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Abstract: Accurate,  rapid,  and  stable prediction of  electrical  energy  consumption  is  essential  for decision‐

making, energy management, efficient planning, and reliable power system operation. Errors  in forecasting 

can  lead  to  electricity  shortages,  wasted  resources,  power  supply  interruptions,  and  even  grid  failures. 

Accurate  forecasting  enables  timely decisions  for  secure  energy management. However, predicting  future 

consumption is challenging due to the variable behavior of customers, requiring flexible models that capture 

random and complex patterns. Existing forecasting methods, both traditional and modern, have  limitations 

and do not fully meet accuracy expectations. To address these issues, this research introduces a hybrid models 

that combine FCRBM based forecaster, and GWDO based optimizer, namely FS‐FCRBM‐GWDO approach to 

enhance the model performance in STLF have been developed. While some models excel in accuracy and others 

in convergence rate, both aspects are crucial. The main objective is to create a forecasting model that provides 

reliable, consistent, and precise predictions for effective energy management. This led to the development of a 

novel  two‐stage hybrid model. The  first stage predicts electrical energy usage  through  four modules using 

deep  learning,  support vector machines,  and optimization  algorithms. The  second  stage optimizes  energy 

management based on predicted consumption,  focusing on  reducing costs, managing demand  surges, and 

balancing  electricity  expenses with  customer  inconvenience.  This  approach  benefits  both  consumers  and 

electricity corporations by lowering bills and enhancing power system stability. Simulation results validate the 

proposed modelʹs efficacy and efficiency compared to benchmark models. 

Keywords:  genetic  wind‐driven  optimization  algorithm;  Short‐term  load  forecasting;  Factored 

conditional deep belief network; Efficiency energy consumption 

 

1 Introduction   

Electric load forecasting (ELF) plays a critical role in the operational planning and management 

of power and distribution  systems, generating substantial academic and utility  interest. Accurate 

demand  forecasting,  encompassing parameters  such  as hourly  load, peak  load,  and  total  energy 

consumption,  is  essential  for  effective  system  management  and  planning.  Consequently,  load 

forecasting  tailored  to  specific  time horizons  is  advantageous  for  addressing diverse  application 

needs within the power system [1]. Therefore, the process of linearizing the load causes many of the 

traditional prediction models to be unsuitable [2,3]. From a forecasting perspective, the utility aims 

to efficiently manage  the power system  to ensure equilibrium between  the degree of demand  for 

electric energy and its supply. This suggests that as the forecast becomes more precise, the operation 

and management  of  the  electricity  system  become more  efficient.  The  expanding  population  is 

causing a continuously rising demand for electricity. To accomplish this ambitious objective, there is 

a  need  for  a  substantial  expansion  in  electricity  generation  capacities. Accurately predicting  the 

hourly energy demand is crucial for capacity planners to make informed decisions about investments 

and  to  ensure  a  dependable  supply  of  electricity.  Modeling  hourly  energy  demand  in 

underdeveloped nations  can  be difficult  because  there  is not  enough historical  load dataset  and 

analytical frameworks to effectively account for technology shifts and urban‐rural communities [4].   

Short‐term load forecasting typically encompasses a time frame ranging from 1 to 24 hours [5]. 

Various forecasting methods are used depending on the model. Medium‐Term Forecasting (MTF) 
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and  Long‐Term  Forecasting  (LTF)  typically  utilize  trend  analysis  [6],  end‐use  analysis,  neural 

networks, and multiple linear regression techniques [7]. On the other hand, Short‐Term Forecasting 

(STF) employs methods such as regression and time series analysis [8], artificial neural networks [9], 

pattern sequence‐based matching method and extreme gradient boosting [10], fuzzy logic [11], and 

support vector machines (SVM) for LTLF [12]. STF is essential for Transmission System Operators 

(TSOs) to ensure system reliability during extreme weather events [13] and for Distribution System 

Operators (DSOs) due to the growing impact of new generations on total load [14] and the challenge 

of aligning variable  renewable energy  supply with demand under narrowing margins. Extensive 

studies have been carried out on the topic of energy management in SGʹs literature to address the 

increasing  energy  demand.    To  address  these  complexities,  classical  and  intelligent  forecasting 

techniques that now exist are crucial and necessary for making decisions in the field of SG. 

In this study, we aim to address these limitations by exploring a novel approach that combines 

a Factored Conditional Restricted Boltzmann Machine  (FCRBM) based  forecaster with  a Genetic 

Wind‐Driven Optimization (GWDO) based optimizer. The objective is to establish a theoretical basis 

for  implementing  a more  effective  forecasting  process  by  proposing  a  two‐stage  hybrid model, 

termed FS‐FCRBM‐GWDO. This model is designed to enhance short‐term load forecasting (STLF) by 

addressing issues related to convergence rate, execution time, and prediction accuracy. The proposed 

FS‐FCRBM‐GWDO model integrates the strengths of FCRBM in capturing complex and non‐linear 

patterns in energy consumption data with the optimization capabilities of GWDO. This two‐stage 

hybrid model includes: 

1.  Forecasting  Stage:  Utilizes  FCRBM  and  deep  learning  techniques  to  accurately  predict 

electrical energy consumption. The focus here is on capturing the random and complex patterns in 

load demand. 

2. Optimization  Stage:  Employs  the GWDO  algorithm  to  optimize  the  energy management 

process based on the predictions from the first stage. This stage aims to reduce costs, manage demand 

surges, and balance electricity expenses with customer convenience. During the training process, the 

model  uses  the  Rectified  Linear Unit  (ReLU)  as  the  loss  function  to  ensure  precise  and  stable 

forecasting outcomes. 

To provide a comprehensive analysis,  the modelʹs performance  is evaluated under  two main 

categories: 

1. Prediction Accuracy and Stability: Focusing on the modelʹs ability to provide consistent and 

accurate predictions of electrical energy consumption. 

2. Energy Management Efficiency: Addressing the optimization of energy use, cost reduction, 

and demand surge management to enhance power system stability. 

Moreover,  for  the optimization of energy management, we  incorporate a Day‐Ahead Genetic 

Modified Evolutionary Differential Evolution (DA‐GmEDE) based strategy, specifically tailored for 

residential  buildings. This  strategy  addresses  the  scheduling  and management  of  three  types  of 

appliances: 

 Time‐Shiftable  Appliances:  Devices  whose  operation  can  be  scheduled  to  non‐peak  times 

without affecting user comfort. 

 Power‐shiftable  appliances:  Devices  that  can  operate  at  different  power  levels  based  on 

availability and demand. 

 Critical Appliances: Essential devices  that  require a continuous power supply and cannot be 

easily rescheduled. 

The system utilizes a module and GmEDE‐based solution  to validate  the performance of  the 

energy management strategy. The strategy operates on a day‐ahead demand response price signal, 

and  the  energy  consumption  forecast  is generated using Artificial Neural Networks  (ANN). The 

scheduling time horizon spans 24 hours, and the ANN is trained to forecast demand response (DR) 

prices. The Energy Management Controller (EMC) uses these forecasts to optimize the scheduling of 

appliances, ensuring efficient energy use and cost savings. By addressing these challenges, the FS‐

FCRBM‐GWDO model aims to provide a balanced solution that integrates accurate forecasting with 

efficient energy management, benefiting both consumers and electricity corporations. 
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2. Preliminaries 

In  recent  literature, various methods have been proposed  for  load  forecasting,  ranging  from 

traditional  time  series models  to advanced data analytic models. Two notable variations of Long 

Short‐Term Memory (LSTM) networks, Jaya‐based LSTM (JLSTM) and deep LSTM (DLSTM) [15], 

have been explored for price and load forecasting. Experimental findings indicate that while JLSTM 

achieves reasonable accuracy, it suffers from slow convergence and long execution times. To address 

these issues, a combination of Extreme Learning Machines (ELM) and a novel delayed Particle Swarm 

Optimization (PSO) approach has been proposed [16], which optimizes weights and biases using a 

hyperbolic  tangent  function. This model  outperforms  traditional ELM‐based models  in  terms  of 

accuracy but requires significant computational complexity. Cecati et al. [17] suggested a Radial Basis 

Function (RBF) network for next‐day electric load forecasting, demonstrating lower Mean Absolute 

Percentage  Error  (MAPE)  compared  to  Recurrent Neural Networks  (RNN)  and  Support Vector 

Regression  (SVR),  though with high computational demands. For  industrial short‐term electricity 

demand prediction, a model combining Artificial Neural Networks (ANN) and Modified Enhanced 

Differential Evolution (mEDE) techniques achieves high accuracy (98.5%) but at the cost of  longer 

execution times [18].   

