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Abstract: Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a pivotal
technology in the automotive industry, significantly contributing to the reduction of greenhouse gas
emissions. The high material costs of the gas diffusion layer(GDL) and bipolar plate(BP) creates a
barrier for large scale commercial application. This study aims towards addressing this challenge
by optimizing the material and design of the cathode, GDL and BP. While Deterministic design
optimization(DDO) methods have been extensively studied, they often fall short when
manufacturing uncertainties are introduced. This issue is addressed by introducing Reliability
based design optimization(RBDO) to optimize four key PEMFC design variables i.e., gas diffusion
layer thickness (&44;), channel depth (d,), channel width (wg,), and land width (wygnq). The
objective is to maximize cell voltage(V,.;) considering material cost of cathode gas diffusion
layer(Cost.sp;), and cathode bipolar plate(Cost.gp) as reliability constraints. Results of the DDO
show an increment in V,.; of 31mV, with reliability of around 50% for Cost.;p, and Costgp. In
contrast RBDO method provides a reliability of 95% for both Cost.cp;, and Cost gp.

Keywords: polymer electrolyte fuel cell; reliability-based design optimization; dimensional
uncertainties; multi-layer perceptron; particle-swarm optimization; dimensional tolerance; Monte
Carlo simulation; dynamic Kriging surrogate; deterministic design optimization

1. Introduction

Fuel cells (FCs) are considered as a key enabling technology for emerging hydrogen economy
[1]. These devices electrochemically convert fuels such as hydrogen and oxygen to generate
electricity. FCs are silent in operation with zero emission of harmful pollutants and can generate
electricity if the source of fuel is supplied. FCs are generally classified based on the conducting
electrolyte used, operating temperature and the feasible performance region [2]. PEMFCs are
considered as one of the most promising sources of energy conversion devices that would perhaps
replace the internal combustion engines [3]. PEMFCs are particularly well suited for stationary and
mobile applications. In PEMFCs, the electrochemical reaction of hydrogen along with oxygen to form
water is divided into the partial reactions of oxidation and reduction by incorporating a proton-
conducting membrane between the anode and cathode electrodes. PEMFCs are typically operated at
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temperatures ranging between 50°C and 80°C and have high power density and low degradation
rates [4].

PEMECs has received immense attention due to its wide range of application. Their application
in real world ranges from industrial scale systems for power backup to mobile power for trains, buses,
heavy duty trucks and material handling systems [5]. However, in recent years the widespread
implementation of PEMFCs have been restricted due to a rise in manufacturing costs and issues
pertaining to durability in fuel cell designs [6,7]. Therefore, it is imperative to work over the design
aspects of fuel cells. The modern fuel cell market is highly competitive and requires engineers to come
up with designs that are inexpensive and highly reliable. The design process is quite intricate and is
largely focused on producing products that are characterized by being inexpensive, of excellent
quality, and of great durability. The modern design process is based on complex simulation models
that can support complexity and fidelity to accomplish the aforementioned objectives and are often
termed as simulation-based design approach [8].

Over the past few decades, the computational speed of computers has increased exponentially
leading to development and application of large-scale simulation models. Simulation tools like
computational fluid dynamics (CFD) and finite element analysis (FEA) have seen large growth and
are able to represent an actual physical system. This has lead design engineers with a wide range of
opportunity to come up with improved and optimal design strategies. To create high quality design
models, the engineering community of today has been using optimization to a greater extent. These
design models demonstrate to be cost effective and have acceptable performance abilities. In most
cases, engineers consider the design variables to be deterministic during engineering design
optimization, and the process of attaining an optimal design on this basis is referred to as DDO.

PEMECs have been optimized using numerical analysis to improve cell V,.; by considering the
design variables to be deterministic. Song et al. [9] optimized the cathode catalyst layer considering
the one-dimensional macro homogenous model where the four design parameters such as Nafion
content, void volume fraction, thickness, and the amount of platinum (Pt) loading. Grigoriev et al.
[10]optimized the geometry of the BP and GDL of a high temperature fuel cell and provided an
insight onto the effects of these parameters on V,,;. Kim et al. [11] conducted a comprehensive study
considering metallic BPs and evaluated the effects of channel to rib width ratio, draft angle, inner
fillet radius and clamping pressure. The study reveals that the GDL intrusion is highly influenced by
the channel to rib ratio and draft angle which in turn affects pressure drop within the channels.
However, a typical engineering process consists of various uncertainties. Products manufactured
based on DDO approach will have varying performance characteristics and a high risk of failure as
they do not consider uncertainties in them. In real world scenarios, uncertainties may often arise due
to external operating conditions, variations in parameters such as dimensions or material properties,
model uncertainties and errors associated with the simulation tools used for simulation-based
designs and many more. When the uncertainties are taken into consideration some types of
constraints such as initial condition and V,,; maybe violated. Therefore, to avoid the risk of any
given product to fail, these uncertainties must be considered during the optimization process.

Optimization methods that consider the uncertainties in design variables and solve an
optimization problem with reliability constraints are termed as RBDO [12,13]. With RBDO the
designers are able to determine optimal designs that would meet target reliability measures that
would achieve satisfactory levels of performance measures and constraints. RBDO has been widely
used in the field of structural designs and fluid-structure interactions problems, magnetic energy
storage systems and multi body dynamic systems. However, till date there has no research been
presented where RBDO has been used to optimize the design variables for a PEMFC.

PEMFCs are highly complex systems that consists of several components. These components
have varying material properties and manufacturing tolerances. Any minor changes in the
component properties and dimensions along with PEMFC operating conditions such as temperature,
humidity and pressure will affect the PEMFC performance. Hence, variability must be considered
during design stage itself. RBDO engineers consider the input design variables of a probability
distribution and carry out optimization to determine an optimal design solution [14]. The design thus
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obtained are reliable and have a very less chance of failure. Dimensional tolerances which refer to the
allowable deviation from the specified dimension are a critical part of manufacturing of PEMFC
components[15-17]. Intricate components are expensive to manufacture and must meet strict
dimensional tolerance levels. Small deviations in dimensions can cause significant reduction in
performance and costs. For example, the membrane electrode assembly (MEA) thickness has to be
precisely controlled so that the flow of reactant gases reaches the CL layer. Likewise, 44, and dp
must be controlled to make sure that the reactant gases and flow of liquid water is managed well
within the cell.

The dimensional tolerance considered during manufacturing plays a pivotal role in increasing
costs of PEMFCs[18]. The process of manufacturing PEMFC components are highly complex and
require high precision. In addition, the use of expensive and high-quality materials to meet high
dimensional tolerance levels leads to an increase in the overall cost of PEMFCs. A fuel cell stack
consists of hundreds of single cells that are arranged in series and generate the required power and
voltage for operation. Highly precise manufacturing accuracy in BPs and GDLs are required to obtain
uniform contact pressure and electrochemical reactions in the stacks [19-21]. However due to the
manufacturing process, errors arise in shape, dimensions and assembly that are inevitable. Stamping
process is the most preferred choice for manufacturing BPs [22,23]. During the stamping process
highly localized stamping forces are induce while channels are formed leading to errors in
dimensions of channel height and width [24,25]. In addition, dimensional variation in GDL and BPs
would also lead to assembly errors and causes failure of the systems [26]. Thus, there is a need to
consider these errors during the optimization stage.

