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Abstract: Accurate, rapid, and stable prediction of electrical energy consumption is essential for decision-
making, energy management, efficient planning, and reliable power system operation. Errors in forecasting
can lead to electricity shortages, wasted resources, power supply interruptions, and even grid failures.
Accurate forecasting enables timely decisions for secure energy management. However, predicting future
consumption is challenging due to the variable behavior of customers, requiring flexible models that capture
random and complex patterns. Existing forecasting methods, both traditional and modern, have limitations
and do not fully meet accuracy expectations. To address these issues, this research introduces a hybrid models
that combine FCRBM based forecaster, and GWDO based optimizer, namely FS-FCRBM-GWDO approach to
enhance the model performance in STLF have been developed. While some models excel in accuracy and others
in convergence rate, both aspects are crucial. The main objective is to create a forecasting model that provides
reliable, consistent, and precise predictions for effective energy management. This led to the development of a
novel two-stage hybrid model. The first stage predicts electrical energy usage through four modules using
deep learning, support vector machines, and optimization algorithms. The second stage optimizes energy
management based on predicted consumption, focusing on reducing costs, managing demand surges, and
balancing electricity expenses with customer inconvenience. This approach benefits both consumers and
electricity corporations by lowering bills and enhancing power system stability. Simulation results validate the
proposed model's efficacy and efficiency compared to benchmark models.

Keywords: genetic wind-driven optimization algorithm; Short-term load forecasting; Factored
conditional deep belief network; Efficiency energy consumption

1 Introduction

Electric load forecasting (ELF) plays a critical role in the operational planning and management
of power and distribution systems, generating substantial academic and utility interest. Accurate
demand forecasting, encompassing parameters such as hourly load, peak load, and total energy
consumption, is essential for effective system management and planning. Consequently, load
forecasting tailored to specific time horizons is advantageous for addressing diverse application
needs within the power system [1]. Therefore, the process of linearizing the load causes many of the
traditional prediction models to be unsuitable [2,3]. From a forecasting perspective, the utility aims
to efficiently manage the power system to ensure equilibrium between the degree of demand for
electric energy and its supply. This suggests that as the forecast becomes more precise, the operation
and management of the electricity system become more efficient. The expanding population is
causing a continuously rising demand for electricity. To accomplish this ambitious objective, there is
a need for a substantial expansion in electricity generation capacities. Accurately predicting the
hourly energy demand is crucial for capacity planners to make informed decisions about investments
and to ensure a dependable supply of electricity. Modeling hourly energy demand in
underdeveloped nations can be difficult because there is not enough historical load dataset and
analytical frameworks to effectively account for technology shifts and urban-rural communities [4].

Short-term load forecasting typically encompasses a time frame ranging from 1 to 24 hours [5].
Various forecasting methods are used depending on the model. Medium-Term Forecasting (MTF)
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and Long-Term Forecasting (LTF) typically utilize trend analysis [6], end-use analysis, neural
networks, and multiple linear regression techniques [7]. On the other hand, Short-Term Forecasting
(STF) employs methods such as regression and time series analysis [8], artificial neural networks [9],
pattern sequence-based matching method and extreme gradient boosting [10], fuzzy logic [11], and
support vector machines (SVM) for LTLF [12]. STF is essential for Transmission System Operators
(TSOs) to ensure system reliability during extreme weather events [13] and for Distribution System
Operators (DSOs) due to the growing impact of new generations on total load [14] and the challenge
of aligning variable renewable energy supply with demand under narrowing margins. Extensive
studies have been carried out on the topic of energy management in SG's literature to address the
increasing energy demand. To address these complexities, classical and intelligent forecasting
techniques that now exist are crucial and necessary for making decisions in the field of SG.

In this study, we aim to address these limitations by exploring a novel approach that combines
a Factored Conditional Restricted Boltzmann Machine (FCRBM) based forecaster with a Genetic
Wind-Driven Optimization (GWDO) based optimizer. The objective is to establish a theoretical basis
for implementing a more effective forecasting process by proposing a two-stage hybrid model,
termed FS-FCRBM-GWDO. This model is designed to enhance short-term load forecasting (STLF) by
addressing issues related to convergence rate, execution time, and prediction accuracy. The proposed
FS-FCRBM-GWDO model integrates the strengths of FCRBM in capturing complex and non-linear
patterns in energy consumption data with the optimization capabilities of GWDO. This two-stage
hybrid model includes:

1. Forecasting Stage: Utilizes FCRBM and deep learning techniques to accurately predict
electrical energy consumption. The focus here is on capturing the random and complex patterns in
load demand.

2. Optimization Stage: Employs the GWDO algorithm to optimize the energy management
process based on the predictions from the first stage. This stage aims to reduce costs, manage demand
surges, and balance electricity expenses with customer convenience. During the training process, the
model uses the Rectified Linear Unit (ReLU) as the loss function to ensure precise and stable
forecasting outcomes.

To provide a comprehensive analysis, the model's performance is evaluated under two main
categories:

1. Prediction Accuracy and Stability: Focusing on the model's ability to provide consistent and
accurate predictions of electrical energy consumption.

2. Energy Management Efficiency: Addressing the optimization of energy use, cost reduction,
and demand surge management to enhance power system stability.

Moreover, for the optimization of energy management, we incorporate a Day-Ahead Genetic
Modified Evolutionary Differential Evolution (DA-GmEDE) based strategy, specifically tailored for
residential buildings. This strategy addresses the scheduling and management of three types of
appliances:

e  Time-Shiftable Appliances: Devices whose operation can be scheduled to non-peak times
without affecting user comfort.

e  Power-shiftable appliances: Devices that can operate at different power levels based on
availability and demand.

e  C(ritical Appliances: Essential devices that require a continuous power supply and cannot be
easily rescheduled.

The system utilizes a module and GmEDE-based solution to validate the performance of the
energy management strategy. The strategy operates on a day-ahead demand response price signal,
and the energy consumption forecast is generated using Artificial Neural Networks (ANN). The
scheduling time horizon spans 24 hours, and the ANN is trained to forecast demand response (DR)
prices. The Energy Management Controller (EMC) uses these forecasts to optimize the scheduling of
appliances, ensuring efficient energy use and cost savings. By addressing these challenges, the FS-
FCRBM-GWDO model aims to provide a balanced solution that integrates accurate forecasting with
efficient energy management, benefiting both consumers and electricity corporations.
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2. Preliminaries

In recent literature, various methods have been proposed for load forecasting, ranging from
traditional time series models to advanced data analytic models. Two notable variations of Long
Short-Term Memory (LSTM) networks, Jaya-based LSTM (JLSTM) and deep LSTM (DLSTM) [15],
have been explored for price and load forecasting. Experimental findings indicate that while JLSTM
achieves reasonable accuracy, it suffers from slow convergence and long execution times. To address
these issues, a combination of Extreme Learning Machines (ELM) and a novel delayed Particle Swarm
Optimization (PSO) approach has been proposed [16], which optimizes weights and biases using a
hyperbolic tangent function. This model outperforms traditional ELM-based models in terms of
accuracy but requires significant computational complexity. Cecati et al. [17] suggested a Radial Basis
Function (RBF) network for next-day electric load forecasting, demonstrating lower Mean Absolute
Percentage Error (MAPE) compared to Recurrent Neural Networks (RNN) and Support Vector
Regression (SVR), though with high computational demands. For industrial short-term electricity
demand prediction, a model combining Artificial Neural Networks (ANN) and Modified Enhanced
Differential Evolution (mEDE) techniques achieves high accuracy (98.5%) but at the cost of longer
execution times [18].