Deep Neural Networks (DNNs), including Convolutional Neural Networks (CNNs), have also 

been used [19] for building‐level load forecasting, providing satisfactory accuracy and computational 

efficiency. Further advancements include deep learning methods to reduce uncertainty and improve 

forecast precision,  though often at  the expense of slower convergence rates. Additionally, a novel 

approach combining reinforcement learning and deep learning[20,21], using deep policy gradients 

and Q‐learning[22], has been applied to optimize energy consumption in buildings, demonstrating 

effectiveness  in  cost and peak  reduction.  In Macedonia power  system, a multi‐layered Restricted 

Boltzmann Machine  (RBM) model  [23] has been studied  for power demand  forecasting, showing 

promising results in comparison to actual load profiles. For building cooling load forecasting [24], a 

deep  learning model employing severe gradient boosting has outperformed  traditional models  in 

terms of accuracy. Finally, a novel approach for predicting power prices, using a neuro‐evolutionary 

algorithm and MI feature selection [25], has been validated with data from PJM and Spainʹs electrical 

markets, proving more effective than existing methods. A bi‐level approach [26] for short‐term load 

forecasting  in  micro  grids,  incorporating  feature  selection  and  a  combination  of  ANN  and 

evolutionary algorithms, has also been proposed. 

2.1. Single and Combined Models for STLF 

Single models  for STLF  typically  involve  individual  techniques  like  regression analysis,  time 

series  analysis, ANN,  expert  systems,  fuzzy  logic,  and  SVM. Each method has  its  strengths  and 

weaknesses;  for  instance,  neural  networks  are  good  at  capturing  non‐linear  patterns  but  can  be 

computationally  intensive.  The main  premise  behind  these  individual models  is  that  only  the 

forecaster model has the ability to predict future electric loads. In [27], authors devised distributed 

techniques  to  predict  future  demand  based  on meteorological  data. Meteorological  fluctuations 

partition  the  electricity  system  into  two  subnetworks.  Furthermore,  distinct  forecasting models, 

namely ARIMA and gray, are created for each subnetwork. In [28], Authors use a RNN as a deep 

learning model  to  forecast  household  demand. Nevertheless,  the  authors  prioritize  correctness 

exclusively, disregarding the convergence rate and computing complexity. An industrial facility is 

the subject of a proposed data recovery strategy that utilizes the Real‐Time Pricing Signals (RTPS) 

protocol,  as  described  in  reference  [29]. ANN  to  predict  future  pricing  for  global  time  horizon 

optimization has been applied. MILP (Mixed Integer Linear Programming) defines price predictions 

to achieve the reduction of energy costs.   Moreover, combined models, or hybrid models, integrate 

multiple  single  models  to  leverage  their  individual  strengths  and  mitigate  weaknesses.  These 

combinations  can  include methods  like  combining  neural  networks with  fuzzy  logic  or  using  a 

support  vector machine  alongside  time  series  analysis. Hybrid models  generally  offer  improved 

accuracy and robustness by capturing a wider range of patterns and adapting to various types of data 

variability.  Initially,  the authors  forecast  the DG  load using  the SVM with  fruit‐fly  immune  (FFI) 
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method. Furthermore, the use of LSTM‐RNN model [30] to forecast the load for a residential service 

region. The authors in [31] introduced an advanced model that predicts the load on DG and analyzes 

the power supply configuration. The authors in [32] presented an Internet of Things (IoT)‐based deep 

learning  system  for accurately predicting  future  loads. The  research  [33]  introduces  the adaptive 

hybrid  learning model  (AHLM), which  aims  to  predict  the  intensity  of  solar  irradiation.  Single 

models are more straightforward but might not be as accurate or adaptable as combined models, 

which offer better performance by integrating the strengths of multiple forecasting techniques. 

2.2. Existing ELM Strategies 

The Efficient Load Management System (ELMS) aims to improve the efficiency, reliability, and 

sustainability of power systems while addressing challenges such as increasing electricity demand 

and integrating renewable energy sources. Information and Communication Technology (ICT) and 

Advanced Metering  Infrastructure  (AMI)  enable  citizens  to  participate  in Demand  Side  Energy 

Management (DSEM) through price‐based and incentive‐based Demand Response (DR) programs. 

These programs, utilizing a Binary Backtracking Search Algorithm (BBSA), efficiently schedule home 

appliances  to minimize  energy  usage  and  electricity  costs  [34–36]. However,  [37]  shifting most 

appliances to low‐cost periods can lead to increased demand during these times. To address this, a 

study outlined in reference explores a strategy for managing electricity consumption in residential 

buildings without impacting non‐shiftable equipment, though it may reduce consumer comfort. 

Several approaches, such as a Home Load Schedule Optimization Model, combine Real‐Time 

Pricing Signals (RTPS) with Incentive‐Based Demand Response (IBRS) programs to minimize energy 

costs have been presented [38]. Home Energy Management Systems (HEMS) have been suggested to 

concurrently  reduce power  costs  and demand peaks  [39].  Studies  in  [40]  have  explored  various 

optimization  algorithms  like  Teaching‐Learning‐Based  Optimization  Algorithm  (TLBOA)  and 

Shuffle Frog Leap Algorithm  (SFLA)  for managing home power  consumption  in price‐based DR 

programs,  aiming  to  reduce  overall  energy  costs  despite  neglecting  user  comfort  and  Peak‐to‐

Average  Ratio  (PAR)  considerations.  Further,  research  [41]  and  [42]  has  focused  on  using  DR 

programs,  including Critical Peak Pricing  (CPP), Time‐of‐Use Pricing  (ToUP), Real‐Time Pricing 

(RTP), and Day‐Ahead Pricing (DAP), to align energy demand with supply, optimizing societal well‐

being and reducing costs. While these programs use pricing systems such as ToUP, DAPS, and CPPS 

[43],  they  may  inadvertently  lead  to  system  overload  during  low‐price  periods  due  to  peak 

occurrences. Some studies propose methods like Mixed Integer Linear Programming (MILP) to create 

balanced load plans, aiming to minimize energy costs and prevent power surges, though these can 

also risk grid stability during peak demand periods. 

Other models, such as  those based on  fuzzy  logic  [44] and game  theory  [45], address energy 

management  in  residential  settings.  One model  focuses  on  day‐ahead  planning  for  residential 

microgrids, incorporating Electric Vehicles (EVs), photovoltaic systems, and energy storage systems 

(ESSs)  to  participate  in DR  programs  [46],  albeit with  increased  complexity  and  computational 

demands. Additionally, smart home technologies enabling two‐way communication between power 

providers and homeowners are explored. Various algorithms,  including Genetic Algorithm  (GA), 

Binary Particle Swarm Optimization (BPSO), Whale Optimization Algorithm (WDO), and Bacterial 

Foraging  Optimization  Algorithm  (BFOA),  have  been  applied  to  optimize  household  load 

scheduling, considering power costs, customer satisfaction, and peak demand levels. However, these 

models often overlook the trade‐offs between competing factors. 

The existing energy management schemes, while effective in scheduling household appliances, 

struggle with real‐time scheduling of energy consumption patterns due to the nonlinear behavior of 

consumers and pricing signals. There is no universally applicable framework for optimal real‐time 

energy management  in residential buildings, as different models suit different goals and contexts. 

This  study  proposes  a  novel  optimization  framework  featuring  an ANN‐based  forecaster  and  a 

GmEDE  algorithm‐based  EMC  to  enhance  the  efficiency  of  energy  management  in  residential 

structures. Moreover,  in  the  operational mode  of  the  EMC,  consumersʹ  priorities  vary  and  are 
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reflected  in  the weighting  of  the  objective  function.  This  research  proposed  consumer mode  as 

follows: 

1. Mode I: Consumers prioritize minimizing their electricity bill, even if it results in higher user 

discomfort. The weights are set to (γ₁=1, γ₂=0, γ₃=0), aligning the optimization with the goal of cost 

reduction. 

2. Mode II: Consumers prioritize comfort over lower electricity costs. To accommodate this, the 

EMC adjusts the weights to (γ₁=0, γ₂=0, γ₃=1), focusing on maximizing user comfort. 

3. Mode  III: The priority  is on  reducing  the PAR, benefiting both  consumers and Electricity 

Utility Companies (EUCs). A lower PAR leads to a smoother demand curve, allowing EUCs to reduce 

the number of peak power plants  in operation, ultimately  lowering  the  energy  cost per unit  for 

consumers. The weights are set to (γ₁=0, γ₂=1, γ₃=0) to achieve this goal. 

4. Mode  IV: Consumers  aim  to  balance  all  three  objectives: minimizing  the  electricity  bill, 

reducing the PAR, and achieving a satisfactory tradeoff between cost and comfort. The EMC assigns 

equal weights (γ₁=1/3, γ₂=1/3, γ₃=1/3) to each objective, ensuring a balanced approach. 

