
Article Not peer-reviewed version

Overcoming Therapy Resistance in

Colorectal Cancer: Targeting Rac1

Signaling Pathway as a Potential

Therapeutic Approach

Luciano E Anselmino , Florencia Malizia , Aylén Avila , Nahuel Cesatti Laluce , Macarena Mamberto ,

Lucía C Zanotti , Cecilia Farré , Mauricio Menacho Márquez *

Posted Date: 27 August 2024

doi: 10.20944/preprints202408.1939.v1

Keywords: colorectal cancer; resistance; small GTPases; Rac1; repositioning.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2942225
https://sciprofiles.com/profile/3774113
https://sciprofiles.com/profile/2940781
https://sciprofiles.com/profile/1191289


 

Article 

Overcoming Therapy Resistance in Colorectal 

Cancer: Targeting Rac1 Signaling Pathway as a 

Potential Therapeutic Approach 

Anselmino Luciano E 1,2,3,4, Malizia Florencia 1,2,3,4, Avila Aylén 3,4, Cesatti Laluce Nahuel 1,2,3,4, 

Mamberto Macarena 1,2,3,4, Zanotti Lucía C 1,2,3,4, Farré Cecilia 1,2,3,4  

and Menacho Márquez Mauricio 1,2,3,4,* 

1 Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR). Facultad de 

Ciencias Médicas (UNR). Santa Fe 3100, Rosario, Argentina. 
2 CONICET 
3 Centro de Investigación y Producción de Reactivos Biológicos (CIPReB). Facultad de Ciencias Médicas. 

Suipacha 660, Rosario, Argentina. 
4 Centro de Investigación del Cáncer de Rosario. Red de Investigación del Cáncer de Rosario (RICaR) 

* Correspondence: mmenacho@conicet.gov.ar; Tel.: +54 341 3936193 

Abstract: Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide and is 

responsible for numerous deaths. 5-fluorouracil (5-FU) is an effective chemotherapy drug commonly used in 

the treatment of CRC, either as monotherapy or in combination with other drugs. However, half of CRC cases 

are resistant to 5-FU-based therapies. To contribute to the understanding the mechanisms underlying CRC 

resistance or recurrence after 5-FU-based therapies, we performed a comprehensive study integrating in silico, 

in vitro and in vivo approaches. We identified differentially expressed genes and enrichment of pathways 

associated with recurrence after 5-FU-based therapies. Using these bioinformatic data as a starting point, we 

selected a group of drugs that restored 5-FU sensitivity to 5-FU resistant cells. Interestingly, treatment with the 

novel Rac1 inhibitor, 1A-116, reversed morphological changes associated with 5-FU resistance back to a 

control-like status. Moreover, our in vivo studies have shown that 1A-116 affected tumor growth and the 

development of metastasis. All our data allowed us to postulate that targeting Rac1 represents a promising 

avenue for the development of new therapies for patients with CRC resistant to 5-FU-based therapies. 
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1. Introduction 

Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide, 

accounting for ten percent of all malignant diagnoses and responsible for numerous deaths, ranking 

third in terms of incidence, but second in terms of mortality [1] with estimations of increasing 

incidence for the next years [2]. Increased risk of CRC is normally associated with age, western 

lifestyle, diet, personal history and chronic intestinal diseases [3]. 

Most CRCs arise from previous adenomatous polyps. Although it remains uncertain the time it 

takes for an early adenoma to progress to CRC, the detection and removal of precancerous lesions 

before progressing to malignancy and metastasis provides a prevention strategy [1,4]. 

CRC treatment depends on factors such as patient’s health, tumor size and location, and the 

presence of metastasis, but surgical removal is the most common option [5] followed by 

administration of adjuvant chemotherapy when there is local-regional or distant invasion.  

Since its discovery in 1957, chemotherapies based on 5-fluorouracil (5-FU, a fluorinated uracil 

analog) have remained the mainstay of adjuvant and palliative therapies for CRC patients [6]. 5-FU 

interferes with nucleosides metabolism by inhibiting the action of thymidylate synthase and 

missincorporating metabolites into DNA and RNA, leading to cytotoxicity and cell death [6–8]. 

Despite the clinical benefits and the extended use of 5-FU, response rates to 5-FU monotherapy are 
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below 20% as most patients do not completely eliminate tumor cells, and tumor recurrence leads to 

poor outcomes [9]. To counteract this, various strategies have been developed to increase 5-FU 

effectiveness through the modulation of its intracellular and biochemical metabolism, mainly 

combining 5-FU with other cytotoxic drugs with different mechanisms of action. Combined 

chemotherapies FOLFOX (leucovorin+5-FU+xaliplatin), FOLFIRI (leucovorin+5-FU+irinotecan) and 

FOLFOXIRI (leucovorin+5-FU+oxaliplatin+irinotecan) are the most used in the clinic and have been 

used as the standard therapy for advanced CRC, increasing response rates up to 40-50% [10,11]. 

Unfortunately, despite the increased response CRC patient’s disease-free survival has not been 

efficiently extended [12,13], and half of CRCs are resistant to 5-FU-based therapies. Therefore, there 

is a need for studies focusing on characterizing resistance-mediators biological factors or 

identification of biomarkers to define which CRC population is most likely to respond to 5-FU-based 

therapies [14–16]. 

One of the main causes of failure in cancer treatment is the development of drug resistance by 

cancer cells. This is a very serious phenomenon since it causes the recurrence of the disease or even 

death [17]. Therapy resistance occurs when diseases become tolerant to pharmaceutical treatments. 

This concept was first considered when bacteria became resistant to certain antibiotics, but similar 

mechanisms have since been found in other diseases, including cancer. Some resistance mechanisms 

are specific to each pathology, while others, such as drug efflux can be observed at the microbial level 

and also in tumors, making them evolutionarily conserved [18]. Although many types of tumors are 

initially susceptible to chemotherapy, over time they may develop resistance to through this and 

other mechanisms, such as DNA mutations and metabolic changes that promote the inhibition and 

degradation of drugs [19]. Tumor resistance is not limited to conventional chemotherapeutic drugs, 

but also appears associated with the use of target therapies or biotherapies [20,21]. Consequently, 

numerous efforts are focused on exploring biomarkers that can predict or indicate the success of 

therapy.  

In the case of CRC, 5-FU-based therapies increased response rates up to 40-50%, therefore 

strategies to improve clinical outcomes are required. To address this, a deeper understanding of the 

mechanisms associated with resistance or recurrence after 5-FU-based therapies is imperative.   

On the other hand, Rac1 (Ras-related C3 botulinum toxin substrate 1) is a key member of the 

Rho GTPases family. It is well known that Rac1 is a regulator of actin-based cytoskeletal dynamics, 

modulating cell adhesion, morphology, and movement. Rac1 is highly expressed in different tumor 

types, and related to poor prognosis [22]. In tumors, it was described that Rac1 modulates cell cycle, 

apoptosis, proliferation, invasion, migration and angiogenesis. Rac1 also plays a key role in anti-

tumor therapy and participates in immune escape mediated by the tumor microenvironment [22]. 

Increasingly, studies are reporting the role of Rac1 as a potential target for tumor therapy [23]. 

