. It also activates the HMP and the PPARa pathways,
regenerates pancreatic [3-cells and enhances glucose uptake in skeletal muscles. These effects may be
attributed to the presence of phytoconstituents such as saponins, triterpenes, flavonoids, ascorbic
acid and steroids [428-432].

61. Morus alba (Mulberry)
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Morus alba (Moraceae), also known as mulberry, is widely used as a remedy for diabetes,
insomnia, tinnitus, dizziness, and for premature aging. It improves fasting blood glucose, total
triglycerides, cholesterol and HDL-cholesterol levels via the IRS-2, GLUT4 and Akt pathways [433].
Quercetin and isoquercetrin present in mulberry leaves are reported to have insulin-releasing,
antihyperlipidaemic, antithrombotic, antiobesity, antioxidant, and anti-inflammatory effects, which
may be beneficial in diabetic complications [434,435]. The bark of mulberry also lowers cholesterol
and blood glucose levels probably due to the presence of alkaloids, flavonoids, coumarins,
anthocyanins, benzofurans and phenolic acids [436,437].

62. Murraya koenigii (Curry leaves)

Murraya koenigii L. or the curry leaf plant belongs to the Rutaceae family. This plant is popular
as herbal remedy for piles, inflammation, itching, diabetes and snake bites [438,439]. It has
antimicrobial, antioxidant, antihyperglycemic, apoptotic, anticarcinogenic, anti-inflammatory and
antitumor effects. It has been also reported to protect against [3-cell damage, enhance antioxidant
defense systems and reduce oxidative stress, as well as improve blood sugar levels in diabetic rats
[440]. The bioactive substances such as mahanine, mahanimbine, murrayanol, koenigicine, quercetin,
apigenin, kaempferol, catechin, and oliolide in curry leaves have been reported to synergistically
regenerate 3-cells, aid diabetic complications, and possess antihyperlipidemic effects [440,441].

63. Myristica fragrans Houtt. (Nutmeg)

Muyristica fragrans Houtt. (Myristicaceae), known as nutmeg, is a flavoring spice and reputed folk
remedy for skin infection, diarrhea, diabetes, Alzheimer’s disease, rheumatism, asthma, cold, cough
and malaria [442]. Nutmeg demonstrates antidiabetic effects by enhancing insulin sensitivity,
regulating blood glucose levels, and exhibiting antioxidant properties that protect against oxidative
stress in diabetes. It strongly inhibits the release of pro-inflammatory cytokines such as IL-6 and TNF-
a, and helps ameliorate 3-cell function, inflammation and obesity [443-445]. Nutmeg is a source of
flavonoids, terpenes, phenylpropanoids, coumarins, lignans, alkanes, and indole alkaloids that can
elicit antiprotozoal, antimicrobial, immunomodulatory, anxiolytic and neuroprotective effects [442].

64. Nigella sativa L. (Black seeds)

Nigella sativa L. (Ranunculaceae) or black seeds are a reputed herbal remedy for asthma,
dyslipidemia, diabetes and diarrhea [446]. Black seeds exert antidiabetic effects by reducing
carbohydrate digestion and absorption in the gut, improving insulin secretion, and enhancing
glucose tolerance in T2DM animal models. Other antidiabetic effects of black seeds include lowering
lipid and blood glucose levels, suppressing hepatic gluconeogenesis, inhibiting a-amylase and «-
glucosidase, as well as boosting insulin production and sensitivity. These effects can be attributable
to phytochemicals that include thymoquinone, thymol, limonene, carvacrol, p-cymene, longifolene,
a-pinene, linoleic acid, oleic acid, palmitic acid, saponins, and alkaloids. Thymoquinone in black
seeds is known to enhance insulin secretion and insulin sensitivity through activating the PI3K/Akt
signaling pathway [447-450].

65. Ocimum sanctum L (Holy basil)

Ocimum sanctum L., known as Holy basil or Tulsi, belongs to Lamiaceae family. Tulsi is
traditionally used for anxiety, cough, asthma, diarrhea, fever, dysentery, arthritis, eye diseases,
indigestion, back pain, skin disorders, ringworm, insect, snake, scorpion, malaria, vomiting, gastritis,
diabetes, cardiac and genitourinary infection [451,452]. Tulsi leaves help improve insulin synthesis
and pancreatic 3-cell activity as well as inhibit intestinal glucose absorption. Its phytoconstituents
such as eugenol, ursolic acid, carvacrol, linalool, caryophyllene, triterpenoids, and tannins may
contribute to these effects [453,454].

66. Olea europaea L. (Olive)

Olea europaea L. (Oleaceae), or olive, is traditionally used to treat diabetes, diarrhea,
inflammation, urinary tract infection, hypertension intestinal diseases, hemorrhoids and
rheumatisms [455-457]. It offers a promising range of health benefits such as anti-inflammatory,
antidiabetic and immunomodulatory properties [458-460]. Olive oil notably prevents hepatic
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gluconeogenesis and inhibits glucose-6-phosphatase activity. It enhances catalase activity, regulates
body weight and plasma glucose levels possibly due to the presence of oleanolic acid, cinnamic acid
and secoiridoid glycosides such as oleuropein [458-460].

67. Origanum vulgare (Oregano)

Origanum vulgare (Lamiaceae), known as oregano, is a folk medicine for acne, cystic fibrosis,
diabetes, and bacterial infections [461,462]. It alleviates diabetic complications, including
nephropathy, atherosclerosis, and retinopathy, by inhibiting a-glucosidase, thereby reducing the
breakdown of complex carbohydrates into glucose, and lowering both glycosylation and oxidative
stress. Moreover, it improves glucose uptake in skeletal muscles by increasing GLUT2 levels, leading
to better control of blood sugar levels [463]. Oregano is a source of amburoside A, apigenin, luteolin
7-O-glucuronide, rosmarinic acid and lithospheric acid which have antimicrobial, antifungal,
antioxidant, anti-inflammatory and antiviral properties [464,465].

68. Passiflora edulis (Passion fruit)

Passiflora edulis (Passifloraceae), commonly known as passion fruit, is used as an ethnomedicine
for cough, diabetes, dysmenorrhea, dysentery, arthralgia, and constipation [466,467]. Previous
studies have shown that it reduces weight gain, lipid accumulation, and improves insulin sensitivity
and glucose tolerance via the Sirtl and p-AMPK pathways. [468,469]. It contains more than 110
bioactive constituents including piceatannol, tocopherols, [3-carotene and other carotenoids, gallic
acid, flavonoids such as rutin and quercetin, coumaric acid, which have antidiabetic, antioxidant,
antihypertensive, antimicrobial, hepatoprotective and lung-protective qualities [467,470-474]. A
reduction in blood glucose levels has been linked to the presence of piceatannol, present in high
amounts in passion fruit [467].

69. Persea americana (Avocado)

Persea americana (Lauraceae) or avocado is a popular fruit and a remedy traditionally used to
manage cardiovascular diseases and diabetes [475]. Avocado has been reported to lower blood
glucose levels, regulate glucose uptake in the liver and skeletal muscles as well as restore intracellular
energy homeostasis through activation of the PKB/Akt pathway [476]. Histopathological analysis of
diabetic rats also revealed regeneration of clonal pancreatic (3-cells following avocado treatment.
Avocado seed, bark, and leaf extracts contain flavonoids, alkaloids, saponins, tannins, and glycosides,
which are known for their antihyperglycemic properties [477-479].

70. Petroselinum crispum (Parsley)

Petroselinum crispum (parsley) is a plant form the Apiaceae family. As well as being a culinary
herb, it is an ethnomedicine traditionally used for diabetes, urinary tract infection, dysmenorrhea,
hypertension, dermatitis and gastrointestinal disorders [480]. Parsley exerts long-lasting control of
sugar levels by regulating plasma glucose, body weight, and electrolyte (sodium and potassium)
balance. It also promotes glucose uptake in muscles by inhibiting gluconeogenesis (sugar production)
and stimulating glycolysis (sugar breakdown) [481,482]. The main bioactive constituents of parsley
are coumarins, phthalides, phenylpropanoids, and tocopherols with antimicrobial, antihepatotoxic,
antihypertensive, antihyperlipidemic, hypouricemic, and antioxidative properties [483].

71. Phaseolus vulgaris L. (Kidney bean)

Phaseolus wvulgaris L. (Fabaceae), or kidney beans, is another nutritious legume crop,
ethnomedicinally used for wounds, pharyngitis, fever, obesity, diabetes, cancer and vaginal
infections [484,485]. Beyond their potential to lower blood sugar levels, kidney beans exhibit a range
of other health benefits, including anti-obesity and anti-inflammatory properties [484-486]. They are
a potential source of protocatechuic acid, p-coumaric acid, procyanidin, myricetin, naringenin, gallic
acid, quercetin, catechin, kaempferol, and ferulic acid which may contribute to alleviating diabetic
complications via inhibiting a-glucosidase, enhancing insulin sensitivity in peripheral tissues,
delaying the absorption of glucose, and reducing gluconeogenesis [486,487].

72. Phoenix dactylifera (Date)
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Phoenix dactylifera or date palm is a flowering plant belonging to the Arecaceae family. Date
palm, is a traditional medicine for fever, inflammation, nervous disorders and dementia [488]. In-
vitro studies demonstrated that date fruit has a-glucosidase and a-amylase inhibitory activity,
reduces the intestinal absorption of glucose, improves pancreatic (3-cell function, insulin secretion
and (-cells number [489,490]. The antihyperglycaemic, antioxidant, anti-inflammatory,
hepatoprotective, and nephroprotective properties of date palm may be attributable to its vast array
of phytochemicals that include oleic acid, linoleic acid, catechin, epicatechin, anthocyanin, ellagic
acid, gallic acid, p-coumaric acid, coumarins, quercetin, rutin, myricetin, apigenin, naringenin, and
chlorogenic acid [488,491].

73. Phyllanthus emblica L. (Amla)

Phyllanthus emblica L. (Phyllanthaceae), commonly called indian gooseberry or amla, is a remedy
for cough, peptic ulcer, skin diseases, jaundice, diarrhea, dysentery, diabetes, cardiac disorders, and
premature aging [492,493]. Recent studies suggest that the fruit, bark, leaves and roots of amla
significantly reduce plasma glucose levels through inhibition of a-amylase and a-glucosidase activity
and activation of the AMPK signaling pathway. The main phytoconstituents in amla such as gallic
acid, ellagic acid, pectin, quercetin, linoleic, oleic acid, and myristic acid, which are effective in
reducing inflammation, blood glucose levels, and increasing insulin sensitivity [494,495].

74. Piper betle L. (Betel leaf)

Piper betle L. (Piperaceae), also known as betel leaf, is widely used as a folk medicine for wounds,
bronchitis, diabetes, cough, indigestion in children, headaches, arthritis, and joint pain [496]. It
increases insulin production, improves glucose tolerance and decreases blood glucose levels
substantially [497]. Betel leaf contains many phytoconstituents such as eugenol, selinene,
hydroxychavicol, cadinene, caryophyllene, estragole, linalool, and other terpenes, phenols, steroids,
saponins and tannins which may play an important role in the management of diabetic complications
[498,499].

75. Pisum sativum L. (Pea)

Pisum sativum L., known as pea, is a plant that belongs to the Fabaceae family. Pea is a reputed
remedy for diabetes, gastrointestinal disorders, hyperlipidaemia and blood diseases [500].
Phytoconstituents such as quercetin, ellagic acid, coumaric acid, [-sitosterol, 3-amyrin, catechin,
myricetin, vanillic acid, and kaempferol may be responsible for the antidiabetic properties of pea. It
remarkably improves plasma glucose levels, glucose tolerance, glucose uptake, and glucose
homeostasis and diabetic complications [501,502]. It is also known to alleviate weight loss,
polyphagia, and triglycerides and LDL cholesterol levels via interacting with AMPK, a-glucosidase,
IRS-1 and IRS-2 [503].

76. Prunus armeniaca L. (Apricot)

Prunus armeniaca L. (Rosaceae), known as apricot, is a promising antidiabetic, cardioprotective,
hepatoprotective, nephroprotective, antioxidant, antimicrobial, anti-inflammatory, anticancer and
antiviral remedy [504,505]. Apricot has been reported to stimulate insulin secretion, reduce oxidative
stress and show a-glucosidase inhibitory activity in alloxan-induced diabetic mice. It is rich in
coumaric acid, benzyl glycosides, cyanogenic glycosides, vanillin, catechin, epicatechin,
neochlorogenic acid, chlorogenic acid, rutin, quercetin and lutein [505,506].

77. Prunus domestica (Plum)

Prunus domestica (Rosaceae), or plum, is a fruit and a beneficial ethnomedicine for anemia,
Alzheimer’s disease, irregular menstruation, diabetes and constipation [507-509]. Recent studies
reported that plum reduces oxidative stress and inhibits a-glucosidase, a-amylase, pancreatic lipase
and HMG-CoA reductase, lowering LDL, cholesterol and triglycerides levels [510,511]. Catechin,
epicatechin, chlorogenic acid, kaempferol, quercetin, and [3-carotene present in plum may contribute
to its antihyperglycaemic, anti-inflammatory, antioxidant and lipid-lowering properties [512-514].

78. Prunus dulcis (Almond)
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Prunus dulcis, or almond, is a plant from the Rosaceae family that is used as a remedy for
neurogical and respiratory disorders, diabetes and urinary tract infection [515]. Almond has a high
fiber content which help in ameliorating diabetes by suppressing appetite, and lowering blood sugar
levels via increasing insulin production and decreasing stomach emptying time. Its pharmacological
effects include antioxidant, anti-inflammatory, hepatoprotective, anxiolytic and nerve-improving.
Almond is rich in oleic acid, linoleic acid, p-coumaric acid, anthocyanins, kaempferol, quercetin, and
chlorogenic acid [515,516].

79. Prunus persica (Peach)

Prunus persica or peach is a species from the Rosaceae family, that is very useful in improving
blood circulation, blood clotting, constipation, and diabetes [517]. Peach inhibits a-glucosidase and
a-amylase activity and enhances insulin production by increasing the regeneration of pancreatic islet
[B-cells [518,519]. Various bioactive compounds in peaches such as procyanidins, epicatechin,
catechin, chlorogenic acid, quercetin and kaempferol play a vital role in the secretion of insulin from
clonal pancreatic 3-cells and have demonstrated of DPP-1V inhibitory activity [518, 520].

80. Punica granatum (Pomegranate)

Punica granatum or pomegranate (Lythraceae) is traditionally used for dysentery, diarrhea, piles,
bronchitis, biliousness, and diabetes [521,522]. Recent studies have shown that it can stimulate insulin
secretion, enhance glucose transporter type 4 (GLUT-4) translocation, and regulate blood glucose
levels. The phytoconstituents isolated from pomegranate such as ellagic acid, gallotannins,
anthocyanins, quercetin, kaempferol, luteolin glycosides, linolenic, arachidic, and palmitoleic acids
may contribute to the insulin-releasing and glucose-lowering properties of this plant [523,524].