𝑅஺
௉ ൌ

maxሺ𝐸௜
௧ሻ

1
𝑇∑  ்

௧ୀଵ  ∑  ஺
௜ୀଵ  ሺ𝐸௜

௧ሻ
   (1)

The term 𝑅஺
௉  denotes the PAR. Our primary goal is to reduce the PAR. Therefore, we approach 

the comprehensive management of energy in residential load scheduling as a minimization problem: 

 𝑚𝑖𝑛ሺ𝛾ଵ𝐶௜
ே ൅ 𝛾ଶ𝑅஺
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௟௢ െ 1ൟ,∀𝑖 ∈ 𝐴ଵ

௧௦,

𝑝௜
௥௠௜௡ ⩽ 𝐸௜

௧ ⩽ 𝑝௜
௥௠௔௫,∀𝑡 ∈ ሾ𝛼௜ ,𝛽௜ሿ,∀𝑖 ∈ 𝐴௜

௉,
𝐸௜
௧ ൌ 0,∀𝑡 ∈ 𝐻 ∖ ሾ𝛼௜,𝛽௜ሿ,∀𝑖 ∈ 𝐴௜

௉,
𝐸/𝐸௜

௧ ൌ 𝑝௜
௥ ,∀𝑡 ∈ 𝑇௜

௟௢ ⊂ ሾ𝛼௜ ,𝛽௜ሿ,∀𝑖 ∈ 𝐴௜
஼ ,

𝐸௜
௧ ൌ 0,∀𝑡 ∈ 𝑇௜

௟௢ ∖ ሾ𝛼௜,𝛽௜ሿ,∀𝑖 ∈ 𝐴௜
஼ൟ,

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝐹௜
௧ሺ𝑖 ∈ 𝐴ଵ

௧௦, 𝑡 ∈ 𝐻ሻ,
 𝐸௜

௧ሺ𝑖 ∈ 𝐴௜
௉, 𝑡 ∈ 𝐻ሻ,

𝑝௜
௥ሺ𝑖 ∈ 𝐴௜

஼ሻ,

           (2)

Equation 1 and 2 models𝑅஺
௉. These equations utilize parameters  𝛾ଵ, 𝛾ଶ, and  𝛾ଷ, which serve as 

weights to achieve the desired tradeoff between conflicting parameters within the objective function. 

The consumerʹs operation modes are based on their priorities, preferences, and objective function. 

3. Proposed Methodologies 

3.1. Electrical Load Forecasting with FCRBM Forecaster   

The FCRBM is an advanced extension of the Conditional Restricted Boltzmann Machine (CRBM) 

developed by Hinton and Taylor [47]. This architecture incorporates the concept of styles and factors 

to simulate various human actions, enhancing the modelʹs ability to capture temporal dependencies 

in electricity load time series data as depicted in Figure 1. Unlike traditional backpropagation, the 

FCRBM utilizes a contrastive divergence method, which effectively addresses the vanishing gradient 

problem. The architecture consists of four layers: a hidden layerሺℎሻ, a visible layer  ሺ𝑣ሻ,  a history layer 
ሺ𝑢ሻ,  and a style layerሺ𝑦ሻ. The visible and history layers handle real values, while the hidden layer 

operates with binary values. The visible layer encodes current load data and performs predictions, 

the history layer captures past load data, and the hidden layer identifies key features necessary for 

forecasting.  The  style  layer  encompasses  critical  parameters  and  styles  essential  for  accurate 

predictions. To  optimize  the modelʹs performance,  an  error  function  is  introduced  to define  the 

relationships and  interactions between  the  layers, weights, and  factors, which are mathematically 

defined as:   
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𝐸ሺ𝑣,𝑢,ℎ,𝑤ሻ ൌ െ𝑣்𝑎ො െ ℎ்𝑏෠ െ෍ሼሺ𝑣்  𝑤௩ሻ°ሺ𝑦்  𝑤௬ሻ°ሺℎ் 𝑤௛ሻሽ  (3) 

where  𝐸 ሺ ሻ   is  the  energy  function,  𝑣்  𝑤௩   is  the  visible  factored,  𝑦்  𝑤௬   is  the  style  factored, 

andℎ்  𝑤௛  is the hidden factored. The symbol  °  denotes element‐wise multiplication. The dynamic 

biases  associated with  the  visible  and  hidden  layers,  represented  by  𝑎ො   and  𝑏෠   respectively,  are 
defined as follows: 

𝑎̂ ൌ 𝑎 ൅ 𝐴௩ሼሺ𝑢்𝐴௨ሻ ∘ ሺ𝑦்𝐴௬ሻሽ்

𝑏̂ ൌ 𝑏 ൅ 𝐵௛ሼሺ𝑢்𝐵௨ሻ ∘ ሺ𝑦்𝐵௬ሻሽ்
   (4) 

The weights of the corresponding layers,𝑤௩ ,𝑤௬, and 𝑤௛, represent the connections between the 

layers. Similarly,𝐴௩,𝐴௨,𝐴௬  ,𝐵௛  ,𝐵௨, and 𝐵௬  are the connections from layers to factors, also known as 

model‐free  parameters.  These  connections  and weights  are  crucial  parameters  that  require  fine‐

tuning and training to ensure the accurate performance of the deep learning technique FCRBM. 

 

Figure 1. Illustrates  the architecture of  the FCRBM, which  includes  the history  input  layer (u),  the 

hidden layer (h), the style layer (y), and the visible output layer (v). 

The objective of  this module  is  to create a hybrid model using deep  learning and FCRBM  to 

predict future trends  in electrical energy usage to accurately anticipate nonlinear electrical energy 

consumption patterns and its fast convergence speed.   

The training and learning process of the deep learning model FCRBM with ReLU activation and 

the multivariate  autoregressive method  involves  several  steps.  First,  historical multivariate  time 

series data is collected and normalized. The model, consisting of input, hidden, and output layers, is 

initialized with  random weights. During  forward propagation,  the  input data passes  through  the 

network, activating neurons using ReLU, and generating output predictions. The loss is calculated 

and backpropagation is used to update weights. The multivariate autoregressive method helps select 

relevant  lagged variables as additional  inputs. The model undergoes iterative training, validation, 

and  testing  to  ensure  accuracy.  Finally,  the  predictions  are  denormalized  and  evaluated  before 

deploying  the  model  for  real‐time  forecasting.  The  training  algorithms  use  a  multivariate 

autoregressive approach for fast convergence and better performance. Selected features are input into 

the FCRBM‐based forecaster, trained on four (4) years of data, with the last year reserved for testing. 

The FCRBM model predicts future electrical energy consumption, adjusting weights and biases based 

on the error signal optimized through the autoregressive algorithm as Figure 2 highlight the process. 
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Figure 2. The process enables the FCRBM model, enhanced with ReLU activation and multivariate 

autoregressive methods. 

The  learning and  training process of  the FCRBM network  iterates  for a  specified number of 

iterations  to  achieve  accurate  load  forecasting.  The  network  is  trained with  the Mean Absolute 

Percentage Error  (MAPE) serving as  the validation error metric, as  specified  in Equation 14. The 

forecasted results from the FCRBM‐based forecaster are then inputted into a GWDO algorithm‐based 

optimizer to further reduce MAPE and achieve a fast convergence rate. 

3.2. GWDO‐Based Optimizer Model 

The  previous  step  of  deep  learning,  using  the  FCRBM model with ReLU  and multivariate 

autoregressive algorithm, produces a prediction of future electrical energy consumption. The forecast 

has a minimal error, as determined by the capabilities of the FCRBM model. To enhance accuracy in 

predicting energy consumption, the FCRBM‐based forecaster moduleʹs results are inputted into our 

suggested GWDO algorithm‐based optimization phase. 

൜
𝑥new  ൌ 1 if rand ሺ1ሻ ⩽ sig ሺ𝑗, 𝑖ሻ
𝑥new  ൌ 0 if rand ሺ1ሻ ൐ sig ሺ𝑗, 𝑖ሻ

  (5) 

𝑣௜ ൌ 𝑣max ൈ 2 ൈ ൫rand൫ populationsize ,𝑛൯ െ 0.5൯  (6) 

The objective of our suggested algorithmic optimization step is to further reduce errors in the 

predicted energy consumption pattern. Therefore, the optimization phase aims to minimize errors by 

using an objective function, which is represented by the following model. 

Minimize
ோௗ೟೓,ூ௥೟೓,஼೔

Errorሺ𝑥ሻ ∀𝑥 ∈ ሼℎ,𝑑ሽ  (7) 

By  integrating  the GWDO  algorithm  into  the  optimization module,  the  forecasting  error  is 

further  reduced,  aiming  to  enhance  accuracy  and  convergence  speed by  fine‐tuning  the modelʹs 

adjustable parameters. Thus,  the optimization phase  is  intricately  linked with  the FCRBM‐based 

forecaster to minimize error and enhance forecast accuracy, with MAPE minimization serving as the 

primary objective function: 

𝑀𝑖𝑛𝑖 𝑀𝐴𝑃𝐸ሺ𝑗ሻ ∀𝑗 ∈ ሼ1,2,3, … . 𝜏ሽ  (8) 

𝑅𝑑௧௛, 𝐼𝑟௧௛   

The  terms  𝑅𝑑௧௛     ʺredundancy  threshold, 𝐼𝑟௧௛ , ʺ  ʺirrelevancy  threshold,ʺ  and  ʺcandidates 
interactionʺ𝐶 ௜refer to specific concepts. The GWDO method optimizes the suggested phase based on 

parameters𝑑௧௛,  𝐼𝑟௧௛ ,  and 𝐶௜, which are then used in the data preparation phase. The feature selection 

approach  in the data preprocessing step uses optimized values of𝑑௧௛,  𝐼𝑟௧௛  thresholds for optimum 

feature selection𝐶௜. Integrating the optimization phase with the forecaster phase enhances forecast 

accuracy, albeit at the expense of a reduced convergence rate. 