To contribute to understanding the mechanisms underlying CRC resistance to therapies, we 

have conducted a study integrating in silico, in vitro and in vivo approaches. First, we compared 

microarray gene expression data from 5-FU-treated CRC patients with and without recurrence after 

5-FU monotherapy. Then, we extended the analysis to 5-FU-based therapies. Comparisons uncovered 

common enrichment pathways associated to chemotherapy resistance that allowed us to select drugs 

to overcome this phenomenon. Interestingly, inhibition of Rac1 by 1A-116 compound decreases the 

growth of 5-FU-resistant CRC, sensitizes cells to 5-FU therapy and prevents metastasis development, 

suggesting that therapies based on Rac1 inhibition could be of benefit to overcome therapy resistance. 

2. Materials and Methods 

2.1. Gene Expression Data Collection 

Gene expression profiles of datasets GSE81653, GSE39582, and GSE72970 were downloaded 

from the NCBI Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds) using 

the GEOquery package [24,25]. These datasets contain gene expression profiling of tumor clinical 

samples from patients after the exposure to 5-FU alone and 5-FU based combined chemotherapy. 

Sample inclusion criteria for the analysis were: 1) not proceeding from studies of patients with 
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familial hereditary polyposis, 2) including clinical information detailing the type of chemotherapy 

provided, and 3) presenting clinical information about tumor recurrence status. The expression 

values downloaded were normalized using RMA (Robust Multichip Average) [26] method from the 

affy or oligo packages depending on the chip model. Probe annotation was performed using the 

manufacturer-supplied annotation package: “hugene20sttranscriptcluster.db” [27] for the GSE81653 

series and “hgu133plus2.db” [28] for the GSE39582 and GSE72970 series (a general flowchart of this 

work is presented in Figure 1).  

If publicly available, information on clinicopathologic characteristics of patients was retrieved 

to explore their association with recurrent condition using Fisher's exact test, a significant association 

was considered for p-value < 0.05. 

2.2. Identification of Differentially Expressed Genes in Patients Treated with 5-FU Monotherapy 

Data analysis was carried out using the facilities of the CCT-Rosario Computational Center, 

member of the High Performance Computing National System (SNCAD, MincyT- Argentina) where 

data were introduced into the R/Bioconductor environment. Differentially expressed genes (DEGs) 

were identified in GSE39582 and GSE81653 datasets independently. Each dataset was divided in two 

groups: 1) patients treated with 5-FU monotherapy with tumoral recurrence after surgical tumor 

resection and 2) patients treated in the same way but without tumor recurrence. Detection platforms 

and sample sizes are shown in Table S1. A more detailed description of the selected samples is 

described in Table S2.  

Four methods were used to obtain DEGs groups; two exploratory methods: fold change (“FC”) 

and expression in unusual proportion; and two non-parametric algorithms: the Significance Analysis 

of Microarrays (SAM) [29] and RankProd (RP) [30]. For DEGs selection, we used as cutoff criterion 

|log2fold change| > 1 for FC method. For UR, any observation far from the mean by more than two 

standard deviations was considered atypical. For the non-parametric hypothesis tests, genes with 

|log2fold change| > 1 and FDR ≤ 0.01 were considered.  

2.3. Enrichment Analysis  

Reactome signaling pathway enrichment analysis for DEGs was performed using an R package 

“ReactomePA” [31]. ReactomePA uses the hypergeometric model to assess whether the number of 

selected genes associated with a Reactome pathway is larger than expected. Pathways with an FDR 

< 0.05 were considered significantly enriched and were visualized using the dotplot tool. We 

generated an enrichment map and pre-clustered network using the “enchmap” and “cnetplot” tools 

to visualize relationships between pathways, and highlight genes related to the more significant 

terms. 

2.4. Identification of Gene Expression Profile-Reversing Compounds  

A computational drug repositioning analysis was performed using CLUE (Connectivity map 

Linked User Environment: https://clue.io/query; Broad Institute, Cambridge, MA; data version 

1.1.1.2; software version 1.1.1.42), a cloud-based analysis platform that catalogs 473,647 expression 

signatures of human cell lines treated with 25,200 perturbagens [32]. CLUE computes a CMap score 

(tau) that measures the similarity of a queried gene set of up to 150 upregulated and 150 

downregulated genes to existing drug-matched reference gene sets, from least similar or inverse (‒

100) to most similar (100). From an initial list of 426 DEGs, we selected 150 upregulated genes by 

screening for genes detected as DEGs by three or more methods in both data sets, as well as those 

associated with pathways with the highest enrichment score in the recurrent phenotype. Since the 

number of down-regulated DEGs was lower than 150, all of them were used. The reversing drugs of 

interest were selected using a negative threshold of CMap score. 
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Figure 1. General flowchart of the experimental approach. In this work, three data series were 

selected from the GEO database. Studies contained gene expression data from tumors of CRC patients 

treated with different chemotherapies. Patients were followed up to record tumor relapse or death 

after treatment. First, we selected patients treated only with 5-FU (with and without tumor relapse) 

and used different methods to obtain DEGs in each data series. Then, we performed an 

overrepresentation analysis of pathways (ORA) based on common identified genes. These genes were 

also used for screening of potential drugs able to reverse the expression profile associated with 

recurrence by the L1000 project of ConnectivityMap. Then we extended our studies by incorporating 

patients treated with other 5-FU-based chemotherapies constructing a gene expression matrix by 

merging data from different studies. Using the SigFeature package that applies the SVM-REF 

algorithm, genes were ordered based on their informative capacity among the phenotypes. With the 

5000 most informative genes, a GSEA analysis was carried out. Based on this analysis, we selected a 

set of drugs to test in vitro and in vivo. 

2.5. Integrative Meta-Analysis 

To explore whether the enriched pathways between patients with and without tumor recurrence 

after 5-FU treatment were maintained when patients treated with other types of chemotherapy were 

added to the expression matrix, we performed a meta-analysis. This technique is particularly useful 

for combining several datasets from the same disease when these are limited in size, therefore 

improving their statistical power. This time, instead of analyzing the data series independently, a 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2024                   doi:10.20944/preprints202408.1939.v1

https://doi.org/10.20944/preprints202408.1939.v1


 5 

 

large matrix was constructed merging patient’s gene expression data from GSE81653, GSE39582, and 

GSE72970 series. In addition to the patients treated with 5-FU already used in the previous analysis, 

others treated with FOLFIRI and FOLFOX were included. Data merging was performed using the 

empirical Bayes methods (ComBat, from Sva package) [33] to reduce confounding factors due to non-

biological variations between the studies. Data about platforms and sample sizes are shown in Table 

S3. A more detailed description of the selected samples added to the analysis is found in Table S4. 