81. Psidium guajava (Guava)

Psidium guajava (Myrtaceae), commonly known as guava, is widely used for dysentery, diabetes,
and diarrhea [525-527]. Studies conducted on its leaves have revealed that it activates the AMPK and
PI3K/AKT signaling pathways, improves hepatic glycogen accumulation, regulates the activity of
superoxide dismutase (SOD), glucose transporter 2 (GLUT-2) and fasting blood sugar levels [528-
531]. The antidiabetic activity of guava may be attributed to compounds such as quercetin, avicularin,
guaijaverin, tannins, and triterpenes [532,533].

82. Raphanus sativus L. (Radish)

Raphanus sativus L. (Brassicaceae), also called radish, has been employed as an effective remedy
for diabetes, jaundice, gastric disorders, dyspepsia and liver enlargement since ancient times [534].
Radish seeds significantly decrease hyperglycemia via reducing insulin resistance, limiting intestinal
glucose absorption and increasing glucose uptake in skeletal muscles [535]. Myricetin, catechin,
epicatechin, quercetin, p-coumaric acid, (-carotene, camphene, anthocyanin, glucosinolates and
isothiocyanate are some of the phytoconstituents in radish which that have been demonstrated to
possess antioxidant, anti-inflammatory and radical-scavenging activity [536,537].

83. Rosmarinus officinalis L (Rosemary)

Rosmarinus officinalis L., familiar as rosemary, is an important herb from the Lamiaceae family,
and is commonly recognized as a flavor enhancer, food preservative, wound healer,
antihyperglycemic and analgesic agent. It is also efficacious against mycosis, alopecia, ultraviolet
damage, skin cancer, inflammatory diseases and diabetes [538,539]. Rosemary has been suggested to
act via several pathways to improve blood sugar control. It reduces Irs1 protein, which can contribute
to insulin resistance. It also recruits GLUT-4 receptors to the surface of muscle cells, facilitating
glucose uptake from the bloodstream. Additionally, it activates pathways (pAKT and pAMPK) that
promote glucose uptake and inhibit gluconeogenesis. These overall effects improve glucose
utilization, leading to lower blood sugar levels [540-542]. Moreover, rosemary contains several types
of flavonoids, carnosol, carnosoic, rosmarinic, ursolic, oleanolic, micromeric acids. The presence of
bio active compounds may be responsible for its antimicriobial antitumor, antithrombotic,
antidepressant and antioxidant effects [543,544].

84. Rubus fruticosus (Blackberry)
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Rubus fruticosus or blackberry is a member of the Rosaceae family and well-known for its use in
mouthwash to relieve gum inflammation and mouth ulcers. It is also used for sore throat, respiratory
disorders, anemia, diarrhea, dysentery, cystitis, diabetes and hemorrhoids [545]. Blackberry has a-
amylase, a-glucosidase and B-glucosidase inhibitory activity, and reduces oxidative stress. This has
been associated with its high content in anthocyanins, cyanidins, kaempferol, quercetin, myricetin,
p-coumaric acid, rutin and gallic acid [546-548].

85. Salvia hispanica L. (Chia seeds)

Salvia hispanica L. (Lamiaceae), also known as Chia seeds, have a high nutritional and medicinal
value. They are used to treat indigestion, hyperlipidemia and diabetes [549,550]. Chia seeds decrease
fasting plasma glucose and LDL-cholesterol levels, inhibit the production of pro-inflammatory
cytokines (e.g. IL-6, Interleukin-2, TNF-a), reduce body weight, and have a-amylase and o-
glucosidase inhibitory activity [551,552]. They are a source of myricetin, quercetin, kaempferol,
chlorogenic acid, and caffeic acid that have hepatoprotective, antidiabetic antihypertensive, and
antioxidant effects. They also contain omega-3 fatty acids which can enhance insulin sensitivity and
reduce inflammation [553].

86. Sesamum indicum (White sesame seeds)

Sesame seeds, also called Sesamum indicum (Pedaliaceae), are traditionally used for wounds,
amenorrhea, ulcer, asthma, hemorrhoids, inflammation, and diabetes [554,555]. Sesamin, the main
bioactive compound in sesame seeds, can significantly ameliorate diabetes by enhancing insulin
sensitivity, reducing inflammation, boosting antioxidant defenses, and regulating lipid metabolism
[556]. Other phytochemicals in sesame seeds include other lignans such as sesamolin, and
phytosterols. These are reported to decrease fasting and postprandial blood glucose, reduce
cholesterol and oxidative stress, and improve renal disorders, fat metabolism, cell viability and
insulin secretion [557-559].

87. Solanum lycopersicum L. (Tomato)

Solanum lycopersicum L. (Solanaceae) or tomato is vastly produced for consumption worldwide
and is also a beneficial remedy for dermatitis, cancer, hypertension and hyperglycemia [560-562]. The
underlying mechanisms of its hypoglycemic effects are through regulation of the PI3K/Akt, FOXO1,
and PPAR-vy signaling pathways. Tomato enhance insulin signaling, improves glucose uptake, and
modulates lipid metabolism [562]. Due to its high lycopene content, tomato may help mitigate
diabetes-induced inflammation. Additionally, the presence of carotenoids may also contribute to
improving insulin sensitivity [563,564]. Tomato also contains ferulic acid, p-carotene, tomatine,
kaempferol, quercetin, naringenin, p-coumaric acid, and caffeic acid which exert antioxidant, anti-
inflammatory, antihyperglycemic and neuroprotective effects [565,566].

88. Solanum melongena (Eggplant)

Solanum melongena (Solanaceae) or eggplant is a nutritious vegetable and an efficient remedy for
arthritis, diabetes, dyslipidemia, bronchitis and asthma [567]. It has been reported to inhibit a-
amylase and a-glucosidase enzymes, inhibit gluconeogenesis, increase the translocation of GLUT4,
increase glucose uptake in skeletal muscle and reduce fatty acids, triglycerides and cholesterol levels
[568]. The bioactive constituents present in eggplant include thiamin, niacin, chlorogenic acid,
saponins, solasodine, delphinidin. These constituents have been associated with anti-inflammatory,
antioxidant, antihypertensive, antihyperlipidemic, anti-obesity and hepatoprotective effects [569-
571].

89. Spinacia oleracea (Spinach)

Spinacia oleracea (spinach) belongs to the Chenopodiaceae family. It is a folk remedy for bloody
stools, diarrhea, stomachaches, obesity and diabetes [572]. It notably improves diabetic retinopathy
and hyperglycemia by modulating multiple pathways such as inhibition of excess AGE and carbonyl
group production, glycation, and thiol group depletion in bovine serum albumin [573]. Spinach aids
insulin resistance by inhibition of increased serum C-reactive protein, tumor necrosis factor (TNF)-a
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and Interleukin-6 [574]. Moreover, it is rich in [-carotenoids, lutein, zeaxanthin, vitamins and
minerals that also exert hypoglycemic, hypolipidemic, anti-obesity and antioxidant effects [575-577].

90. Syzygium aromaticum (Clove)

Syzygium aromaticum flower buds (Myrtaceae), typically known as clove, is a seasoning spice
and an efficacious aid for increased gastritis, diabetes and indigestion [578]. Clove is reported to
improve insulin sensitivity, inhibit aldose reductase to prevent diabetic complications such as
neuropathy, nephropathy, regulate SIRT1 to enhance glucose metabolism, and promote muscle
glucose uptake, all of which assist management of diabetes. Phytoconstituents in clove include
alkaloids, terpenes, tannins, phenolics, steroids, flavonoids, glycosides and saponins which may
mitigate diabetic complications by decreasing insulin resistance [578-581]. Among them, eugenol
acetate, eugenol and gallic acid act via PPAR-y activation, aldose reductase inhibition, sirtuin 1
(SIRT1) regulation and muscle glycolysis [579-581].

91. Syzygium cumini (Java plum)

Syzygium cumini (Java plum) belongs to the Myrtaceae family and is used to treat asthma,
bronchitis, sore throat, biliousness, dysentery, diabetes, and ulcers [582]. Its pharmacological actions,
such as stimulating clonal pancreatic -cells to release insulin, have been compared to those of
sulfonylureas and biguanides [583]. A recent study reported that Java plum seeds are effective in
reducing plasma and urine glucose levels in diabetic rabbits [584]. The Java plum is a good source of
phytoconstituents such as anthocyanins, malvidin-3-glucoside, petunidin-3-glucoside, ellagic acid,
and the flavonoids isoquercetin, kaempferol and myricetin which may be responsible for its
antioxidant, antibacterial, gastroprotective and antidiarrheal properties [582].

92. Tamarindus indica L. (Tamarind)

Tamarindus indica L., also known as tamarind belongs to Fabaceae family. This plant is mostly
cultivated in the Indian sub-continent and other tropical regions. It is known to effectively treat
inflammation, stomach pain, sore throats, rheumatism, wound, diarrhea, dysentery, fever, malaria,
respiratory conditions, constipation, and eye diseases [585]. Beyond its culinary uses, tamarind offers
a range of health benefits due to its antioxidant and anti-inflammatory properties that aid digestion
and the expulsion of mucus [585-588]. The presence of apigenin, anthocyanin, procyanidin, catechin,
epicatechin, taxifolin, eriodyctiol, and naringenin help to control DM by inhibiting the activity of a-
amylase and a-glucosidase [586-588]. Among them, catechin, anthocyanin and epicatechin notably
lower blood glucose levels via glucose-6-phosphatase inhibitory activity, improving blood glucose
tolerance and promoting the regeneration of (3-cells [589].

93. Theobroma cacao (Cocoa)

Theobroma cacao (Malvaceae) is typically known as cocoa beans and commercially processed to
make chocolate particularly dark chocolate. It is a reputed remedy for measles, malaria, toothache
and diabetes. Its antidiabetic effect is via improving insulin secretion, GLUT4 translocation and
glucose uptake [590,591]. Moreover, it exerts inhibitory activity on a-amylase and a-glucosidase,
reduces ROS generation, increases GSH and Nrf2, thereby enhancing insulin secretion and 3-cell
survival [592,593]. Flavonoids, procyanidins, catechin and epicatechin have been implicated in
mitigating diabetic complications and have demonstrated antioxidant, anti-inflammatory and
hepatoprotective effects [594,595].

94. Trichosanthes cucumerina L. (Snake gourd)

Trichosanthes cucumerina L. (Cucurbitaceae) or snake gourd is an ethnomedicine for diabetes,
bronchitis, headache, cathartic, anthelmintic, indigestion, ulcers, stomach and skin disorders
[596,597]. The roots, fruit, seeds and leaf juice of snake gourd simulate (3-cell insulin secretion,
enhance glucose uptake in peripheral tissues and reduce intestinal glucose absorption. This
antihyperglycaemic effect may be attribute to its rich content in carotenoids, gallic acid,
neochlorogenic acid, caffeic acid, p-coumaric acid, rutin, kaempferol, quercetin, ursolic acid and
oleanolic acid [596-598].
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95. Trigonella foenum-graecum (Fenugreek seeds)

Trigonella foenum-graecum (Fabaceae), or fenugreek seeds are reputed as an effective tonic for
ulcer, sinusitis, hay fever, diarrhea, diabetes and kidney diseases [599]. Studies have documented
their antidiabetic activity with promising reduction in fasting and postprandial blood glucose,
enhancement in glucose uptake, glucose tolerance and peripheral insulin action [600,601].
Phytoconstituents in fenugreek seeds such as steroids, alkaloids, flavonoids, polyphenols, saponins
have anti-obesity, antihyperlipidemic, antioxidant, anticancer, anti-inflammatory and antifungal
properties. Specific phytochemicals, including trigonelline, diosgenin, and galactomannan, have
been shown to enhance insulin sensitivity, improve glucose metabolism, and reduce blood sugar
levels [599-602].

96. Vaccinium corymbosum (Blueberry)

Vaccinium corymbosum (Ericaceae), also called blueberry, is a widely used fruit with medicinal
properties that are useful for cold, inflammation, cardiovascular diseases, diabetes, and ocular
disorders [603,604]. It exerts its antidiabetic activity by inhibiting a-amylase and a-glucosidase
activity and ameliorating diabetic retinopathy [604,605]. It is rich in pectin, anthocyanins,
anthocyanidins, protocatechuic acid and petunidin which may contribute to its antidiabetic,
antiobesity, antioxidant, cardioprotective, neuroprotective and immunomodulatory effects [605].

97. Vigna radiata (Mung bean)

Vigna radiata (Leguminosae), or mung bean, is an important legume crop with high nutrient
value and a helpful remedy for heat stroke, gastrointestinal disorders, dermatitis, hyperglycemia,
hypertension, hyperlipidemia and melanogenesis [606,607]. Mung bean significantly reduces serum
glucose, total cholesterol and triglycerides levels. It also inhibits gluconeogenesis, glycolysis, as well
as a-glucosidase and a-amylase activity [608-610]. Mung bean is a rich source of proteins, vitamins,
minerals and bioactive compounds that include quercetin, myricetin, kaempferol, catechin, vitexin,
isovitexin, coumaric acid, luteolin, caffeic and gallic acid which all together help enhance insulin
sensitivity, reduce oxidative stress and blood glucose levels [611,612].

98. Vitis vinifera (Grapes)

Vitis vinifera (Vitaceae), commonly called grapes, can aid in diarrhea, wounds, hepatitis,
stomachaches, cardiovascular diseases, varicose veins, hemorrhoids, atherosclerosis, and diabetes
[613]. It is known for regenerating clonal pancreatic 3-cells and regulating plasma glucose levels by
inhibiting the intestinal absorption of glucose [614]. The phytomolecules found in grapes such as
triterpenoid acids, gallic acid, catechin, epicatechin, gallocatechin, p-coumaric and ferulic acids may
contribute to its anti-inflammatory, antioxidant, anticholesterolemic and glucose-lowering properties
[615].

99. Zea mays (Corn)

Zea mays (Poaceae) or corn, is a popular ethnomedicine for malaria, bladder stone, heart diseases
and diabetes [616,617]. Corn is a superfood which is rich in fiber and nutrients. Recent findings reveal
that corn silk (extended stigma of Z. mays flower) improve insulin resistance via lowering LDL-
cholesterol, total cholesterol, triglycerides, and malondialdehyde levels. It also reduces body weight
and the accumulation of lipids in the liver [618]. Moreover, corn possesses antioxidant, anti-
inflammatory, antimutagenic, anti-angiogenesis and anticarcinogenetic properties. One in vivo
study revealed that the flavonoid glycoside hirsutrin was the main constituent beneficial in diabetic
complications through suppressing aldose reductase and the formation of galactitol [619]. The
antidiabetic properties of corn have been attributed to flavonoids, alkaloids, saponins, phenols,
tannins, and phytosterols that could inhibit a-amylase and a-glucosidase and aid diabetic
nephropathy [620,621].

100. Zingiber officinale (Ginger)

Zingiber officinale (Zingiberaceae), commonly called ginger, is a traditional treatment for
muscular aches, arthritis, rheumatism, diabetes, hypertension, infections and helminthiasis [622].
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Ginger plays a significant role in regulating blood sugar levels by promoting the actions of GLUT-4
and PPAR-vy, which help muscles absorb glucose more efficiently. It also protects insulin-producing
[-cells in the pancreas [623]. Ginger is rich in various compounds (e.g. gingerols) that have a range
of pharmacological effects, including anti-inflammatory, neuro-and cardio-protective properties
[624].
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Table 1. Traditional uses, pharmacological actions and phytoconstituents of dietary plants.