Input Load FCRBM Training Initial forecast 

Error signals Final forecast 

Actual load 

Data 
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Equations  9  and  10 define  the  fitness  functions  for  velocity  and  position. The  position  and 

velocity  vectors  are updated  by  comparing  random  numbers  ሺ𝑟𝑎𝑛𝑑ሺ. ሻ  ∈  ሾ0,1ሿሻ with  the  fitness 

functionሺ𝐹𝐹ሺ. ሻ  ∈  ሾ0,1ሿሻ, as outlined in equation 11. 

Table 1. Simulation parameters used. 

Parameters  Values 

Population size  24 

Number of decision          variables  2 

Number of iterations  100 

𝑅𝑇  3 

𝑔  0.2 

𝛼  0.4 

𝑑𝑖𝑚𝑀𝑖𝑛  ‐5 

𝑑𝑖𝑚𝑀𝑎𝑥  5 

𝑉𝑚𝑎𝑥  0.3 

𝑉𝑚𝑖𝑛  ‐0.3 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒  0.9 

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  0.1 

Learning rate  0.0001 

Weight decay  0.0002 

Momentum  0.5 

 

𝐹𝐹൫𝑣ሺ𝑖ሻ൯ ൌ
MAPE൫𝑥new ሺ𝑖ሻ൯

MAPE൫𝑣ሺ𝑖ሻ൯ ൅ MAPE൫𝑥new ሺ𝑖ሻ൯
 (9)

𝐹𝐹ሺ𝑥new ሺ𝑖ሻሻ ൌ
𝑀𝐴𝑃𝐸 ሺ𝑣ሺ𝑖ሻሻ

𝑀𝐴𝑃𝐸 ሺ𝑥new ሺ𝑖ሻሻ ൅ 𝑀𝐴𝑃𝐸 ሺ𝑣ሺ𝑖ሻሻ
 

(10)

If the random number is smaller than the fitness function, the load value will be updated since 

our objective is to minimize the function. 

𝐹௣௥ሺ𝑖ሻ ൌ ቊ
𝑣௡ሺ𝑖ሻ  if  randሺ𝑖ሻ ⩽ 𝐹𝐹൫𝑣ሺ𝑖ሻ൯

𝑥௡௘௪௡ ሺ𝑖ሻ  if  randሺ𝑖ሻ ⩽ 𝐹𝐹൫𝑥new ሺ𝑖ሻ൯
 

(11)

The problem of  load update  influencing  the  random value  is  addressed by  eliminating  this 

influence. Therefore, the comparison is made between the fitness function of the candidate input and 

the fitness function of the previous one, as shown in equation12. This ensures that the selected load 

update value maintains a high level of accuracy. 

𝐹௣௥ାଵሺ𝑖ሻ ൌ

⎩
⎪
⎨

⎪
⎧𝑣௡ାଵሺ𝑖ሻ

𝑣௡ሺ𝑖ሻ
𝑣௡ሺ𝑖୫ୟ୶ሻ

⩽ 𝐹𝐹൫𝑣ሺ𝑖ሻ൯

𝑥new ௡ାଵሺ𝑖ሻ
𝑥new ௡ ሺ𝑖ሻ

𝑥௡௘௪௡ ሺ𝑖୫ୟ୶ሻ
⩽ 𝐹𝐹൫𝑥new ሺ𝑖ሻ൯

 
(12)

3.3. Hybrid Framework Based on FS, FCRBM, and GWDO 

Our proposed  solution  is a unique hybrid module,  combining FS‐FCRBM‐GWDO, aimed  at 

forecasting electrical energy consumption. As depicted in Figure 2 and Figure 3, the hybrid model 

seeks  to enhance prediction accuracy, convergence speed, and scalability. The FS‐FCRBM‐GWDO 

consists of four distinct phases: (i) preprocessing and selecting relevant features from the data, (ii) 

forecasting using the FCRBM model, (iii) optimization using the GWDO method, and (iv) utilization 
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of the results. The process starts with data preparation and feature selection, where historical energy 

consumption patterns and external factors like wind speed, dew point, temperature, and humidity 

are normalized and  evaluated  for  relevance,  redundancy, and  interaction. The aim  is  to  enhance 

prediction accuracy by eliminating irrelevant data, selecting essential characteristics, and optimizing 

their interaction to minimize duplication and maximize relevance. These selected features are then 

inputted  into  the FCRBM‐based  forecasting phase  to predict future electrical energy consumption 

patterns of the REG power system. 

 

Figure 3. Implementation flow chart of GWDO algorithm for optimization phase. 

The forecasted energy use is subsequently optimized in the GWDO phase to improve prediction 

precision,  which  is  crucial  for  effective  energy  management.  Finally,  the  anticipated  energy 

consumption pattern is utilized for effective energy management. The effectiveness of the proposed 

FS‐FCRBM‐GWDO model is validated by comparing it to existing models using three metrics: MAPE, 

variance, and Pearson correlation coefficient. 

3.4. Performance Metrics for Accuracy Evaluation 

The accuracy of the proposed FCRBM‐based forecasting model  is evaluated using three well‐

known metrics: Root Mean Square Error  (RMSE), Mean Absolute Percentage Error  (MAPE), and 

Pearson correlation coefficient. Firstly, RMSE is calculated using equation 13 as follows: 

𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝜏
෍ሺ𝑅௧ െ 𝐹௧ሻଶ
ఛ

௧ୀଵ

  (13) 
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where  𝜏  denotes the number of iterations for summation, 𝑅௧  represents the target demand, and  𝐹௧is 
the forecasted value. Additionally, a Mean Absolute Percentage Error (MAPE) index is introduced to 

provide  statistical  insights  into  accuracy.  A  lower  MAPE  value  indicates  higher  accuracy  in 

forecasting, while a higher MAPE value indicates less accuracy. The MAPE is calculated using the 

following formula: 

𝑀𝐴𝑃𝐸 ൌ ൭
1
𝜏
෍

|𝑅௧ െ 𝐹௧|
|𝑅௧|

ఛ

௧ୀଵ

൱ ∗ 100  (14)

Thirdly, the Pearson correlation coefficient is used to measure the correlation between predicted 

and actual electricity demand,  ranging  from  ‐1  (strong negative  correlation)  to 1  (strong positive 

correlation), with 0 indicating no correlation. It is calculated using equation 15 as follows: 

𝑟 ൌ
∑ሺ𝑅௧ െ 𝜇ோሻሺ𝐹௧ െ 𝜇ிሻ

ඥ∑ሺ𝑅௧ െ 𝜇ோሻଶ ∗ ∑ሺ𝐹௧ െ 𝜇ிሻଶ
  (15)

where  µோ represents  the  average  of  the  target  electricity  demand,  and  μF  is  the  average  of  the 

forecasted electricity demand. 

To estimate the uncertainty prediction metrics for confidence  interval evaluation, uncertainty 

prediction plays a crucial role in electricity demand forecasting due to the random, stochastic, and 

nonlinear nature of consumersʹ electricity consumption patterns. One valuable tool for uncertainty 

prediction is confidence interval prediction, which provides vital information regarding prediction 

uncertainty. 

4. Experimental Results and Discussions   

4.1. Stage One: Electrical Load Forecasting   

In  this  stage,  the  effectiveness of  the FS‐FCRBM‐GWDO  framework,  along with benchmark 

frameworks  such  as  AFC‐STLF,  Bi‐level,  MI‐mEDE‐ANN,  and  FS‐ANN,  is  evaluated.  These 

benchmarks were  selected  due  to  their  architectural  similarities with  the  proposed  framework. 

However,  the  FS‐FCRBM‐GWDO  and  the  benchmark  models  have  distinct  computational 

challenges,  focusing on accuracy,  convergence  rate, or  stability. The FS‐FCRBM‐GWDO model  is 

tested using  real‐time hourly energy usage data  from  the Rwandan power system, covering  four 

years from 2018 to 2021. 80% of the data is used for training the FCRBM model, while the remaining 

20%  is  for  testing. The  control parameters used  in  the  simulations are  consistent across both  the 

proposed and benchmark models, ensuring a fair comparison. The FS‐FCRBM‐GWDO framework is 

assessed using two performance metrics: (i) accuracy, measured by mean absolute percentage error 

(MAPE), variance (σ²), and Pearson correlation coefficient; and (ii) convergence speed, measured by 

execution time and convergence rate. The variance (  𝜎ଶ) is mathematically represented as follows in 

equation 16. 

σଶ ൌ
1
𝜏
෍ሺ𝑅௧ െ 𝐹௧ሻ
ఛ

௧ୀଵ

,  (16)

The symbol  𝜏 indicates the number of timeslots, 𝑅௧  identifies the actual load,  𝐹௧  represents the 
predicted load at time 𝑡, and  σଶrepresents the variance. The accuracy of the performance metrics is 

computed using the following formula.   

Accuracy ൌ 100 െ MAPEሺxሻ.  (17)

The convergence speed is determined by both the execution time and the convergence rate. The 

following is a comprehensive description. 