Deep Neural Networks (DNNs), including Convolutional Neural Networks (CNNs), have also
been used [19] for building-level load forecasting, providing satisfactory accuracy and computational
efficiency. Further advancements include deep learning methods to reduce uncertainty and improve
forecast precision, though often at the expense of slower convergence rates. Additionally, a novel
approach combining reinforcement learning and deep learning[20,21], using deep policy gradients
and Q-learning[22], has been applied to optimize energy consumption in buildings, demonstrating
effectiveness in cost and peak reduction. In Macedonia power system, a multi-layered Restricted
Boltzmann Machine (RBM) model [23] has been studied for power demand forecasting, showing
promising results in comparison to actual load profiles. For building cooling load forecasting [24], a
deep learning model employing severe gradient boosting has outperformed traditional models in
terms of accuracy. Finally, a novel approach for predicting power prices, using a neuro-evolutionary
algorithm and MI feature selection [25], has been validated with data from PJM and Spain's electrical
markets, proving more effective than existing methods. A bi-level approach [26] for short-term load
forecasting in micro grids, incorporating feature selection and a combination of ANN and
evolutionary algorithms, has also been proposed.

2.1. Single and Combined Models for STLF

Single models for STLF typically involve individual techniques like regression analysis, time
series analysis, ANN, expert systems, fuzzy logic, and SVM. Each method has its strengths and
weaknesses; for instance, neural networks are good at capturing non-linear patterns but can be
computationally intensive. The main premise behind these individual models is that only the
forecaster model has the ability to predict future electric loads. In [27], authors devised distributed
techniques to predict future demand based on meteorological data. Meteorological fluctuations
partition the electricity system into two subnetworks. Furthermore, distinct forecasting models,
namely ARIMA and gray, are created for each subnetwork. In [28], Authors use a RNN as a deep
learning model to forecast household demand. Nevertheless, the authors prioritize correctness
exclusively, disregarding the convergence rate and computing complexity. An industrial facility is
the subject of a proposed data recovery strategy that utilizes the Real-Time Pricing Signals (RTPS)
protocol, as described in reference [29]. ANN to predict future pricing for global time horizon
optimization has been applied. MILP (Mixed Integer Linear Programming) defines price predictions
to achieve the reduction of energy costs. Moreover, combined models, or hybrid models, integrate
multiple single models to leverage their individual strengths and mitigate weaknesses. These
combinations can include methods like combining neural networks with fuzzy logic or using a
support vector machine alongside time series analysis. Hybrid models generally offer improved
accuracy and robustness by capturing a wider range of patterns and adapting to various types of data
variability. Initially, the authors forecast the DG load using the SVM with fruit-fly immune (FFI)


https://doi.org/10.20944/preprints202408.1852.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2024 d0i:10.20944/preprints202408.1852.v1

4

method. Furthermore, the use of LSTM-RNN model [30] to forecast the load for a residential service
region. The authors in [31] introduced an advanced model that predicts the load on DG and analyzes
the power supply configuration. The authors in [32] presented an Internet of Things (IoT)-based deep
learning system for accurately predicting future loads. The research [33] introduces the adaptive
hybrid learning model (AHLM), which aims to predict the intensity of solar irradiation. Single
models are more straightforward but might not be as accurate or adaptable as combined models,
which offer better performance by integrating the strengths of multiple forecasting techniques.

2.2. Existing ELM Strategies

The Efficient Load Management System (ELMS) aims to improve the efficiency, reliability, and
sustainability of power systems while addressing challenges such as increasing electricity demand
and integrating renewable energy sources. Information and Communication Technology (ICT) and
Advanced Metering Infrastructure (AMI) enable citizens to participate in Demand Side Energy
Management (DSEM) through price-based and incentive-based Demand Response (DR) programs.
These programs, utilizing a Binary Backtracking Search Algorithm (BBSA), efficiently schedule home
appliances to minimize energy usage and electricity costs [34-36]. However, [37] shifting most
appliances to low-cost periods can lead to increased demand during these times. To address this, a
study outlined in reference explores a strategy for managing electricity consumption in residential
buildings without impacting non-shiftable equipment, though it may reduce consumer comfort.

Several approaches, such as a Home Load Schedule Optimization Model, combine Real-Time
Pricing Signals (RTPS) with Incentive-Based Demand Response (IBRS) programs to minimize energy
costs have been presented [38]. Home Energy Management Systems (HEMS) have been suggested to
concurrently reduce power costs and demand peaks [39]. Studies in [40] have explored various
optimization algorithms like Teaching-Learning-Based Optimization Algorithm (TLBOA) and
Shuffle Frog Leap Algorithm (SFLA) for managing home power consumption in price-based DR
programs, aiming to reduce overall energy costs despite neglecting user comfort and Peak-to-
Average Ratio (PAR) considerations. Further, research [41] and [42] has focused on using DR
programs, including Critical Peak Pricing (CPP), Time-of-Use Pricing (ToUP), Real-Time Pricing
(RTP), and Day-Ahead Pricing (DAP), to align energy demand with supply, optimizing societal well-
being and reducing costs. While these programs use pricing systems such as ToUP, DAPS, and CPPS
[43], they may inadvertently lead to system overload during low-price periods due to peak
occurrences. Some studies propose methods like Mixed Integer Linear Programming (MILP) to create
balanced load plans, aiming to minimize energy costs and prevent power surges, though these can
also risk grid stability during peak demand periods.

Other models, such as those based on fuzzy logic [44] and game theory [45], address energy
management in residential settings. One model focuses on day-ahead planning for residential
microgrids, incorporating Electric Vehicles (EVs), photovoltaic systems, and energy storage systems
(ESSs) to participate in DR programs [46], albeit with increased complexity and computational
demands. Additionally, smart home technologies enabling two-way communication between power
providers and homeowners are explored. Various algorithms, including Genetic Algorithm (GA),
Binary Particle Swarm Optimization (BPSO), Whale Optimization Algorithm (WDO), and Bacterial
Foraging Optimization Algorithm (BFOA), have been applied to optimize household load
scheduling, considering power costs, customer satisfaction, and peak demand levels. However, these
models often overlook the trade-offs between competing factors.

The existing energy management schemes, while effective in scheduling household appliances,
struggle with real-time scheduling of energy consumption patterns due to the nonlinear behavior of
consumers and pricing signals. There is no universally applicable framework for optimal real-time
energy management in residential buildings, as different models suit different goals and contexts.
This study proposes a novel optimization framework featuring an ANN-based forecaster and a
GmEDE algorithm-based EMC to enhance the efficiency of energy management in residential
structures. Moreover, in the operational mode of the EMC, consumers' priorities vary and are
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reflected in the weighting of the objective function. This research proposed consumer mode as
follows:

1. Mode I: Consumers prioritize minimizing their electricity bill, even if it results in higher user
discomfort. The weights are set to (y:=1, y>=0, y3=0), aligning the optimization with the goal of cost
reduction.

2. Mode II: Consumers prioritize comfort over lower electricity costs. To accommodate this, the
EMC adjusts the weights to (y1=0, v>=0, ys=1), focusing on maximizing user comfort.