Dietary plants Durati f
" ryp Plant Parts Used Traditional uses Pharmacological actions Diabetic model Treatment Dose uration o
Scientific name Common name treatment

Phytochemicals References

Blood glucose|, TC|,
TGJ, LDL-C|, VLDL|,
HDL?, body weight|, a- STZ-induced 200-400

Oxalic acid, iodine,

Chronic kidney disease, pectin, flavonoids,

1. Abelmoschus esculentus L. Okra Fruit, roots T-2DM, cardiovascular amylase and o T2DM mice meg/kg/day 56 days saponins, alkaloidsd- [143-145,625]
diseases . L. galactose, L-thamnose,
glucosidase activity| .
D-galacturonic
serum microRNA-42471, Triterpenoids,
. . . L. . Dyspepsia, vomiting, Keapl?, Nrf21, IL-6], IL- T2DM patients olyphenols, B-carotene,
2. Actinidia chinensis Kiwi Fruit lo}s,s}:)fzppetite, dial%etes 14, SpODT, GSH?1, ALT|, (50-70 ;)ears old) 10mgy/kg/day 270 days Fute};rlz, xantho[fohylls, [146-149]
AST|, inflammation | amino acids
Glucose tolerancet, a- Marmelosin, psoralen,
Inflammation, asthma, amylase and a- limonene, citronellal,
hyperglycemia, lucosidase activities|, . citral, marmin,
R fe}lloli‘iffg};, hepatitis, ignsulin secretionf, ! STZ-induced 250-500 skimmianine, aegelin,
3. Aegle marmelos L. Stone apple Fruit . . . . T2DM 28 days . . [150-152]
analgesic, antifungal intestinal glucose diabetic rats mg/kg/day fagarine, lupeol, cineol,
agent, colitis, flatulence, absorption|, BMI|, halfordiol, citronellal,
dysentery, fever polydipsial, cuminaldehyde, eugenol,
polyphagia] marmesinin
Lectins, B-glucans,
polyphenols, p-
Cold, cough, influenza, ggde%tfgsfll;glii’l STZ-induced I;Z:trooc?t,:;?j izlca;(;d'
4. Agaricus bisporus Mushroom Rhizome asthma, cancer, diabetes, i ! Sprague-Dawley 200mg/kg/day 21 days L . [153-157]
hepatic disorders secret}onT, glucagon rats gallic ac'ld, c.mnamlc', p-
secretion | coumaric acid, ferulic
acid, chlorogenic acid
and catechin
Querecetin, lectin,
Wound healing, scars, steroids, catechol,
keloids, bee sting Blood glucose|, FBG|, thiocyanate, isoflavones,
inflammation, TC|, TG| a-amylase and Alloxan- humulone, quercetin,
5. Allium cepa Onion Fruit dysmenorrhea,. vertigo, fx-glu'coydase.- ACtVIY L i duced diabetic 200-300 42 days apigenti, rutin, [158-162]
fainting, migraine, insulin secretiont, rats mg/kg/day myricetin, kaempferol,
bruises, earache, [-cell protectiont, catechin, resveratrol,
jaundice, pimples, oxidative stress| ajoene, phenolics,
diabetes phenolic acids and

anthocyanins
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Cold, fever, headache,
abdominal pain, sinus
congestion, gout,
rheumatism,
hemorrhoids, asthma,

Blood glucose|, TC|,
TG|, GLUT4 activityt,
[3-cell functiont, glucose
uptaket, creatinine|, uric

AJoene, cysteine, allicin,
pB-resorcylic acid, gallic

6. Allium satioum L. Garlic Fruit bronchitis, cancers, acidy, urea|, ASTand  STZ-induced 100-500 14 days acid, rutin, [163-168]

cough cardiovascular ~ ALT|, insulin Wistar rats mg/kg/day .
. .. . . . protocatechuic acid,
diseases, arthritis, sensitivityf, insulin X
. . . . . quercetin
tuberculosis, rhinitis, secretion 1, insulin
malaria, dermatitis, production 1, glucose
enlarged spleen, fistula, tolerancet,
UTIL kidney stone
Wound healing, FBG |, TG|, TC|, AGE Flavonoids, acemannam,
s constipation, colic, worm formation |, body STZ-induced flavones, quinone,

7. Aloe barbadensis Mill. Aloe vera Leaves . . . . L . 300 mg/kg/day 49 days . . [169-175,626]
infestation, dermatitis, ~weight, diabetic Wistar rats galactan, pectin, ornanic
hypertension nephropathy| acids

Arginine, isoleucine,
leucine, lysine, arachidic
. Blood glucose|, SODft, acid, lignoceric acid,
Fevers, aches, pains, IR|, gluconeogenesis|, Alloxan- induced 100-250 doleic acid, linolenic

8. Anacardium occidentale L.  Cashew nut Nut, leaves, bark diarrhea, diabetes, skin . g u ,g ! . a u 40 hours ga‘ a. 7 .. [176-179]
o o insulin secretion 1 Wistar rats mg/kg/ day acid, cyanidin, peonidin,
irritations, arthritis . .

anacardic acid, cardanol,
limonene, lactone,
palmitic acid
Pain, skin diseases, IR}, insulin sensitivity, Bromelain, flavonoids,
HDL-ct, HbAlc|, body . . . .
. . edema, wound, . - Alloxan- induced 400 mg/kg/ coumaric acid, ellagic
9. Ananas comosus L. Pineapple Fruit, peel, leaves . . . . weight|, LPL activity?, . 15 days . . . [180-186]
indigestion, diabetes and Wistar rats day acid, ferulic acid,
. HMGCoA reductase L
blood clotting . chlorogenic acid
activity|
Blood glucose|, PPBG|, Quercetin,
1 insuli LUT-4 h i
Arthritis, spleen plasma 1n.su int, GLU ‘ . t ymoquinone, .
Leaves. seeds dvsfunction. diabetes transloaction?, Elderly diabetic 250mey/ke/3 times a frocoumarin coumaric
10. Apium graveolens Celery / ! ystunetion, * . mitochondrial patients above 60 &/%6 12 days acid, gallic acid, [187-192,627]
roots sleep disturbances, CNS . . . da . .
X dysfunction|, insulin years flavonoids, alkaloids,
disorders e : ;
sensitivity?, steroids, limonene,
inflammation| selinene, glycosides
PPBG|, FBG|, IR|, Carotenoids, tannins,
11. Artocarpus heterophyllus  Jackfruit Fruit, leaves, bark, Wound healing, cancer, HbAlc|, a-amylase and T2DM patients 30000 mg/kg/day 84 days volatile acids, sterols, [195-199]

seeds, roots

diabetes

a-glucosidase activities|, (18-60)
HDL-c1, LDL|

chrysin, silymarin,
isoquercetin
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Blood glucose, B-cell

. function|, FBG|, TG/,

Asparagine, tyrosine,

Asthma, liver, rh TZ-i 250-
12. Asparagus officinalis Asparagus Stem kif:ltn:;,a’bll;]ggel; ;;I;Z:sc'sergm insulint . body i\/ist:r“i:tcsed nic(;) /ig/) day 28 days arginiT\e, ﬂa?/onoid,_ [200-204]
weight|, hepatic saponin, resin, tannin
glycogen|
- PPBG|, HbAlc|, body -glucan, tocopherols,
Dermatitis, cancer,
. . . e weight|, HDL1, MDA |, T2DM patients tocotrienols, phenolic
13. A I 11U/k 2 205-209,62
3. Avena sativa QOats Grains j;::aest:s, cardiovascular FBG), IR}, TC, TG, (50-70 years) U/kg/ day 8 days acids, sterols, selenium, [205-209,628]
LDquinol-C|, SOD? avenanthramides
Catechin, epicatechin,
Chronic headache, fever, procyanidins, gallic acid,
cough, gastroenteritis, Blood glucose|, TG, protocatechuic acid,
. ' d}arrhea, d.iabet(?s, TCl, 'FFAsl, serum STZ-induced 150-1200 .ferulic ac.id', rutin, o
14. Averrhoa carambola L. Star fruit Fruit ringworm infections, insulint, glucose . . 21 days isoquercitrin, quercitrin, [210-214,629]
o . Kunming mice  mg/kg/day K
skin inflammations uptaket, glycogen anthocyanin,
hypertension, synthesis 1 anthocyanidin,
hyperglycemia leucoanthocyanidins,
triterpenoids
. PPBGI, FBGL, HbAlel, Nimbidin, nimbin,
Fever, skin diseases, IR|, endothelial . L. K
. Lo Leaves, stem, bark, . . . . R . T2DM patients  125-500 mg nimbidol, quercetin
15. Azadirachta indica Neem . infection, inflammation function?, oxidative . 84 days . . [215-219]
flower, roots, fruit . . (30-65 years old) /kg/twice a day nimbosteron, saponin,
and dental disorders stress |, systemic . .
. . tannin, flavonoids
inflammation |
Betalains, betanin,
Blood glucose|, HbAlc|, carotenoids, coumarins,
FBG|, TC|, TG|, LDL- sesquiterpenoids,
Dandruff, loss of libido, C|, IR|, HDL?, ALT|, . betagarin, betavulgarin,
T2DM patient 1 k
16. Beta vulgaris Beetroot Fruit stomachaches, diabetes, AST|, gluconeogenesis|, (574 5pae;; i d(;OOOO mg/ks/ 56 days quercetin, kaempherol, [220-222,630]
arthritis, constipation =~ a-amylase and a- Y y tiliroside, astragalin,
glucosidase activity| rhamnocitrin, rhamnetin,
betavulgarosides,
betacyanin
hl ic aci
Blood glucosey, FBG, gni;?ng erilccoiii,ric acid,
Arthritis, foot-ache, ;FRCll' P{lil(;szrfoizl;ffct N Fructose- induced vanillic acid, flavonoids,
17. Brassica juncea Mustard Seeds lumbago, diabetes, instlll?n secretion " Sprague Dawley 100mg/kg/day 30 days chlorogenic acid, [223-226]
rheumatism . . ! rats polyphenols, allyl
intestinal glucose . - . .
. 1soth10cyanate, cinnamic
absorption] .
acid, kaempferol
. o . . Myricetin, quercetin,
18. Brassica gastritis, peptic ulcers, FBGJ|, TC|, TG|, LDL- Alloxan- induced . R
oleracea var. capitata Cabbage Flower irritable bowel C|, HDLY, insulin diabetic rabbits. 500mg/kg/day 30 days kaempferol, apigenin,  [227-229]

luteolin, cyanidin
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syndrome, diabetes,

sensitivity?, 3-cell

daidzein, genistein,

idiopathic cephalalgia  functiont glycitein, biochanin A,
formononetin
Glucosinolates,
Blood glucose|, lipid 1soth10cyanates., .
. o sulforaphane, sinapic
Xerophthalmia, peroxidation|, IL-6], acid, gallic acid, vanillic
Fl h lipi i TNF-a|, HbAlc|, insulinT2DM Albi . ’
19. Brassica oleracea var. italica Broccoli ower per 1p1de?m1a, N ,?‘l.' bAlcl, insulin ) bino 400mg/kg/day 42 days acid, p-coumaric acid, ~ [230-231,631]
fibromyalgia, cancer, sensitivity?, 3-cell Wistar Rats S .
. . ferulic acid, chlorogenic
diabetes function?, glucose . . .
roduction | acid, apigenin,
P ’ kaempferol, luteolin,
quercetin and myricetin
Blood gluc.osey IR, Caffeine, theanine,
MDA |, oxidative stress, ..
o . proanthocyanidins,
Flatulence, indigestion, inflammatory myricetin, kaempferol
iti besit toki - 1 STZ-induced 100-200 ! ’
20. Camellia sinensis Tea Leaves VOmIing, Obestty, | nesl, cramy’ase £rinduce 28 days quercetin, chlorogenic  [232-235,632]
diarrhea, hyperglycemia, and a-glucosidase Wistar rats mg/kg/day . .
. T acid, coumarylquinic
stomach discomfort activity ], insulin release . .
K acid, theogallin,
1, glycation |, glucose . . .
catechins, epicatechin
tolerancet
FBGJ|, HbAlc|,
inflammatory
cytokines|, TG|, TNF- Lycopene, flavonoids,
Dyspepsia, ulcer, al, IL-6], plasma High fat died carotenoids, flavones,
21. Capsicum annuum L. Red pepper Seeds anorexia, GERD and insulint, induced 200mg/kg/day 56 days apigenin, quercetin, [236-240]
diabetes. gluconeogenesis|, C57BL/Ks] isoquercetin, capsinoids,
AMPK?1, FOXO1¢1, polyphenols
glucose uptaket, GLUT-
4 translocation?
H ion, f
( d}éiertzys;(;z,sfver Papain, quercetin,
waenguie), Yo Blood glucose|, TG/, kaempferol, p-coumaric
jaundice, UTI, ulcer, TC|, a-amylase and a- STZ-induced 750-3000 acid, carpinine, carpaine
22. Carica papaya Papaya Fruit, seeds, leaves constipation, bronchitis,  oramylase an , mg/100mL/ 28 days s carp s carpame, [241-244]
R glucosidase activities|, Wistar rats choline, 3-carotene,
cough, diarrhea, asthma, © . | day R . .
. . oxidative stress | linalool, oleic acid,
piles, malaria, wound K . i
. linolenic acid
healing
Anorexia, brain disease,
cougtk.l ’ a:.t hm: h ].31?10(1 glu;osell ’ All - induced Lignans, flavonoids,
23. Carissa carandas Bengal currant Fruits constipation, clatrhea,  ftammation., oxans INCUCE 45 mg/kg 1 day steroid, phenolic acids ~ [245-249]

diabetes, pain,
pharyngitis, scabies,
leprosy, malaria,

a-amylase and a-
glucosidase activity|

Swiss albino rats

alkaloids
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myopathic spams, fever,
epilepsy, seizures