1. Execution Time: This metric refers to the duration required for the forecasting model to predict 

future electrical energy consumption patterns. It is measured in seconds, with faster models having 

shorter execution times. 
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2. Convergence Rate: This aspect measures the speed at which the model reaches a specific epoch 

where performance stabilizes, and the error ceases to decrease significantly with additional epochs. 

Models with a high convergence  rate  reach  this stabilization point quickly, often at early epochs. 

Forecasting models are classified as  fast  if  they exhibit minimal execution  time and achieve early 

convergence, indicating efficient performance. 

Table 2. GWDO’s Simulation parameters. 

Control parameters  Value 

Number of hidden layers  1 

Number of neurons in hidden layer  10 

Output layer  1 

Number of    output neurons  1 

Number of epochs  100 

Number of iterations  100 

Learning rate  0.0019 

Momentum    0.6 

Initial weight  0.1 

Initial bias  0 

Max  0.9 

Min  0.1 

Decision variables  2 

Population size  24 

Delay of weight  0.0002 

Historical load data  4 years 

Exogenous parameters  4 years 

 

The learning evaluation process compares a modelʹs performance on training and testing data 

over multiple  epochs  to determine  if  it  is genuinely  learning. A poor  learning  curve, with high 

variance and bias, indicates overfitting, while a good curve, like that of the FCRBM model, shows 

low variance and bias with decreasing errors. Initially, the model has a high error rate (MAPE), which 

decreases with more  training,  reaching  a minimal  value,  indicating  effective  learning.  Figure  5 

illustrates these results. 

 

Figure 4. REG’s dataset with month and year indexes. 

Figure  6  provides  a  comparative  analysis  of  the  FS‐FCRBM‐GWDO  framework  against 

benchmark models like FS‐ANN, AFC‐STLF, Bi‐level, and MI‐mEDE‐ANN in predicting day‐ahead 
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electrical energy consumption for the REG load data center. Table 3 further details the accuracy of 

these models,  comparing metrics  such as mean absolute percentage error  (MAPE), variance, and 

correlation coefficient. The findings clearly indicate that the FS‐FCRBM‐GWDO architecture offers 

superior accuracy in forecasting the next dayʹs electrical energy consumption for Rwandaʹs power 

system. Both the proposed and benchmark models are adept at capturing and adapting to the non‐

linear patterns present in historical energy consumption time series data. 

 

Figure 5. Learning assessment of deep learning FCRBM model using testing and training datasets in 

terms of MAPE for 100 epochs. 

The proposed hybrid FS‐FCRBM‐GWDO model uses nonlinear activation functions like tangent 

hyperbolic (tanh), sigmoidal, and ReLU to predict energy consumption patterns. Unlike benchmark 

frameworks like FS‐ANN, AFC‐STLF, Bi‐level, and MI‐mEDE‐ANN, which use sigmoid activation 

functions,  the  proposed model  uses ReLU  and multivariate  autoregressive  algorithms  for  rapid 

convergence  and  addressing  vanishing  gradient  and  overfitting  issues.  The  modelʹs  energy 

consumption pattern  closely  aligns with  actual data, with  a MAPE  of  1.10%,  outperforming  the 

standard  frameworks with values of 2.2%,  2.1%, 3.4%, and 2.6%,  respectively. Hence,  the  results 

presented  in  Figure  6  and Table  3  suggested  hybrid  FS‐FCRBM‐GWDO model  outperforms  the 

standard frameworks in terms of accuracy. 

 

Figure 6. Day ahead  electrical  load  consumption  forecasting using Rwanda’s data with one hour 

resolution. 
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Table  3.  Rwandaʹs  January  2018  results:  a  comparison  of  the  proposed  and  current  modelsʹ 

performances based on correlation coefficient, variance, and MAPE. 

Electrical load consumption forecasting models 

Day  FS‐FCRBM‐GWDO  MI‐mEDE‐ANN  AFC‐STLF  Bi‐Level  FS‐ANN 

MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r 

1  1.13    1.19  0.70  2.20  1.55  0.50  2.30  1.60  0.52  2.60  1.69  0.50  3.41  1.87  0.50 

2  1.10    0.98  0.68  2.10  1.45  0.58  2.15  1.55  0.56  2.80  1.80  0.51  3.29  1.79  0.40 

3  1.09    1.10  0.71  2.50  1.30  0.51  2.10  1.48  0.53  2.75  1.51  0.39  3.18  1.73  0.29 

4  1.03    0.97  0.80  2.02  1.20  0.50  2.40  1.49  0.54  2.85  1.72  0.51  3.37  1.92  0.37 

5  1.50    1.09  0.65  2.10  1.15  0.55  2.25  1.37  0.55  2.87  1.59  0.34  3.20  1.81  0.40 

6  1.30    1.07  0.75  2.30  1.34  0.65  2.15  1.35  0.69  2.89  1.71  0.61  3.17  1.89  0.51 

7  1.24    1.04  0.69  2.11  1.55  0.60  2.10  1.60  0.65  2.75  1.70  0.32  3.71  1.94  0.40 

8  1.23    1.02  0.70  2.15  1.45  0.50  2.09  1.65  0.55  2.70  1.80  0.49  3.63  1.79  0.51 

9  1.08    1.05  0.80  2.35  1.36  0.55  2.50  1.66  0.56  2.65  1.62  0.62  3.56  1.84  0.42 

10  1.05    0.99  0.79  2.40  1.39  0.69  2. 44  1.67  0.60  2.63  1.81  0.57  3.08  1.93  0.49 

11  1.15    1.10  0.87  2.01  1.45  0.77  2.35  1.55  0.75  2.70  1.58  0.42  3.04  1.9  0.50 

12  1.25    1.11  0.65  2.06  1.50  0.55  2.12  1.58  0.55  2.60  1.70  0.39  3.68  1.81  0.40 

13  1.10    0.96  0.81  2.10  1.55  0.71  2.20  1.43  0.75  2.63  1.73  0.34  3.29  1.72  0.29 

14  1.12    0.99  0.79  2.12  1.37  0.75  2.23  1.47  0.70  2.36  1.68  0.39  3.43  1.62  0.28 

15  1.10    1.03  0.78  2.13  1.46  0.78  2.27  1.30  0.73  2.50  1.62  0.52  3.67  1.91  0.53 

16  1.18    1.05  0.79  2.00  1.39  0.70  2.13  1.35  0.78  2.58  1.71  0.61  3.31  1.9  0.48 

17  1.19    1.08  0.80  2.13  1.48  0.60  2.35  1.55  0.65  2.56  1.65  0.63  3.36  1.81  0.51 

18  1.21    1.09  0.85  2.19  1.29  0.85  2.10  1.36  0.64  2.65    1.69  0.67  3.82  1.78  0.50 

19  1.25    1.12  0.90  2.16  1.36  0.50  2.14  1.55  0.59  2.54  1.64  0.62  3.44  1.69  0.39 

20  1.44    0.95  0.67  2.17  1.47  0.60  2.15  1.45  0.48  2.50  1.59  0.61  3.16  1.72  0.54 

21  1.39    0.90  0.71  2.34  1.51  0.58  2.19  1.54  0.58  2.59  1.80  0.53  3.31  1.91  0.43 

22  1.17    0.99  0.75  2.10  1.50  0.75  2.10  1.40  0.59  2.80  1.58  0.50  3.51  1.73  0.41 

23  1.15    1.01  0.86  2.30  1.45  0.64  2.13  1.34  0.39  2.75  1.71  0.61  3.35  1.72  0.52 

24  1.08    1.07  0.87  2.01  1.34  0.73  2.24  1.60  0.58  2.65  1.63  0.39  3.92  1.81  0.41 

25  1.03  1.11  0.92  1.99  1.35  0.82  2.13  1.49  0.67  2.67  1.53  0.61  3.89  1.8  0.39 

26  1.05    1.05  0.90  2.00  1.56  0.09  2.26  1.61  0.49  2.85  1.70  0.68  3.75  1.59  0.52 

27  1.03    1.10    0.88  2.10  1.40  0.58  2.10  1.48  0.77  2.55  1.75  0.62  3.79  1.79  0.49 

28  1.25    1.11  0.76  2.09  1.35  0.56  2.15  1.50  0.58  2.60  1.75  0.55  3.35  1.81  0.38 

29  1.27    1.13  0.77  2.08  1.32  0.55  2.13  1.53  0.59  2.62  1.76  0.49  3.36  1.78  0.39 

30  1.25  1.21  0.81  2.01  1.21  0.43  2.21  1.48  0.51  2.58  1.69  0.51  3.34  1.74  0.36 

Agg.  1.10      1.03  0.79  2.20  1.25  0.65  2.10  1.35  0.60  2.6  1.70  0.52  3.4  1.80  0.43 

Figure 7 shows a week‐long prediction of hourly electrical energy consumption, demonstrating 

the  superior performance of  the FS‐FCRBM‐GWDO model  compared  to  existing models  like FS‐

ANN, AFC‐STLF, Bi‐level, and MI‐mEDE‐ANN. The FS‐FCRBM‐GWDO model achieved a MAPE of 

1.18%, significantly outperforming the benchmark models. The modelʹs accuracy is attributed to the 

use  of  a  deep  learning‐based  FCRBM with  ReLU,  a multivariate  autoregressive  algorithm,  and 

GWDO optimization. Figure 8 and Table 3 show that the FS‐FCRBM‐GWDO model closely tracks the 
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actual  energy  consumption  curve,  ensuring  better  performance  in monthly  predictions.  Table  4 

presents a performance evaluation for the leap year 2018, using MAPE, variance, and correlation coefficient 

metrics. 

