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Abstract: Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a pivotal 
technology in the automotive industry, significantly contributing to the reduction of greenhouse gas 
emissions. The high material costs of the gas diffusion layer(GDL) and bipolar plate(BP) creates a 
barrier for large scale commercial application. This study aims towards addressing this challenge 
by optimizing the material and design of the cathode, GDL and BP. While Deterministic design 
optimization(DDO) methods have been extensively studied, they often fall short when 
manufacturing uncertainties are introduced. This issue is addressed by introducing Reliability 
based design optimization(RBDO) to optimize four key PEMFC design variables i.e., gas diffusion 
layer thickness (𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔) , channel depth (𝑑𝑑𝑐𝑐ℎ) , channel width (𝑤𝑤𝑐𝑐ℎ), and land width (𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) . The 
objective is to maximize cell voltage(𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) considering material cost of cathode gas diffusion 
layer(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), and cathode bipolar plate(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐) as reliability constraints. Results of the DDO 
show an increment in 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  of 31mV, with reliability of around 50% for 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 . In 
contrast RBDO method provides a reliability of 95% for both 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 . 

Keywords: polymer electrolyte fuel cell; reliability-based design optimization; dimensional 
uncertainties; multi-layer perceptron; particle-swarm optimization; dimensional tolerance; Monte 
Carlo simulation; dynamic Kriging surrogate; deterministic design optimization 

 

1. Introduction 

Fuel cells (FCs) are considered as a key enabling technology for emerging hydrogen economy 
[1]. These devices electrochemically convert fuels such as hydrogen and oxygen to generate 
electricity. FCs are silent in operation with zero emission of harmful pollutants and can generate 
electricity if the source of fuel is supplied. FCs are generally classified based on the conducting 
electrolyte used, operating temperature and the feasible performance region [2]. PEMFCs are 
considered as one of the most promising sources of energy conversion devices that would perhaps 
replace the internal combustion engines [3]. PEMFCs are particularly well suited for stationary and 
mobile applications. In PEMFCs, the electrochemical reaction of hydrogen along with oxygen to form 
water is divided into the partial reactions of oxidation and reduction by incorporating a proton-
conducting membrane between the anode and cathode electrodes. PEMFCs are typically operated at 
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temperatures ranging between 50°C and 80°C and have high power density and low degradation 
rates [4].  

PEMFCs has received immense attention due to its wide range of application. Their application 
in real world ranges from industrial scale systems for power backup to mobile power for trains, buses, 
heavy duty trucks and material handling systems [5]. However, in recent years the widespread 
implementation of PEMFCs have been restricted due to a rise in manufacturing costs and issues 
pertaining to durability in fuel cell designs [6,7]. Therefore, it is imperative to work over the design 
aspects of fuel cells. The modern fuel cell market is highly competitive and requires engineers to come 
up with designs that are inexpensive and highly reliable. The design process is quite intricate and is 
largely focused on producing products that are characterized by being inexpensive, of excellent 
quality, and of great durability. The modern design process is based on complex simulation models 
that can support complexity and fidelity to accomplish the aforementioned objectives and are often 
termed as simulation-based design approach [8]. 

Over the past few decades, the computational speed of computers has increased exponentially 
leading to development and application of large-scale simulation models. Simulation tools like 
computational fluid dynamics (CFD) and finite element analysis (FEA) have seen large growth and 
are able to represent an actual physical system. This has lead design engineers with a wide range of 
opportunity to come up with improved and optimal design strategies. To create high quality design 
models, the engineering community of today has been using optimization to a greater extent. These 
design models demonstrate to be cost effective and have acceptable performance abilities. In most 
cases, engineers consider the design variables to be deterministic during engineering design 
optimization, and the process of attaining an optimal design on this basis is referred to as DDO.  

PEMFCs have been optimized using numerical analysis to improve cell 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  by considering the 
design variables to be deterministic. Song et al. [9] optimized the cathode catalyst layer considering 
the one-dimensional macro homogenous model where the four design parameters such as Nafion 
content, void volume fraction, thickness, and the amount of platinum (Pt) loading. Grigoriev et al. 
[10]optimized the geometry of the BP and GDL of a high temperature fuel cell and provided an 
insight onto the effects of these parameters on 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Kim et al. [11] conducted a comprehensive study 
considering metallic BPs and evaluated the effects of channel to rib width ratio, draft angle, inner 
fillet radius and clamping pressure. The study reveals that the GDL intrusion is highly influenced by 
the channel to rib ratio and draft angle which in turn affects pressure drop within the channels. 
However, a typical engineering process consists of various uncertainties. Products manufactured 
based on DDO approach will have varying performance characteristics and a high risk of failure as 
they do not consider uncertainties in them. In real world scenarios, uncertainties may often arise due 
to external operating conditions, variations in parameters such as dimensions or material properties, 
model uncertainties and errors associated with the simulation tools used for simulation-based 
designs and many more. When the uncertainties are taken into consideration some types of 
constraints such as initial condition and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  maybe violated. Therefore, to avoid the risk of any 
given product to fail, these uncertainties must be considered during the optimization process.  