Cancer, diabetes,

Blood glucose|, insulin

Gallic acid, rutin, p-
coumaric acid,
ajmalicine, vindoline,

stomach disorders, secretion? Alloxan- induced 05-1mg catharanthine,
24. Catharanthus roseus L. Vinca Rosea Flowers, leaves . . ! " . .u /kg/day 24 hours vinblastine, vincristine, [250-254]
kidney, liver, [3-cell functiont, TC|, Albino rabbits . . .
. X . caffeic acid, quercetin,
cardiovascular disorders creatinine| ..
kaempferol, syringic
acid, chlorogenic acid,
ellagic acid, coumarins
Leprosy, lupus, varicose
ziz:;ezczf:/r: psoriasts, Blood glucose|, Asiaticoside, madecassic
, y insul e T7-i 1 . .
25. Centella asiatica Centella leaves Leaves amenorrhea, female ms.u H} sensitivityt, STZ-induced 500-1000 14 days acid, madecassosm.ie, [255-258]
. oxidative stress|, Sprague-Dawley mg/kg/day centellase, quercetin,
genitourinary tract inflammation| kaempferol, phytosterol
infections, diabetes, p - Py
anxiety
Blood glucose|, FBG/, .
h 1
IR}, TC|, TG, LDL-C|, .. . Saponins, p yt(?stero s,
Dyslipidemia, diabetes, «a-glucosidase activity High fat diet phytoecdysteroids,
26. Chenopodium quinoa Quinoa Grains ySIp ’ TS . " induced C57BL/6J2000 mg/kg/day 84 days phenolics, tocophenols, [259-265]
heart disease lipid accumulation|, . . .
mice betalains, tannins,
glucose tolerancet, . .
. . . glycine betaine
insulin sensitivity?
Blood glucose],
inflammation|, organ
function?, intestinal
Digestive diseases, dysbiosis|, a-amylase, STZ-induced HFF Uridine, adenosine,
27. Cicer arietinum Chickpea Grains cancer, cardiovascular ~ a-glucosidase and DPP4 3000 mg/kg/day 28 days tryptophan, 3-hydroxy- [266-271,633]
disease, diabetes activity|, carbohydrate olean-ene, biochanin
metabolism?, body
weight|
Nausea, vomiting, fever, cinnamaldehyde,
hahtosfls, arthritis, Blood glucose|, GLUT-4 cn.mamates, Cm.namlc
coughing, hoarseness, X acid, eugenol, cinnamyl
frigidity, cramps, translocation, glucose acetate, cubebene,
g ! take?, Mitochondrial STZ-induced k g !
28. Cinnamomum verum Cinnamon Bark intestinal spasms, uptaket, . ! O,C ondrial S . nduce 30mg/kg/ 22 days terpinolene, linalool, [272-275]
UCP-11, insulin Wistar rats Day

bronchitis, asthma,
odontalgia, cardiac
diseases, diarrhea,

vaginitis, neuralgia,

secretiont, a-glucosidase
activity|,

linalyl acetate, benzyl
cinnamate, piperitone, 3-
sitosterol, flavanol,
glucosides, coumarin,
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rheumatism, piles,
urinary disease

protocatechuic acid,
vanillic acid, syringic
acid

Stigmasterol, quinic acid,

FBG|, serum lipid malic acid, epicatechin,
Gioorders oty Dhosphtoer g Aloxan-induced oo Comarie e et
29. Citrullus lanatus L. Water-melon  Fruit, seeds . ! v phosphata L lip Wistar Albino 14 days laricacd, quercetm, [276-279]
disorders, aphrodisiac, peroxidation|, GLUT41, mg/kg/day ferulic acid, scopoletin,
. . . rats o
fever, laxative, emetic =~ GLUT21, hexokinase apigenin, kaempferol, 3
activity? carotene, citrulline,
lycopene, a tocopherol
Serum glucose|, body
weight|, TC|, TG, Limocitrin, hesperidin,
LDL, diosmin, hesperetin,
h, 1
Cough, scurvy,. cold, VLDL|, GSHY, insulin . didymin, naringin,
. , X fever, rheumatism, sore R STZ-induced 200-400 / . .
30. Citrus limon Lemon Fruit, peel, leaves . . sensitivityt, GLUT-4 . 15 days naringenin, tangeretin,  [280-287]
throat, diabetes, irregular . Wistar rats mg/kg/day . .
R translocationt, AGE rutine, quercetin, {3-
menstruation . . .
formation, pinene, y-terpinene, D-
Glucose uptake? limonene, ferulic acid
Blood glucose|, TG|,
diarrh h - Alloxan- induced 200-6 ’ ’
31. Citrus maxima Pomelo Fruit, peel larrhed, C,Oug, / and angiotensin I- oxan- mauce 00-600 14 days chlorogenic acid, ferulic [288-290,634]
Alzheimer’s disease, > diabetic rats mg/kg/day . . .
. . . converting enzyme acid, caffeic acid, gallic
diabetes, insomnia .. . . . .
activity|, body weight], acid, p-coumaric acid.
glucose tolerance 1
mRNA expression 1,
LUT-4 1 i
Alzheimer’s disease, iis:jin Sz?s?tsi\zca?onT' STZ-induced Flavonoids hesperidin,
32. Citrus reticulata Orange Fruit, peel cough, phlegm, diabetes, ty ! . 100mg/kg/day 28 days quercetin, naringin, [291-295]
. . serum fructosamine Wistar rats . .
hepatic steatosis, cancer nobiletin, tangeretin
level |, glucose
tolerancet
Chlorogenic, gallic,
Blood gl -
Diarrhea, diabetes, ood glucose], a ferulic, salicylic,
. amylase and a- Lo
dermatitis, renal glucosidase activity | coumaric acids,
33. Cocos nucifera Coconut Fruit, husk, water diseases, stomachaches, DPPH free radicals|, ST.Z—mduced 250-500 28 days glycosn.ies, rut.m., [297-304]
fever, asthma, abscesses, Wistar rats mg/kg/day quercetin, vanillin,

amenorrhea, gonorrhea,
menstrual disorders

IR|, oxidative stress|,
neuropathy|, 3-cell
regeneration 1

catechin, epicatechin,
neochlorogenic acid,
chlorogenic acid, lutein
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Flu, anemia, edema,
asthenia., asthma,
backache, cough,

Blood glucose], insulin
secretiont, a-amylase

Chlorogenic acids,
caffeic, p-coumaric,
vanillic, ferulic,
protocatechuic acids,
flavonoids, alkaloids,

1
34. Coffea Arabica L. Coffee Leaves, fruit, ]:aund.ice, dia.rrhee?, . anc.l (?c-glucosidase ST.Z-induced kg/)g:;g/ 90 days ca—ffeine, sitosterol, . [305-307,635]
beans intestinal pain, migraine, activity, Wistar rats stigmasterol, coffeasterin,
headache, fever, purulentnephropathy |, plasma kaempherol, quercetin,
wounds, pharyngitis,  insulinf, IR|, TG| sinapic, quinolic,
diabetes, stomatitis trigonelline,
caffeoylquinic,
dicaffeoylquinic
Tannins, phytates,
oxalates, tryptophan,
Rheumatic pain Blood glucosey, HbALel, ;krllt(l)xl;z%;lil:oizdx;itexin
) . L TC|, TG}, LDL-C|, STZ-induced 405-810 . T ’
. T , 1 , h , . 2 hins, , -312
35. Colocasia esculenta aro Stem, leaves diabetes ypertensTon VLDL, HDL{, body ~ Wistar rats meg/kg/day 8 days C:dteC ins, apigenin [308-312]
pulmonary congestion . cinnamic acids,
weight| N N
isovitexin, orientin,
isoorientin, rosmarinic
acid
Diabetic neuropathy|,
Diarrhea, flatulence, Blood glucose|, MDA |, Flavor.101d, tocopherol,
colic, indigestion, GSHT, SOD1, TCL TGL 617 NA induced 100-400 tocotrienol sterol,
36. Coriandrum sativum Coriander Seeds, leaves - & R ! LDL-C|, AGEs . 45 days carotenoids, terpenoids, [313-317]
gastrointestinal diseases, . . Wistar rats mg/kg/day ) . .
R formation|, lipid steroids, saponin, tannin,
diabetes - S :
peroxidation|, oxidative alkaloids
stress|, TNF-a
Blood glucose|, MDA |,
CNS diseases, diabetes, NO|, GSHt, SODt, TC|, . Crocin, 3 carotenes,
STZ-induced 10-4
37. Crocus sativus L. Saffron Flower stigma obesity, cancer, TG|, LDL-C|, a-amylase _ . tnduce 0-40mg 28 days crocetin, picrocrocin, [318-323]
L . K Wistar rats /kg/day
dyslipidemia and a-glucosidase zeaxanthene, safranal
activity|, inflammation]
Blood glucose|, AGEs Clarvacri)ll, carvone, _Q(_
Diarrhea, dyspepsia, formation|, HbAlc|, Pln?“e’ 1mf)nene, Y
. . terpinene, linalool,
epilepsy, toothache, creatinine |, blood urea STZ-induced 200-600 carvenone. p-cvmene
38. Cuminum Cyminum L. Cuminseeds  Seeds whooping cough, nitrogen|, serum . 28 days . ' Py T [324-326]
Wistar rats mg/kg/day cumin aldehyde,

flatulence, indigestion,
diabetes, jaundice

insulint, oxidative
stress|,
nephropathy|

limonene, a- and 3-
pinene, terpinene,s
safranal and linalool
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Sunburn, skin irritation,

Blood glucose| IR |,

Cucurbitacin, cucumerin,

constipation, body weight|, insulin . .
TZ- 200-
39. Cucumis sativus Cucumber Fruit, seeds thermoplegia, gall sensitivity?, S . induced 00-800 mg 9 days CL.1Cu1.nega.st1gI.‘nanes [327-330]
. Wistar rats /kg/day vitexin, orientin,
bladder stone, gluconeogenesis, N .
s . apigenin, isoscoparin
hyperdipsia, diabetes  glucagon secretion|
].De.rmaﬁtis, depression, Blood glucosel, TC|, ﬁ-ca_rotene, zeéxanthin,
irritable bladder, . lutein, flavonoids,
40. Cucurbita pepo L Pumpkin Fruit, seeds intestinal inflammation, TG, LDL-C|, HDL?, ~ STZ-induced 400mg/kg/da 56 days alkaloids [331-335]
: pepo L P ' " IR|, ROS|, SOD1, GSH?, T2DM mice g/xe/day y -
prostate enlargement, MDA polysaccharides,
hyperglycemia polyphenols
. Blood glucosel, FBG), Caffeic ‘:iCId, Cu'I'dIO].f’le,
Cough, diabetes, . . o coumaric, caffeic acid,
arthritis, gall bladder insulin sensitivityf, - casuarinin, curcuminol,
. . » BT DA cell functiont, IR, STZ-Na induced 30-60 \ 5 oy
41. Curcuma longa L. Turmeric Fruit stones, dermatitis, L . 30 days isorhamnetin, valoneic  [336-340]
. . GLUT-2 activity?, Wistar rats mg/kg/day .
cancer, intestinal, ) . K acid, eugenol,
L. insulin secretion?,
stomachic diseases corymbolone,
glucose uptake? .
demethoxycurcumin
. L Blood glucose| IR |, Carotenoid,
Diarrhea, constipation, . " X .
intestinal inflammation Obesity|, body weight|, High fructose polyacetylenes, ascorbic
42. Daucus carota Carrot Fruit weakne?ss illre:ess anon, BMI|, a-amylase and a- induced Wistar  50ml/kg/ day 56 days acid, a and p-carotene,  [341-344,636]
diabetes, rickets glucosidase activity rats lutein, lycgpene,
anthocyanins
Dermatitis, lepros FBG|, PPBGY, TG,
ermatiiis, eP © ,y' HDL?, LDL|, VLDLJ, Eugenol, anthocyanins,
Fruit, leaves, bark, S0 . anemia diabetes, TC|, pancreatic B-cell ~ STZ-induced volatile compounds
43. Ficus carica Fig / / " paralysis, urinary tract - par p . . 2000 mg/kg/day 42 days - comp ! [345-350]
roots ! d d apoptosis|, pancreatic = C57BL/6 mice phenolic acids, flavones,
infection, ulcer, liver
. AMPKTY, caspase-3, flavanols
diseases .
body weight |
Quercetin, kaempferol,
Blood glucose|, IR|, rutin, gallic acid,
insulin secretion?, a- chlorogenic acid, caffeic
' . Wound lTealmg, p}atelet amylas.e and 0(—. 3 STZ-induced 50-200 acid, ellagl.taanms,.
44. Fragaria ananassa Strawberry Fruit, leaves aggregation, obesity, glucosidase activities|, . 30 days octadecatrienoic acid,  [351-355,637]
- .. Albino rats mg/kg/day L. .
diabetes plasma creatinine|, vitamin C and E, folic
MDA |, TNF-a|, IL-6], acid, carotenoids,
caspase-3| anthocyanins,
gallotannins
[-conglycinin, phenolic
Blood gl FB
Osteoporosis, IR(iOT g’ lu;(gil/LDLC-; é/l T2DM obese acids, flavonoids,
45. Glycine max Soya bean Seeds, leaves cardiovascular disease, ‘ ! ’ " patients 2000 mg/kg/day 84 days isoflavones, saponins,  [356-360,638]

diabetes

a-glucosidase activity |,
HbA1lc|, HDL1, body

(43-51 years)

phytosterols,
sphingolipids
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weight|, glucose

cancer, heart conditions,
sinusitis

PTP1B|

uptake?
Blood glucose], Flavonoids, alkaloids,
Diabetes, nephrotoxicity, nephropathy|, FBG|,  Alloxan- 150-600 saponins, tocopherols,
46. Helianthus annuus Flowers, seeds cardiovascular disease, BMI|, body weight|,  Induced mg/kg/day 21 days carotenoids, saponins,  [361-364,]
hematologic disorders ~ AGEs formation, Albino rats tannins, chlorogenic acid
DPPH|, NO|, urea| and caffeic acid
Quercetin, cyanidin,
oo Ut
47. Hibi -sinensis Linn. Chi Fl 1 infertility, di , A i k 2 -
ibiscus rosa-sinensis Linn. China rose owers, leaves moer: dl:y diabetes, function?, TC|, TG, Long Evans rats mg/kg/day 8 days thiamine, niacin, [365-369]
wou hepatic glycogen|, SODt margaric acid, calcium
oxalate, hentriacontane
Lycopene, B-carotene,
betacyanin,oleic acid,
octacosane, phthalic acid,
eicosane
. . . Blood glucose|, MDA|, STZ-induced .
Diuretic, heal t 250-500 tetrat t
48. Hylocereus undatus Hene hea Mg a5 FBG), SODY, GLUT21,  Sprague Dawley 35 days ratmacontane [370-372,639]
laxative, gastritis aid . mg/kg/day tacosane, campesterol
oxidative stress| rats . L. "
linoleic acid, palmitic
acid, gallic acid, syringic
acid, protocatechuic acid,
p-coumaric acid
Aphrodisiac, burns, Anthrac.lulnones, .
K coumarins, flavonoids,
catarrh, diarrhea, fever, . .
nausea, splenosis Blood glucose|, IR|, saponins, tannins,
4 / Insuli itivi T2D i henolic aci i 73-377,64
49. Ipomoea batatas stomach distress, nsulin sensitivityf, M patients 4000 mg/kg/day 42 days phenofie a,CldS', quercetin, [373-377,640]
. glucose tolerancet, (58+8 years) chlorogenic acid,
anemia, tumors, . . . :
K insulin secretion? terpenoids, 3-carotene,
hypertension, , . .
e zeaxanthin, lutein,
prostatitis, asthma, X
anthocyanins
tocopherol, gallic acid,
protocatechuic acid,
.Curm‘g bacterial Blood glucosel, a- cajffelc ac1d,.chloroge%nlc
infections, stomachaches, . acid, catechin, vanillic
. Ly . amylase and a- STZ-induced 25-100 . . .
50. Juglans regia L. thyroid issues, diabetes. . . . 28 days acid, epicatechin, p- [378-381]
glucosidase activity|, =~ Wistar rats mg/kg/day