2.6. Feature Selection 

Feature selection is described as a process in which a subset of relevant features is selected from 

a larger data set. These features can be used for several purposes like model construction, differential 

analysis, enrichment exploration, etc. To select the most explanatory genes among the phenotypes 

from the combined gene expression matrix, we used the sigFeature package [34]. This package 

employs a combination of Vector Support Machine and Recursive Feature Elimination (SVM-RFE) 

algorithms to produce a ranked list of genes [35]. The SVM-RFE is a backward feature elimination 

technique that iteratively removes features based on SVM classifier weights. In each iteration, an 

SVM model is built based on the current features subset “F”, and the weight of each feature in “F” is 

calculated. The features are then ranked based on weight and the bottom-ranked features are 

removed from F until it is empty. The top-ranked features that are discarded in the last iteration are 

considered the most informative between the phenotypes. The number of features retained in the 

analysis depends on their particular future use. In this work, we selected the top 5000 more 

informative features to improve their potential to predict the biological signature of the data set. 

2.7. Gene Set Enrichment Analysis (GSEA) 

GSEA is a computational method used to determine whether an a priori defined set of genes 

shows concordant and statistically significant differences between two biological states [36]. We 

employed the java GSEA Desktop Application v4.2.3 to perform the GSEA analysis on 5000 more 

informative features selected. The gene sets available from The Molecular Signatures Database 3.0 

(MSigDB) were employed [37]; genesets composed of less than 15 or more than 500 genes were 

excluded. The phenotype label was set as “recurrent” vs “non-recurrent”. The t-statistic mean of the 

genes was computed in each gene set using a permutation type test with 1000 replications. Up-

regulated gene sets were defined by a normalized enrichment score (NES) > 0 and down-regulated 

by NES < 0. Gene sets with an FDR-P value ≤ 0.05 were chosen as significantly enriched. 

2.8. Detection of Motifs and Transcriptional Factors 

For the discovery of transcription factor binding sites (motifs) in the promoters of co-regulated 

genes, we used the Cytoscape plug-in iRegulon [38,39]. A collection of 9713 position weight matrices 

(PWMs) was applied to analyze 10 kb centered around the transcription start site. DNA logos 

corresponding to each motif were extracted and the main transcriptional factors binding to them and 

their sets of direct targets (metatargetnoma) were screened. Cut-off criteria used in the analysis were 

enrichment score threshold = 5, ROC threshold for AUC calculation = 0.03, rank threshold = 5000, 

minimal identity between orthologous genes = 0.05, FDR > 0.001, and normalized enrichment (NES) 

> 3. 

2.9. Predictor Genes Detection 

Important predictors genes from DEGs list and “reactome_signaling_by_rho_gtpases” gene set 

(https://www.gsea-

msigdb.org/gsea/msigdb/cards/REACTOME_SIGNALING_BY_RHO_GTPASES) were selected via 

least absolute shrinkage and selection operator (LASSO) logistic regression [40] in individuals GEO 

series and in the merged matrix using the glmnet R package.  To carry out the analysis, patients from 

each dataset were divided into training and validation sets in an 80-20 ratio, respectively. Optimal 

values for the penalty parameter λ were determined through 10-fold cross-validations. For model 
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construction, we employed the lambda value giving minimal mean cross-validated error 

(lambda.min). The LASSO coefficient for recurrence predictors genes for each gene list was extracted. 

Receiver operating characteristic (ROC) curves were plotted to validate the prediction efficiency of 

the model using the ROCR and pROC R packages [41,42]. We employed survival package [43] to 

perform a univariate Cox regression to assess the effect of the change in expression of individual 

predictor gene on the survival of patients in each dataset; genes with a LogRank < 0.01 were retained. 

2.10. PPI Network Construction and Hub Gene Identification 

The PPI network was constructed using STRING public online database [44] and exported to 

Cytoscape (version 3.9.1) for viewing and analysis [39]. Cytoscape plug-in CytoHubba (version 0.1) 

[45] was employed to retrieve the top 20 hub genes based on maximal clique centrality (MCC) 

algorithm. To expand the network, main interactor genes were rescued using the network expansion 

function of STRING plug-in. Top 20 interactors with a selectivity of 0.5 were included in the network 

2.11. Drugs 

For each drug, a 10 mM stock solution was prepared and stored at −20°C. Ivermectin (Parafarm) 

was dissolved in 50% DMSO solution, the concentration of DMSO in the final dilutions did not exceed 

0.03%. Amitriptyline (Parafarm) was dissolved in sterile distilled water. Commercial 20mg/ml 

irinotecan solution (Kemex) and 50mg/ml 5-FU solution (Fada Pharma) were diluted in sterile 

distilled water to reach final stocks concentration. 1A-116 [46] was kindly provided by Dr. Georgina 

Cardama (Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes). 1A-116 stock was 

prepared by dissolving the drug in acidic water (sterile distilled water brought to pH 1-2 using a 100 

mM HCl solution). Once dissolved, pH of the final solution was adjusted to 5.5-6 with 100 mM NaOH 

and filtered. Unless indicated otherwise, doses used of drugs were 5µM 5-FU; 20µM amitriptyline; 

30µM irinotecan, 15µM ivermectin and 20µM 1A-116. 

2.1. Cell Culture  

5-FU resistant cell lines CT265FUR, HCT1165FUR or HT295FUR were produced in our laboratory as 

described before [47] from CT26 (chemically induced BALB/c mice-derived colorectal carcinoma), 

HCT116 (male human colon adenocarcinoma) and HT29 (female human colon adenocarcinoma) cells 

respectively. Cells were cultured in DMEM (HCT116 and HT29) or RPMI (CT26) media, 

supplemented with 10% fetal bovine serum (FBS; Natocor, Argentina), penicillin (10 μg/ml), 

streptomycin (100 μg/ml) and L-glutamine (2 mM, DMEM medium). Cells were maintained at 37°C 

in a 5% CO2 atmosphere and routinely tested for mycoplasma. 

2.13. Cells Immunostaining Techniques 

7× 103 cells were cultured in coverslips for 24 h, treated for the 36 h, fixed in 4% 

paraformaldehyde and permeabilized with a 0.5% PBS-Triton and blocked with BSA (2%, Sigma). 

Cells were first incubated α-Tubulin (Sigma, 1:1000 dilution) and Beta-Catenin (Santa Cruz, sc-59737; 

1/50 dilution) or E-Cadherin (67A4) (Santa Cruz, sc-21791; 1/50 dilution), and then with Alexa Fluor 

488-conjugated secondary antibody (Invitrogen, 1:500 dilution), and counterstained with DAPI 

(Sigma, 1:10000 dilution) and phalloidin-rhodamine conjugate (Invitrogen, 1:2000 dilution) to 

observe cell nucleus and actin skeleton, respectively. Coverslips were fixed to a slide with Mowiol 

and observed under a Nikon Ti2E fluorescent microscope or and Zeiss LSM880 confocal microscope. 

Cell and nuclear areas were measured with the ImageJ software. 

2.14. Viability Assays 

For in vitro cell viability assays 1x104 CT265FUR, HCT1165FUR or HT295FUR cells were seeded on 96-

well plates and incubated for 36 h at 37°C at a 5% CO2 atmosphere with increasing doses of the 

individual drugs and combinations of selected doses with 5 µM 5-FU. Controls were treated in the 

same way with corresponding vehicle to each drug. After the incubation time, treatments were 
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removed and an MTT assay (Sigma Aldrich) was performed as described before [47]. Viability was 

expressed as the percentage of control untreated samples. The concentration of drugs that decreased 

cell proliferation by 50% (IC50) as compared to controls was calculated with GraphPad Prism v8.0 

(GraphPad Sofware, La Jolla, CA, USA). When indicated, viable cells were counted using Trypan 

Blue (0,4%; Sigma), and viability was expressed as the percentage of control untreated samples.  