3. Mode III: The priority is on reducing the PAR, benefiting both consumers and Electricity
Utility Companies (EUCs). A lower PAR leads to a smoother demand curve, allowing EUCs to reduce
the number of peak power plants in operation, ultimately lowering the energy cost per unit for
consumers. The weights are set to (y1=0, Y>=1, y5=0) to achieve this goal.

4. Mode IV: Consumers aim to balance all three objectives: minimizing the electricity bill,
reducing the PAR, and achieving a satisfactory tradeoff between cost and comfort. The EMC assigns
equal weights (y1=1/3, v2=1/3, ys=1/3) to each objective, ensuring a balanced approach.

max(E})
1
T Zi=1 Zie1 (ED)

The term R} denotes the PAR. Our primary goal is to reduce the PAR. Therefore, we approach
the comprehensive management of energy in residential load scheduling as a minimization problem:

R =

M

min(y,CY + y,RS +v3df")

E/Ef =p],Vt € {F},..,FEf + T} — 1}

c [a;, i, Vi € AP,

Ef =0,vt € H\{F}, .., FEt + T — 1},vi € A,
pI™" < Ef < pi™, vt € [a;, B], Vi € A7,

Ef =0,vt € H\ [a; B;] Vi € AF, )
E/E}f =pl,vt € T} c [a;, 5], Vi € A,

Ef =0,vt € T\ [a;, B;], Vi € Af},

variables Ff(i € AP, t € H),

Ef(ie Af,teH),

pi (i € AD),

Equation 1 and 2 modelsRY. These equations utilize parameters y;,¥,, and y3;, which serve as
weights to achieve the desired tradeoff between conflicting parameters within the objective function.
The consumer's operation modes are based on their priorities, preferences, and objective function.

3. Proposed Methodologies
3.1. Electrical Load Forecasting with FCRBM Forecaster

The FCRBM is an advanced extension of the Conditional Restricted Boltzmann Machine (CRBM)
developed by Hinton and Taylor [47]. This architecture incorporates the concept of styles and factors
to simulate various human actions, enhancing the model's ability to capture temporal dependencies
in electricity load time series data as depicted in Figure 1. Unlike traditional backpropagation, the
FCRBM utilizes a contrastive divergence method, which effectively addresses the vanishing gradient
problem. The architecture consists of four layers: a hidden layer(h), a visible layer (v), a history layer
(u), and a style layer(y). The visible and history layers handle real values, while the hidden layer
operates with binary values. The visible layer encodes current load data and performs predictions,
the history layer captures past load data, and the hidden layer identifies key features necessary for
forecasting. The style layer encompasses critical parameters and styles essential for accurate
predictions. To optimize the model's performance, an error function is introduced to define the
relationships and interactions between the layers, weights, and factors, which are mathematically
defined as:
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E(w,u, h,w) = —vTa — hTh — Z{(UT w?)°(yT w¥)°(hT wh)} 3)

where E () is the energy function, vT w¥ is the visible factored, y™ w” is the style factored,
andh” w" is the hidden factored. The symbol ° denotes element-wise multiplication. The dynamic
biases associated with the visible and hidden layers, represented by & and b respectively, are
defined as follows:

a=a+A"{(w"A*) o (yTAY)}" (4)

b=b+B"{u'B*) o (y"B")}"
The weights of the corresponding layers,w”,w?, and w", represent the connections between the
layers. Similarly,A",4%,4” ,B" B* and BY are the connections from layers to factors, also known as

model-free parameters. These connections and weights are crucial parameters that require fine-
tuning and training to ensure the accurate performance of the deep learning technique FCRBM.

h

Ry
“ e

o
OéO ------ OO @

Figure 1. Illustrates the architecture of the FCRBM, which includes the history input layer (u), the
hidden layer (h), the style layer (y), and the visible output layer (v).

The objective of this module is to create a hybrid model using deep learning and FCRBM to
predict future trends in electrical energy usage to accurately anticipate nonlinear electrical energy
consumption patterns and its fast convergence speed.

The training and learning process of the deep learning model FCRBM with ReLU activation and
the multivariate autoregressive method involves several steps. First, historical multivariate time
series data is collected and normalized. The model, consisting of input, hidden, and output layers, is
initialized with random weights. During forward propagation, the input data passes through the
network, activating neurons using ReLU, and generating output predictions. The loss is calculated
and backpropagation is used to update weights. The multivariate autoregressive method helps select
relevant lagged variables as additional inputs. The model undergoes iterative training, validation,
and testing to ensure accuracy. Finally, the predictions are denormalized and evaluated before
deploying the model for real-time forecasting. The training algorithms use a multivariate
autoregressive approach for fast convergence and better performance. Selected features are input into
the FCRBM-based forecaster, trained on four (4) years of data, with the last year reserved for testing.
The FCRBM model predicts future electrical energy consumption, adjusting weights and biases based
on the error signal optimized through the autoregressive algorithm as Figure 2 highlight the process.
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Input Load FCRBM Training Initial forecast

Final forecast

Figure 2. The process enables the FCRBM model, enhanced with ReLU activation and multivariate
autoregressive methods.

The learning and training process of the FCRBM network iterates for a specified number of
iterations to achieve accurate load forecasting. The network is trained with the Mean Absolute
Percentage Error (MAPE) serving as the validation error metric, as specified in Equation 14. The
forecasted results from the FCRBM-based forecaster are then inputted into a GWDO algorithm-based
optimizer to further reduce MAPE and achieve a fast convergence rate.

3.2. GWDO-Based Optimizer Model

The previous step of deep learning, using the FCRBM model with ReLU and multivariate
autoregressive algorithm, produces a prediction of future electrical energy consumption. The forecast
has a minimal error, as determined by the capabilities of the FCRBM model. To enhance accuracy in
predicting energy consumption, the FCRBM-based forecaster module's results are inputted into our
suggested GWDO algorithm-based optimization phase.

{xnew = 1lifrand (1) < sig (j, i) 5
Xpew = 0if rand (1) > sig (j, i) ©

v; = vmax X 2 X (rand( populationsize ,n) — 0.5) 6)

The objective of our suggested algorithmic optimization step is to further reduce errors in the
predicted energy consumption pattern. Therefore, the optimization phase aims to minimize errors by
using an objective function, which is represented by the following model.

Minimize Error(x) Vx € {h,d} @)

Rd¢p,ITep,Ci

By integrating the GWDO algorithm into the optimization module, the forecasting error is
further reduced, aiming to enhance accuracy and convergence speed by fine-tuning the model's
adjustable parameters. Thus, the optimization phase is intricately linked with the FCRBM-based
forecaster to minimize error and enhance forecast accuracy, with MAPE minimization serving as the
primary objective function:

Mini MAPE(j) Vj € {1,2,3, ...} (8)

Rdp, Iy,

The terms Rdy, 'redundancy threshold, Ir;,, " "irrelevancy threshold," and "candidates
interaction"C ;refer to specific concepts. The GWDO method optimizes the suggested phase based on
parametersd,y, Iy, and C;, which are then used in the data preparation phase. The feature selection
approach in the data preprocessing step uses optimized values ofd,y,, Ir;, thresholds for optimum
feature selectionC;. Integrating the optimization phase with the forecaster phase enhances forecast
accuracy, albeit at the expense of a reduced convergence rate.
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Equations 9 and 10 define the fitness functions for velocity and position. The position and
velocity vectors are updated by comparing random numbers (rand(.) € [0,1]) with the fitness
function(FF(.) € [0,1]), as outlined in equation 11.