The GDLs serve as a medium for distributing the reactant gases and are generally made of
carbon fibers. On the other side, BPs are employed within the fuel cell stack to conduct electricity and
separate individual cells. The amount spent on materials is significantly impacted by the dimensional
tolerance needed throughout the production process. It will take high-quality materials with reliable
properties to achieve tighter tolerance. Also, the material wastage for manufacturing GDLs and BPs
with tighter tolerance levels will be high. This is due to the fact that parts must be scrapped or
reworked when they do not meet the required dimensional tolerance. Likewise, for looser tolerance
there is a possibility of using low-cost material with wide variations in thickness. This may result in
lower material cost with additional processing steps required and a compromise in V,,;. Overall, the
effect of dimensional tolerance on material cost will be influenced by the manufacturing process and
the materials employed. To ensure manufacturing high-quality products at an affordable price,
manufacturers must carefully balance the necessary level of precision with the associated material
costs.

Based on a comprehensive review of existing literature, it is evident that currently there is a
significant gap in research on PEMFCs. Specifically, studies that address how dimensional
uncertainties in design variables affect V,,;,;, while concurrently aiming to reduce material costs
during manufacturing. In this study, four key PEMFC design variablesi.e., 8gq;, dcn, Wen, and wigng,
have been considered for optimization with various optimization methods. At first, under suitable
constraint condition, initial data samples for the optimization study are generated using Latin
hypercube sampling(LHS) technique. These data samples are then considered as inputs for building
a database of V; through CFD simulations of a comprehensive, multi-scale, two-phase, 3D
numerical PEMFC model. The 3D PEMFC numerical model have been extensively developed and
experimentally validated in our previous studies [27-30]. Further, the database of design variables
and their corresponding V.., values are divided into training and test sample sets. Considering the
training samples, a multi-layer perceptron(MLP) surrogate model is constructed using MATLAB
R2024a, and then tested on distinct unseen test samples. Next, the MLP is linked to particle swarm
optimization (PSO) algorithm and a constrained DDO is performed focusing on maximizing V..
We particularly introduce the RBDO technique to account for manufacturing uncertainties, which
differs from the current DDO method and centers our study to meet practical engineering reliability
norms. Furthermore, to evaluate the effects of uncertainty and present an unfailing design, the
reliability of the two constraints Cost.sp; and Cost.gp of a 100kW road vehicle stack has been
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assessed and presented. This strategy has significant implications that encourage the deployment of
PEMEC technology in automobiles.

2. Numerical PEMFC Model

In this optimization study, a 3D, multiscale, two phase PEMFC model has been used. The model
is based on the multiphase mixture (M?) model proposed by Wang and Cheng [31] and considers
various components of a PEMFC cell which includes the BPs, GDLs, CLs and the membrane. The
model has been validated against the experimental polarization curves measured under different cell
designs and operating condition [32,33]. For a realistic model, the effects of clamping on the GDL
structure and the variation in properties have been considered. Since the model employed in this
study is identical to that described in our previous studies [33-35], the model assumptions and
governing equations are presented in brief in Sections 2.1 and 2.2. Finally, in section 2.3 an outline of
the boundary conditions and numerical implementation of the PEMFC model using ANSYS fluent
(ANSYS Inc., USA) has been presented.

2.1. Model Assumptions

The following are the specific assumption used in this numerical study

The operating pressure is low and hence ideal gas mixtures are assumed in the gas phase.
The velocity of flow is low and laminar.

The effect of gravity is neglected.

In the porous region, immobile liquid saturation is neglected.

L e e

2.2. Governing Equations and Source Terms

In this study, the PEMFC model under consideration is governed by the five conservation
equations: mass, momentum, species, charge, and thermal energy. The equations stated above are
linked to source terms that are related to the hydrogen oxidation reaction (HOR) in the anode and
oxygen reduction reaction (ORR) in the cathode. For further reference regarding the governing
equations and source terms, readers can refer Table 1 and Table 2.

Table 1. Governing equations for the PEMFC model.

Governing equations
Mass V-(p)) =0 1)

1 -
Momentum (s_z) V-(puu) =—-VP+V-1+S5, (2)

Flow channels and porous media:

Species N 5 3)
P V- (ipm)) = V- [pD7 TN (mf)] + V- [(mf = m)j"] + 5,
Water transport in membrane:
(=2 —v. ! (M ypt = )
v (( — )Dwemva) M, —V (nd (F)) M, +V (( y )VP =0
Proton transport:
Charge V- (Keffv¢e) + S¢ =0 (5)
Electron transport: 6
V- (c*Veps) =Sy =0 ©)
Energy V- (puCJT) = V- (k/VT) + Sy 7)
Table 2. Source/sink terms used in the PEMFC model.
Description Expressions
Momentum Porous media Su=-— %ﬁ'
Species H2 in anode CL Shya = [— ZJ_F] Hy
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. j
Oz in cathode CL So,.c [E] Mo,
. Ng ]
Water in anode CL Swa=|—-V (F 1) + ﬁ] M,,
' — oy . (27~ L
Water in cathode CL Swe=1|-V ( Fz I) ZF] M,,
I
In anode CL Sra=Jj '+ i
E In cathode CL au r
nergy n cathode STC_J(n+Tﬁ)+keff
12
In membrane Sy = o7
Charge In CLs: S¢ =]
Electrochemical reactions
M; = chemical formula of species i
Z siMf =ne”, where{ s; = stoichiometric coefficient
k n = number of electrons transferred
HOR on the anode side: H, — 2H* = 2e~
ORR on the cathode side: 2H,0 — 0, — 4H* = 4e”
HOR in anode CL:
1
C 2 E, /1 1 a,F
==t (e ) e ()
J = =saiy (CHZ,M P17 \7 7 35315/ [\P \Rr " ®)
Transfer —exp (— ﬂn))
RT
current
%Z?Sl?i’ ORR in cathode CL:
m 3/4
o B (Y (el
Tpe " Ppe* Ocp ° Coyref R AT ©)
1)) ()
353.15) ) “P\ " R,7" "
n=¢s—¢.—U
Overpotential where U = U. — Btz (10)
0 nF COZ ref

In Table 3, the kinetic, transport and physiochemical properties of the PEMFC components have
been listed. Table 4 lists all the pertaining equations that relate to the M? mixture model suggested
my Wang and Cheng [42]. Additionally, Table 5 lists a set of species transport properties which are
correlated to the water content A which in turn is a function of the water activity a [43].

Table 3. Kinetic, transport, and physiochemical properties.