2.15. Immunoblotting 

CRC cells were seeded in 60 mm plates until they achieved 80% confluence. Cells were lysed 

with RIPA buffer containing protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany) 

and then detached from the plates to collect protein extracts. Protein levels were quantified using the 

Lowry assay, and 40 µg of protein per sample was denatured for 5 minutes at 95 °C in SDS-PAGE 

sample buffer before being loaded onto gels. Samples were resolved on 8% SDS–polyacrylamide gels 

and transferred to PVDF membranes (Amersham Hybond P, GE Healthcare Life Sciences) for 90 

minutes with constant current at 4 °C. Membranes were blocked with 1% (w/v) BSA in TBS-Tween 

(50 mM Tris, 150 mM NaCl, 0.05% Tween, pH 7.5) for 60 minutes at room temperature and then 

incubated with the specified primary antibody overnight at 4 °C. The primary antibodies used 

included β-catenin (BD Biosciences, 1:1000 dilution) and E-cadherin (BD Biosciences, 1:1000 dilution). 

After three washes with TBS-Tween to remove the primary antibodies, membranes were incubated 

with the appropriate peroxidase-conjugated secondary antibody (BioRad, 1:5000 dilution) for one 

hour at room temperature. Detection was carried out using chemiluminescence (Bio-Lumina; Kalium 

Technologies, Argentina) and imaged with a Licor C-Digit Blot Scanner (LI-COR Biosciences) 

according to the manufacturer's instructions. Quantification was performed by densitometry using 

Image J software. Cropped images are displayed in the main figures, with full-length membranes 

shown in the supplementary information. 

2.16. GTP-Rac1 Pull-Down Assay 

GST-Pak1 pull-down experiment to determine Rac1 activity in cells was performed as indicated 

[48].  Briefly, exponentially growing cells were harvested and resuspended in lysis buffer containing 

20 mM Tris- HCl [pH 7.5], 150 mM NaCl, 5 mM MgCl2, 0.5% Triton X-100, 10 mM beta-

glycerophosphate, 1 mM DTT, Cømplete (Roche), and 10 µg of GST fusion protein containing the 

Pak1 Rac1 binding domain (GST-Pak1 RBD, bacterially-expressed). After incubations for 10 min on 

ice, cell lysates were pre-cleared by centrifugation at 14,000 rpm for 10 min at 4°C and supernatants 

incubated with glutathione-Sepharose beads (GE Healthcare Life Biosciences) for 1h at 4°C under 

gentle rotation. After extensive washes in lysis buffer, protein complexes were released by boiling in 

SDS-PAGE sample buffer, separated electrophoretically, transferred onto nitrocellulose filters, and 

analyzed by immunoblotting using an anti-Rac1 antibody (BD Biosciences, 1:1000). GTP-Rac1 levels 

were quantified with the ImageJ analysis software using as normalizing control the total levels of 

Rac1 found in each cell lysate. 

2.17. Animal Studies 

8 weeks-old BALB/c female mice were obtained from the School of Veterinary Sciences at the 

National University of La Plata and treated in accordance with the Canadian Council on Animal Care 

and ARRIVE guidelines. Animals were maintained in the CIPReB facilities (Centro de Investigación 

y Producción de Reactivos Biológicos, Medicine School, National University of Rosario). 1x106 

CT265FUR viable cells were resuspended in PBS (100 μl) and injected subcutaneously into the right 

flank of each animal. For all experiments, mice were distributed and treated as follows: control, 

consist in a daily intraperitoneal (ip) administration of vehicle (1% absolute alcohol solution); 

ivermectin, ip administration of 2 mg/kgBW/day (dissolved in absolute alcohol and then diluted in 

water to the final concentration); 1A-116, ip administration of 5 mg/kg BW/day in sterile water; 5-FU, 

ip administration 20 mg/kgBW/week in sterile water; iver + 5-FU, ip administration of ivermectin and 

5-FU treatments; 1A-116+5-FU, ip administration of 1A-116 and 5-FU treatments. 
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Animals were periodically weight and checked for changes in skin, fur, eyes, secretions, 

excretions and autonomic activity (lacrimation, pilo-erection, unusual respiratory pattern, 

movement, etc). 

Tumor volumes were calculated as V = 0.4ab2, where a is the measurement of the tumor along 

its longest axis and b its shortest. When any of the groups reached the ethically permitted tumor 

volume, the animals were euthanized. Lungs, spleens and tumors were removed, fixed and stained 

with hematoxylin-eosin for histological evaluation and detection and counting of micrometastases in 

an Olympus BX40 microscope.  

For intrasplenic inoculation of cells, mice were anesthetized by intraperitoneal injection of 

acepromazine/ketamine/midazolam (50mg/kg, 100mg/kg and 50mg/kg, respectively). A small 

incision was made to access the spleen and allow injection of 1x106 CT265FUR viable cells resuspended 

in PBS (100 μl). Two days after surgery, animals were distributed in groups as described and 

treatments were initiated. Three weeks after injection, animals were sacrificed, for collection and 

weighting of spleens and livers. 

For subcutaneous tumor development, 2 independent experimental rounds were performed. For 

the first round N = 4/group; for the second round, N=6/group. For intrasplenic injection the number 

of animals used was N=6/group.   

2.18. Statistical Analysis 

Statistical analyzes were carried out using the GraphPad Prism 8.0 software (GraphPad 

Software, Inc., La Jolla, CA, USA). Single comparisons between two groups were performed with the 

Student’s-test, whereas for multiple comparisons the ANOVA followed by Tukey’s multiple 

comparisons post-test was employed. Correlation between the two variables was assessed with 

Spearman’s rank correlation coefficient (r). For differential gene expression analysis, statistical 

significance was tested with the Student’s t-test followed by a False Discovery Rate (FRD) correction 

with Benjamini–Hochberg procedure. Survival analysis was implemented according to the Kaplan–

Meier analysis and log-rank test. Overall survival (OS) was defined as the time between the date of 

surgery and the date of death or the date of the last follow-up. In all cases, p-values less than 0.05 

were considered statistically significant and were marked with an asterisk as follows: *, P ≤ 0.05; **, 

P ≤ 0.01; ***, P ≤ 0.001. 

3. Results 

3.1. Identification of Differentially Expressed Genes and Key Pathways in Recurrent CRC after 5-FU 

Monotherapy 

To identify DEGs and key pathways associated with 5-FU resistance, raw data of the datasets 

GSE39582 and GSE81653 were downloaded from GEO database. Each dataset was normalized using 

the RMA method (Figure S1A,B). Dataset GSE39582 contained a total of 585 samples, 82 of which 

met the requirements described in Section 2.1. Dataset GSE81653 contained 593 samples, 192 of which 

met the requirements. The selected patients from each study were divided into patients with and 

without tumor relapse groups. Before performing the analysis, probes with intensity values close to 

chip background were filtered and discarded (the proportion of probes removed is shown in Figure 

S1C,D).  