Table 1. Simulation parameters used.

Parameters Values
Population size 24
Number of decision variables 2
Number of iterations 100
RT 3
g 0.2
a 0.4
dimMin -5
dimMax 5
Vmax 0.3
Vmin -0.3
Crossover rate 0.9
mutation rate 0.1
Learning rate 0.0001
Weight decay 0.0002
Momentum 0.5
FR(o(©) = —— MAPECen ) ©)
MAPE(v(i)) + MAPE(xe,, (1))
FF(to, (i) = MAPE (v(1)) (10)

MAPE (xpe, (i) + MAPE (v(i))
If the random number is smaller than the fitness function, the load value will be updated since
our objective is to minimize the function.

£ = v, (i) if rand(i) < FF(v(i))
pr(t) = {x,’:ew(i) if rand(i) < FF (Xpew (D)

The problem of load update influencing the random value is addressed by eliminating this

(11)

influence. Therefore, the comparison is made between the fitness function of the candidate input and
the fitness function of the previous one, as shown in equation12. This ensures that the selected load
update value maintains a high level of accuracy.

[ , v, (1) '
I _—

Fyprpr (D) = zvnﬂ(l) Un(ima)(())< FF(v())) .
| n+1p; M '
D =S <P (e )

3.3. Hybrid Framework Based on FS, FCRBM, and GWDO

Our proposed solution is a unique hybrid module, combining FS-FCRBM-GWDO, aimed at
forecasting electrical energy consumption. As depicted in Figure 2 and Figure 3, the hybrid model
seeks to enhance prediction accuracy, convergence speed, and scalability. The FS-FCRBM-GWDO
consists of four distinct phases: (i) preprocessing and selecting relevant features from the data, (ii)
forecasting using the FCRBM model, (iii) optimization using the GWDO method, and (iv) utilization
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of the results. The process starts with data preparation and feature selection, where historical energy
consumption patterns and external factors like wind speed, dew point, temperature, and humidity
are normalized and evaluated for relevance, redundancy, and interaction. The aim is to enhance
prediction accuracy by eliminating irrelevant data, selecting essential characteristics, and optimizing
their interaction to minimize duplication and maximize relevance. These selected features are then
inputted into the FCRBM-based forecasting phase to predict future electrical energy consumption
patterns of the REG power system.

=

Initialization
Population ske, max number of
iterations, coefficents, boundaries
and pressure function definition.

Generate random
population(position) and velodty

Evaluate pressure on air parcels
(Fitness function)

I Initialze loop for finding current bestl

[ Record current best }—

Update velocity by using best values
and check velocity limits

I Sdlect one offspring ld-

I Generate new population I

Is crossover Select two individuals
finshed? Parent 1 Parent 2

Figure 3. Implementation flow chart of GWDO algorithm for optimization phase.

The forecasted energy use is subsequently optimized in the GWDO phase to improve prediction
precision, which is crucial for effective energy management. Finally, the anticipated energy
consumption pattern is utilized for effective energy management. The effectiveness of the proposed
FS-FCRBM-GWDO model is validated by comparing it to existing models using three metrics: MAPE,
variance, and Pearson correlation coefficient.

3.4. Performance Metrics for Accuracy Evaluation

The accuracy of the proposed FCRBM-based forecasting model is evaluated using three well-
known metrics: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and
Pearson correlation coefficient. Firstly, RMSE is calculated using equation 13 as follows:

T

1
RMSE = ;Z(Rt _F)? (13)

t=1
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where 7 denotes the number of iterations for summation, R, represents the target demand, and Fiis
the forecasted value. Additionally, a Mean Absolute Percentage Error (MAPE) index is introduced to
provide statistical insights into accuracy. A lower MAPE value indicates higher accuracy in
forecasting, while a higher MAPE value indicates less accuracy. The MAPE is calculated using the
following formula:

T

MAPE = lzu £ 100 (14)
T |Re|

t=1

Thirdly, the Pearson correlation coefficient is used to measure the correlation between predicted
and actual electricity demand, ranging from -1 (strong negative correlation) to 1 (strong positive
correlation), with 0 indicating no correlation. It is calculated using equation 15 as follows:

;= YRy — ug)(Fy — up)
VIR, — up)? * L(Fy — pp)?

where pp represents the average of the target electricity demand, and pF is the average of the
forecasted electricity demand.

(15)

To estimate the uncertainty prediction metrics for confidence interval evaluation, uncertainty
prediction plays a crucial role in electricity demand forecasting due to the random, stochastic, and
nonlinear nature of consumers' electricity consumption patterns. One valuable tool for uncertainty
prediction is confidence interval prediction, which provides vital information regarding prediction
uncertainty.

4. Experimental Results and Discussions
4.1. Stage One: Electrical Load Forecasting

In this stage, the effectiveness of the FS-FCRBM-GWDO framework, along with benchmark
frameworks such as AFC-STLF, Bi-level, MI-mEDE-ANN, and FS-ANN, is evaluated. These
benchmarks were selected due to their architectural similarities with the proposed framework.
However, the FS-FCRBM-GWDO and the benchmark models have distinct computational
challenges, focusing on accuracy, convergence rate, or stability. The FS-FCRBM-GWDO model is
tested using real-time hourly energy usage data from the Rwandan power system, covering four
years from 2018 to 2021. 80% of the data is used for training the FCRBM model, while the remaining
20% is for testing. The control parameters used in the simulations are consistent across both the
proposed and benchmark models, ensuring a fair comparison. The FS-FCRBM-GWDO framework is
assessed using two performance metrics: (i) accuracy, measured by mean absolute percentage error
(MAPE), variance (0?), and Pearson correlation coefficient; and (ii) convergence speed, measured by
execution time and convergence rate. The variance ( ¢?2) is mathematically represented as follows in
equation 16.

1 T
0* == (R~ Fy), (16)
t=1

The symbol 7 indicates the number of timeslots, R, identifies the actual load, F, represents the
predicted load at time t, and o?represents the variance. The accuracy of the performance metrics is
computed using the following formula.

Accuracy = 100 — MAPE(x). 17)

The convergence speed is determined by both the execution time and the convergence rate. The
following is a comprehensive description.

1. Execution Time: This metric refers to the duration required for the forecasting model to predict
future electrical energy consumption patterns. It is measured in seconds, with faster models having
shorter execution times.
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2. Convergence Rate: This aspect measures the speed at which the model reaches a specific epoch
where performance stabilizes, and the error ceases to decrease significantly with additional epochs.
Models with a high convergence rate reach this stabilization point quickly, often at early epochs.
Forecasting models are classified as fast if they exhibit minimal execution time and achieve early
convergence, indicating efficient performance.

Table 2. GWDQO's Simulation parameters.

Control parameters Value
Number of hidden layers 1
Number of neurons in hidden layer 10
Output layer 1
Number of output neurons 1
Number of epochs 100
Number of iterations 100
Learning rate 0.0019
Momentum 0.6
Initial weight 0.1
Initial bias 0
Max 0.9
Min 0.1
Decision variables 2
Population size 24
Delay of weight 0.0002
Historical load data 4 years
Exogenous parameters 4 years

The learning evaluation process compares a model's performance on training and testing data
over multiple epochs to determine if it is genuinely learning. A poor learning curve, with high
variance and bias, indicates overfitting, while a good curve, like that of the FCRBM model, shows
low variance and bias with decreasing errors. Initially, the model has a high error rate (MAPE), which
decreases with more training, reaching a minimal value, indicating effective learning. Figure 5
illustrates these results.