Description

Value/ Expression

Exchange current density of HOR x ECSA per unit
CL volume, aly?
Exchange current density for ORR, I;<
Activation energy of anode, E,
Activation energy of cathode, E,
Transfer coefficient of HOR, a, = a,
Transfer coefficient of ORR, «a,
Reference H2/O2 molar concentration, C"¢/
Permeability of GDL/CL, Kgp,/KcL
Equivalent weight of electrolyte in the membrane,
EW

1.2 x 1010 A/m3 [36]
2.0 x 104 A/cm2-Pt
10.0 kJ/mol [36]
70.0 kJ/mol [36]
1 [37]
1 [37]
40.88 mol/m? [36]
1.0 x 1012/1.0 x 10-13 m2 [38]
1.1 kg/mol [39]
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6
Youngs modulus of GDL 6.16MPa [40]
Poisson ratio of GDL 0.09 [35]
Faraday’s constant, F 96,485 C/mol
Universal gas constant, R, 8.314 J/(mol - K)
H: diffusivity in the anode gas channel, D(‘)g_ Hya 1.1028 x 104 m?/s [41]
H:O diffusivity in the anode gas channel, D(;qHZ 0a 1.1028 x 104 m?/s [41]
Oz diffusivity in the cathode gas channel, Dg, . 3.2348 x 10 m?/s [41]
H:0 diffusivity in the cathode gas channel, Dy Hy0,c 7.35 x 105 m?/s [41]
For nonporous regions
Binary gas diffusivity (D) Df = g ( T )3/2 (Po) (11)
Ty P
For porous regions
Effective diffusivity (D9**//) e e es (12)
D;” =¢' - D;
Table 4. Expressions used in the two-phase mixture model.
Description Expression
Mixture density (p) p = p's + p9(1 —s) (13)
P 1
. . g —[—
Gas mlxécu:;; density p ( RuT> m? (14)
p Ziﬁi
Mixture velocity (pu) pu = p it + pIud (15)
+ p9(1 —
Mixture mass fraction m; = o sm P s)m (16)
p
l 3 (17)
Relative permeablhty K = ( 1—5)? (18)
Kinematic viscosity of KL kO
the two-phase mixture vl g
Z llu'l
X1 X
e e . (0
N _ N1/4
where ¢;; = i(1 + ﬂ) 1+ (ﬁ) (ﬂ)
J V8 M;j Hj M; (21)
Kinematic viscosity of and
the gas mixture ty, = 0.21 X 10-6T0-66
= 0.00584 x 10~6T*%?
_ 212 JHw ’ ' (22)
U;[N.s.m™?] v, = 0.237 x 10767076 / T in kelvin
Ko, = 0.246 x 1076T°78
kl
U
Relative mobility A= 23)
=1 A 24)
Diffusive mass flux J=plal — Apti = —/1’/19 VP, (25)
. &£ 1/2
Capillary pressure Pc P.=P9—-P =gcosf (E) J(s) (26)
, / , .. . @7
Leverett function J(s) _ {1.417(1 —5)—2.120(1 — 5)%? + 1.263(1 — s5)3if 6. < 90
1.417s — 2.120s* + 1.263s> if 6 > 90°

Table 5. Transport properties in the electrolyte.

Description Expression



https://doi.org/10.20944/preprints202408.1949.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2024 d0i:10.20944/preprints202408.1949.v1

A=
{Ag =0.043 + 17.81a — 39.85a% + 36.0a> for0<a < (28)
){l = 22

Membrane water
content (A)

g
Water activity, a = C;fﬂ [00] (29)
sat
Electro-osmotic drag 252
(EOD) coefficient of ng = 7 (30)
water (ng)
1 1
Proton conductivity (k) x = (0.51391 — 0.326) exp [1268 (ﬁ - ?)] (31)
prem =
2.692661843 - 10_10f0r A<2
Water diffusion {0.87(3 — ) +2.95(1—2)}-10710. o (79728-2416, 32)
coefficient (D{¢™) —10 . . (7.9728—2
{2.95(4 — 1) + 1.642454(1 — 3)}- 10710 - ¢(":
(2.563 — 0.331 + 0.02644% — 0.00067143) - 10710 - e (79721
Interfacial resistance of Sw
Quyine = Zyy —2—
the water film wint = fw Do, w (33)

2.3. Boundary Conditions and Numerical Implementation

Figure 1. illustrates the micro and macro scale computational domains of the PEMFC along with
the various switching variables exchanged during the 3-D multi-scale simulations. The figure
includes the structure of an individual unit cell and boundary conditions considered in the present
study. Apart from the inlet and outlet regions of the anode and cathode gas channels, all the external
surfaces have been considered for mass flow under the no slip and impermeability boundary
conditions. In terms of thermal boundary conditions in the computational domain, an isothermal
boundary condition is considered for the side walls of the anode and cathode, whereas an adiabatic
boundary condition is considered to the top and bottom surfaces. The PEMFC can be operated either
in the galvanostatic or potentiostatic mode and this can be achieved by applying a constant voltage
or current density at the outer side wall of the cathode, while the electric potential ¢; is fixed to zero.
Figure 1b, presents the results of the grid-independent study and the number of meshes required to
achieve good analysis accuracy is determined to be about 240,000. The PEMFC model consider in the
study is numerically implemented by employing user-defined functions in the commercially
available CFD program ANSYS Fluent ver. 23 (ANSYS, Inc., US) and the convergence criteria is set
to 10 for the equation residuals.
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a) Micro-scale CL model 3D comprehensive two-phase fuel cell model
(spherical coordinate system) (cartesian coordinate system)

L

1
) {uﬁ Amem
. CpAach
/'y
'-_ L Electric potential (aBP : ¢, = 0,cBP : aVp,=1)
S -
Ty
W 2.3
17y s L9
) ' 2 Q
N Q ) R
H 3
[ ) : J
LS 3 © .,
14 X
2g Weg e
» * -R dimensions |

=== Iso-thermal B.C ( T =333.15K)

el
o]
9
1
2
B
1
1
el
]
]
1
1
1

b)

—_ —u— Cell Voltage
2 070 |

3 -E—E—n—n
> "

da

& /

S 065 m

- /

-

3 .

0‘60 1 1 1 1 1

0 10 20 30 40 50

Grids in 10* elements

Figure 1. a) Illustration of the micro and macro-scale computational domains in PEMFC, emphasizing
the variables exchanged during 3D multi-scale simulations; (b) Grid independence test results,
demonstrating the stability and accuracy of the computational model across various grid resolutions.

3. Overview of Design Optimization Strategies for Engineering Application

In engineering design, the two fundamental strategies typically employed to optimize a design
is the DDO and RBDO approach. The DDO method is centered around maximizing or minimizing a
single/multi objective function while adhering to a specific set of constraints. This strategy is widely
followed in industries and is computationally efficient and provides a well-defined single design
solution. However, the RBDO approach considers the uncertainties in design variables and aims to
achieve a set level of reliability. This method involves estimating the probability of failure under
different uncertain conditions and using this information the design variables are estimated to
minimize the probability of failure. When compared to DDO approach, RBDO is a more sophisticated
design strategy as it considers the inherent variability and uncertainties associated with the design
variables.