In order to explore the putative association between recurrence and clinical parameters, 

correlation was assessed using Fisher's exact test. The results indicated that 5-FU resistance was not 

associated to age, TNM stage (Tumor, Node, Metastasis staging system), or the main mutations 

described for CRC (KRAS, TP53 and BRAF; Table S5). As no correlation was noted, we performed 

enrichment analysis of gene sets associated to recurrent and non-recurrent phenotypes for both 

datasets. Through this approach, we observed that coordinate expression of genes grouped in 

categories linked to cell adhesion and migration was associated to a recurrent phenotype, while a 

good response to 5-FU monotherapy correlated with immune system and complement activation 

(Figure 2A,B and Tables S6-S7). 
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Figure 2. Gene sets enrichments and DEGs associated to 5-FU monotherapy resistance. (A,B) 

Representative upregulated (left) and downregulated (right) gene sets in the recurrent phenotype 

according to Gene Set Enrichment Analysis (GSEA) for selected 5-FU treated patient form GEO 

dataset (A) GSE39582 and (B) GSE81653. NES and FDR values are indicated within each graph. 

Positive and negative enrichments are indicated with upward- and downward-pointing arrows, 

respectively. (C-F) DEGs analysis. Venn diagrams of overexpressed (C) and underexpressed (E) genes 

identified by four statistical methods (FC: fold change; RP: RankProd package; SAM: Significance 

Analysis of Microarray; UR: unusual ratio) for series GSE39582 (left diagram) and GSE81653 (right 

diagram); intersections indicate genes detected by two or more methods. (D) Reactome functional 

classification of upregulated (D) and downregulated (F) genes detected as DEGs in both datasets. Dot 

size is proportional to the number of genes associated with a term. Dot color intensity indicates the 

adjusted p-value resulting from the Over-representation analysis. This graph displays only significant 

terms (p<0.05). 

In parallel, we aimed to identify DEGs associated to the 5-FU-resistant phenotype. To select 

DEGs in each dataset independently we employed four methods, two exploratory (fold change [FC] 

and unusual ratio [UR]) and two non-parametric hypothesis tests (RankProd [RP] and the 

Significance Analysis of Microarrays [SAM]). Cut-off criterions for DEGs selection were described in 

Materials and Methods. DEGs lists were compared to extract common genes detected by at least two 

methods in both studies. The number of genes obtained by each method in each dataset was 

represented by a Venn diagram (Figure 2C,E). A total of 388 upregulated and 39 downregulated 

common DEGs were selected (Table S8). In order to detect pathways enriched in recurrent 

phenotype, we performed an over-representation analysis (ORA). The results of this analysis 

indicated that the main upregulated pathways were associated with signaling mediated by Rho 

GTPase proteins and their effectors (Figure 2D), while among the downregulated pathways were 
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found those related to cytokine receptors, receptors binding to peptide ligands and the immune 

response (Figure 2F).  

Transcription factors are key regulators of biological processes that function by binding to genes 

regulatory regions. Each transcription factor recognizes a collection of DNA sequences or binding 

sites that can be represented as motifs. Motif characterization is important for understanding the 

regulatory functions of transcription factors shaping gene regulatory networks. To go further in 

characterizing expression changes associated to resistance, we look for common transcriptional 

factors binding sites present at the promotor regions of upregulated genes, finding that the most 

relevant factors include Serum Response Factor (SRF), Myocyte Enhancer Factor 2C and 2A (MEF2C, 

MEF2A), Msh Homeobox 2 (MSX2), and common motives were found to FOXO1, HMGA2, HMGA1, 

FOXA2. FOXA1. SOX10, FOS, JUN, HLTF and RUNX3 (Figure 3A). Genes specifically regulated by 

each transcription factor were extracted to perform a functional enrichment analysis (P < 0.05), 

through a word cloud graph, which indicates that the most relevant cellular processes modulated are 

related to signaling, GTPases and E-cadherin (Figure 3B). 

To visualize the most relevant relationships between pathways and functions associated to the 

5-FU-resistant phenotype, we constructed an enrichment map that indicates over-representation of 

two particular clusters: Rho GTPases and TGFbeta signaling (Figure 3C,D). 5-FU-resitance associated 

DEGs are highly connected genes by 20 hub genes, as visualize in Figure 3E. 

 

Figure 3. Regulation of DEGs associated to 5-FU resistant phenotype. (A) Transcription factor 

binding sites found enriched in the promoter regions of upregulated genes identify in the 5-FU 

recurrent transcriptome. NES and percentage of regulated genes (targets) are indicated. (B) Word 

cloud showing the most frequent terms in the enrichment analysis result for each group of genes 

controlled by a transcriptional factor. The size of the word is proportional to the frequency the term 

appeared in the Over-representation analysis (p>0.05). (C) Enrichment map for visualizing the 

pathway/function relationships of DEGs associated to recurrence. Dot size is proportional to the 

number of genes associated with a term. Dot color intensity indicates the adjusted p-value resulting 

from the Over-representation analysis. The thickness of the gray lines represents the level of 

connection between pathways. This graph displays only significant terms (p<0.05). (D) Cnetplot 

showing the DEGs related with RHO GTPases pathway; dot color indicates the fold change for the 

recurrent condition. (E) Top 20 hub genes identified by CytoHubba Cytoscape plugin. A greater red 

color intensity is associated whit highest number of connections in the total DEGs PPI network. 
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3.2. Determinants of Resistance to 5-FU-Based Therapies 

To go further in the search for determinants to resistance in CRC, we decided to extend our 

approach to databases of patients receiving therapies based on 5-FU, including FOLFOX and 

FOLFIRI. This approach allowed us to increase our samples to 567 to perform more robust analyses. 

As in the case of 5-FU monotherapy, no evident correlation was observed between resistance and 

available clinical parameters (Table S9). Unbiased GSEAs associated with the transcriptome of 

recurrent phenotype following 5-FU-based chemotherapies using Reactome, GO, and KEGG 

databases indicated a positive enrichment for Rho GTPases activate PKNs and Formation of beta-

catenin:TCF transactivating complex, and negative enrichment for immunoregulatory interactions 

between lymphoid and non-lymphoid cell and complement cascade (Figure 4A, Table S10). 

Moreover, after selecting the 5000 most explanatory genes in the recurrent phenotype after 5-FU-

based chemotherapies by the Recursive Feature Elimination algorithm (RFE), and a chemical and 

genetic perturbations database (MSigDB) we found a positive enrichment of gene sets associated with 

resistance to other therapies generally used to treat tumors other than CRC such as gefitinib, 

tamoxifen, gemcitabine and radiation (Figure 4B, Table S11), indicating that some of the identified 

pathways could be orchestrating general resistance mechanisms. Surprisingly, gene sets more 

present in this 5000 subset were related to neutrophil degranulation and Rho GTPases, among which 

Rac1 seems to be the most relevant (Figure 4C). Consistently, through pull-down experiments in CRC 

cells, we observed a significant increase in Rac1 activity associated with 5-FU resistance (Figure 4D).  