coumaric acid,
isoquercitrin, quercetin,
luteolin, kaempferol and
apigenin
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Hyperglycemia FBG|, TC|, TG|, LDL- flavonoids, quercetin,
. . ! C|, HDL?, B-cell STZ-induced flavonols, anthocyanins,
1.L L L k 2 2-
51. Lactuca sativa ettuce eaves .osteodym:%, functiont, SOD1, GSH1, Wistar rats 50mg/kg/ day 8 days hydroxycinnamoyl [382-386]
inflammations . .
glucose production 1 derivatives
. . Isovitexin, isoorientin,
]aum%lce,.dlabetes, Blood glucose|, HbAlc|, saponarin, fucosterol,
constipation, flatulence, : L.
) . . FBG|, body weight |, campesterol, cucurbitacin
insomnia, ulcer, piles, TC|, TG|, insulin STZ-induced B, cucurbitacin D,
52. Lagenaria siceraria Bottle gourd  Fruit, leaves, seeds colitis, insanity, g . 400mg/kg/day 15 days ’ . ’ [387-390]
. . productiont, glucose ~ Wistar rats cucurbitacin E,
hypertension, congestive . . . .
. . : tolerancet, intestinal isoquercitrin,
cardiac failure, skin R . .
. glucose absorption| kaempferol, gallic acid
diseases, headaches . .
and protocatechuic acid
Stomachaches, phlegm, Blood glucose|, p-cell Kaempferol, syringic
cold, sore throat, function?, a-glucosidase acid, quercetin, apigenin
headache, indigesti " STZ-induced ’ ’ ’
53. Laurus nobilis Bayleaves  Leaves cadache, MAESHON, 4 tivity|, Insulin crinduce 200mg/kg/day 28 days luteolin, lauric acid, ~ [391-394]
flatulence, eructation, § Wistar rats .. . .
. R . productiont, palmitic acid, linoleic
epigastric bloating, B-cell regeneration? acid, lutein, eugenol
diabetes & !  CUug
Blood gl FBG
Cough, ulcer, flatulence, regg ri;i%?i% IR) L Alloxan- induced Flavonoids, triterpenes,
54. Litchi chinensis Lychee Fruit, seeds testicular swelling, P Y . 2.6 mg/kg/day 30 days sterols, phenolic [395-397]
. . .. glucose tolerancet, TG|, Wistar rats
diabetes, hernia, obesity R N compounds
a-glucosidase activity
Jaundice, hemorrhoids, Luffaculin, luffangulin,
dysentery, headache, apigenin, luteolin
ringworm infection, Blood glucose|, HbAlc|, nfyfistic ,alci d palr,nitic
. . insect bite, urinary FBG|, ALT|, AST|, TC|, STZ-induced 200-400 . N .
55. Luffa acutangula Ridge gourd Fruit, seeds bladder stone, granular TG|, LDL-C|, VLDL|, Wistar rats meg/kg/day 21 days aC}d, oleic ac%d, h'nolexc [398,399,641]
contunctiviti | . acid, oleanolic acid,
onjunciivitis, gluconeogenesis| machaelinic acid, -
constipation, leprosy, thuiene. terpinene
diabetes jene, terp
R R Blood pressure|, Procyanidins, flavonoids,
Wound healing, diabetes, . . . .
lial f HFHF-fed ICR 2 hl
56. Malus domestica Borkh Apple Fruit, peel asthma, obesity, e.n(.:lothe N unc.tlonT, . edIC 50 mg/ke/ 28 days ¢ orogen.lc ac1d.s, . [400-409,642]
K . lipid homeostasis?, mice day hydroxycinnamic acids,
cardiovascular disease . . . .
insulin resistance | anthocyanins, quercetins
FBG/, HbAlc|, serum Mangiferins, carotenoids,
Asthma, tetanus, . . .
polyuria, dysentery fructosamine level|, flavonoids, anthocyanins,
57. Mangifera indica Mango Fruit, peel, bark, anthrax, indigestion, plasma insulin 1, o- STZ-induced 100-200 mg/kg/day 60 days gallic acid, [410-415]

seeds

amylase and a-
glucosidase activities|,
PPBG |

tumor, tympanites,
diarrhea, colic

Wistar rats

protocatechuic acid,
chlorogenic acid, ferulic
acid

58. Mentha spicata

Mint leaves

Leaves

Cough, cold, asthma, FBG|, TC|, TG|, LDL-

fever, obesity, dementia, C|, VLDL| MDA |, body Wistar rats

Alloxan- induced

300mg/kg/day 21 days

Carvone, limonene, 1,8-

cineole, pulegone, - [416-418, 643]
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hypertension, abdominal weight|, HDL?1, a-

pain, headache,
menstrual pain,
depression, insomnia

amylase and a-
glucosidase activity|

bourbonene, $-pinene,
dihydrocarveol, a-
phellandrene, borneol,
linalool, germacrene D
and piperitone

Diabetes, liver disease,
cancer, inflammation,

Blood glucose|, hepatic
functionst, FBG|, TC|,
TG|, LDL-C|, VLDL/,

High fat died

Tannins, Bcarotene,
vitamin C, quercetin,
alkaloids, saponins,

. i ifera Lam. i Fruit, 1 i 7BL/6 2 ki 21 419-42
59. Moringa oleifera Lam Moringa ruit, leaves hypercholesteremi, HDL?, a-amylase and a- Ez:lclgced C57BL/6 200mg/ke/day days steroids, phenolic acids, [419-423]
hypertension glucosidase activity| ’ glucosinolates,
flavonoids, terpenes
Blood glucose], Saponins, triterpenes,
T2DM, dyslipidemia, fructosamine|, IR|, TC|, flavonoids, ascorbic
. . . . cancer, obesity, malaria, TG|, insulin secretionf, STZ-induced 10 mL/kg/ acids, steroids, tannins,
. B Fruit, 1 , . ) 21 . . 424-432
60. Mormordica charantia itter gourd ruit, leaves, seeds dysentery, hypertension, HDL{, MDA |, GSH?t,  Albino rats day days alkaloids, cardiac [ 32]
worm infections glucose uptake?, B-cell glycosides, phlobatinnins
function? anthraquinones
Insomnia, tinnitus, FBGJ, IR|, TG|, HDL?, STZ-induced HFF Quercetin, isoquercetin
61. Morus alba L. Mulberry Fruit, leaves dizziness, premature LDL|, TC|, GLUT-4 Wistar ruts 400 mg/kg/ day 49 days alkaloids, polyphenols, [434-437]
aging, diabetes translocation? arra flavonoids, anthocyanins
Mahanine, mahanimbine,
murrayanol, koenimbine,
Piles, inflammation, koenigicine, koenigine,
itching, fresh cuts, Blood glucose|, MDA |, STZ-NA induced 200-400 murrayone, isomahanine,
62. Murraya koenigii L. Curry leaves  Leaves dysentery, bruises, GSH1, IR|, B-cell Sprague Dawley me/ke/da 28 days glycozoline, mukonicine, [438-441]
edema, body aches, regeneration? rats glkg/day murrayazolinol,
diabetes, snakebites murrayacine, quercetin,
apigenin, kaempferol,
catechin
Skin infection, diarrhea, Flavonoids, terpenes,
. . , Blood glucose|, serum . .
diabetes, Alzheimer’s . . e Chlorpromazine- phenylpropanoids,
- . . . insulint, oxidative . 50-450 L.
63. Myristica fragrans Houtt. Nutmeg Fruit, seeds diseases, rheumatism, . induced obese 7 days coumarin, lignans, [442-445]
sthma, cold, cough, stress|, -cell functiont, Swiss albino mice meg/kg/day alkanes and indole
astima, Coid, COUgt AMPK1, IL-6], TNF-at| ,
malaria alkaloids
Blood glucosel, a- Thymoqulnone, thymol,
limonene, carvacrol, p-
amylase and a- cymene, longifolene, a-
Asth; dyslipidemi 1 id tivi TZ-induced 100-71 . ’
64. Nigella sativa L. Black seeds Seeds sthma, dyslipidemia,  glucosidase activity|,  STZ-induce 00-700 28 days pinene, linoleic acid, oleic[446-450]

diabetes, diarrhea serum lipids| insulin
sensitivity?,

gluconeogenesis

Swiss albino mice mg/kg/day acid, palmitic acid

saponins, flavonoids,
alkaloids
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Anxiety, cough, asthma, TC|, TG|, LDL|,
diarrhea, fever, VLDL/, atherogenic
dysentery, arthritis, eye index |, GSH 1,

Alloxan- induced 0.8 mg/kg/

Eugenol, euginal,
urosolic acid, carvacrol,

65. Ocimum sanctum L. Holy basil Leaves, seeds diseases, skin diseases, Insulin productiont, o . 28 days . [451-454,644]
. o . . diabetic rabbits Day linalool, caryophyllene,
malaria, vomiting, intestinal glucose . . .
. . triterpenoids, tannins
cardiac and absorption|
genitourinary infection
Blood glucose],
Diabetes, diarrhea, inflammatory
. ' inﬂa@ma@on, 1'1rina1ty cytf)kinesl, body STZ-induced 200-400 Flavonoids, secoiridoids,
66. Olea europaea L. Olive Fruit, leaves tract infection, intestinal weight, . 70 days hydroxytyrosol and [455-460]
. . . Wistar rats mg/kg/day ; S
diseases, hemorrhoids, gluconeogenesis|, tyrosol, cinnamic acid
rheumatisms glucose-6-phosphatase
enzyme activity]
Blood glucose|, glucose . N
. e . Amburoside, apigenin,
Acne, cystic fibrosis, uptaket, GLUT21, a- . . .
TZ- 2 1 lin 7-O-gl
67. Origanum vulgare Oregano Leaves diabetes, bacterial amylase and a- STZ-induced Omefkg/ 15 days uteolin 7-O-glucuronide, [461-465,645]

infections glucosidase activity,

oxidative stress|

Diabetic rats Day

rosmarinic acid and
lithospheric acid

Cough, diabetes, Blood glucose], TG,

TC|, interleukins|, body Cafeteria diet

15% of PEPF (P.

Piceatannol, flavonoids,
triterpenoids,
tocopherols, linoleic acid,

d h
68. Passiflora edulis Passion fruit ~ Fruit, peel ysmenorrhed, weight|, insulin induced C57BL/6 edulis peel flour) in 112 days vitexin, carotenoid, [466-474]
dysentery, arthralgia, S . . S -
L sensitivity 1, glucose mice CAF diet orientin, isoorientin,
constipation . .
tolerance 1 gallic acid, rutin,
quercetin, ascorbic acid
Blood glucose],
metabolic state 1, Flavonoids, alkaloids,
Fruit, 1 i lar di ivati f Akt/P TZ-i 150- i i
69. Persea americana Mill. Avocado ruit, leaves, C.ardlovascu ar diseases, activation of Akt/Pkb, S . induced 50-300 mg 28 days saponins, tannins, [475-479]
seeds, bark diabetes glucose uptaket, B-cell Wistar rats [kg/day carbohydrates,
regeneration?, HDL-ct, glycosides
LDL]
QtltlS( urinary tract le(?od glucs)self NEG|, Courmarins, phthalides,
Leaves, seeds, infection, dysmenorrhea, lipid peroxidation, STZ-induced henyl propanoids,
70. Petroselinum crispum Parsley ! ! hypertension, diabetes, body weight|, GSH|, . . . 200 mg/kg/day 42 days phieny? propanolds, [480-483]
roots L . . . Swiss albino mice tocopherols, apigenin,
dermatitis, insulin sensitivity?, o !
. . . . myristicin, apiol
gastrointestinal disordersgluconeogenesis|
Wound }‘mfalmg, Blood glucose|, insulin Protocatechuic acid, p-
pharyngitis, fever, sensitivity?, TC|, TG|, STZ-induced coumaric acid
71. Phaseolus vulgaris L. Kidney bean  Seeds unpleasant body odor, i ! ’ 150mg/kg/day 40 days § [484-487]

1gluconeogenesisl, a-

obesity, diabetes, vagina R L
Y & glucosidase activity|

infection

Wistar rats

procyanidin, myricetin,
naringenin, gallic acid,
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quercetin, catechin,
kaemptferol, ferulic acid

Fever, inflammation,
nervous disorders, loss

Blood glucose], serum

STZ-induced

Ellagic acid, gallic acid,
p-coumaric acid,
apigenin, naringin, gallic
acid, catechin, ferulic
acid, sinapic acid,
epicatechin, vanillic acid,
coumarin, quercetin,

72. Phoenix dactylifera L. Date Fruit, leaves of consciousness, insulint, MDA |, TNF- diabetic rats 200 mg/kg/ day 30 days rutin, myricetin, luteolin, [488-491,646]
, al, CRP|
dementia kaempferol,
isorhamnetin, rhamnetin,
[-sitosterol,
isorhamnetin,
procyanidin,
protocatechuic acid
Phyllembelic acid, gallic
Cold, fever, cough, acid, ell‘aglc. acid, Pectm,
hyperacidity, peptic quercetin, linolenic,
ui]cIZr ervsi (;las linoleic, oleic, stearic,
. ! y p ’ Blood glucose|, TG/, palmitic, myristic acid,
jaundice, diarrhea, . R
Fruit, leaves, bark, dysentery, lepros TCJ, LDLY, HDLY, a- STZ-induced tannins, chebulic,
73.Phyllanthus emblica L. Amla / / » Y Y, Cprosy, amylase and a- ] 25-75 mg /kg/day 28 days chebulagic, chebulinic  [492-495,647]
roots hemorrhages, . L Wistar rats . .
. . glucosidase activities|, acids, alkaloids
hematogenesis, anemia, .
. K MPK?T phyllantidine,
asthma, bronchitis, colic, .
dvspepsia. hepatopath phyllantine, lupeol,
yspepsia, iepatopathy, leucodelphinidin.
leucorrhea, menorrhagia g
corilagin, digallic acid,
kaempferol and zeatin
Wound healing, X
bronchitis, diabetes, FBG|, HbAlc|, IR|, . Estragole, linalool, safrol,
. .. L . . . STZ-induced 75-150mg terpenes, phenols,
74. Piper betle L. Betel leaf Leaves cough, indigestion in insulin productiont, . 30 days . . [496-499]
. . .. Wistar rats /kg/day steroids, saponins,
children, headaches, glucokinase activityt .
. tannins
arthritis,
o Blood glucose.l, Hk.)Alcl, Flavonoid, quercetin,
Blood purifying, NO|, plasma insulin 1, . .
wrinkled skin, acne glucose homeostasist ellagic acid, coumaric
! ! ! TZ-induced ICR 100-4 id, B-sitosterol, 3-
75. Pisum sativum L. Pea Seeds phlegm, intestinal glucose toleranceft, STZ-induced ICR 100-400mg 42 days acid, p-sitosterol, 5 [500-503]

inflammation,
constipation, diabetes

polyphagia|, TG|, LDL-

C|, a-glucosidase

activity |, body weight|

mice

/kg/day

amyrin, catechin,
myricetin, vanillic acid,
kaempferol
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Cancer, atherosclerosis,
angina, retinopathy,