A typical DDO problem for a single objective optimization problem with the objective of
minimizing the cost function f(X) is formulated as

Minimize f(X) (34)

subjected to

GiX)=0forj=1,...,]

Xt<x< XY, fori=1,...,N (35)
where, X ={X;,X,,..,Xy}" is the vector of N input design variables, and ] is the number of
constraints. G;(X) = 0 represents the inequality constraint where all the constraints J are satisfied.
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The constraints are violated if G;(X) < 0. The terms X{ and X represent the lower and upper
bounds of the design variables N design variables.

Figure 2 shows the solution for a deterministic single objective optimization problem with two
design variables (X;,X;), and two constraints G;(X) and G,(X), obtained through DDO approach
such that Eq. 34 is satisfied. As seen, the deterministic optimum point denoted by X; = dy, X, = d,
lies at the intersection of the two constraint curves denoted by G;(X) = 0 and G,(X) = 0. The region
below the constraint boundaries is known as the infeasible region. The solution for Eqgs. (34-35) is said
to be violated when the constraint solution is G;(X;,X;) <0 and is said to be acceptable when
Gj(X1,X;) = 0. The region dividing the feasible and infeasible regions denoted are denoted by the
constraint boundaries, G;(X) =0 and G,(X) = 0. When optimization is performed using the DDO
approach without accounting for uncertainties in the design variables, there is a significant risk that
the optimal design will exceed the constraint limits, potentially resulting in the failure of the DDO

design.
4 ® Deterministic optimal point
X Reliable optimal point
~ FeaE'h]e l'e(),__{l(m The  optimal design
< G:(X+. X >0 achieved via RBDO are
= 1,4A2) =
% Gl (X) J ‘ roughly 95% reliable
.E’ 2 N .
= \ L G(X)=0
> Probability of X, about \
= RBDO solution r; “
Lo : Contours of the joint probability
3 . distribution illustrating the
=] Probability of X; A - : uncertainty in design variables
@‘ ---------------- 2 !
. . i N The optimal  design
Failure region l ' achieved via DDO are
G} (Xl; XZ) <0 J&l\ A roughly 50% reliable -

Design variable X

Figure 2. Illustrations depicting the outcomes of RBDO and DDO on the solution of a hypothetical
optimization problem, highlighting the impact of uncertainty in the design variables X; and X,.

The basic idea underlying RBDO is to apply a numerical optimization technique to ensure that
the optimal design meets the reliability criteria under uncertainty. The RBDO problem is formulated
to balance performance and reliability, incorporating probabilistic constraints to account for
uncertainties in design parameters. A general RBDO problem is further formulated as follows,

Minimize f(d) (36)

subjected to

Pri(d) = P[G;(X) > 0] < P for j=1,..,]

di<d<d! fori=1,...,N (37)
where, d ={dy,d,,...,dy}" is the vector of N random input design variables which is made up of
mean values of each of the N random design variables. d can be further represented as, d = u(X),
where p(-) is the mean value operator and X = {X;,X,,...,Xy}" is the random design variable
vector. Pp;(d) represents the probability of failure at the j** constraint of the design vector d, G;
represents the j™ constraint, P[] is the probability that the j™* constraint is violated, J is the
number of constraints, Pf¢" is the target probability of failure for the j™ constraintand, df and df
are the lower and upper bounds of the random input design variables in the design space.
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The RBDO solution to Egs. (36-37) is shown in Figure 2, where it can be compared to the DDO
problem’s solution. The reliable solution, as indicated by the blue star is in the feasible region and
has a slightly higher objective functional value than the deterministic design ensuring compliance
with reliability constraints. The deterministic optimal point, initially in the failure region (red circle),
is adjusted in RBDO to meet a target probability of failure, ensuring the design remains within the
feasible region. For instance, at the DDO optimal, 50% of the joint probability contours exceed the
constraint boundary, reflecting a 50% reliability. Conversely, the RBDO method achieves a reliable
optimal with 95% reliability, as only 5% of the total violate the constraint condition.

Figure 3 demonstrates the process flow for estimating a reliable optimal design solution using
RAMDO'’s sampling based RBDO software. As seen, the RBDO process starts with a deterministic
optimal design. In this study, we attain the deterministic optimal point using the PSO algorithm in
conjunction with the MLP surrogate model, as detailed in our previous research. For a comprehensive
description of the model and optimization algorithm, interested readers can refer to our earlier
studies [27,44]. Further, at the deterministic optimal point the input design variables i.e., §44;, dcp,
Wep, and Wig,, are assumed to follow a marginal normal input distribution. These input distributions
are further used to construct the DKG surrogate model which is basically an approximation of the
true PEMFC numerical model. The construction of the DKG surrogate is based on Design of
Experiments (DoE) where a combination of input parameters from the respective normal
distributions, and 3D PEMFC simulation model is used to generate the performance of the PEMFC.
Once the surrogate is constructed the accuracy of the surrogate must be verified. The mean square
error (MSE) is used as a metric for checking the accuracy of the constructed surrogate and is set to
0.001. The surrogates developed are then utilized to direct reliability estimation via MCS. Given that
MCS requires very large sample points, evaluations of true samples make it practically impossible.
As a result, the use of the DKG surrogate makes the task easier. The entire optimization scheme is
based on a single loop optimization structure and has a significant reduction in computational time
when compared to reliability-based index approach and the performance measure approach.
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optimization has
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Yes
Optimal PEMFC design

Figure 3. Flowchart of the RBDO process beginning with the initial deterministic PEMFC design that
sequentially follows through scanning for Design of Experiments (DoE) samples, generating
additional samples if needed, executing 3D PEMFC simulations, constructing and verifying the
dynamic Kriging surrogate model, and performing Monte Carlo simulations for reliability
assessment. The process concludes with the RBDO optimizer determining if an optimal design
convergence has been achieved.

4. Estimating the Material Costs of the Cathode GDL and BP in PEMFCs

The fuel cell system’s acquisition cost needs to be reduced to a level comparable with that of an
internal combustion engine for PEMFCs to be a viable choice for commercial application. A study by
Simon et al. [45] reveals that the fuel cell stack accounts to approximately 45% of the total system cost,
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while majority of the cost is contributed by the MEAs (includes catalysts, membrane, GDLs and the
MEA assembly) and the BPs. At high production volumes of above 500,000 stacks/year the material
used in the GDL and BP dominates most of the manufacturing expenses, accounting for 89% and 57%
of the total production cost incurred [46]. Thus, estimating the material cost of the GDL and BP in
PEMTFs is crucial to ensure economic viability of this clean energy technology. In addition, an accurate
estimation of material costs enables manufactures to plan budgets effectively and help optimize the
production process, thereby reducing the overall costs.