160 . ; . ;

T T T T
—— Load demand (GWh)|

—
553
=}

%
=]

Load demand (GWh)

40 4

T T T T T T T T T T
500 1000 1500 2000 2500 3000
Timeslots (day)

Figure 4. REG’s dataset with month and year indexes.

Figure 6 provides a comparative analysis of the FS-FCRBM-GWDO framework against
benchmark models like FS-ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN in predicting day-ahead
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electrical energy consumption for the REG load data center. Table 3 further details the accuracy of
these models, comparing metrics such as mean absolute percentage error (MAPE), variance, and
correlation coefficient. The findings clearly indicate that the FS-FCRBM-GWDO architecture offers
superior accuracy in forecasting the next day's electrical energy consumption for Rwanda's power
system. Both the proposed and benchmark models are adept at capturing and adapting to the non-
linear patterns present in historical energy consumption time series data.

1004 ‘ Training dataset Testing dataset‘

A |

20 &

0 20 40 60 80 100
Epochs

MAPE (%)

Figure 5. Learning assessment of deep learning FCRBM model using testing and training datasets in
terms of MAPE for 100 epochs.

The proposed hybrid FS-FCRBM-GWDO model uses nonlinear activation functions like tangent
hyperbolic (tanh), sigmoidal, and ReLU to predict energy consumption patterns. Unlike benchmark
frameworks like FS-ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN, which use sigmoid activation
functions, the proposed model uses ReLU and multivariate autoregressive algorithms for rapid
convergence and addressing vanishing gradient and overfitting issues. The model's energy
consumption pattern closely aligns with actual data, with a MAPE of 1.10%, outperforming the
standard frameworks with values of 2.2%, 2.1%, 3.4%, and 2.6%, respectively. Hence, the results

presented in Figure 6 and Table 3 suggested hybrid FS-FCRBM-GWDO model outperforms the
standard frameworks in terms of accuracy.

200
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Figure 6. Day ahead electrical load consumption forecasting using Rwanda’s data with one hour
resolution.
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Table 3. Rwanda's January 2018 results: a comparison of the proposed and current models'
performances based on correlation coefficient, variance, and MAPE.
Electrical load consumption forecasting models
Day  FS-FCRBM-GWDO MI-mEDE-ANN AFC-STLF Bi-Level FS-ANN
MAPE a? r MAPE a? r MAPE a? r MAPE a? r MAPE a? r

1 1.13 119 070 220 155 050 230 160 052 260 1.69 050 341 187 050
2 1.10 0.98 0.68 2.10 1.45 058 215 1.55 056  2.80 1.80 051 3.29 1.79 0.40
3 1.09 110 071 250 130 051 210 148 053 275 151 039 3.8 173 029
4 1.03 097 080 202 120 050 240 149 054 285 172 051 337 192 037
5 1.50 1.09 0.65 2.10 1.15 0.55 2.25 137 055 2.87 1.59 034 320 1.81 0.40
6 1.30 1.07 075 230 134 065 215 135 069 2.89 171 061 317 189 051
7 1.24 1.04 0.69 2.11 1.55 0.60 210 1.60 0.65 2.75 1.70 032 371 194 040
8 1.23 1.02 0.70 2.15 1.45 050  2.09 1.65 0.55 2.70 1.80 049 3.63 1.79 0.51
9 1.08 105 080 235 136 055 250 1.66 056 265 162 062 356 184 042
10 1.05 0.99 0.79 240 1.39 0.69 2.44 1.67 060 263 1.81 0.57  3.08 193 049
11 1.15 110 087 201 145 077 235 155 075 270 158 042  3.04 19 050
12 1.25 111 065 206 150 055 212 158 055 260 170 039  3.68 181 040
13 1.10 0.96 0.81 2.10 1.55 0.71 2.20 1.43 0.75 2.63 1.73 034 329 1.72  0.29
14 1.12 099 079 212 137 075 223 147 070 236 168 039 343 162 028
15 1.10 1.03 078 213 146 078 227 130 073 250 162 052  3.67 191 053
16 1.18 1.05 079 200 139 070 213 135 078 258 171 061 331 19 048
17 1.19 1.08 0.80 213 1.48 060 235 1.55 0.65 2.56 1.65 0.63  3.36 1.81 0.51
18 1.21 1.09 085 219 129 085 210 136 064 265 1.69 067 3.82 178 050
19 1.25 112 090 216 136 050 214 155 059 254 164 062 344 1.69 039
20 1.44 095 067 217 147 060 215 145 048 250 159 061 3.6 172 054
21 1.39 090 071 234 151 058 219 154 058 259 180 053 331 191 043
22 1.17 099 075 210 150 075 210 140 059 280 158 050 351 173 041
23 1.15 101 086 230 145 064 213 134 039 275 171 061 335 172 052
24 1.08 107 087 201 134 073 224 160 058  2.65 163 039 392 181 041
25 1.03 111 092 1.99 135 082 213 149 067 267 153 061 3.89 18 039
26 1.05 1.05 090 2.0 156 0.09 226 161 049 285 170 068 375 159 052
27 1.03 1.10 0.88 2.10 1.40 058 210 1.48 0.77 255 1.75 0.62 379 1.79 0.49
28 1.25 111 076  2.09 135 056 215 150 058 260 175 055 335 181 038
29 1.27 113 077 208 132 055 213 153 059 262 176 049 336 178 039
30 1.25 121 081 201 121 043 221 148 051 258 169 051 334 174 036
Agg. 110 1.03 079 220 125 065 210 135 060 26 170 052 34 180 043

Figure 7 shows a week-long prediction of hourly electrical energy consumption, demonstrating
the superior performance of the FS-FCRBM-GWDO model compared to existing models like FS-
ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN. The FS-FCRBM-GWDO model achieved a MAPE of
1.18%, significantly outperforming the benchmark models. The model's accuracy is attributed to the
use of a deep learning-based FCRBM with ReLU, a multivariate autoregressive algorithm, and
GWDO optimization. Figure 8 and Table 3 show that the FS-FCRBM-GWDO model closely tracks the
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actual energy consumption curve, ensuring better performance in monthly predictions. Table 4
presents a performance evaluation for the leap year 2018, using MAPE, variance, and correlation coefficient
metrics.

Table 4. Rwanda’s results of the year 2018: comparative performance analysis of the FS-FCRBM-
GWDO and existing models in terms of MAPE, correlation coefficient, and variance.