Table 4. Rwanda’s  results of  the year 2018:  comparative performance analysis of  the FS‐FCRBM‐

GWDO and existing models in terms of MAPE, correlation coefficient, and variance. 

Electrical load consumption forecasting models 

Month 
FS‐FCRBM‐GWDO  MI‐mEDE‐ANN  AFC‐STLF  Bi‐Level  FS‐ANN 

MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r  MAPE  𝜎ଶ  r 

1  1.09  1.12  0.81  2.22  1.38  0.81  2.3  1.28  0.69  2.49  1.61  0.39  3.61  1.9  0.49 

2  1.37  1.01  0.7  2.09  1.5  0.58  2.09  1.51  0.51  2.48  1.59  0.61  3.19  1.59  0.51 

3  1.32  1.20  0.59  2.1  1.47  0.62  2.2  1.6  0.49  2.59  1.7  0.5  3.64  1.82  0.29 

4  1.12  0.89  0.77  1.99  1.19  0.43  2.35  1.52  0.6  2.9  1.81  0.38  3.32  1.78  0.4 

5  1.28  1.12  0.68  2.21  1.5  0.54  2.29  1.6  0.58  2.62  1.69  0.6  3.37  1.83  0.48 

6  1.09  1.11  0.92  2.29  1.38  0.59  2.08  1.28  0.42  2.68  1.72  0.62  3.17  1.69  0.52 

7  1.1  1.20  0.58  2.07  1.6  0.57  2.03  1.57  0.7  2.69  1.57  0.38  3.73  1.78  0.41 

8  1.18  1.07  0.69  2.04  1.39  0.43  2.11  1.59  0.6  2.95  1.8  0.62  3.61  1.91  0.39 

9  1.3  1.09  0.62  2.1  1.46  0.62  2.21  1.61  0.49  2.54  1.6  0.34  3.6  1.64  0.41 

10  1.09  1.10  0.81  2.05  1.42  0.68  2.08  1.42  0.8  2.59  1.79  0.61  3.18  1.93  0.53 

11  1.08  1.06  0.92  2.07  1.56  0.82  2.29  1.64  0.72  2.63  1.8  0.29  3.09  1.79  0.5 

12  1.15  1.15  0.79  2.3  1.32  0.91  2.09  1.45  0.7  2.72  1.69  0.63  3.85  1.93  0.51 

Agg.  1.18    1.09  0.74  2.12  1.43  0.63  2.17  1.50  0.60  2.65  1.69  0.50  3.45  1.80  0.45 

 

Figure 7. Week ahead electrical load consumption forecasting using Rwanda’s dataset with hourly 

resolution. 
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Figure 8. Month ahead electrical load consumption forecasting using Rwanda’s dataset with hourly 

resolution. 

FS‐FCRBM‐GWDO moduleʹs performance in terms of MAPE and convergence speed. Figure 9, 

Figure 10, and Figure 11 present a statistical assessment of MAPE, execution time, and convergence 

speed for the proposed FS‐FCRBM‐GWDO model and benchmark models (FS‐ANN, AFC‐STLF, MI‐

mEDE‐ANN,  and  Bi‐level).  The  FS‐FCRBM‐GWDO model  achieves  the  lowest MAPE  of  1.18%, 

indicating high  accuracy,  compared  to higher MAPE  values  in  the  benchmark models  of  3.45%, 

2.17%,  2.12%,  and  2.65%,  respectively. However,  integrating  the  optimization module  increases 

execution time from 25 to 95 seconds. The FS‐FCRBM‐GWDO model balances accuracy and speed by 

using  GWDO  for  optimization,  ReLU  activation,  a multivariate  autoregressive  algorithm,  deep 

learning FCRBM, and advanced data preprocessing. Despite longer execution times compared to FS‐

ANN, the FS‐FCRBM‐GWDO model offers superior accuracy and efficiency. 

 

Figure 9. Accuracy assessments of the proposed FS‐FCRBM‐GWDO and benchmark models in terms 

of MAPE using Rwandan power grid’s dataset. (a) Day ahead; (b) Week ahead. 
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Figure 10. Execution time analysis of the proposed FS‐FCRBM‐GWDO and benchmark models using 

REG’s dataset. (a) Day ahead; (b) Week ahead. 

 

Figure 11. Convergence speed analysis of the proposed FS‐FCRBM‐GWDO and benchmark models 

for 100 iterations using REG’s dataset. 

Figure 11 illustrates the convergence speed of the proposed hybrid FS‐FCRBM‐GWDO model 

compared to benchmark models including FS‐ANN, Bi‐level, AFC‐STLF, and MI‐mEDE‐ANN, based 

on 100 iterations. As the number of iterations increases, MAPE decreases for all models. Notably, the 

proposed model  demonstrates  rapid  convergence,  reaching  stability  around  the  10th  iteration, 

indicating its efficient search ability. In contrast, benchmark models such as FS‐ANN, Bi‐level, AFC‐

STLF,  and  MI‐mEDE‐ANN,  converge  later,  around  the  33rd,  29th,  25th,  and  21st  iterations 

respectively, showcasing slower convergence rates. This analysis suggests that the proposed GWDO 

algorithm offers superior performance  for optimization  in  integrated  frameworks due to  its faster 

convergence compared to existing benchmark models. The depicted convergence analysis  focuses 

solely on the MAPE performance metric for both proposed and existing models. 

Figure  12  compares  the  proposed  hybrid  FS‐FCRBM‐GWDO model  to  benchmark models, 

including FS‐ANN, Bi‐level, AFC‐STLF, and MI‐mEDE‐ANN, regarding the cumulative distribution 

function (CDF) of error. The FS‐FCRBM‐GWDO model outperforms the current models in terms of 

CDF. The FCRBM model, which utilizes deep learning, is capable of providing accurate predictions 

even in situations characterized by high levels of uncertainty. This is due to the deep layers of the 

model being able  to effectively  capture  the  essential  characteristics. Therefore, our  suggested FS‐

FCRBM‐GWDO framework is a superior option for distribution system operators to achieve efficient 

and effective energy management of the smart grid. The FS‐FCRBM‐GWDO framework, along with 
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other  current  frameworks  like  FS‐ANN,  Bi‐level,  AFC‐ANN,  and  MI‐mEDE‐ANN,  has  been 

evaluated in terms of computational complexity, execution time, convergence rate, and accuracy. 

 

Figure 12. Evaluation of CDF in terms of MAPE for the proposed FS‐FCRBM‐GWDO and benchmark 

models using Rwanda’s dataset. 

Further evaluation of the FS‐FCRBM‐GWDO framework and existing frameworks, such as FS‐

ANN, Bi‐level, AFC‐ANN, and MI‐mEDE‐ANN is presented in Table 5. This evaluation encompasses 

computational  complexity,  execution  time,  convergence  rate,  and  accuracy  metrics.  Based  on 

simulation results, performance analysis, and discussions, it is concluded that the proposed hybrid 

FS‐FCRBM‐GWDO model  surpasses  benchmark models  in  terms  of  convergence  rate,  accuracy, 

computational complexity, and execution time aspects. 

Table 5. Evaluation of the proposed and benchmark models in terms of computational complexity, 

execution time, convergence rate, and accuracy. 

Performance parameters 

models 

FS‐ANN  Bi‐Level  AFC‐STLF  MI‐mEDE‐ANN  FS‐FCRBM‐GWDO 

Computational complexity (level)  Low  High  Moderate  High  Moderate 

Convergence rate (epochs)  33rd  28th  26th  21st  11th 

Execution time (sec)  31  89  62  97.5  98.9 

Accuracy (%)  96.4  97.4  97.9  97.8  98.7 

3.2. Energy Management Based on the DA‐GmEDE Framework 

The  study  presents  the  results  of  a  DA‐GmEDE‐based  energy  management  strategy  for 

residential  buildings with  three  types  of  appliances:  time‐shiftable,  power‐shiftable,  and  critical 

appliances. The system module and GmEDE‐based solution are used to validate the performance of 

the strategy, which uses a day ahead demand response price signal and energy consumption forecast 

generated using ANN. The  scheduling  time horizon  spans  24 hours,  and  the ANN  is  trained  to 

forecast DR prices, which  the Energy Management Controller  (EMC) uses  to optimize appliance 

scheduling. Parameters of the algorithms employed in the simulations, as well as descriptions of all 

residential appliances, are detailed in Table 6 and Table 7 respectively.   