In this study, we base our cathode GDL material cost estimation model on Ballard material
products, which are comparable to those from other GDL manufacturers [47]. The production of a
GDL involves two main steps: carbon fiber papermaking and hydrophobic treatment. First, carbon
fibers are chopped and mixed with water and polyvinyl alcohol. This mixture is then laid onto a web
using a wet-laid papermaking technique, dried, and re-spooled. To control the porosity, the carbon
and resin content is carefully regulated, followed by heat treatment under oxidation conditions.
Finally, fluorinated ethylene propylene (FEP) is added to the surface to enhance hydrophobicity. As
reported by Brian et al. [47], the Cost.gp, of a GDL with thickness of 105 microns is 1.58$/m?. This
reference material cost includes various components such as paper making, impregnation coating for
porosity, oxidation/carbonization/graphitization, and impregnation coating for hydrophobicity. By
summing up the individual material cost at each step involved we derive a single equation for the

total material cost of GDL as is given as follow,

)
COSthDL = Acell X Ncell X g4 X COSthl;, (38)
5ref

where, A, represents the active area of the cell, set at 0.03m?, N, is the number of cells needed
to produce a stack of 100kW, set at 550, &, is the thickness of the reference GDL, set at 105 micron,
and Costyo is the material cost of the reference GDL, set at 1.58$/m?.

Further, to estimate the material cost of the cathode BP the material cost equation reported by
Battelle Memorial Institute [48] has been used and is given as follows,

Mepp = Ppp X Acert X (2dcp + dpp) X Ognw (39)

Costogp = Mgp X Nooyy X CostI¥t (40)
where, mgpp is the mass of the cathode BP, ppp is the density of the bipolar plate material used and
is considered as 1900kg/m?, the term dgp represents the thickness of the base material in the BP, set
at Imm, Oy, is the overage allowance and is considered as 5%, Costpp’t represents the cost of the
bipolar material used and is given as 2.066$/kg.

5. Formulation of the Optimization Problem

The modern engineering community is increasingly using optimization as a design tool to
achieve optimal designs that minimize costs while meeting performance constraints. Optimization is
used to find optimal designs characterized by lower cost while satisfying performance constraints. In
the present study, two design optimization strategies for PEMFCs: DDO and RBDO have been used.
In DDQ, the primary objective is to maximize the performance of the objective function(V,,;;), while
adhering to specific deterministic constraints and design variable bounds. This approach ensures that
the design variables are optimized within predefined bounds, leading to a solution that meets the set
criteria without considering uncertainties. Considering the aforementioned criteria for DDO the
optimization problem is formulated as follows:

Maximize V,.; (X) (41)
Costeqp(X) =0

Cost.gp(X) =0
X! =10.05,0.3,0.3,0.3]
XU =104,2,2,1] (42)

where, X is the vector of the four design variables represented as X = {841, dcn, Wen, Wiana }T, X! and

subject to{ for Xt <X <X?

XY represent the lower and upper bounds of the design variables. The deterministic optimization
described in Egs. 41 and 42 does not account for uncertainties in the design variables. As a result, the
optimized designs obtained through DDO have a high probability of failure due to violations of the
constraints which would lead to potential design failures.
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In a fuel cell system, the material employed has a significant impact on its performance,
reliability, and cost. As previously discussed, the material costs on the cathode side, particularly for
the GDL and BP are significant throughout the manufacturing process. The permissible variation in
the dimensions of the GDLs and BP, known as tolerance, is critical during production. Therefore, it
is essential to study the consequences of tolerance variations to mitigate their impact on material
costs. To address these challenges, RBDO is employed. In RBDO, material costs for BP and GDL are
considered as reliability constraints, ensuring that the design remains robust under uncertainty. The
problem can be formulated as follows:

Maximize V,.; (d) (43)

Pry(d) = P[Cost gp,(X) < Costegp] < PEY (44)
Ppy(d) = P[Cost.gp(X) = Costii’] < PES”

d represents the design vector and d = {u (X(gg dl) , ”(Xdch)' u(chh), u(lean d)}T, which is the

subject to {

mean value of the four design variables, &44;, dep, Wep and wignq. The terms Ppy(d)and Pg,(d) are
defined as the probability of failure of the two constraint function vector at the design vector d and,
X is the random design variable vector represented as X = {ng av Ko Xwenr Xwigna) - The two
constraints, Cost25y, and Cost25’ represent the material cost of the cathode GDL and BP at the
deterministic optimal as a result of the DDO. The target probability of failure Pf{" and Pf4" for the
two constraints, Cost.cp, and Cost.gp is considered as 5%, where the target reliability is 95%.

6. Results and Discussion

In this study, the results of an optimization framework aimed towards optimizing fuel cell stack
performance while taking in account of the cathode, GDL and BP material cost as constraints has
been presented. The analysis is carried out with the V,,; as the objective function that is being
maximized, while the dimensional uncertainties of the four key PEMFC design variables i.e., §44;,
deny Wep, and Wyg,4, has been considered. In addition, the cost of the materials for the cathode, GDL
and BP is also considered as a criterion that must be met. In Section 6.1, we evaluate the predictive
capability of the MLP surrogate. In section 6.2, results of the DDO approach are presented.
Furthermore, in section 6.3, a comprehensive discussion of the RBDO approach wherein the
uncertainties in design variables have been considered has been presented.

As seen in Figure 4, to ensure that the 3D numerical PEMFC model considered in the present
study can predict the performance of the fuel cell, a 3D PEMFC numerical model that was previously
developed and validated against experimental polarization curves under various cell designs and
operating conditions has been taken into consideration[31]. This validated model has been
considered as the baseline for the present optimization study and has incorporated a g =
0.215mm,d;; = 0.54 mm, wg =1mm, and wy,y = 1mm, under 20% GDL compression (the
thickness of GDL is reduced by 20% from its initial value). These values are consistent and well
defined within the range of the design variable space specified in Egs. (41) and (42).
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Figure 4. Comparison of simulated polarization curves for the baseline and deterministic optimal
design predicted with DDO optimization strategy via MLP-PSO surrogate. The simulations are
conducted under controlled operating conditions for the anode and cathode: both set at pressures of
2 bar and stoichiometries of 1.2 and 2.0 respectively, with inlet relative humidity maintained at 100%
for each. The baseline design is with §,4; = 0.215mm, d¢, = 0.54mm, wg, = Imm and wg,q = 1mm
and the deterministic optimal design is with &gq; = 0.188mm, d¢;, = 0.3mm, wg, = 0.614mm and

Wigna = 0.310mm.

6.1. Evaluation of Predictive Capability of the MLP Surrogate

To estimate maximum V,,;; via surrogate-based design optimization under suitable constraint
condition as described in Section 5, at first a MLP surrogate model that was developed using
MATLAB, with detailed construction and implementation described in our previous work [27,44] has
been utilized. The model was trained with a dataset of 75 samples. To effectively evaluate the
predictive performance of the trained MLP model, a separate test set comprising of 15 samples,
distinct from the trained set was employed. An error analysis was conducted to measure the
predictive capability of the trained surrogate, using RMSE and adjucted R? error metrices which are
described in Egs. (45) and (46), respectively.

RMSE = [L3X, (0~ v)? (45)

- N (piep)?
adjusted R = 1 — —— (1 - (1 —M» (46)

N-d-1 N (wi-9;)?

where, v; and ¥; denote the responses of the 3D PEMFC simulations and the predicted values of
the MLP model, respectively; ¥; denotes the mean value of the observed data at the N test points,
and d is the number of design variables. RMSE measures the average magnitude of the errors between
predicted and actual values. Lower RMSE values indicate better model performance, with values
approaching 0 indicating the best accuracy. The adjusted R? value ranges from 0 to 1, while a value
of 0 indicates that the model does not explain any of the variability in the response data around its
mean, and a value of 1 indicates that the model is capable of considering the variability in the
response data around its mean.