Electrical load consumption forecasting models

FS-FCRBM-GWDO MI-mEDE-ANN AFC-STLF Bi-Level FS-ANN
Month
MAPE a? T MAPE a? r MAPE a? r MAPE a? r MAPE a? r
1 1.09 112 081 222 138 081 23 1.28 0.69 249 1.61 039 361 1.9 0.49
2 1.37 1.01 07 2.09 1.5 058  2.09 151 051 248 159 061 3.19 1.59 0.51
3 1.32 1.20 059 21 147 062 22 1.6 049 259 1.7 0.5 3.64 1.82 029
4 1.12 089 077 199 119 043 235 1.52 06 29 1.81 038 332 1.78 04
5 1.28 112 068 221 1.5 054 229 1.6 058 2.62 1.69 0.6 3.37 1.83 048
6 1.09 111 092 229 1.38 059 208 1.28 042 268 1.72 062 3.17 1.69 052
7 11 120 058 207 1.6 057 2.03 1.57 07 2.69 157 038 373 1.78 041
8 1.18 1.07 069 204 139 043 211 159 06 2.95 1.8 0.62 3.61 191 039
9 1.3 1.09 062 21 146 062 221 1.61 049 254 1.6 034 3.6 164 041
10 1.09 1.10 0.81 205 142 0.68 2.08 142 08 2.59 1.79 061 3.18 1.93 0.53
11 1.08 1.06 092 207 156 082 229 1.64 072 263 1.8 029  3.09 1.79 05
12 1.15 1.15 079 23 132 091 209 145 07 272 1.69 063 3.85 193 0.51
Agg. 1.18 1.09 074 212 143 063 217 1.50 0.60 2.65 1.69 050 345 1.80 0.45
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Figure 7. Week ahead electrical load consumption forecasting using Rwanda’s dataset with hourly
resolution.
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Figure 8. Month ahead electrical load consumption forecasting using Rwanda’s dataset with hourly
resolution.

FS-FCRBM-GWDO module's performance in terms of MAPE and convergence speed. Figure 9,
Figure 10, and Figure 11 present a statistical assessment of MAPE, execution time, and convergence
speed for the proposed FS-FCRBM-GWDO model and benchmark models (FS-ANN, AFC-STLF, MI-
mEDE-ANN, and Bi-level). The FS-FCRBM-GWDO model achieves the lowest MAPE of 1.18%,
indicating high accuracy, compared to higher MAPE values in the benchmark models of 3.45%,
2.17%, 2.12%, and 2.65%, respectively. However, integrating the optimization module increases
execution time from 25 to 95 seconds. The FS-FCRBM-GWDO model balances accuracy and speed by
using GWDO for optimization, ReLU activation, a multivariate autoregressive algorithm, deep
learning FCRBM, and advanced data preprocessing. Despite longer execution times compared to FS-
ANN, the FS-FCRBM-GWDO model offers superior accuracy and efficiency.

35 i . 4.0 i .
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MI-mEDE-ANN 35 MI-mEDE-ANN
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Figure 9. Accuracy assessments of the proposed FS-FCRBM-GWDO and benchmark models in terms
of MAPE using Rwandan power grid’s dataset. (a) Day ahead; (b) Week ahead.
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Figure 10. Execution time analysis of the proposed FS-FCRBM-GWDO and benchmark models using
REG’s dataset. (a) Day ahead; (b) Week ahead.
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Figure 11. Convergence speed analysis of the proposed FS-FCRBM-GWDO and benchmark models
for 100 iterations using REG’s dataset.

Figure 11 illustrates the convergence speed of the proposed hybrid FS-FCRBM-GWDO model
compared to benchmark models including FS-ANN, Bi-level, AFC-STLF, and MI-mEDE-ANN, based
on 100 iterations. As the number of iterations increases, MAPE decreases for all models. Notably, the
proposed model demonstrates rapid convergence, reaching stability around the 10th iteration,
indicating its efficient search ability. In contrast, benchmark models such as FS-ANN, Bi-level, AFC-
STLF, and MI-mEDE-ANN, converge later, around the 33rd, 29th, 25th, and 21st iterations
respectively, showcasing slower convergence rates. This analysis suggests that the proposed GWDO
algorithm offers superior performance for optimization in integrated frameworks due to its faster
convergence compared to existing benchmark models. The depicted convergence analysis focuses
solely on the MAPE performance metric for both proposed and existing models.

Figure 12 compares the proposed hybrid FS-FCRBM-GWDO model to benchmark models,
including FS-ANN, Bi-level, AFC-STLF, and MI-mEDE-ANN, regarding the cumulative distribution
function (CDF) of error. The FS-FCRBM-GWDO model outperforms the current models in terms of
CDF. The FCRBM model, which utilizes deep learning, is capable of providing accurate predictions
even in situations characterized by high levels of uncertainty. This is due to the deep layers of the
model being able to effectively capture the essential characteristics. Therefore, our suggested FS-
FCRBM-GWDO framework is a superior option for distribution system operators to achieve efficient
and effective energy management of the smart grid. The FS-FCRBM-GWDO framework, along with
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other current frameworks like FS-ANN, Bi-level, AFC-ANN, and MI-mEDE-ANN, has been
evaluated in terms of computational complexity, execution time, convergence rate, and accuracy.
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Figure 12. Evaluation of CDF in terms of MAPE for the proposed FS-FCRBM-GWDO and benchmark
models using Rwanda’s dataset.

Further evaluation of the FS-FCRBM-GWDO framework and existing frameworks, such as FS-
ANN, Bi-level, AFC-ANN, and MI-mEDE-ANN is presented in Table 5. This evaluation encompasses
computational complexity, execution time, convergence rate, and accuracy metrics. Based on
simulation results, performance analysis, and discussions, it is concluded that the proposed hybrid
FS-FCRBM-GWDO model surpasses benchmark models in terms of convergence rate, accuracy,
computational complexity, and execution time aspects.

Table 5. Evaluation of the proposed and benchmark models in terms of computational complexity,
execution time, convergence rate, and accuracy.

models
Performance parameters
FS-ANN Bi-Level AFC-STLF MI-mEDE-ANN FS-FCRBM-GWDO
Computational complexity (level) Low High Moderate High Moderate
Convergence rate (epochs) 33 28t 26t 21 11t
Execution time (sec) 31 89 62 97.5 98.9
Accuracy (%) 96.4 97.4 97.9 97.8 98.7

3.2. Energy Management Based on the DA-GmEDE Framework

The study presents the results of a DA-GmEDE-based energy management strategy for
residential buildings with three types of appliances: time-shiftable, power-shiftable, and critical
appliances. The system module and GmEDE-based solution are used to validate the performance of
the strategy, which uses a day ahead demand response price signal and energy consumption forecast
generated using ANN. The scheduling time horizon spans 24 hours, and the ANN is trained to
forecast DR prices, which the Energy Management Controller (EMC) uses to optimize appliance
scheduling. Parameters of the algorithms employed in the simulations, as well as descriptions of all
residential appliances, are detailed in Table 6 and Table 7 respectively.

The proposed method, based on EMC, is compared to current techniques like DA-GA and DA-
game-theoretic. The proposed scheduling approach, DA-GmEDE, is compared to W/O, DA-GA, and
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DA-game-theoretic strategies. The efficacy of the proposed method is evaluated using electricity cost,
PAR, and user discomfort balance.