The proposed method, based on EMC, is compared to current techniques like DA‐GA and DA‐

game‐theoretic. The proposed scheduling approach, DA‐GmEDE, is compared to W/O, DA‐GA, and 
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DA‐game‐theoretic strategies. The efficacy of the proposed method is evaluated using electricity cost, 

PAR, and user discomfort balance. 

Table 6. Parameters used in simulation for the proposed and existing energy management 

strategies. 

Parameters  Values 

Population  100 

Minimum lower population bound  0.1 

Maximum lower population bound  0.9 

Number of   wolves in each pack  17 

Maximum epochs  100 

Decision variables  2 

Learning rate  0.002 

Weight decay  0.0002 

Initial value of weight  0.1 

Initial value of bias  0 

Number of objectives  2 

Momentum  0.5 

Features selection threshold  0.5 

Distance from prey  Vary 

Status of leader    1 or 2 

Number of dimensions  17 

Gradient of problem  Vary 

In Figure 13, A and B  illustrate  the predicted pricing  signal and energy use patterns  for  the 

upcoming day.   

 

Figure 13. Forecasted day ahead DR pricing signal using ANN (A) and (B) Day ahead home energy 

consumption forecasting. 
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1. Energy Consumption and Corresponding Electricity Bills across Four Different Modes of 

Operation 

The  DA‐GmEDE  method  calculates  energy  consumption  and  electricity  cost  profiles  for  four 

operational modes. It shows that residential structuresʹ energy consumption is higher under mode 

IV compared to modes I and III but lower than mode II within the scheduling time horizon. The peak 

energy consumption is significantly lower in mode II, attributed to customers prioritizing comfort 

and  continuing  activities  despite  higher  costs.  These  profiles  are  represented  in  Figure  14(A‐B), 

respectively.   

   

Figure 14: (A) Evaluation of energy consumption and (B) Evaluation of electricity bill payment under four 

modes of operation with day ahead forecasted pricing signal 

Consumers in operation mode III consume more energy but lower than in mode II and IV due 

to prioritizing PAR. Mode I customers have  lower energy usage but prioritize reducing electricity 

expenses.  The  EMC,  based  on  DA‐GmEDE,  allows  customers  to  meet  their  needs  in  various 

operational modes, resulting in lower electricity bills. 

Table 7. Parameters of residential home appliances used in simulations. 

Classification  Types of application  Power rating (GWh) 

Operation  timeslots 

(Hours) 

Priority 

Power shiftable 

Appliances 

Electric radiator  [0.5‐1.5]  10 

2 

Water dispenser  [0.8‐1.2]  24 

Refrigerator  [0.5‐1.2]  24 

Air conditioner  [0.8‐1.5]  10 

Critical 

appliances 

Hair dryer  1.2  1 

3 

Microwave  1.8  3 

Electric iron  1.8  4 

Electrical kettle  1.5  1 

Time shiftable 

Appliances 

Washing machine  0.7  5 

1 Cloth dryer  2  4 

Water pump  0.4  2 
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2. Energy consumption of residential buildings within the scheduling time horizon 

Figure 15‐A and B shows energy consumption patterns in a home without and after scheduling 

with DA‐GA, DA‐game‐theoretic, and proposed DA‐GmEDE strategies. In the absence of scheduling, 

energy consumption peaks during peak demand hours, leading to high electricity bills and a Peak‐

to‐Average  Ratio. After  scheduling with  these  strategies,  energy  consumption was  significantly 

reduced.  The  proposed  DA‐GmEDE  strategy  achieves  a  36.4%  improvement  over  the  W/O 

scheduling case and a 33.3% improvement over both strategies, demonstrating its ability to generate 

the most suitable load profile for residential buildings. 

   
(b)  (c) 

Figure 15. Comparison of energy consumption (A) and energy Bill payment (B) per hour W/O and 

with load scheduling. 

3. Electricity bill per hour of  a home  in  residential buildings within  the  scheduling  time 

horizon 

Figure 15‐B demonstrates  the effectiveness of scheduling methods  like DA‐GmEDE, DA‐GA, 

DA‐game‐theoretic,  and W/O  scheduling  in  reducing  electricity  bills.  Prior  to  scheduling,  peak 

periods led to increased costs, resulting  in a surge of up to $5.5. By  implementing these methods, 

electricity costs per  timeslot decrease by $0.7, $1.2, and $0.9, respectively. The DA‐GmEDE‐based 

approach outperforms other strategies by 41.6% and 22.2%. 

The evaluation of Peak‐to‐Average Ratio (PAR) is presented, comparing W/O scheduling and 

scheduling  using  DA‐GA,  DA‐game‐theoretic,  and  DA‐GmEDE  strategies.  The  proposed  DA‐

GmEDE‐based strategy outperforms other strategies in terms of PAR. Figure 16‐A demonstrates its 

effectiveness in maintaining balanced energy consumption and improving power system stability. 

The EMCs effectively shift load under day‐ahead pricing signals, reducing PAR by 17.64%, 25.49%, 

and  47.05%,  respectively.Figure  16‐B  evaluates  total  electricity bill payments using DA‐GA, DA‐

game‐theoretic, and DA‐GmEDE strategies. The proposed DA‐GmEDE strategy achieves the highest 

reduction in bills, outperforming existing strategies and demonstrating its effectiveness in reducing 

overall electricity expenses at 15.2%, 8.7%, and 23.9% respectively. 
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(b)  (c) 

Figure  16.  (A,  B)  Comparative  analysis  of  PAR  and  total  energy  payment with  and W/O  load 

scheduling. 

5. Performance Tradeoff Analysis 

Figure  17  shows  the performance  tradeoff  between  the proposed DA‐GmEDE  strategy  and 

existing strategies (DA‐GA and DA‐game‐theoretic) in terms of electricity bill and waiting time. The 

proposed DA‐GmEDE  strategy minimizes  the  tradeoff  between  electricity bill  and waiting  time, 

making it a favorable choice for energy management tasks. This balance between electricity bill and 

user discomfort is more pronounced for DA‐GA and DA‐game‐theoretic based strategies. 

 

Figure  17.  Evaluation  of  performance  tradeoff  between  electricity  bill  and  waiting  time  of  the 

proposed DA‐GmEDE and existing DA‐GA and DA‐Game‐theoretic strategies. 

5.1. Electricity Cost Evaluation under a Price‐Based DR Program   

To assess the cost parameters of the suggested plan, simulations are run with several Operating 

Time Interval (OTI) lengths, specifically 15, 30, and 60 minutes. The proposed framework to compute 

power costs utilizes the daily energy pricing signals, obtained from the Rwanda Utility Regulatory 

Authority (RURA). The National Control Center (NCC) provides Real‐Time Pricing Signals (RTPS) 

and Critical Peak Pricing Signals (CPPS). 

3.2. Electricity Cost Evaluation Using RTPS and CPPS under OTI 

By scheduling smart home appliances using anticipated RTPS, the proposed GmEDE algorithm 

efficiently reduces electricity cost when compared to modified Evolutionary Differential Evolution 
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(mEDE) and Grey Wolf Optimization (GWO). The program optimizes the transition of appliances 

from on‐peak to off‐peak timeslots by coordinating pricing schemes with patterns of energy use. The 

suggested GmEDE‐based expenses reduce demand peaks and energy prices compared to both GWO 

and mEDE. Simulations demonstrate that by arranging smart home equipment in the best possible 

way, the suggested GmEDE algorithm continuously lowers power bills. 

The  proposed  GmEDE‐based  framework  outperforms  both  GWO  and  mEDE  in  terms  of 

reducing peaks in demand and electricity costs. Figure 18‐A shows that unscheduled loads result in 

high demand peaks,  resulting  in high prices during specific hours. Figure 18‐B shows  that GWO 

shows higher costs at the beginning timeslots, while GmEDE maintains minimum costs throughout 

the 24 hours. Figure 18‐C shows that the proposed GmEDE algorithm consistently reduces electricity 

costs by optimally scheduling smart home appliances. 

 

Figure 18. Electricity cost evaluation per timeslot for OTI various under RTPS. 
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Figure 19. Electricity cost per timeslot evaluation for different OTI under CPPS. 

The electricity cost profile for a 15‐minute OTI shows that the forecast CPPS remains constant 

except during critical peak hours. The maximum peak  in an unscheduled  load  scenario  is 181.55 

cents, but when smart home appliances are scheduled, it reduces to 83.07 cents. The 30‐minute OTI 

has similar costs, but no peaks emerge except at the starting time of the day. The proposed GmEDE 

algorithm significantly reduces the unscheduled appliance electricity cost from 766.8 cents to 203.46 

cents for the 60‐minute OTI. The overall unscheduled cost is reduced from 1300.891 cents to 1085.91 

cents when smart home appliances are scheduled using the GmEDE algorithm. 

Additionally,  the overall  electricity  cost  reduction  for  30  and  60 minutes OTI  is depicted  in 

Figure 22. A brief comparison of electricity cost under forecasted RTPS and CPPS for 15, 30, and 60 

minutes OTI is provided in Table 8. In summary, the proposed framework optimally schedules smart 

home appliances, leading to reduced overall aggregated electricity costs for residents compared to 

mEDE and GWO under forecasted RTPS and CPPS. 