Figure 5 illustrates a scatter plot comparing the prediction capability of MLP surrogate on both
the training and test datasets. As shown in Figure 5a, the MLP model’s predictions on the training
data are relatively high and are closer to line of perfect prediction indicated in red. In addition, results
of the error analysis indicate a RMSE of 2.03 mV and adjusted R? value of 0.956. These values imply
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that the MLP model is capable of nearly capturing the effects of changes in the training samples. In
contrast, Figure 5b illustrates the MLP models performance on the test dataset. The MLP model
exhibits a very minor decline in prediction capability, with RMSE of 2.45 mV and adjusted R? value
of 0.952, when compared to the training dataset. Nevertheless, the resulting scatter plot reveals that
the trained MLP is capable to predict near the line of perfect prediction, highlighting the model’s
capability to predict unseen data.

725 725
a) © MLP prediction b) © MLP prediction
-9 -9
— — o
= 700 - = 700
= o o P
= =
= =
& ]
= o~
% 675 % 675
= ° 2
=650} = 650
X °/o  RMSE =2.03 [mv] N RMSE =2.45 [mv]
adjusted R* = 0.956 adjusted R* = 0.952
625 1 1 L 625 1 1 1
625 650 675 700 725 625 650 675 700 725

V. ot ImV] predicted by 3D PEMFC model V. ImV] predicted by 3D PEMFC model
Figure 5. Scatter plots illustrating the prediction accuracy of the MLP surrogate for (a) training data
and (b) test data. The plots highlight the correlation between predicted and actual values, with
performance metrics RMSE and adjusted R? indicated for each dataset.

6.2. DDO to Access Superior PEMFC Performance

After evaluating the prediction capability of the MLP model to predict V,,; for a given set of
unseen data across a wide range of design variables within the confined design bounds, it was further
linked to the PSO algorithm to address a DDO problem, which primarily focuses on predicting
maximum V..

Figure 6, illustrates a scatter plot for the relationship between V,,; and cathode side material
cost parameters: Cost.zp, and Costgp, across various PEMFC designs, including the baseline, DDO,
RBDO; and RBDO,. As seen in Figure 6, the optimized PEMFC design via MLP-PSO(DDO) method
shows maximum V., performance. Table 6 lists the design variables and corresponding V.., for
various PEMFC designs and cathode side material cost parameters ie., Cost.p,and Cost.gp.
Particularly, as compared with the baseline design, DDO design shows a rise of 31mV in V. A drop
in Vg performance is seen in the baseline design which is due to w.,/Wgng =1:1, and a larger d.,
corresponds to lower overall air velocity in the gas channel; these factors weaken oxygen transport
and the removal of water that is accumulated inside the cathode GDL, while a thicker GDL limits
oxygen transport along the through-plane direction (x). Interestingly, the increase in V) of the
DDO design also leads to a drop in Cost.p, by 6.71 $/stack and Cost.gp by 32.64 $/stack. The
resulting difference in cost parameters can be primarily attributed to the fact that the dimensions of
the cathode side GDL and BP for the baseline design are significantly larger than the optimal values
obtained through the DDO method. However, as noted in Table 6, the resulting DDO design
predicted via MLP-PSO predicts design variables with &4 = 0.188mm, dg, = 03mm, wg, =
0.614mm, wy,,y = 0.31mm with Cost.;p, = 46.68 $/stack and Cost.gp = 108.81 $/stack, where the
d¢p is predicted at the extreme end of the design space, in particular the lower bound which
corresponds to the least possible cathode BP material cost. Take note, for further discussions, material
cost parameters of the cathode side GDL and BP, predicted by DDO will be denoted as Cost2%), and
Cost5h?, respectively.

Table 6. Comparison of design variables and corresponding cell voltage (V¢;) and nominal material
costs of the cathode GDL and BP across various PEMFC designs: baseline, DDO, RBDO; and RBDO,.
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Optimization approach

Parameters Baseline design DDO RBDO, REDO,
Sgar, [mm] 0.215 0.188 0.139 0.172
dcp, [mm] 0.54 0.300 0.382 0.349
Wep, [mm] 1 0.614 0.855 0.687
Wigng, [mm] 1 0.310 0.300 0.300
Veew, [V] 0.681 0.712 0.710 0.711
Costcepy, [$/stack] 53.38 46.68 34.43 42.59
COStcB,p
[$/stack] 141.45 108.81 119.99 115.52
a) b) 350
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Figure 6. Evaluation of a) Cost.gp, and Ve b) Cost.pp and Vi, across various PEMFC designs at
=15 A/cm?. This figure illustrates: sample data(e), baseline model(*), the optimal design
solutions obtained through, DDO(%) and RBDO: RBDO; (%) and RBDO,(*).

6.3. RBDO for Cathode, GDL and BP Material Costs

In engineering design, DDO models have widely been used to maximize/minimize the cost
function in consideration of constraints. Over the past decade, significant efforts have been dedicated
to optimizing PEMFC designs and their components using DDO models. However, due to
uncertainties in the production process, there is a need to transition to RBDO to ensure robust and
reliable designs. As discussed in Section 6.2, DDO offers superior V., with reduction in Cost.sp;
and Cost.gp. When manufacturing uncertainties are incorporated into the design variables, the
optimal solution often tends to deviate from desired outcome, resulting in unreliable design. To
address the limitations of DDO, an RBDO problem is developed, as detailed in Section 5, specifically
Egs. (43-44). In Table 7, the uncertainties that may arise during manufacturing of GDL, and BPs have
been considered for RBDO. These uncertainties are analyzed in two cases: Case 1 represents a high
level of uncertainty, with standard deviations of Osga = 0.03mm, g4, = 0.05mm, o,,, = 0.05mm,

and o,,, = 0.05mm. Case 2 represents a lower level of uncertainty, with standard deviations of
Osgq = 0.0lmm, g4, = 0.03mm, o, , = 0.03mm, and g,,, = 0.03mm This distinction helps in

understanding the impact of varying uncertainty levels on the reliability of the PEMFC design.
Additionally, as seen in the table, the standard deviation of the GDL is typically lower than that of
the BP. This is because the GDLs play a critical role in the transport of reactant gases and the removal
of product water formed during fuel cell operation. Small variations in thickness and porosity can
lead to deviations in the flow of reactants and products, thereby altering the overall performance of
the fuel cell. In contrast, BPs primarily provide mechanical support and electrical connectivity in the
fuel cell. While dimensional accuracy is necessary, slight changes in dimensional variations do not
significantly alter V.., compared to the GDL. Additionally, the materials used in BPs provide high
structural stability and are less sensitive to dimensional variations compared to porous GDLs.
Therefore, the robustness of BPs offers a slightly relaxed edge in terms of manufacturing uncertainties
compared to the GDL. Figs. 7a to 7d show the probability distribution(PDF) with 95% probability
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intervals for the four design variables: §gq;, dcn, Wen, and wig,q at DDO optimal. These figures

correspond to Case 1, where the design variables are subjected to uncertainties with standard

deviations of o5, = 0.03mm, o;, = 0.05mm, o,,, = 0.05mm, and o, = 0.05mm, respectively.
gdl ch ch

Table 7. Distribution of design variables with mean(u) and standard deviations(o) for different
cases.