As it was the case for 5-FU monotherapy, we found binding motifs for SRF, JUN and FOS 

transcription factors present at the promotor regions of upregulated genes (Figure 4E) associated to 

5-FU-based therapies resistance. 

 

Figure 4. Gene sets enrichments associated with resistance to 5-FU-based therapies. (A) Gene Set 

Enrichment Analysis (GSEA) associated with the transcriptome of recurrent phenotype following 5-

FU-based chemotherapies using the Reactome database. (B) GSEA associated with the 5000 most 

explanatory genes in the recurrent phenotype after 5-FU-based chemotherapies selected by the 

Recursive Feature Elimination algorithm (RFE), gene sets from ‘c2.cgp.v2023.1.Hs.symbols.gmt’ 
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database were employed to perform the analysis. The normalized enrichment scores (NES) and false 

discovery rate q–values (FDR q–val) are indicated within each graph. Positive and negative 

enrichments are specified by upward– and downward–pointing arrows, respectively. (C) Over-

representation analysis (ORA) of the 5000 most explanatory selected by RFE. Dot size is proportional 

to the number of genes associated with a term. Dot color indicates the p-value resulting from the ORA 

analysis. (D) Rac1 activation in control (CT26) and 5-FU resistant (CT265FUR) cells determined by 

pull-down assays. Levels of Rac1-GTP and total Rac1 were analyzed by Western blot (upper panel) 

and quantified by ImageJ (lower panel). (E) Transcription factor binding sites found enriched in the 

promoter regions of 5000 RFE retained genes. The NES and percentage of regulated genes (targets) 

are also indicated. 

3.3. Selection of Drugs to Overcome 5-FU Resistance in CRC 

In order to overcome 5-FU resistance, we search for compounds with the ability to reverse the 

expression of genes and pathways identified in our previous analysis by LINCS. This tool allows 

entering 150 upregulated and 150 downregulated genes. For 5-FU monotherapy, we used all common 

downregulated genes as they were less than 150. To reduce the number of upregulated genes to 150, 

we selected DEGs detected by three or more statistical methods (in both databases) and those with 

the higher association (with a lower P value) with overrepresented pathways in functional 

enrichment analysis (Table S12). The platform detected similar and opposite expression profiles in 

nine cell lines, including HT29.  

Through this approach we obtained a list of compounds that could potentially reverse 5-FU 

resistant phenotype (Table S13). Some of these compounds are currently used in the clinic combined 

to 5-FU, such as irinotecan [49,50] or to treat other types of recurrent cancers such as topotecan [51,52]; 

but we also found other compounds such as a norepinephrine inhibitor (amitriptyline), MEK 

inhibitors, a COX inhibitor, ivermectin and the Rho-associated kinase inhibitor (Rockout) among 

others. Accordingly, cell perturbations that could reverse the expression profile associated to 5-FU 

resistance determined by the same platform include inhibition of Raf, MEK, PKC or Src and loss of 

function of Rho GTPases activating proteins (Table S14). 

3.4. Ivermectin and the Rac1 Inhibitor 1A-116 Restore 5-FU Sensitivity to 5-FU Resistant Cells 

As drug repositioning provides cheaper, effective, and safe drugs with fewer side effects and 

fastens drug development, we focused on irinotecan, amitriptyline and ivermectin to confirm by cell 

studies their potential to sensitize 5-FU-resistant CRC cells. In parallel, as our studies highlighted a 

prominent role of the Rho GTPase Rac1 on 5-FU-resistance modulation, we decided to explore the 

effects of 1A-116, a novel Rac1 inhibitor previously reported to be promising to treat other cancer 

types [46,53–55]. To characterize the effect of these drugs on resistance, we used three 5-FU resistant 

cells lines generated as described before [47]. IC50 values for each selected drug were calculated on 

sensitive and resistant cell lines (Table S15).   

To evaluate the potential effect of 1A-116 and selected repurposing drugs on reversing resistance 

of CRC cells, we treated resistant cells with 5-FU in the presence of each drug. For all the assays, we 

selected doses for each drug with a minimal statistical effect on cell viability as evaluated by MTT-

based assays (Figure S2 and Table S15). We found that incubation of cells with irinotecan, ivermectin 

and 1A-116 improved responses to 5-FU in all cell lines tested (Figure 5A), while amitriptyline only 

had a partial effect on HT29 and CT26 resistant cells. For 1A-116 treatment, we confirmed the 

inhibition of Rac1 activation by this compound and its effect on reversing 5-FU resistance by counting 

viable cells after treatment (Figure S3A,B).   

In vitro generation of 5-FU-resistance is associated to cell morphological changes as it was 

previously described for several cell lines including CRC [56–59]. Previous reports also described that 

resistance to 5-FU in CRC cells promotes the loss of epithelial markers [58,59]. To confirm the link 

between resistance acquisition and EMT, we analyzed the expression of epithelial markers in CRC 

cells, validating the loss of E-Cadherin and beta-catenin expression in resistance cells (Figure 5B,C). 

To assess morphological changes associated to 5-FU resistance we performed nuclear, cytoskeletal 
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and microtubular staining of control and 5-FU-resistant cells (Figure S3D,E). In order to quantify 

changes in morphology, we measured nuclear and cell areas for each condition, noting a significant 

increase in both parameters for resistant cells (Figure 5E-G). Indeed, the relationship between 

nucleus/cytoplasm decreased in resistant cells and cytoskeletal architecture changes became evident. 

Interestingly, treatment with the Rac1 inhibitor 1A-116 was enough to reverse the expression of 

epithelial markers (Figure 5B,D) and morphological changes back to control-like values (Figure 5E-

G and S3B,C) suggesting a critical role for Rac1 activation on triggering events leading to 5-FU-

resistance in CRC. 

 

Figure 5. Characterization of 5-FU resistant cells and viability assays. (A) Viability of CT265FUR, 

HCT1165FUR and HT295FUR cells treated with selected drugs individually and in combination with 5µM 

5-FU (n = 3). (B) Representative immunoblots showing modulation of epithelial markers expression 

associated to generation of resistance (left panel) and reversion of the expression after Rac1 inhibition 

(right panel). For loading control, we used the abundance of endogenous beta-actin (E-Cad: E-

Cadherin; B-Cat: beta-catenin; B-Act: beta-actin). (C,D) Confocal images for immunofluorescent 

detection of E-Cadherin (green color, left panel) and beta-catenin (green color, right panel) in CRC 

cells counterstained with F-actin and nuclei (red and blue colors respectively, scale bar=10μm). (E-G) 

Cells area, nuclei area and nucleus/cell areas relationship were quantified for each cell line (n > 50 per 

treatment). 

3.5. Rac1 Inhibitor 1A-116 Reduces the Growth of CRC Resistant cells, Sensitizes Them to 5-FU and 

Prevents Metastasis Development 

Once confirmed by in vitro assays the possibility to reverse resistance to 5-FU we moved to an 

in vivo assay with CT265FUR cells. For this experiment, we selected one drug in repositioning, 

ivermectin, and the Rac1 inhibitor 1A-116. Tumor growth kinetics indicated that 5-FU or ivermectin 

alone had not statistical effect on resistant CRC cells growing (Figure 6A,B). Surprisingly, Rac1 

inhibitor 1A-116 administration statistically affected the growth evolution of tumor cells. 