In Figure  20  and Figure  21,  the  results  analysis  shows  that  the proposed GWDO  algorithm 

outperforms  other  heuristic  techniques  (GA, BPSO, WDO)  and  unscheduled  load  in  optimizing 

energy  consumption and  reducing electricity costs. Without RESs and ESS, GWDO  reduces peak 

power consumption by 35.16% compared to 32.96% for GA, 31.86% for BPSO, and 33.51% for WDO. 

With RESs, GWDO achieves a 28.39%  reduction  in peak power consumption, outperforming GA 

(24.69%), BPSO (30.86%), and WDO (32%). Additionally, GWDO provides the lowest electricity costs, 

peaking at 0.49 cents/kWh compared to GA (0.9 cents/kWh), BPSO (0.6 cents/kWh), and WDO (0.55 

cents/kWh), demonstrating the most stable and optimal profiles across scenarios. 

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y 

co
st

 (
ce

nt
s)

Timeslots

 UnScheduled 
 mEDE
 GWO
 HGWmEDE

(B) With 30 minutes time interval

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y 

co
st

 (
ce

nt
s)

Timeslots

 UnScheduled
 mEDE
 GWO
 HGWmEDE

(A)  With 15 minutes time interval

2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

600

700

800

E
ne

rg
y 

co
st

 (
ce

nt
s)

Timeslots

 UnScheduled
 mEDE
 GWO
 HGWmEDE

(C)  With 60 minutes time interval

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2024                   doi:10.20944/preprints202408.1852.v1

https://doi.org/10.20944/preprints202408.1852.v1


  24 

 

 

Figure 20. Energy consumption profile of users: (a) Without RESs and ESS; (b) With RESs; (c) With 

RESs and ESS. 

 

Figure 21. Electricity cost profile: (a) Without RESs and ESS; (b) With RESs; (c) With RESs and ESS. 
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Figure 22. Aggregated electricity cost evaluation under forecast RTPS and CPPS. 

Table 8. Overall electricity cost comparative evaluation for 24 hours time horizon under forecast RTPS 

and CPPS. 

Scenarios  and 

Algorithms 

Electrical  Energy  Cost    (USD)  under 

RTPS 

Electrical Energy Cost    (USD) under CPPS 

15minutes  30 minutes  60 minutes  15minutes  30 minutes  60 minutes 

Without scheduling  500.4821  743.4871  822.1561  1200.1561  1300.8910  1085.6481 

GWO  426.0507  727.1431  717.9402  1190.5122  1200.9612  1080.4091 

mEDE  420.5381  743.1951  831.2132  1178.4901  1164.4901  1190.6901 

GmEDE  416.7468  658.6502  712.7292  1164.4901  1085.9022  1056.7891 

 

5.3. Peaks in Demand   

Peaks  in  demand  are  the  highest  loads  experienced within  a  24‐hour  period,  representing 

maximum energy consumption. To minimize these peaks, Demand Side Management strategies like 

peak clipping, load shifting, and price‐based Demand Response can be implemented. These strategies 

reduce peaks  in demand,  lower electricity  costs, and  less  strain on Energy User Consumers. The 

subsequent section evaluates the effectiveness of peak reduction strategies in both Real‐Time Pricing 

Schemes (RTPS) and Critical Peak Pricing Schemes (CPPS). Figure 23 shows the decrease in demand 

peaks under RTPS for various OTI. Peak demand occurs when load is not scheduled, while when 

scheduled using mEDE and GWO, peak demand is 8.1723 and 5.6750, respectively. The proposed 

GmEDE scheme achieves a 53.02% decrease in peaks, demonstrating superior performance compared 

to GWO and mEDE schemes, resulting in a reduction of 25.50% and 48.26% respectively as illustrates 

in Table 9.   

15 minutes 30 minutes 60 minutes
0

100

200

300

400

500

600

700

800

900

A
gg

re
ga

te
 e

ne
rg

y 
co

st
 (

ce
nt

s)

 Unscheduled
 mEDE
 GWO
 HGWmEDE

(A)  RTPS forecast 

15 minutes 30 minutes 60 minutes
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

A
gg

re
ga

te
d 

en
er

gy
 c

os
t (

ce
nt

s)

 Unscheduled  mEDE  GWO  HGWmEDE

(B)  CPPS forecast 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2024                   doi:10.20944/preprints202408.1852.v1

https://doi.org/10.20944/preprints202408.1852.v1


  26 

 

 

Figure 23. Peaks in demand evaluation under forecast RTPS and CPPS for different OTI. 

Table 9. Peaks in demand evaluation of the proposed and existing schemes for 24 hours. 

5.4. Waiting Time Evaluation   

Figure 23 depicts the waiting time of the planned GmEDE and the existing mEDE and GWO 

under CPPS. The measured waiting times for mEDE, GWO, and the proposed GmEDE are 3.39 hours, 

4.23  hours,  and  6.49  hours,  respectively.  The  load  plan  generated  by  EMC  using  the  GmEDE 

algorithm clearly exhibits longer waiting times, suggesting that user comfort is sacrificed in order to 

save  electricity  expenses.  Table  10  presents  the  statistical  analysis  of  the  proposed  and  current 

algorithms, specifically in terms of waiting time for different OTI under RTPS and CPPS. 

 

Figure 24. User comfort (waiting time) of the scheduled load based on the proposed GmEDE, mEDE, 

and GWO using RTPS and CPPS. 

   

Scenarios  Peak load in demand under RTPS with different OTI  Peak load in demand under CPPS with different OTI 

15minutes  30 minutes  60 minutes  15minutes  30 minutes  60 minutes 
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scheduling 

10.9698    6.0258  5.0258  10.9698  5.8035  5.0258     

mEDE  8.1723    5.8425  3.6558  8.1723  5.2537  3.8425 

GWO  5.676    5.9336  4.3509  5.6265  4.8166  3.9336 

GmEDE  5.1531    3.6210  2.5369  5.5416  4.0264  3.6210 
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Table 10. Comparative evaluation of the proposed GmEDE and existing (mEDE and GWO) algorithm 

in terms of waiting time under RTPS and CPPS for different OTI. 

Scenarios  Evaluation  of waiting under RTPS  for    different 

OTI 

Evaluation of waiting under CPPS for different 

OTI 

15minutes  30 minutes  60 minutes  15minutes  30 minutes  60 minutes 

mEDE  4.3781 hour    4.5394 hour  2.6560 hour  3.3826 hour  4.8012 hour  2.8158 hour 

GWO  9.7494 hour    10.0262 hour  2.2397 hour  4.2293 hour  5.7853 hour  3.3346 hour 

GmEDE  10.4249 hour    12.7007 hour  3.8793 hour  6.4814 hour  6.1335 hour  4.3408 hour 

6. Conclusions 

In this research, a novel hybrid model is proposed for forecasting electrical energy consumption, 

aiming to provide accurate predictions while ensuring a reasonable convergence rate. The model, 

referred to as FS‐FCRBM‐GWDO, integrates feature selection (FS), a forecaster based on FCRBM, and 

an  optimizer  based  on  the GWDO  algorithm. This  comprehensive  framework  introduces  a  new 

approach to feature interaction, using relevancy and redundancy filters from the Mutual Information 

(MI) approach  to select key  features  for  the FCRBM  forecaster. Given  the nonlinear and complex 

nature of the problem, the GWDO algorithm is employed for optimization, enhancing the accuracy 

and convergence of the forecasting results. The model was tested using data from the Rwanda power 

grid, and evaluated through metrics like MAPE, variance, correlation coefficient, and convergence 

rate.  The  FS‐FCRBM‐GWDO model  achieved  an  accuracy  of  98.9%,  outperforming  benchmark 

models such as MI‐mEDE‐ANN (97.8%), AFC‐STLF (97.9%), Bi‐level (97.4%), and FS‐ANN (96.4%), 

with notable reductions  in average execution  time. Additionally,  the study presents a  framework 

utilizing Energy Management Control  (EMC),  supported  by  a DA‐GmEDE  strategy  for  effective 

energy management in residential buildings. This strategy aims to optimize energy consumption by 

scheduling  household  appliances,  thus  reducing  power  costs  and  Peak‐to‐Average Ratio  (PAR), 

contributing  to  improved power system stability. The DA‐GmEDE‐based approach demonstrated 

significant reductions in both electricity bills and PAR compared to other methods. 

Lastly, the research introduces a modular architecture and the GmEDE algorithm, which uses 

predicted  energy  consumption  patterns  to  optimize  load  scheduling  for  both  energy  users  and 

consumers.  This  approach  benefits  households  by  lowering  electricity  costs  and  providing  a 

manageable waiting period for smart devices, while also smoothing the demand curve and enhancing 

grid stability. The GWDO algorithm, which combines elements of GA and WDO,  is proposed  to 

further reduce electricity costs and PAR across three scenarios involving the integration of renewable 

energy sources and energy storage systems. The GWDO algorithm showed superior performance in 

cost reduction and PAR improvement compared to other methods, highlighting the importance of 

accurate energy consumption forecasting for efficient smart grid management. 
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