Distribution Mean (@) [mm] Standard deviation (¢), [mm]

Design variables

DDO Case, Case,

GDL thickness ( 64q1), [mm] Normal 0.188 0.03 0.01
Channel depth (d.,), [mm] Normal 0.3 0.05 0.03
Channel width (wy), [mm] Normal 0.614 0.05 0.03
Land width (wy,pq), [mm] Normal 0.310 0.05 0.03

The objective of RBDO in present study is to maximize the objective function (V,;;) considering
uncertainties in manufacturing, as defined in Case 1 and Case 2, while ensuring that the constraints
i.e, Cost,p, and Cost.gp do not violate the boundaries of significant performance metrices.
Moreover, these cost parameters are accessed for reliability ensuring that the PEMFC design remains
robust under uncertainty. Therefore, setting the limits of these constraints is an important part of
RBDO. As seen in Figure 3, the DDO design predicted via MLP-PSO is an optimal starting point for
RBDO due to its significant advantages in both cost and performance compared to the baseline
design. Specifically, Cost.sp; atthe DDO is 46.68 $/stack, which is notably lower than 53.38%/stack
for the baseline design. Similarly, Cost.gp is at 108.81 $/stack, compared to 141.45%/stack for the
baseline design. These improvements demonstrate that the DDO not only reduces costs significantly
but also enhances V,,;, making it a more optimal starting point for further RBDO.

In Figure 7b and 9b, at the DDO optimal, considering the uncertainties in design variables as
defined in Case; and Case,, variation in values for d. is observed. Specifically, d., falls
significantly below the lower bound of the design space, set at df, = 0.3mm. This deviation violates
the design bounds. According to Eq. (40), Cost pp is directly proportional to d.;,. Therefore, Costgp
will also fail to meet the design bounds for d., values below d%, = 0.3m. This necessitates to fix the
constraint value to Cost.gp = 108.81$/stack, i.e., Cost.gp = CostEh?. The Cost.sp, is estimated
based on Eq. (38) and is directly proportional to §,4,. As seen in Figure 7a and 7b, when uncertainties
in 844, as defined in Case; and Case, are considered, the variation in §,4, set at 844, = 0.188mm,
is well above the lower bound 5ng1 = 0.03mm. Therefore, the constraint for Cost.;p, is set as

DDO
Costoepy < Costgpy.
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Figure 7. PDF plots with a 95% probability interval that corresponds to Case; for four design
variables: a) 8gqi, b) dep, ) wep, and d) wigng. These plots account for uncertainties in design
variables with standard deviations 05, = 0.03mm, o4, = 0.05mm, g, , = 0.05mm, and gy, =

0.05 mm.

As shown in Figure 3, after defining the performance constraints, RBDO is initiated from the
DDO considering uncertainties in design variables as defined in Case 1. The aim of the optimization
process is to find a reliable optimal solution, referred as RBDO; . Figure 8a and 8b compares the results
of DDO and RBDO;. As seen, the PDF plots at DDO indicate a clear violation of the constraints
Costegp, < Costlhly), and Cost.gp = Costih? with the distribution plots extending into the
infeasible region depicted by gray shaded area. In contrast, RBDO; distribution plots are more
spread out, reflecting a design strategy that accommodates the uncertainties while staying within the
feasible cost region. Comparing and analyzing the detailed result listed in Table 8 reveals that the
Cost.sp, at DDO achieves a reliability of 49.87%, indicating that 50.13% of the designs are unreliable
and fail to meet Cost.p, < Costhy,. Conversely, the RBDO approach shows that the reliability for
achieving Cost.gp, < Costihy), at RBDO; is 95.0%. Regarding, Cost.zp, at DDO the reliability is
50.0%, which indicates that 50.0% of the designs are unreliable and fall below the Cost25) =
46.68%/stack. Furthermore, comparing the nominal values of Cost.p, indicate that a reduction of
12.25%/stack is achieved, attributed to the RBDO strategy in reducing the material cost of the cathode
GDL. Consequently, the material cost for the cathode BP, Cost.zp, inevitably increases by
11.18$/stack, causing the reliability of meeting Cost.zp = CostZp?’ to increase from 50.0% to 94.99%.
RBDO; has successfully navigated manufacturing uncertainties while consistently achieving target
reliability of 95% for both Cost.p, and Cost.gp and these are well illustrated in Figure 8. As
outlined in Table 6, comparing the results of design variables at DDO and RBDO; reveal that the
DDO design variables, optimize the V., by enhancing reactant distribution and water management,
resulting in superior V. of 0.712V. In contrast, the RBDO; design achieve a comparable V., of
0.710V by balancing efficiency and reliability thereby aiming for a robust and reliable operation.

Table 8. A summary of various performance metrices for the cost parameters: Cost.sp;, and Cost.gp,
including the nominal and mean(u) value, standard deviation(c) and the reliability assessments for
the two cases: case 1 and case 2, predicted through DDO and RBDO approach.
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Optimization approach

DDO RBDO
Standard Standard
Case Parameter Reliabil Nominal Mean a1.1 ;.u- . ... Nominal Mean a1.1 ?r
. deviation Reliabil deviation
ity value value () ©) ity [%] value value (u) ©)
% tack tack ? tack tack
[%]  [$/stack] [$/stack] [/stack] [$/stack] [$/stack] [/stack]
Cost
OSteGbL 4987 4668 46.68 745 9500 3443 3442 7.44
1 [$/stack]
COStCBP
50.00 108.81 108.81 6.78 94.99 119.99 120.0 6.80
[$/stack]
COStCGDL
49.87 46.68 46.68 2.48 95.02 42.59 42.58 2.48
’ [$/stack]
Cost,
0Step 50.00 108.81 108.81 4.07 94.99 115.52 115.51 4.08
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Figure 8. Comparison of PDF plots that corresponds to Case; fora) Cost.gp, andb) Cost.gp at DDO
(8gar = 0.188mm, dg, = 0.3mm, wg, = 0.614mm, wigng = 0.31mm) and RBDO; (§gq; = 0.139mm,
dep, = 0.382mm, w,, = 0.855mm, wy,,y = 0.3mm), incorporating uncertainties in design variables
with standard deviations 05,y = 0.03mm, o4, = 0.05mm, o, , = 0.05mm, and o, = 0.05 mm.

The operating current density at which Cost.cp, and Cost.gp is estimated is I = 1.5 A/cm?.