Blood glucose|, FBG/, a-
glucosidase activity |,

Alloxan- induced

Chlorogenic, gallic,
ferulic, salicylic,
coumaric acids,
glycosides, rutin,

76. P iaca L. Apri Fruit, 1 Alc|, insuli 2- k; 4-
6. Prunus armeniaca pricot ruit, leaves nephropathy, Hb .cl, insulin Swiss mice 8 mg/kg/day 56 days quercetin, vanillin, [504-506]
. . secretiont, oxidative . . .
hypertension, diabetes catechin, epicatechin,
stress | . .
neochlorogenic acid,
chlorogenic acid, lutein
Anemia, neurasthenia, ?lcoodL%ltcosel, TCIJL, Chlokrl?gemc a_c1d, ”
leukorrhea, Alzheimer’s _ - ;’a gluigiiiz 3¢ STZ-induced if:;phZi?)lgsergcc:::)t;nes
77.P j Pl Frui isease, i 1 i iss Albi k 2 P " [507-514
runus domestica um ruit disease irregular activities), HMGCoA Sv‘mss bino 50 mg/kg/day 0 days quercetin, myricetin, [507-514]
menstruation, anxiety, . . mice . .
. L. reductase|, oxidative kaempferol, citric acid,
diabetes, constipation . .
stress | malic acid
Oleic acid, linoleic acid,
. palmitic acid, arachidic
CNS disorders, FBG|, TC|, TG|, LDL|, . .
respiratory disorders,  stomach emptyin: T2DM patients acid, anthocyanin,
78. Prunus dulcis Almonds Nut -Spiratory « ’ omac .pty & pa 60000 mg/kg/ day 84 days kaempferol, quercetin,  [515-516]
diabetes, urinary tract  time], insulin (n=58 years) . .
. . . isorhamnetin,
infections productiont .
galactosidase,
chlorogenic acid
P - - hi
Body weight], lipid I'OCya.nldln, eplcatec in,
. catechin, prunin,
. metabolismft, . . .
Enhancing blood lipogenesis|, fatty acid phloridzin, naringenin,
irculati 1 . HFF C57BL, 200- hl i i
79. Prunus persica L. Peach Fruit, peel, leaves Clrcu. ation, b (,)Od, oxidationf, a-amylase C5, /6 00-600 56 days neoc orog.er.nc a.Cld' [517-520,648]
clotting, constipation, . male mice mg/kg/day caffeoylquinic acid,
. and a-glucosidase .
diabetes L chlorogenic acid,
activities|, 3-cell . .
. quercetin, aucubin,
regenerationt .
kaempferol, prunitrin
Ellagic acid, gallotannins,
anthocyanins, quercetin,
kaempferol, luteolin
Blood glucose|, TG|, lveosides, punicalin
Dysentery, diarrhea, TC|, HDL?, LDLJ, All - induced gy ,0 ‘ ?_ ! plut ?, !
80. Punica granatum Pome-granate Fruit, peel, seeds piles, bronchitis, intestinal glucose (?xan hduce 500 mg/kg/ day 14 days puAn 1ca.0 1, tuteo m,. [521-524]
e . . Albino eats apigenin, anthocyanins,
biliousness, diabetes absorption|, GLUT-4 . . . ...
R linoleic, oleic, palmitic,
translocation 1 - -
stearic, linolenic,
arachidic and palmitoleic
acids
X PPBG|, FBG|, HbAlc|, Prediabetes and Quercetin, avicularin,
D t diabet d 1 k
81. Psidium guajava L. Guava Fruit, leaves ysentery, clabetes an IR|, TG|, TC|, a- mild T2DM 9(,) m/ks 84 days apigenin, guaijaverin,  [525-533]
diarrhea . 3 times a day .
amylase and a- patients kaempferol, hyperin,
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glucosidase activities|,
malondialdehyde|

myricetin, gallic acid,
catechin, epicatechin,
chlorogenic acid,
epigallocatechin gallate,
caffeic acid

Gallbladder stone,
jaundice, flatulence,
indigestion, various

IR|, intestinal glucose

absorption|, glucose

STZ-induced 2.2% of the diet/

Myricetin, catechin,
epicatechin, quercetin,
vanillic acid, sinapic acid,
p-coumaric acid, 3-

2. R i L. Radish Fruit, ic ail il 21 4-537
82. Raphanus sativus adis ruit, leaves gastrx.c al.men.ts, Pl es{ uptake?, glycoalbuminl, T2DM rats day days carotene, camphene, [534-537]
constipation, indigestion, d L.
. LS fructosamine | piperitone, carvacrol,
colic, dyspepsia, liver . L S
K linoleic acid, oleic acid,
enlargement, diabetes .
anthocyanin
FBGJ, TC|, TG}, LDL-
Mycosis, alopecia, C|, GLUT-4 Flavonoids, carnosol,
. . ultraviolet damage, skin translocationt, HDL?, STZ-induced carnosoic, rosmarinic,
. R L. R L 4 k. 2 -544
83. Rosmarinus officinalis osemary eaves cancer, inflammatory  Irsl], IR|, Wistar rats 000 mg/ks/day 8 days ursolic, oleanolic, [538-544]
diseases, diabetes gluconeogenesis, micromeric acids
glucose uptake?
Mouthwash, gum Anthocyanins, malvidin,
inflammations, mouth Blood ol ~ 1 i di
84. Rubus fruticosus Blackberry Fruit, leaves respiratory disorders, y'as L Sprague-Dawley 300 mg/L/day 35 days pero’, 4 . [545-548]
. glucosidase activities], myricetin, p-coumaric
anemia, diarrhea, A rats . . . .
L oxidative stress| acid, ferulic acid, rutin,
dysentery, cystitis, coumarins, gallic acid
diabetes, hemorrhoids &
Blood glucose|, HbAlc|,
FBG|, macrovascular - .
. . A Myricetin, quercetin,
Indigestion, complications|, body T2DM patients chlorosenic acid
85. Salvia hispanica L. Chia seeds Seeds hyperlipidemia, diabetes weight|, inflammatory P 40000 mg/kg/day 84 days & * ... [549-553]
. . (n=42) kaempferol and caffeic
mellitus cytokines|, TC|, TG|, acid
LDL-C|, a-amylase and
a-glucosidase activity
Sesamin, sesaminol,
Wound healing, Blood glucose|, HbAlc|, gamma tocopherol,
L. White sesame amenorrhea, ulcer, FBG|, TC|, PPBG|, T2DM patients cephalin, flavonoids,
. d d: kg/d: d: 4-
86. Sesamum indicum seeds Seeds asthma, hemorrhoids,  oxidative stress|, IR| (18-60 years) 30 mg/kg/day 90 days phenolic acids, alkaloids, [554-559]
inflammations, diabetes nephropathy| tannins, saponins,
steroids, terpenoids
Dermatitis, cancer, Blood glucose| IR |, . Lycopene, carotenoids,
TZ-induced -27
87. Solanum lycopersicum L. Tomato Fruit hypertension, SOD1, GSH1, MDA |, STZ-induce 30-270mg 56 days homovanillic acid, [560-566,649]
4 . . T2DM rats /kg/day . R
hyperglycemia inflammation| chlorogenic acid,
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tomatine, kaempferol,
quercetin, naringenin, p-
coumaric acid, caffeic
acid

Arthritis, diabetes,

Blood glucose|, TC|,
TG|, LDL-C|, VLDL/|,
HDLY?, oxidative stress|,

MDA |, a-glucosidase

Alloxan-induced 100-300

Solasodine, thiamin,
niacin, chlorogenic acid,

. Eggpl Fruit, 1 lipi i hiti 2 7-571
88. Solanum melongena ggplant ruit, leaves :I:t; ;ﬁ);demla, bronchitis, activity|, GLUT-4 diabetic rats meg/kg/day 0 days saponins, delphinidin, [667-571]
translocationt, glucose anthocyanin, phenols,
uptaket,
gluconeogenesis|
Retinopathy|, MDA,
Remedy for bloody inflammation|, oxidative . .
stools, diarrhea stress|, AGEs STZ-induced p-carotenoids, lutein,
89. Spinacia oleracea Spinach Leaves § o f . ; 400mg/kg/day 84 days carotenoids, zeaxanthin, [572-577]
stomachaches, obesity, formation|, lipid Wistar rats . . .
. oy vitamins, minerals
diabetes peroxidation|, IL-6,
TNF-al, IR}
Eugenol acetate, eugenol,
. Blood glucose|, PPAR-y . . . gallic acid, terpenes,
Flatul hy D KK-A:
90. Syzygium aromaticum Clove Flower buds .atu ence, dTarr e bindingt, aldose 1‘abet1c ’ 657mg/kg/day 21 days tannins, phenolics, [578-581,650]
diabetes, indigestion mice . .
reductase| steroids, flavonoids,
glycosides and saponins
. Blood glucose|, TG{,
ﬁzilrzii::;;};l;& sore TC|, LDL|, HDLY, Alloxan- induced Anthocyanins, glucoside,
91. Syzygium cumini L. Java plum Fruit, seeds, bark i . 4 HMGCoA reductase],  diabetic Albino 100 mg/kg/day 15 days isoquercetin, ellagic acid, [582-584]
dysentery, diabetes, . . . Lo
ulcers cells function 1, urine  rabbits kaemferol, myricetin
glucose|
Inflammation, stomach
in. th .
pain, t rf)at pain, Blood glucose|, body
rheumatism, wound, . . . .
. weight |, glucose Apigenin, anthocyanin,
diarrhea, dysentery, tolerance 1, -cell Alloxan- induced 100-250 rocyanidin, catechin,
92. Tamarindus indica L. Tamarind Fruit, leaves, seeds fever, malaria, . ! . . 14 days p . Y T [585-589]
. functiont, glucose Wistar albino rats mg/kg/day epicatechin, taxifolin,
respiratory tract . . . .
. . L. tolerancet, B-cells eriodyctiol, naringenin
infection, constipation, .
.. regeneration?
cell cytotoxicity,
gonorrhea, eye diseases
Measles, malaria, Blood glucose], insulin Flavonoids
toothache as well as secretion 1, ATP1, GSH?,STZ-induced 4 hours rocvani diéls catechin
93. Theobroma cacao Cocoa Fruit, husk, seeds diabetes though Nrf2t Sprague Dawley 2.5 mg/mL procy ’ . [590-595]

improving insulin
secretion, GLUT4

a-amylase and a-

rats

glucosidase activity |

epicatechin, theobromine,
caffeine
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translocation, glucose
uptake

Bronchitis, headache,
cathartic, anthelmintic,

Gallic acid,
neochlorogenic acid,
caffeic acid, p-coumaric

diabetes, ocular .
and a-glucosidase

fresh fruits

stomach disorders FBG|, IR|, TC|, TG|, acid, trans-ferulic acid,
’ LDL-C|, insuli STZ-induced techin hydrate,
94. Trichosanthes cucumerina L.Snake gourd indigestion, bilious . b e rinduice 750mg/kg/day catechin lydrate, [696-598]
fevers, boils, sores secretion?, intestinal Albino rats epicatechin, procyanidin
eczemla der;natiti; glucose absorption | A2, procyanidin B2,
psoriasis, ulcers, diabetes rutin, kéempferf)l, .
quercetin, ursolic acid,
oleanolic acid
Blood glucose|, PPBG|,
Ulcer, sinusitis, hay F;Su(zi,seg{::;s::nliziake% STZ-induced 500 mg/kg/ Steroids, alkaloids,
95. Trigonella foenum-graecum fever, diarrhea, diabetes, guco e & flavonoids, polyphenols, [599-602]
se . . insulin sensitivityt, Long evansrats Day .
kidney diseases . . saponins
intestinal glucose
absorption]
Anthocyanins, pectin,
Cold. inflammation Blood glucose|, IR|, 870 mg leaves/kg/ anthocyanidins,
car di’o si ) ra dise, ses insulin secretion?, day and 430 mg delphinidin, peonidin,
97. Vaccinium corymbosum arciovaseuia ases, retinopathy, a-amylase leaves +1300 mg 56 days malvidin, cyanidin, [603-605,651]

chlorogenic acid, malic

dysfunction L. . . .
y activities| [kg/day acid, protocatechuic acid,
petunidin
Heat stroke, . .
strointestinal Flavonoids, quercetin,
astrointestina
& Blood glucose|, TG|, myricetin, kaempferol,

disorders, dermatitis,

LDL|, NO|, a-amylase Alloxan-induced

catechin, vitexin,

98. Vitis vinifera L. Fruit, seeds, peel

atherosclerosis, diabetes, oxidative stress|, 3-cell STZ-induced
high blood pressure, regenerationt, intestinal Wistar rats

heavy menstrual
bleeding, uterine
bleeding, constipation

glucose absorption |

250-500

meg/kg/day 15 days

49. Vigna radiata hyperglyc.emla, and a-glucosidase 200-100mg/kg/day 10 days isovitexin, coumaric acid [606-612,652]

hypertension, L. . . .

. . activity| luteolin, caffeic and gallic
hyperlipidemia, .