Table 6. Parameters used in simulation for the proposed and existing energy management

strategies.
Parameters Values
Population 100
Minimum lower population bound 0.1
Maximum lower population bound 0.9
Number of wolves in each pack 17
Maximum epochs 100
Decision variables 2
Learning rate 0.002
Weight decay 0.0002
Initial value of weight 0.1
Initial value of bias 0
Number of objectives 2
Momentum 0.5
Features selection threshold 0.5
Distance from prey Vary
Status of leader lor2
Number of dimensions 17
Gradient of problem Vary

In Figure 13, A and B illustrate the predicted pricing signal and energy use patterns for the
upcoming day.
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Figure 13. Forecasted day ahead DR pricing signal using ANN (A) and (B) Day ahead home energy
consumption forecasting.


https://doi.org/10.20944/preprints202408.1852.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2024

d0i:10.20944/preprints202408.1852.v1

19

1. Energy Consumption and Corresponding Electricity Bills across Four Different Modes of
Operation

The DA-GmEDE method calculates energy consumption and electricity cost profiles for four
operational modes. It shows that residential structures' energy consumption is higher under mode
IV compared to modes I and III but lower than mode II within the scheduling time horizon. The peak
energy consumption is significantly lower in mode II, attributed to customers prioritizing comfort

and continuing activities despite higher costs. These profiles are represented in Figure 14(A-B),

respectively.
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Figure 14: (A) Evaluation of energy consumption and (B) Evaluation of electricity bill payment under four

modes of operation with day ahead forecasted pricing signal

Consumers in operation mode III consume more energy but lower than in mode II and IV due
to prioritizing PAR. Mode I customers have lower energy usage but prioritize reducing electricity
expenses. The EMC, based on DA-GmEDE, allows customers to meet their needs in various
operational modes, resulting in lower electricity bills.

Table 7. Parameters of residential home appliances used in simulations.

Operation timeslots

Classification Types of application Power rating (GWh) Priority
(Hours)
Electric radiator [0.5-1.5] 10
Power shiftable Water dispenser [0.8-1.2] 24
2
Appliances Refrigerator [0.5-1.2] 24
Air conditioner [0.8-1.5] 10
Hair dryer 12 1
Critical Microwave 1.8 3
3
appliances Electric iron 1.8 4
Electrical kettle 1.5 1
Washing machine 0.7 5
Time shiftable
Cloth dryer 2 4 1
Appliances
Water pump 0.4 2
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2. Energy consumption of residential buildings within the scheduling time horizon

Figure 15-A and B shows energy consumption patterns in a home without and after scheduling
with DA-GA, DA-game-theoretic, and proposed DA-GmEDE strategies. In the absence of scheduling,
energy consumption peaks during peak demand hours, leading to high electricity bills and a Peak-
to-Average Ratio. After scheduling with these strategies, energy consumption was significantly
reduced. The proposed DA-GmEDE strategy achieves a 36.4% improvement over the W/O
scheduling case and a 33.3% improvement over both strategies, demonstrating its ability to generate
the most suitable load profile for residential buildings.
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Figure 15. Comparison of energy consumption (A) and energy Bill payment (B) per hour W/O and
with load scheduling.

3. Electricity bill per hour of a home in residential buildings within the scheduling time
horizon

Figure 15-B demonstrates the effectiveness of scheduling methods like DA-GmEDE, DA-GA,
DA-game-theoretic, and W/O scheduling in reducing electricity bills. Prior to scheduling, peak
periods led to increased costs, resulting in a surge of up to $5.5. By implementing these methods,
electricity costs per timeslot decrease by $0.7, $1.2, and $0.9, respectively. The DA-GmEDE-based
approach outperforms other strategies by 41.6% and 22.2%.

The evaluation of Peak-to-Average Ratio (PAR) is presented, comparing W/O scheduling and
scheduling using DA-GA, DA-game-theoretic, and DA-GmEDE strategies. The proposed DA-
GmEDE-based strategy outperforms other strategies in terms of PAR. Figure 16-A demonstrates its
effectiveness in maintaining balanced energy consumption and improving power system stability.
The EMCs effectively shift load under day-ahead pricing signals, reducing PAR by 17.64%, 25.49%,
and 47.05%, respectively.Figure 16-B evaluates total electricity bill payments using DA-GA, DA-
game-theoretic, and DA-GmEDE strategies. The proposed DA-GmEDE strategy achieves the highest
reduction in bills, outperforming existing strategies and demonstrating its effectiveness in reducing
overall electricity expenses at 15.2%, 8.7%, and 23.9% respectively.


https://doi.org/10.20944/preprints202408.1852.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2024 d0i:10.20944/preprints202408.1852.v1

21

6 50
I /O scheduling Il /O scheduling
[_Jwith scheduling 4ast [_JWith scheduling
5T 40 —
e
— = a5} —
3
ar £
&30
a
x 3 sl
=3 22
S
B 20F
2r C
215
5
i (1] 5
1k
st
o 0
1 2 3 1

Figure 16. (A, B) Comparative analysis of PAR and total energy payment with and W/O load
scheduling.

5. Performance Tradeoff Analysis

Figure 17 shows the performance tradeoff between the proposed DA-GmEDE strategy and
existing strategies (DA-GA and DA-game-theoretic) in terms of electricity bill and waiting time. The
proposed DA-GmEDE strategy minimizes the tradeoff between electricity bill and waiting time,
making it a favorable choice for energy management tasks. This balance between electricity bill and
user discomfort is more pronounced for DA-GA and DA-game-theoretic based strategies.
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Figure 17. Evaluation of performance tradeoff between electricity bill and waiting time of the
proposed DA-GmEDE and existing DA-GA and DA-Game-theoretic strategies.

5.1. Electricity Cost Evaluation under a Price-Based DR Program

To assess the cost parameters of the suggested plan, simulations are run with several Operating
Time Interval (OTI) lengths, specifically 15, 30, and 60 minutes. The proposed framework to compute
power costs utilizes the daily energy pricing signals, obtained from the Rwanda Utility Regulatory
Authority (RURA). The National Control Center (NCC) provides Real-Time Pricing Signals (RTPS)
and Critical Peak Pricing Signals (CPPS).

3.2. Electricity Cost Evaluation Using RTPS and CPPS under OTI

By scheduling smart home appliances using anticipated RTPS, the proposed GmEDE algorithm
efficiently reduces electricity cost when compared to modified Evolutionary Differential Evolution
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(mEDE) and Grey Wolf Optimization (GWO). The program optimizes the transition of appliances
from on-peak to off-peak timeslots by coordinating pricing schemes with patterns of energy use. The
suggested GmEDE-based expenses reduce demand peaks and energy prices compared to both GWO
and mEDE. Simulations demonstrate that by arranging smart home equipment in the best possible
way, the suggested GmEDE algorithm continuously lowers power bills.

The proposed GmEDE-based framework outperforms both GWO and mEDE in terms of
reducing peaks in demand and electricity costs. Figure 18-A shows that unscheduled loads result in
high demand peaks, resulting in high prices during specific hours. Figure 18-B shows that GWO
shows higher costs at the beginning timeslots, while GmEDE maintains minimum costs throughout
the 24 hours. Figure 18-C shows that the proposed GmEDE algorithm consistently reduces electricity
costs by optimally scheduling smart home appliances.
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Figure 18. Electricity cost evaluation per timeslot for OTI various under RTPS.
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Figure 19. Electricity cost per timeslot evaluation for different OTI under CPPS.

The electricity cost profile for a 15-minute OTI shows that the forecast CPPS remains constant
except during critical peak hours. The maximum peak in an unscheduled load scenario is 181.55
cents, but when smart home appliances are scheduled, it reduces to 83.07 cents. The 30-minute OTI
has similar costs, but no peaks emerge except at the starting time of the day. The proposed GmEDE
algorithm significantly reduces the unscheduled appliance electricity cost from 766.8 cents to 203.46
cents for the 60-minute OTI. The overall unscheduled cost is reduced from 1300.891 cents to 1085.91
cents when smart home appliances are scheduled using the GmEDE algorithm.