Accessing the effects of variability in uncertainty on PEMFC performance is of high interest. By
analyzing multiple cases Case; and Case, ensures that the PEMFC design is robust and reliable
under different conditions. Figure 9 illustrates the PDF plots with a 95% probability interval that
corresponds to Case, for four design variables: a) 844, b) dcp, ©) Wep, and d) wygnq. These plots
account for uncertainties in design variables with standard deviations o5, = 0.0lmm, oy, =
0.03mm, og,, =0.03 mm, and o0, =0.03mm. The RBDO approach aligns with previous
descriptions, so our discussions are focused on how RBDO, affects PEMFC designs. Figure 10a and
10b display the distributions of Cost.sp; and Cost.gp, where more than half of the distribution curve
violate the constraints set at Cost.sp, < Cost25y, and Cost.gp = CostZ5°. Comparing the values of
DDO and RBDO, shows that the RBDO method predicts a Cost.;p;, much lower that DDO and the
reduction in cost is 4.09$ with a reliability of 95.02%. Regarding Cost.zp the RBDO method shows
and inevitable cost rise of 6.71$/stack while achieving a reliability target of 95%. Comparing and
analyzing the effects of varying uncertainty as defined in Case; and Case, reveals that RBDO
method tries to achieve the target reliability of 95% in both the cases. In addition, RBDO; and RBDO,
show how different levels of uncertainty effect on the design variables and performance. RBDO,,
with higher variability, results in a more conservative design with lower costs but slightly and
slightly lower V... In contrast, RBDO,, with lower variability, achieves a more optimized design
with slightly higher costs but similar V.. Both approaches maintain comparable cell voltages,
demonstrating robust performance despite the differences in design strategies.
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Figure 9. PDF plots with a 95% probability interval that corresponds to Case, for four design
variables: a) 8gqi, b) dep, ) Wep, and d) wigng. These plots account for uncertainties in design
variables with standard deviations 05, = 0.01mm, oq4, = 0.03mm, oy, = 0.03mm, and gy, =

0.03 mm.
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Figure 10. Comparison of PDF plots that corresponds to Case, for a) Cost.sp, and b) Cost.gp at
DDO (8gq; = 0.188mm, d¢, = 0.3mm, wg, = 0.614mm, wigng = 0.31mm) with standard deviation
and RBDO; (8gq; = 0.172mm, dg, = 0.349mm, wg, = 0.687mm, wigng = 0.3mm), incorporating
uncertainties in design variables with standard deviations 05,y = 0.01mm, gg, =0.03mm, g, =
0.03mm, and oy, = 0.03 mm. The operating current density at which Cost.p;, and Cost.gp is

estimated is I = 1.5 A/cm?.

7. Conclusions

This study presents a methodology for optimizing the four key PEMFC design variables i.e.,
8gar, Ach, Wens and wigng. We employed two optimization strategies namely DDO and RBDO, to
evaluate and compare effectiveness. At first, an MLP model was developed based on the results from
a comprehensive multi-scale, two-phase, 3D numerical PEMFC model. The predictive accuracy of the
MLP was evaluated on the test set of 15 design samples using the RMSE and adjusted R?, with values
of RMSE = 2.45 mV and adjusted R*= 0.952. The MLP was integrated with a PSO to perform DDO,
which identified a design that improved V.,; by 31 mV at a current density of 1.5 A/cm?2. This
superior V. is primarily due to its optimized design parameters by reducing the design variables
as compared to the baseline case. These optimized dimensions enhance the flow distribution, leading
to higher V., of 0.712V. Given the manufacturing variability cathode GDL and BP, these
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uncertainties were modeled using statistical distributions, and RBDO was conducted. The RBDO
results indicated that designs deemed optimal in DDO contexts failed to meet the cost constraint,
Costegp, < CostPhY, and Cost.gp = CostPhP, illustrating the need for RBDO to enhance robustness
in the manufacturing process by optimizing design variable to achieve over 95% reliability in
Costygp, and Costcgp. The RBDO approach effectively balances efficiency and reliability, achieving
a target reliability of 95% for both Cost.;p, and Costcgp. RBDO,, with higher variability, results in
a more conservative design with lower costs, while RBDO,, with lower variability, achieves a more
optimized design with slightly higher costs. Both designs maintain comparable V,,;;, demonstrating
robust performance despite different design strategies.
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Nomenclature

Ratio of active surface area per unit electrode volume, m?/m3 or water activity

Area, m?

Molar concentration of species, mol/m?

Vector of design variables or solution of a deterministic optimization problem
Species diffusivity, m?/s

Activation energy, kJ/mol

EW  Equivalent weight of a dry membrane, kg/mol

fObjective function that needs to be minimized or maximized in the optimization problem
F Faraday’s constant, 96,487 C/mol

Mg S0

G Constraint condition for the j-th constraint
io Exchange current density, A/cm?

id Density estimation parameter

I Operating current density, A/cm?

jTransfer current density, A/cm?,

J Total number of constraint functions in the optimization problem

k Thermal conductivity, W/m-K, or Relative permeability, or index representing the specific
objective function in the optimization problem

K Hydraulic permeability, m?

L Amount of loading, mg/cm?
n Number of electrons transferred in the electrode reaction
N Number of design varaibles

MW Molecular weight, kg/mol

MSE Mean squared error

P Pressure, Pa,

P Probability

RMSE Root mean squared error

sLiquid saturation

S Source term in the transport equation
ttime

T Temperature, K

d Fluid velocity and superficial velocity in a porous medium, m/s
1% Voltage, V or Volume, m3
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X Vector of the design variables in the optimization problem
X; Lower or upper bound of the i-th design variable
X Input variable

Observed response

Predicted response

Mean value of the observed data

Transport resistance coefficient

Greek symbols

Transfer coefficient

Weight coefficient

Reaction order

Thickness, m

Volume fraction or error

Surface overpotential, V

Contact angle of the gas diffusion layer
Water content

Mean value of random design variables
Proton conductivity, S/m

Phase potential, V

p Density, kg/m

D <

N

AR D DI M R ™K

o Electronic conductivity, S/m
T Viscous shear stress, N/m?2

g Stoichiometry flow ratio

0 Oxygen transport resistance
Superscripts

c Catalyst coverage coefficient
eff  Effective

g Gas

ILiquid

L Lower bound of a design variable
max Maximum

mem Membrane

min Minimum

op Operating

ref  Reference value

tar Target

T Transpose operation of a matrix
U Upper bound of a design variable

Subscripts

a Anode

aCL Anode catalyst layer

allw Allowance

c Cathode

C Carbon

CL Catalyst layer

cCL Cathode catalyst layer
ch Gas channel

e Electrolyte

ECSA Electro chemical active surface area

gdl Gas diffusion layer

Fj Index representing the failure of the j-th constraint
I/C Ionomer to carbon weight ratio
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i Species or index representing the lower or upper bound of the N-th design variable
in Channel inlet

int Interface

j Index representing the specific constraint function in a problem with multiple constraints
k Index representing the specific objective function in the optimization problem
MEA Membrane electrode assembly

mem Membrane

min Minimum

N Number of design varaibles

nd n-th random design variable

Pt/C Weight ratio of Platinum to carbon

Pt Platinum

S Solid, surface

T Temperature

u Momentum equation

w Water

0 Initial conditions or standard conditions, i.e., 298.15 K and 101.3 kPa (1 atm)
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