Interestingly, both ivermectin and 1A-116 were able to induce sensitivity to 5-FU in resistant CT265FUR 

cells (Figure 6A,B and S4A,B). No signs of toxicity were associated with treatments as evaluated by 

general animal behavior and weight (Figure 6C and S4C) and the measurement of metabolic 

parameters (Figure S4D). 

At the end of the experiment, we collected tumor, spleen, liver and lungs for histological 

observation. We did not observe histological differences between tumors by H&E staining (Figure 

S5), but it was evident that animals treated with 1A-116 or combination of 1A-116 with 5-FU did not 

develop splenomegaly (Figure 6D and Table 1). Microscopic visualization of histological sections 

indicated that combined treatment with 1A-116 and 5-FU reduced liver and lung metastasis 
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development in mice (Figure 6E,F and Table 1) suggesting a role for Rac1 in CRC tumor growth, 

resistance and metastatic dissemination. To further confirm the antimetastatic potential of Rac1 

inhibition on 5-FU resistant CRC we performed an intrasplenic cells injection, noting that 1A-116 

treatment drastically reduced spleen tumor formation and resistant cells dissemination to the liver 

(Figure 6G-J). 

 

Figure 6. Ivermectin and 1A-116 in vivo studies. (A) BALB/c mice were subcutaneously challenged 

with CT265FUR cells. Ten days later tumors become evident and animals were randomly distributed in 

groups for treatment: control, 5-FU, ivermectin (IVER), ivermectin plus 5-FU (IVER+5-FU), 1A116 and 

1A116+5FU (n = 4 per treatment). The tumor size was measured biweekly with a caliper and volume 

estimated (time = 0 indicates the beginning of treatment). (B) At the end of the experiment, animals 

were sacrificed and tumors of each group were removed and weighed. (C) Body weight of the animals 

was measured at the beginning and at the end of the treatments to evaluate signs of its toxicity. (D) 

Representative images of tumor and spleen for each treatment group. (E) Haematoxylin and eosin 

lung staining images showing representative micrometastases (indicated with yellow arrows) for 

control, 5-FU, 1A116 and 1A116+5-FU groups. (F) Haematoxylin and eosin liver staining images 

showing representative micrometastases (indicated with yellow arrows). (G-J) Analysis of Rac1 

inhibition on experimental metastasis development. After intrasplenic injection tumor containing 

spleens (G) and livers (H) were collected and weight (I). Representative images of spleens (upper 

panel) and livers (lower panel). (J) Metastasis were counted under a magnifying glass. 
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Table 1. Analysis of metastasis. Mean of metastatic nodes detected per mouse by H&E in lung and 

liver. At the end of the experiment, the spleens of the mice were removed and measured with a caliper 

to detect signs of splenomegaly. The mean spleen lengths for each treatment are shown. (n=4). 

3.6. Generation of Prognostic Signatures to Predict 5-FU-Based Therapies Resistance  

Finally, we used our lists of genes associated to resistance to obtain by LASSO regression 

analysis a minimal group of predictive genes that could anticipate responses to both 5-FU 

monotherapy and 5-FU-based therapies (Figures 7A and S6) and evaluated their predictive efficiency 

by generation of ROC curves (Figure 7B). Unfortunately, there were not many common genes 

between the different predictive lists, but all of them displayed an acceptable predictive efficiency.  

As it was shown that Rho GTPases were important markers associated to resistance, we selected 

by LASSO the most important Rho GTPases-related genes to predict recurrence in the 5-FU 

monotherapy datasets and combined treatments merged matrix, and then analyzed their recurrence 

predictive efficiency for each signature by generation of ROC curves (Figure 7C). ROC curve analysis 

demonstrated the good performance of the established model, with similar predictive efficiency to 

those based on DEGs. Interestingly, some of these predictive genes were associated to overall CRC 

patients’ survival (Figure 7D).  

To understand the relationship between genes predicting resistance, we constructed a protein-

protein interaction network. Using the STRING database, we identified the main interacting proteins 

shared among these genes (Figure 7E) and extracted the top ten hub genes from this network (Figure 

7F). Interestingly, top ten genes are GTPases Rac1, RhoA, and RhoB, their GEFs (Guanine nucleotide 

Exchange Factors Vav1, Vav2, Vav3 and Tiam1), their effector Pak1, phosphoinositide-3-kinase 

regulatory subunit (PIK3R2) and beta-catenin (CTNNB1). Taken together, these data indicate a 

prominent role for Rho GTPases, particularly Rac1, in modulating resistance to 5-FU-based therapies 

in CRC. 

Organ control 5-FU iver iver+5-FU 1A-116 1A-116+5-FU 

Lung (nodes/mouse) 2±1 1.33±1.15 1±1 0.33±0.58 0.67±0.58 0±0* 

Liver (nodes/mouse) 1.33±0.58 1.33±1.53 1.33±1.53 1.33±1.53 0.67±0.58 0.67±0.58 

Splenomegaly** (spleen 

length mm) 
24.25±2.06 25.75±2.06 24.75±1.50 26±1.41 20.50±1.91* 23.25±1.50 

*p<0.05 ordinary one-way ANOVA vs. control 

**Normal length reference: 15–20 mm 
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Figure 7. Generation of recurrence predictor signatures. (A) LASSO coefficient profiles showing the 

most important DEGs predictors of recurrence selected by LASSO regression analysis (left, DEGs 

predictors in data sets of patients treated with 5-FU monotherapy; right, DEGs predictors in pooled 

matrix of patients treated with 5-FU, FOLFIRI, or FOLFOX). (B) Receiver operating characteristic 

(ROC) curves showing the predictive efficiency of recurrence for each DEGs signature on its 

respective data set (training + validation). (C) LASSO coefficient profiles showing the most important 

genes predictors of recurrence from Rho GTPases gene set selected by LASSO regression analysis in 

the 5-FU monotherapy datasets and combined treatments merged matrix. (D) ROC curves showing 

the recurrence predictive efficiency for each Rho GTPases genes signature on its respective data set 

(training + validation). In both (A) and (C), the predictors common to more than one dataset or that 

appeared as predictors even when different gene sets were used to perform the analysis are 

highlighted with a green color. (E) Heatmap showing the relationship between recurrence predictors 

genes expression and the overall survival. Patients were divided into groups with high and low 

mRNA predictor gene expression at median. Each heatmap cell corresponds to a predictor gene log10 

HR (hazard ratio) for the respective dataset detailed in column name. Colors in the red range indicate 

HR > 0, while colors in the blue range indicate a HR < 0. The graph only displays the predictor genes 

with significance level p < 0.05 in log-rank test. (F) Expanded PPI network of the set of all recurrence 

predictor genes (marked in colour), the main common interactor proteins were obtained by STRING 

Cytoscape StringApp and are shown in grey (selectivity of interactors = 0,5). (G) Top ten hub genes 

extracted from the predictors expanded PPI network, a greater red color intensity is associated whit 

highest number of connections in the network. AUC, area under the curve. 