. acid

melanogenesis
Diarrhea, hepatltls‘, Triterpenoid acids,
stomachaches, varicose oleanolic, betulinic acids
veins, hemorrhoids, Blood glucose], ! ’

stilbenoid, gallic acid,

catechin, epicatechin, [613-615]
gallocatechin, p-

coumaric, caffeic and

ferulic acids
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body weight|, FBG|,
IR|, TC|, TG}, LDL-C|,

Malaria, bladder stone, HDL?, MDA, SOD1,  STZ-induced HFF300-1200 Flavonoids, alkaloids,

99. Zea mays Corn Grains, husk heart diseases, diabetes _oxidative stress), rats meg/kg/day 28 days sapo‘nins, phenols, [616-621]
tannins, phytosterols
a-amylase and a-
glucosidase activity|
B-phellandrene,
camphene, cineole,
Muscular aches, pains, geraniol, curcumene,
sore throats, cramps, Blood glucose|, TC|, TG, citral, terpineol, borneol,
constipation, indigestion, 3-cell functionf, GLUT-4 a-zingiberene, zingiberol,
vomiting, arthritis, activity?, p-cell STZ-induced gingerols, shogaols 3-
100. Zingiber officinale Ginger Fruit rheumatism, diabetes,  functiont, PPAR-y1, Sprague Dawley 500 mg/kg/day 49 days dihydroshogaols, [622-624,653]
sprains, hypertension,  glucose uptakef, rats paradols,
dementia, fever, creatinine|, body dihydroparadols,
infectious diseases, weight|, urea| gingerdiols,
helminthiasis diarylheptanoids,
isogingerol, isoshogaol
gingerdiones
Table 2. Phytoconstituents in dietary plants and their role in T2DM.
Dietary plants Plant parts Phytochemicals Pharmacological actions Reference
. . . . . Lowers blood glucose and lipids, reduces insulin resistance,
1. Abelmoschus esculentus L. Fruit, roots Flavonoids, pectin, saponins, alkaloids and enhances GLUT-A translocation [143-145]
2. Actinidia chinensis Fruit Triterpenoids, flavonoids, phenolic acids Lowers serum glucose, inflammatory cytokines, blOOd[146—149]

lipids

. . . . . . . . . Enhances glucose tolerance and insulin sensitivity,
Oleic acid, p-cymene, linolenic acid, retinoic acid, myristic

3. Aegle marmelos L. Fruit acid suppresses a-amylase and a-glucosidase, delays intestinal[150-152,654]
glucose absorption
4. Agaricus bisporus Rhizome Catec.hin,. lectin, [S-glu.cans., Gallic acid, p-coumaric acid,Regulates insulin and glucagon secretion, reduces body[ 153-157]
Ferulic acid, Chlorogenic acid weight and serum glucose
i locti : hol. isofl h lone.D. o : — -
5. Allium cepa Fruit Qgercgtxn, e.Ctln, st.er01.ds, catechol, iso avo'nes, umu one,. ecrgases o g‘uC051dfise aCt‘l‘{Ity, oxidative stress, boosts[ 158-162]
apigenin, rutin, myricetin, kaempferol, catechin insulin and adiponectin secretion, protects (3-cells
6. Allium satioum L. Fruit Al.hcm, B—reéorcyhc acid, gallic acid, rutin, protocatechuicEnhances .msul.m pro.d‘u.ct'lon, insulin secretlon., glucose[l 63-168]
acid, quercetin tolerance, insulin sensitivity and GLUT-4 expression
o . g L Inhibits the glycation process, AGE formation and o-
7. Aloe barbadensis Mill. Leaves Flavonoids, proanthocyanidins, phenolic acids . .. [169-175]
amylase, a-glucosidase enzyme activity
Kaempferol, anacardic acid, quercetin, linolenic acid, gallic_ _ .. . . .
Inhibits glut. -fructose-6-phosphat transfi
8. Anacardium occidentale L. Nut, leaves, bark acid, myricetin, catechin, protocatechuic acid,. © its glutamine-fructose-6-phosphate aminotrans erase[176—179,655]

1 (GFAT1) and dipeptidyl tidase-4 (DPP-4) activit
epigallocatechin, naringenin, epicatechin (G ) and dipeptidyl peptidase-4 ( ) activity
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Sinapic acid, daucosterol, coumarin, tannins, flavonoidsImproves insulin sensitivity and body weight, inhibits

LA L. Frui 1, 1 180-1
9. Ananas comosus ruit, peel, leaves benzofuran, stillbenoid HMGCoA reductase activity (180-186]
. . . L L Improves insulin sensitivity, GLUT-4 translocation,
10. Apium graveolens Leaves, seeds, roots Quercetin, thymoquinone, coumaric acid, gallic acid . . . g . [187-192]
mitochondrial dysfunction and inflammation
D t dial gl , blood lipids, and inhibit:
11. Artocarpus heterophyllus Fruit, leaves, bark, seeds, roots Carotenoid, tannins, sterols, Chysin, isoquercetine ccreases postprandia g ucose, blood lipids, and bt S[195—199]
a-amylase and a-glucosidase
L . . . . . . Improves insulin secretion, insulin sensitivity, [-cell
12. A A fl 200-204
sparagus officinalis Stem sparagine, tyrosine, arginine, flavonoid, saponin, resin function and lowers blood glucose [200-204]
13. Avena sativa Grains [S-gl}lcar}, oleic, linoleic a.cids, caffeic acids, coumaric acids,Reduces glycosylatec.l Hk.)AlC,. fasting blood glucose,[205_209’ 656]
gallic acids, avenanthramides postprandial glucose, insulin resistance
14 Averrhoa carambola L. Fruit Anthocyanins, rutin, triterpenoids, quercetin, catechin,Elevates insulin secretion, glucose uptake in sl<elet.all[2 10-214]

epicatechin muscles and glycogen synthesis

Leaves, stem, bark, flower,Nimbidin, nimbin, nimbidol, quercetin, nimbosterone, ferulicInhibits a-glucosidase and glucokinase, stimulates insulin

15. Azadirachta indica [215-219]

roots, fruit acid, limonene, oleuropeoside secretion
. . Lycopene, betalains, betagarin, betavulgarin, quercetin, Inhibits a-amylase and a-glucosidase, gluconeogenesis,
16. Beta vulgaris Fruit yeop . 8 . ,g ! . 4 & & L. 5 [220-222]
kaempherol, betanins, carotenoid, coumarin glycogenesis, and reduces serum glucose and lipids
. Chlorogenic acid, cinnamic acid, kaempferol, flavonoid,Improves blood glucose, glucose tolerance, insulin
17. Brassica juncea Seeds g . . P P . . ,g, . & . [223-226]
coumaric acid, vanillic acid secretion and inhibits intestinal glucose absorption
. . Myricetin, uercetin, kaempferol, apigenin, luteolin,Increases insulin sensitivity, p-cell function and lowers
18. Brassica oleracea var. capitata Flower Y d P pig y B [227-229]

Anthocyanidin blood glucose

Reduces ROS formation and oxidative stress, inhibits a-

Flower Chlorogenic acid, apigenin, kaempferol, luteolin, quercetmamylase and a-glucosidase, enhances insulin sensitivity[230-231]

19. Brassica oleracea var. italica .
and myricetin

and p-cell function

Theanine, proanthocyanidins, caffeine, myricetin,Attenuates insulin resistance and oxidative stress, inhibits
21. Camellia sinensis Leaves kaempferol, quercetin, chlorogenic acid, Catechins,a-amylase and a-glucosidase, regulates inflammatory[232-235]
epicatechin cytokines production

20. Capsicum annuum L. Seeds Flavonoids, carotenoids, flavones, apigenin, quercetin andActivates AMPK, increases GLUT4 translocation, glucose[23 6-240]

isoquercetin uptake in skeletal muscle and inhibits gluconeogenesis

Saponins, alkaloids, kaempferol, flavonoids, phenols,
22. Carica papaya Fruit, seeds, leaves terpenoids,
steroids, quercetin, caffeic acid

Decreases a-amylase and a-glucosidase activity, oxidative

41-244
stress and plasma blood glucose 2 ]

Inhibi - 1 -g] i -infl.
23. Carissa carandas Fruits Lignans, flavonoids, Steroid, phenolic acid nhibits a-amylase and a-glucosidase, pro-in ammatory[245_249]

cytokine release, and lowers blood glucose

Gallic acid, rutin, p-coumaric acid, caffeic acid, quercetin,Increases insulin secretion and p-cell function, decreases

24. Cath th L. Fl 1 250-254
Catharanthuis roseus owers, eaves kaempferol, chlorogenic acid, ellagic acid, coumarin blood glucose and lipids [250-254]
25. Centella asiatica Leaves Centallase, quercetine, kaempferilm triterpene, ferulic acid Decreases oxidative ‘ar‘ld inflammatory stress, body weight, [255-258]
serum glucose and lipids
26. Chenopodium quinoa Grains Phytosterols, phyto‘ecdysterf)ld& ph?nohcs, . Inhibits D(—.gluc051das‘e, improves insulin sensitivity, lowers[259_2 65]
tocophenols, betalains, tannins, glycine betaines postprandial glycemia
27 Cicer arietinum Grains Uridine, adenosine, tryptophan, 3-hydroxy-olean-ene Inhibits a-amylase, a-glucosidase and dipeptidyl-4 (DPP4E)[2 66-271]

biochanin enzymes
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28. Cinnamomum verum

Bark

Cinnamaldehyde, cinnamates, cinnamic acid, eugenol,Enhances {-cell function, insulin secretion, GLUT-4

272-27
cinnamyl acetate, linalool translocation and inhibits a-amylase and a-glucosidase [ 4l

29. Citrullus lanatus L.

Fruit, seeds

Inhibits a-amylase and a-glucosidase activity, enhances
GLUT4 and GLUT2 translocation, and lowers blood[276-279]
glucose

Lycopene, apigenin, kaempferol, rutin, p-coumaric acid,
quercetin, ferulic acid

30. Citrus limon

Fruit, peel, leaves

Decreases blood glucose and body weight and enhances

Limocitrin, D-limonene, hesperidin, naringenin, flavonoid N
P & GLUT4 translocation

[280-287]

31. Citrus maxima

Fruit, peel

Facilitates weight loss, inhibits a-amylase and o-
glucosidase, increases glucose tolerance and aids diabetic[288-290]
nephropathy

Carotenoids, terpenoids, sterols, alkaloids, phenolics

32. Citrus reticulata

Fruit, peel

Enhances mRNA expression,
Hesperidin, quercetin, flavonoids, tannins, anthraquinones GLUT-4 translocation, insulin sensitivity and glucose[291-295]
tolerance

33. Cocos nucifera

Fruit, husk, water

Inhibits a-amylase and a-glucosidase activity, regenerate

T. i ins, fl id, alkaloi
annins, resins, flavonoid, alkaloids B-cells and aids diabetic neuropathy

[297-304]

34. Coffea Arabica L.

Leaves, fruit, beans

Coffeasterin, caffeine, caffeic acid, p-coumaric acid, vanillic
acid, ferulic acid, sitosterol, stigmasterol, kaempherol,
quercetin, sinapic acid

Regenerates (3-cells, inhibits a-glucosidase and enhances

. . . [305-307]
insulin secretion

35. Colocasia esculenta

Stem, leaves

Lowers blood glucose levels, oxidative stress and

inflammation, inhibits aldose reductase and aids diabetic[308-312,657]
neuropathy

Viexin, isovitexin, orientin, isoorientin, rosmarinic acid,
luteolin

36. Coriandrum sativum

Seeds, leaves

Inhibits TNF-a, IL-6, AGEs formation and aids diabetic

Flavonoids, tocol, carotenoid, saponins
P neuropathy and nephropathy

[313-317]

37. Crocus sativus L.

Flower stigma

Safranal, (3 carotenes, crocetin, crocin, picrocrocin Inhibits a-glucosidase and «-amylase, lowers blood

18-
zeaxanthene glucose, lipids and inflammatory cytokines [318-323]

38. Cuminum Cyminum L.

Seeds

Protects {3-cells, improves insulin secretion, lowers blood

alucose [324-326]

Cumin aldehyde, safranal, linalool, carvone, carvacrol

39. Cucumis sativus

Fruit, seeds

Cucurbitacin, cucumerin A and B, cucumegastigmanes I andReduces glucagon secretion, gluconeogenesis, glycolysis,

7-
11, orientin, apigenin enhances insulin sensitivity (327-350]

40. Cucurbita pepo L.

Fruit, seeds

Lowers glucose in blood and urine, enhances glucose

[3-carotene, lutein flavonoids, zeaxanthin, alkaloid . R .
sensitivity, glutathione, reduces lipid levels

[331-335]

Induces glucose uptake, GLUT-2 activity and insulin

. Turmerine, turmerone, Cucurmin, curcuminol, . R K X R . . .
41. Curcuma longa L. Fruit . K L. . . production, increases insulin secretion, insulin sensitivity,[336-340,658]
demethoxycurcumin, caffeic acid, sinapic acid . . .
decreases insulin resistance
Regulates hyperglycemia, improves insulin resistance,
. a and PB-carotene, lutein, lycopene, anthocyanins, ascorbic ) . R e
42. Daucus carota Fruit B yeop 4 delays intestinal glucose absorption, inhibits a-amylase[341-344]

acid and a-glucosidase

43. Ficus carica

Fruit, leaves, bark, roots

Reduces postprandial glucose, plasma lipids, body weight,

Eugenol, anthocyanins, phenolic acids, flavones, flavanols and B-cell apoptosis

[345-350]

44. Fragaria ananassa

Fruit, leaves

Ameliorates peripheral insulin resistance, inhibits a-
amylase and a-glucosidase activity, increases insulin[351-355]
production

Quercetin, kaempferol, p-coumaric acid, p-tyrosol, methyl
gallate, rutin
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45. Glycine max

Seeds, leaves

Decreases insulin resistance, enhances glucose uptake in

skeletal muscles through AMPK activation [356-360]

[-conglycinin, flavonoids, saponins, phytosterols

46. Helianthus annuus

Flowers, seeds

Flavonoids, tocopherols, carotenoids, saponins, tannins,Reduces body weight, BMI, oxidative stress, AGEs

chlorogenic acid, caffeic acid formation and fasting blood glucose [361-364]

47. Hibiscus rosa-sinensis Linn.

Flowers, leaves

Quercetin, cyanidin, ascorbic acid, genistic acid, lauric acid,Stimulates {3-cells, enhances insulin secretion and glycogen

thiamine, niacin accumulation in the liver [365-369]

48. Hylocereus undatus

Fruit, seeds

Attenuates plasma glucose, endothelial dysfunction,
oxidative stress, intestinal glucose absorption, and boosts[370-372]
insulin sensitivity

Oleic acid, gallic acid, lycopene, p-coumaric acid, linoleic acid,
[B-carotene

49. Ipomoea batatas

Fruit

Anthraquinones, coumarins, flavonoids, saponins, tannins,Mitigates insulin secretion, serum glucose, enhances (3-cell[373-377]

quercetin, chlorogenic acid, terpenoids function and insulin production

50. Juglans regia L.

Nut, leaves

Gallic acid, caffeoylquinic acid, coumaroylquinic, juglone Increases glucose uptake, inhibits a-glucosidase, a-amylase
quercetin and protein tyrosine phosphatase 1B (PTP1B) activity

[378-381,659]

51. Lactuca sativa

Leaves

Flavonoids, quercetin, flavonols, anthocyanins, lutein, [-Inhibits a-amylase, a-glucosidase and DPP-4, improves

carotene postprandial glucose and blood lipids [382-386]

52. Lagenaria siceraria

Fruit, leaves, seeds

cucurbitacin B, cucurbitacin D, cucurbitacin E, isoquercitrin,Improves glucose tolerance, insulin production, and

7.
kaempferol, gallic acid inhibits intestinal glucose absorption [387-390]

53. Laurus nobilis

Leaves

Eugenol, kaempferol, syringic acid, quercetin, apigenin,Enhances (3-cell function, insulin sensitivity and inhibits a-

luteolin amylase and a-glucosidase (391-594]

54. Litchi chinensis

Fruit, seeds

I insuli ist , trigl ide level,
Sterols, triterpenoids, flavonoids, phenolics mproves nsuin resistance, serum triglyceride leve [395-397]

glucose tolerance and inhibits a-glucosidase activity

55. Luffa acutangula

Fruit, seeds

Apigenin, luteolin, myristic acid, a-pinene, carotene, oleanolicEnhances insulin secretion, suppresses glycogenolysis and

gluconeogenesis [398,399]

acid, B-myrcene, linalool

56. Malus domestica Borkh

Fruit, peel

Quercetin, pectin, flavonols, flavanols, catechin epicatechin,Improves endothelial function, lipid homeostasis, insulin[ 400-409]

cyanidin galactoside resistance, and lowers serum glucose

57. Mangifera indica

Fruit, peel, bark, seeds

I insuli itivity, I t dial gl ,
Mangiferin, rhamnetin, catechin, epicatechin, gallic acid nereases insulin sensitivity, lowers postprandial glucose [410-415]

inhibits a-amylase and a-glucosidase

58. Mentha spicata

Leaves

Suppresses a-amylase and a-glucosidase activity, oxidative

Limonene, carvone, linalool, piperitone .
’ g PP stress, and decreases blood glucose and lipids