Additionally, the overall electricity cost reduction for 30 and 60 minutes OTI is depicted in
Figure 22. A brief comparison of electricity cost under forecasted RTPS and CPPS for 15, 30, and 60
minutes OT1is provided in Table 8. In summary, the proposed framework optimally schedules smart
home appliances, leading to reduced overall aggregated electricity costs for residents compared to
mEDE and GWO under forecasted RTPS and CPPS.

In Figure 20 and Figure 21, the results analysis shows that the proposed GWDO algorithm
outperforms other heuristic techniques (GA, BPSO, WDO) and unscheduled load in optimizing
energy consumption and reducing electricity costs. Without RESs and ESS, GWDO reduces peak
power consumption by 35.16% compared to 32.96% for GA, 31.86% for BPSO, and 33.51% for WDO.
With RESs, GWDO achieves a 28.39% reduction in peak power consumption, outperforming GA
(24.69%), BPSO (30.86%), and WDO (32%). Additionally, GWDO provides the lowest electricity costs,
peaking at 0.49 cents/kWh compared to GA (0.9 cents/kWh), BPSO (0.6 cents/kWh), and WDO (0.55
cents/kWh), demonstrating the most stable and optimal profiles across scenarios.
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Figure 22. Aggregated electricity cost evaluation under forecast RTPS and CPPS.

Table 8. Overall electricity cost comparative evaluation for 24 hours time horizon under forecast RTPS
and CPPS.

Scenarios and  Electrical Energy Cost (USD) under Electrical Energy Cost (USD) under CPPS

Algorithms RTPS

15minutes 30 minutes 60 minutes 15minutes 30 minutes 60 minutes

Without scheduling ~ 500.4821 743.4871 822.1561 1200.1561 1300.8910 1085.6481
GWO 426.0507 727.1431 717.9402 1190.5122 1200.9612 1080.4091
mEDE 420.5381 743.1951 831.2132 1178.4901 1164.4901 1190.6901
GmEDE 416.7468 658.6502 712.7292 1164.4901 1085.9022 1056.7891

5.3. Peaks in Demand

Peaks in demand are the highest loads experienced within a 24-hour period, representing
maximum energy consumption. To minimize these peaks, Demand Side Management strategies like
peak clipping, load shifting, and price-based Demand Response can be implemented. These strategies
reduce peaks in demand, lower electricity costs, and less strain on Energy User Consumers. The
subsequent section evaluates the effectiveness of peak reduction strategies in both Real-Time Pricing
Schemes (RTPS) and Critical Peak Pricing Schemes (CPPS). Figure 23 shows the decrease in demand
peaks under RTPS for various OTI. Peak demand occurs when load is not scheduled, while when
scheduled using mEDE and GWO, peak demand is 8.1723 and 5.6750, respectively. The proposed
GmEDE scheme achieves a 53.02% decrease in peaks, demonstrating superior performance compared
to GWO and mEDE schemes, resulting in a reduction of 25.50% and 48.26% respectively as illustrates
in Table 9.
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Figure 23. Peaks in demand evaluation under forecast RTPS and CPPS for different OTL
Table 9. Peaks in demand evaluation of the proposed and existing schemes for 24 hours.
Scenarios Peak load in demand under RTPS with different OTI  Peak load in demand under CPPS with different OTI
15minutes 30 minutes 60 minutes 15minutes 30 minutes 60 minutes
Without 10.9698 6.0258 5.0258 10.9698 5.8035 5.0258
scheduling
mEDE 8.1723 5.8425 3.6558 8.1723 5.2537 3.8425
GWO 5.676 5.9336 4.3509 5.6265 4.8166 3.9336
GmEDE 5.1531 3.6210 2.5369 5.5416 4.0264 3.6210

5.4. Waiting Time Evaluation

26

Figure 23 depicts the waiting time of the planned GmEDE and the existing mEDE and GWO
under CPPS. The measured waiting times for mEDE, GWO, and the proposed GmEDE are 3.39 hours,
4.23 hours, and 6.49 hours, respectively. The load plan generated by EMC using the GmEDE
algorithm clearly exhibits longer waiting times, suggesting that user comfort is sacrificed in order to
save electricity expenses. Table 10 presents the statistical analysis of the proposed and current
algorithms, specifically in terms of waiting time for different OTI under RTPS and CPPS.
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Figure 24. User comfort (waiting time) of the scheduled load based on the proposed GmEDE, mEDE,
and GWO using RTPS and CPPS.
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Table 10. Comparative evaluation of the proposed GmEDE and existing (mEDE and GWO) algorithm
in terms of waiting time under RTPS and CPPS for different OTL
Scenarios Evaluation of waiting under RTPS for different Evaluation of waiting under CPPS for different
OTI OTI
15minutes 30 minutes 60 minutes 15minutes 30 minutes 60 minutes
mEDE 4.3781 hour 4.5394 hour 2.6560 hour 3.3826 hour 4.8012 hour 2.8158 hour
GWO 9.7494 hour 10.0262 hour 2.2397 hour 4.2293 hour 5.7853 hour 3.3346 hour
GmEDE 10.4249 hour 12.7007 hour 3.8793 hour 6.4814 hour 6.1335 hour 4.3408 hour

6. Conclusions

In this research, a novel hybrid model is proposed for forecasting electrical energy consumption,
aiming to provide accurate predictions while ensuring a reasonable convergence rate. The model,
referred to as FS-FCRBM-GWDO, integrates feature selection (FS), a forecaster based on FCRBM, and
an optimizer based on the GWDO algorithm. This comprehensive framework introduces a new
approach to feature interaction, using relevancy and redundancy filters from the Mutual Information
(MI) approach to select key features for the FCRBM forecaster. Given the nonlinear and complex
nature of the problem, the GWDO algorithm is employed for optimization, enhancing the accuracy
and convergence of the forecasting results. The model was tested using data from the Rwanda power
grid, and evaluated through metrics like MAPE, variance, correlation coefficient, and convergence
rate. The FS-FCRBM-GWDO model achieved an accuracy of 98.9%, outperforming benchmark
models such as MI-mEDE-ANN (97.8%), AFC-STLF (97.9%), Bi-level (97.4%), and FS-ANN (96.4%),
with notable reductions in average execution time. Additionally, the study presents a framework
utilizing Energy Management Control (EMC), supported by a DA-GmEDE strategy for effective
energy management in residential buildings. This strategy aims to optimize energy consumption by
scheduling household appliances, thus reducing power costs and Peak-to-Average Ratio (PAR),
contributing to improved power system stability. The DA-GmEDE-based approach demonstrated
significant reductions in both electricity bills and PAR compared to other methods.

Lastly, the research introduces a modular architecture and the GmEDE algorithm, which uses
predicted energy consumption patterns to optimize load scheduling for both energy users and
consumers. This approach benefits households by lowering electricity costs and providing a
manageable waiting period for smart devices, while also smoothing the demand curve and enhancing
grid stability. The GWDO algorithm, which combines elements of GA and WDO, is proposed to
further reduce electricity costs and PAR across three scenarios involving the integration of renewable
energy sources and energy storage systems. The GWDO algorithm showed superior performance in
cost reduction and PAR improvement compared to other methods, highlighting the importance of
accurate energy consumption forecasting for efficient smart grid management.
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