4. Discussion 

CRC is the third most commonly diagnosed type of cancer worldwide. Early diagnosis, 

adenomas removal during screenings and improved CRC treatments have reduced morbidity and 

mortality rates. However, CRC incidence is increasing in middle- and low-income countries, and 

early-onset CRC is also emerging, positioning CRC as a growing global public health challenge [60].  
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Since their discovery, 5-FU-based chemotherapies have been commonly used to treat CRC. 

However, resistance to treatment has greatly affected 5-FU clinical use. As CRC is a heterogeneous 

disease characterized by different genetic scenarios [61], a CRC molecular comprehensive 

characterization could shed light on the understanding of resistance mechanisms and improve 

therapies. 

In this work, we addressed the identification of genes and pathways associated with 

development of resistance to 5-FU and 5-FU-based treatments in CRC. Comparison of gene 

expression datasets revealed the enrichment of pathways previously reported to be associated with 

resistance such as “TGFbeta signaling” and “SMAD2/3 activation by TGFbeta” [62–64]. TGFbeta is a 

cytokine involved both in physiological and pathological processes. Canonical signaling is mediated 

by SMAD transcription factors, but TGFbeta “non-canonical” pathway involves activation of proteins 

such as MAPK, PI3K/AKT and small GTPases as Rac1 and RhoA [65]. Categories and genes related 

to cell stemness [66,67], EGFR signaling [68,69], apoptosis [70], DNA repair [71], and interaction 

between tumor cells and the immune system [72] were also present in our analysis.  

When we looked for potential compounds reversing 5-FU resistance-associated gene expression, 

we identified molecules belonging to different categories. Some of them were involved in modulation 

of hormonal messages (dopamine and serotonin receptor agonists and antagonists), selective 

estrogen receptor modulation (this category includes tamoxifen and raloxifene, widely used in breast 

cancer) and adrenergic receptor inhibition such as phentolamine. Additionally, we found anti-

inflammatory compounds, mainly COX inhibitors. We focused on irinotecan, amitriptyline and 

ivermectin, three drugs under repositioning and selected ivermectin to our in vivo approach. As 

predicted by our analysis, ivermectin was able to re-sensitize CRC cells to 5-FU monotherapy, but no 

significant metastasis prevention was associated to this treatment. Noteworthy, the antitumor 

mechanism of action proposed for ivermectin is associated to P21(Rac1)-Activated Kinase 1 (PAK1) 

function [73–75]. 

Interestingly, the most represented pathways in all datasets were directly or indirectly related 

to Rho GTPases activation. Indeed, activation of Rho GTPases may be under control of the Serum 

Response Factor as many upregulated genes in recurrent phenotype contained serum response 

elements in their promoter sequences. Many studies have identified SRF as a central agent in the 

development of multiple types of cancer, which has classified it as a potential biomarker and 

therapeutic target, especially for cancers with a poor prognosis. SRF controls the expression of 

cytoskeleton, morphogenesis and cell migration genes, but also SRF-MRTF complex activity also 

responds to Rho GTPase-induced actin changes, thereby coupling cytoskeletal gene expression to 

cytoskeletal dynamics [76–78]. Accordingly, it was recently described that active Rac1 modulates 

SRF/MRTF, which initiates a switch to a mesenchymal-like state characterized by therapy resistance 

in melanoma [79].  

Rho-GTPases regulate a variety of important cellular activities, such as cytoskeletal remodeling, 

cell adhesion, cell movement, vesicle transport, angiogenesis, and cell cycle regulation [76,80–83]. 

Rho-GTPases are generally described as "molecular switches" because they fluctuate between their 

active conformation attached to GTP and the inactive conformation bound to GDP. The activation of 

the “molecular switch” is controlled by guanine nucleotide exchange factors (GEFs), which stimulate 

the release of GDP bound to the inactive form and promote combination with GTP [84]. The inactive 

state of Rho-GTPase is maintained by inhibitory molecules of the guanine nucleotide dissociation 

(GDIs) and GTPase activity activating proteins (GAPs) [84]. Through changes in Rho-GTPases 

protein levels, their activity or their effector proteins, abnormal signaling could contribute to different 

steps of cancer progression, including proliferation, survival, invasion and metastasis [22,85].  

Rac1, RhoA and Cdc42 are the three classical members of Rho-GTPase family, being Rac1 the 

one that has received increased attention [82]. Rac1 is widely expressed in tissues, and is considered 

a regulatory factor related to cell movement and invasion. Rac1 is highly expressed and overactivated 

in many tumor types and it had lately been related to resistance to therapy in several reports [79,86–

90]. 
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Based on our data and the literature, Rac1 could be engaging cellular mechanisms leading to 5-

FU-based resistance in CRC. To confirm our hypothesis, we treated 5-FU-resistant CRC cells with 

Rac1 inhibitor 1A-116 noting that doses not compromising viability of CRC cells were enough to overt 

morphological changes associated to resistance, and re-sensitize resistant cells to 5-FU. Moreover, 

Rac1 inhibition restored the expression of epithelial markers to 5-FU-resistant cells, previously 

characterized in a mesenchymal-like state associated with therapy resistance. Administration of Rac1 

inhibitor to mice bearing CRC tumors reduced tumor growth, sensitized resistant tumors to 5-FU 

monotherapy, and decreased metastasis development. Interestingly, tumors derived from animals 

treated with Rac1 inhibitor showed an increased number of immune cell infiltrates (data not shown), 

suggesting that Rac1 inhibition could be acting through different mechanisms, including immune 

escape mediated by tumor microenvironment [91]. 

Additionally, our data suggest that Rac1 inhibition could be an important strategy to overcome 

resistance to therapy in different cancer types. Indeed, Rac1 modulated pathways could be playing 

essential roles in developing resistance to different therapeutic approaches such as endocrine 

therapies, targeted therapies and radiotherapy, as our enrichment analysis indicate common profiles 

between resistance to 5-FU-based therapies and gemcitabine and gefitinib in  non-small cell lung 

cancer [92,93], dasatinib for breast, lung, and ovarian tumors [94], tamoxifen in estrogen receptor-

positive breast cancer [95], and postradiation tumor escape of CRC [96]. 

Altogether our data point to Rac1 as a potential target to overcome therapy-resistance for CRC 

and other types of tumors, and suggest that Rac1 inhibitor 1A-116 could represent a good therapeutic 

agent to overt CRC resistance for 5-FU-based therapies. 

5. Conclusions 

CRC is the one of the third most diagnosed type of cancer worldwide, and the second in terms 

of mortality. Therapies to treat CRC are often associated with the development of resistance, so 

initially responding tumors became resistant to treatment. Therapies based on 5-FU have been used 

in the clinics since 1950, but almost half of patients develop therapy-resistance.  

Our findings indicate that inhibition of Rac1 activation by the compound 1A-116 reverses 5-FU 

resistance in CRC cells, decreases tumor growth and prevents metastasis development, suggesting a 

therapeutic application of 1A-116 for the treatment of therapy-resistant CRC. Further studies are 

needed to fully understand Rac1's role in CRC progression and therapy resistance. 
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