[416-418]

59. Moringa oleifera Lam.

Fruit, leaves

Anthocyanins, sitogluside, tannin, anthraquinones, [-Inhibits a-amylase and a-glucosidase, lowers postprandial
carotene glucose and cholesterol, and improves lipid metabolism

[419-423,660]

60. Momordica charantia

Fruit, leaves, seeds

Triterpene, proteid, steroids, flavonoids, ascorbic acid,Regenerates B-cells, increases glucose uptake in skeletal

; o : [424-432]
saponins muscle and suppresses intestinal glucose absorption

61. Morus alba L.

Fruit, leaves

Enhances insulin secretion, lowers blood glucose, blood

lipids and promotes GLUT-4 translocation [434-437]

Quercetin, isoquercetin, stillbenoids, flavonoids

62. Murraya koenigii L.

Leaves

Regenerates (3-cells, inhibits a-amylase and a-glucosidase,

lowers blood glucose [438-441]

Murrayanol, mahanimbine, kaemferol, catechin, apgenin

63. Myristica fragrans Houtt.

Fruit, seeds

Inhibits TNF-a and IL-6 release, ameliorates blood glucose,

p-cell function, inflammation and obesity [442-445]

Lignan, flavonoids, terpenes, coumarin

64. Nigella sativa L.

Seeds

Thymoquinone, thymol, limonene, carvacrol, p-cymeneInhibits hepatic gluconeogenesis, a-amylase and «-

. . S ce [446-450]
glucosidase, increases insulin sensitivity

linoleic acid, oleic acid
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Lowers serum glucose and albumin, increases insulin

65. Ocimum sanctum L. Leaves, seeds Ursolic acid, eugenol, carvacrol, linalool, caryophyllene R LS R
secretion and lipid metabolism, regenerates 3 cells

[451-454,661]

Secoiridoid glycoside, oleuropein, oleanolic acid, flavonoid,Enhances glucose tolerance, reduces body weight, inhibits

66. Olea europaea L. Fruit, leaves i R k .
cinnamic acid gluconeogenesis and lowers plasma glucose

[455-460]

Increases glucose uptake in skeletal muscle, GLUT-2,
67. Origanum vulgare Leaves Rosmarinic acid, apigenin, luteolin decreases blood glucose, oxidative stress,inhibits «a-[461-465]
amylase and a-glucosidase

. . . . ., Improves serum glucose, insulin sensitivit lucose
Piceatannol, flavonoids, tocopherols, carotenoid, gallic acid, p & ’ V&

68. Passiflora edulis Fruit, peel rutin tolerance, glucose uptake in skeletal muscle, and reduces[466-474]
lipid accumulation and body weight
. . . — . - L Activates PI3K to facilitate insuli tion, inhibits a-
69. Persea americana Mill. Fruit, leaves, seeds, bark Myricetin, luteolin, gallic acid, ascorbic acid cvates o facritate insuim acton, tmblls & [475-479]
amylase and a-glucosidase
Regulates plasma glucose, body weight, glutathione levels,
70. Petroselinum crispum Leaves, seeds, roots Coumarins, tocopherols, apigenin, myristicin increases glucose uptake in skeletal muscles and inhibits[480-483]
gluconeogenesis
71. Phaseolus vulgaris L. Seeds p-courT\aric acid, myricetinf nar'ingenin, gallic acid, quercetin,Suppresses.a-glucosidase .j:lctivity, g'lucor}eogen(.es'is., delays[ 484-487]
catechin, kaempferol, ferulic acid the absorption of glucose, increases insulin sensitivity
72. Phoenix dactylifera L. Fruit, leaves Fla%vonf)ids, (?leic fiCid, linoleic' acid, catechin, epicatechin,Enhance§ ﬁ-vcevll function, insulin secretior}, decreases blood[ 488-491]
apigenin, naringenin, anthocyanin glucose, inhibits a-amylase and a-glucosidase
73.Phyllanthus emblica L. Fruit, leaves, bark, roots Gall?c .acid,v ellagic acid, pectin, quercetin, linoleic, oleic acid,Inhibits a-amylase and a-glucosidase, activates AMPK and[ 492-495]
myristic acid, lowers blood glucose
Elevates insuli ducti d gl tivat
74. Piper betle L. Leaves Eugenol, selinene, hydroxychavicol, cadinene, caryophyllene evaies Msulin production and giucose usage, acva es[496—499]
glucokinase and lowers plasma glucose
idi i h -h -olean-ene,Inhibits a-amyl -gl i i idyl-4 (DPP4
75. Pisum satioum L. Seeds U.rldme,. adenosine, tryptophan, 3-hydroxy-olean-ene,Inhibits a-amylase, a-glucosidase and dipeptidyl-4 ( )[5 00-503]
biochanin enzymes
in, feruli i 1 i id, lutei hin,Stimul insuli i idati
76. Prunus armeniaca L. Fruit, leaves Ql?ercetlr%, erulic acid, chlorogenic acid, lutein, catec 1n,.St'1rTu% ates insulin secretion, d.ecreases oxidative stress,[5 04-506]
epicatechin inhibits a-amylase and a-glucosidase
) . . . . I ._Inhibits HMGCoA reduct d a-amylase, 1 blood
77. Prunus domestica Fruit Catechin, epicatechin, chlorogenic acid, kaempferol, quercetin nHubIs JYILOR Te .uc ase anc o-amy ase, lowers bloo [507-514]
glucose, lipids, and oxidative stress
78, Prunus dulcis Nut Oleic acid, linolei(? acid, P—CO}lma.I'iC acid, anthocyanin,lncreaées .insulin production and decreases stomach[5 15-516]
kaempferol, quercetin, chlorogenic acid emptying time
79. Prunus persica L. Fruit, peel, leaves Naringer.ﬁn, ferulic .acid, .Chlo.rogenic acid, astragalin,Ameliorafes in‘suli.n. secretion, pancreatic. B—cell[5 17-520]
carotenoid, anthocyanin, caffeic acid regeneration and inhibits a-amylase and a-glucosidase
80. Punica granatum Fruit, peel, seeds Punicalini punicsfolin,A apigenirT, quercetin, ellagic acid,Enhances‘insulin sensitivity, insulin production, GLUT—4[52 1-524]
gallotannins, anthocyanins, luteolin, kaempferol, lycopene translocation, and lowers blood glucose
Decreases plasma glucose, gluconeogenesis, triglycerides,
81. Psidium guajava L. Fruit, leaves Quercetin, avicularin, guaijaverin, tannins, triterpenes total cholesterol, and increases glucose uptake in skeletal[525-533,662]
muscle
82. Raphanus satious L. Fruit, leaves M?/rxcetm, cate?hm,‘ epicatechin, quercetin, vanillic acid, OlelCIl’lhlbltS. intestinal glucose absorption, increases glucose[53 1.537]
acid, p-coumaric acid, B-carotene uptake in skeletal muscle, and lowers blood glucose
83. Rosmarinus officinalis L. Leaves Rosmarinic acid, ursolic acid, oleonic acid, carnosol Enhances insulin sensitivity, GLUT-4 translocation, glucose[538-544]

uptake in skeletal muscle, and inhibits gluconeogenesis
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anthocyanins, =~ malvidins, = pelargonidin, = cyanidins,Lowers blood glucose, inhibits a-amylase and «-

4. R 1 Fruit, 1 45-54
84 Rubus fruticosus rutt, leaves kaempferol, quercetin glucosidase [545-548]
. . . . . .Inhibits a-amylase and «-glucosidase, reduces body
-3 f hl
85. Salvia hispanica L. Seeds Omega-3 fatty ac.ld, ‘myrlcetm, quercetin, chlorogenic acu:l'weight, inflammatory cytokines release, blood glucose and[549-553]
kaempferol, caffeic acid ..
lipids
. . . . Attenuates postprandial glucose and oxidative stress,
Lo Sesamin, sesaminol, tocopherol, flavonoids, saponins,, ; . K R ..
86. Sesamum indicum Seeds . . improves insulin secretion, glutathione levels and lipid[554-559]
steroids, terpenoids .
metabolism
87. Solanum lycopersicum L. Fruit Lycopene, tomatine, kaempferol, quercetin, chlorogenic acid,Attenuates plasma glucose, inflammation, insulin[5 60-566]

[-carotene, naringenin resistance via PI3K/Akt, FOXO1, PPAR-y regulation

88.

Solanum melongena

Fruit, leaves

Enhances glucose uptake in skeletal muscles, GLUT-4
translocation, reduces gluconeogenesis, a-amylase, a-[567-571]
glucosidase enzymes and hyperlipidemia

Thiamin, niacin, flavonoids, saponins, tannins, triterpenoids,
anthraquinones

89.

Spinacia oleracea

Leaves

Reduces serum C-reactive protein, TNF «a, IL-6, excess

72-577
AGEs production, and aids in retinopathy [572-577]

[-carotenoids, lutein, carotenoids, zeaxanthin

90.

Syzygium aromaticum

Flower buds

Inhibits a-amylase, a-glucosidase and aldose reductase,

lowers blood glucose and activates PPAR-y [578-581]

Eugenol, gallic acid, ferulic acid, catechin, quercetin

91.

Syzygium cumini L.

Fruit, seeds, bark

Anthocyanins, isoquercetin, ellagic acid, kaempferols,Regenerates P-cells, improves insulin production and[582_58 1,663]

92.

Tamarindus indica L.

Fruit, leaves, seeds

myricetin lowers glucose in plasma and urine
Lowers blood glucose, inhibits a-amylase and o-
Catechin, anthocyanin, epicatechin, apigenin glucosidase, elevates glucose tolerance and regenerate (3-[585-589]
cells

93.

Theobroma cacao

Fruit, husk, seeds

Protects B-cells, inhibits a-amylase and a-glucosidase,
Catechin, epicatechin, procyanidin, saponins, terpenoids elevates ATP, GSH, Nrf2 and glucose uptake in skeletal[590-595]
muscle

Carotenoids, gallic acid, neochlorogenic acid, caffeic acid, p- .. . . . .
& & p Simulates insulin secretion, enhances the peripheral use of

94. Trichosanthes cucumerina L. Fruit, leaves, seeds, roots coumaric acid, rutin, kaempferol, quercetin, ursolic, oleanolic . . . [596-598]
acids glucose and prevents intestinal glucose absorption
D blood gl nh. 1 take, insuli
95. Trigonella foenum-graecum Seeds Steroids, alkaloids, flavonoids, polyphenols, saponins ecreases b1ood glucose, ennances glucose uptake, msu m[599—602]
sensitivity and glucose tolerance
96. Vaccinium corymbosun Fruit, leaves Anth.oc.yanins, pectin, anthocyanidins, delphinidin, peonidin,Sl'Jppr(.esses.oc-amylase and a-glucosidase activity and aids[ 603-605]
malvidins diabetic retinopathy
97. Vigna radiata Seeds quercetin, myricetin, kaempferol, catechin, coumaric acid,Hinders gluconeogenesis, glycolysis, inhibits a—glucosidase[ 606-612]

luteolin, caffeic, gallic acid and a-amylase

98.

Vitis vinifera L.

Fruit, seeds, peel

Catechin, epicatechin, epicatechin allate, uercetin, Regenerates  {-cells, lowers blood ~glucose, inhibits
o P + P & oA ‘intestinal glucose absorption and facilitates glycogen[613-615,664]
myricetin, resveratrol

synthesis

99.

Zea mays

Grains, husk

Ameliorates diabetic complications by suppressing aldose
reductase and reducing galactitol formation, inhibits a-[616-621]
amylase and a-glucosidase activity

Hirsutrin, flavonoids, alkaloids, saponins, phenols, tannins,
phytosterols

100. Zingiber officinale

Fruit

Vanilloids, gingerol, paradol, shogaols, zingerone Activates GLUT-4 and PPAR-y, protects B-cells, facilitate

gingerdiols, glucose uptake in tissues [622-623]
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Conclusion and Future Perspectives

Plant-based dietary adjunct represent a promising natural approach for the management of
T2DM due to the vast array of phytochemicals they contain. Unlike conventional medications, such
natural products are widely accessible, affordable, and generally free from adverse effects.
Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed
in DM, but also supports weight management in obese individuals and has broad health benefits
[665-667]. The plants highlighted in this review can interact with a variety of ways to regulate blood
glucose and restore insulin sensitivity. In addition, it is important to mention that fiber-rich plants
also play a role in obesity management [668-670]. To date, the majority of scientific studies on
antidiabetic plants have been carried out in vitro and/or in vivo. More research is needed to identify
the antidiabetic potential of the plants selected in this review in patients with diabetes. Furthermore,
more research is needed to better understand the identity and mechanism of action of the active
phytoconstituents at the molecular level. We also need to determine what the future holds for the
potential exploitation of these natural products for development of new and safer pharmaceuticals
that could assist the treatment of DM and its complications.
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Abbreviation
AGEs Advanced Glycation End Products
ALT Alanine Aminotransferase
AMPK AMP-activated Protein Kinase
AST Aspartate Aminotransferase
ATP Adenosine triphosphate
BMI Body Mass Index
DAGs Diacylglycerols
DM Diabetes Mellitus
DPP-4 Dipeptidyl Peptidase-4
DPPH 2,2-Diphenyl-1-picrylhydrazyl
ER Endoplasmic Reticulum
ETC Electron Transport Chain
FOXO1 Forkhead Box O1
GIT Gastrointestinal Tract
GLP-1 Glucagon-Like Peptide-1
GLUT-4 Glucose Transporter type 4
GLUT2 Glucose Transporter 2
GSH Glutathione
HbAlc Glycated Hemoglobin

HDL High-Density Lipoprotein
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IL-1 Interleukin-1
IL-6 Interleukin-6
IRS-1 Insulin Receptor Substrate 1
IRS-2 Insulin Receptor Substrate 2
IR Insulin Resistance
Keapl Kelch-Like ECH-Associated Protein 1
LDL-c Low-Density Lipoprotein Cholesterol
LPL Lipoprotein Lipase
MDA Malondialdehyde
Nrf2 Nuclear Factor Erythroid 2-Related Factor 2
NO Nitric Oxide
PI3K/AKT Phosphatidylinositol-3-Kinase/Protein Kinase B Pathway
PKB/Akt Protein Kinase B/Protein Kinase B
PKC Protein Kinase C
PPAR-y Peroxisome Proliferator-Activated Receptor gamma
PPBG Postprandial Blood Glucose
PPAR-y Peroxisome Proliferator-Activated Receptor-gamma
PTP1B Protein Tyrosine Phosphatase 1B
ROS Reactive Oxygen Species
SGLT2 Sodium-Glucose Cotransporter 2
SOD Superoxide Dismutase
SUR Sulfonylurea Receptors
TC Total Cholesterol
TG Triglycerides
TNF-a Tumor Necrosis Factor-alpha
UCP-1 Uncoupling Protein 1
VLDL Very Low-Density Lipoprotein
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