Optimization methods that consider the uncertainties in design variables and solve an 
optimization problem with reliability constraints are termed as RBDO [12,13]. With RBDO the 
designers are able to determine optimal designs that would meet target reliability measures that 
would achieve satisfactory levels of performance measures and constraints. RBDO has been widely 
used in the field of structural designs and fluid-structure interactions problems, magnetic energy 
storage systems and multi body dynamic systems. However, till date there has no research been 
presented where RBDO has been used to optimize the design variables for a PEMFC.  

PEMFCs are highly complex systems that consists of several components. These components 
have varying material properties and manufacturing tolerances. Any minor changes in the 
component properties and dimensions along with PEMFC operating conditions such as temperature, 
humidity and pressure will affect the PEMFC performance. Hence, variability must be considered 
during design stage itself. RBDO engineers consider the input design variables of a probability 
distribution and carry out optimization to determine an optimal design solution [14]. The design thus 
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obtained are reliable and have a very less chance of failure. Dimensional tolerances which refer to the 
allowable deviation from the specified dimension are a critical part of manufacturing of PEMFC 
components[15–17]. Intricate components are expensive to manufacture and must meet strict 
dimensional tolerance levels. Small deviations in dimensions can cause significant reduction in 
performance and costs. For example, the membrane electrode assembly (MEA) thickness has to be 
precisely controlled so that the flow of reactant gases reaches the CL layer. Likewise, 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑑𝑑𝑐𝑐ℎ 
must be controlled to make sure that the reactant gases and flow of liquid water is managed well 
within the cell.  

The dimensional tolerance considered during manufacturing plays a pivotal role in increasing 
costs of PEMFCs[18]. The process of manufacturing PEMFC components are highly complex and 
require high precision. In addition, the use of expensive and high-quality materials to meet high 
dimensional tolerance levels leads to an increase in the overall cost of PEMFCs. A fuel cell stack 
consists of hundreds of single cells that are arranged in series and generate the required power and 
voltage for operation. Highly precise manufacturing accuracy in BPs and GDLs are required to obtain 
uniform contact pressure and electrochemical reactions in the stacks [19–21]. However due to the 
manufacturing process, errors arise in shape, dimensions and assembly that are inevitable. Stamping 
process is the most preferred choice for manufacturing BPs [22,23]. During the stamping process 
highly localized stamping forces are induce while channels are formed leading to errors in 
dimensions of channel height and width [24,25]. In addition, dimensional variation in GDL and BPs 
would also lead to assembly errors and causes failure of the systems [26]. Thus, there is a need to 
consider these errors during the optimization stage. 

The GDLs serve as a medium for distributing the reactant gases and are generally made of 
carbon fibers. On the other side, BPs are employed within the fuel cell stack to conduct electricity and 
separate individual cells. The amount spent on materials is significantly impacted by the dimensional 
tolerance needed throughout the production process. It will take high-quality materials with reliable 
properties to achieve tighter tolerance. Also, the material wastage for manufacturing GDLs and BPs 
with tighter tolerance levels will be high. This is due to the fact that parts must be scrapped or 
reworked when they do not meet the required dimensional tolerance. Likewise, for looser tolerance 
there is a possibility of using low-cost material with wide variations in thickness. This may result in 
lower material cost with additional processing steps required and a compromise in 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Overall, the 
effect of dimensional tolerance on material cost will be influenced by the manufacturing process and 
the materials employed. To ensure manufacturing high-quality products at an affordable price, 
manufacturers must carefully balance the necessary level of precision with the associated material 
costs. 

Based on a comprehensive review of existing literature, it is evident that currently there is a 
significant gap in research on PEMFCs. Specifically, studies that address how dimensional 
uncertainties in design variables affect 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , while concurrently aiming to reduce material costs 
during manufacturing. In this study, four key PEMFC design variables i.e., 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑑𝑑𝑐𝑐ℎ, 𝑤𝑤𝑐𝑐ℎ , and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 
have been considered for optimization with various optimization methods. At first, under suitable 
constraint condition, initial data samples for the optimization study are generated using Latin 
hypercube sampling(LHS) technique. These data samples are then considered as inputs for building 
a database of 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  through CFD simulations of a comprehensive, multi-scale, two-phase, 3D 
numerical PEMFC model. The 3D PEMFC numerical model have been extensively developed and 
experimentally validated in our previous studies [27–30]. Further, the database of design variables 
and their corresponding 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values are divided into training and test sample sets. Considering the 
training samples, a multi-layer perceptron(MLP) surrogate model is constructed using MATLAB 
R2024a, and then tested on distinct unseen test samples. Next, the MLP is linked to particle swarm 
optimization (PSO) algorithm and a constrained DDO is performed focusing on maximizing 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 
We particularly introduce the RBDO technique to account for manufacturing uncertainties, which 
differs from the current DDO method and centers our study to meet practical engineering reliability 
norms. Furthermore, to evaluate the effects of uncertainty and present an unfailing design, the 
reliability of the two constraints 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  of a 100kW road vehicle stack has been 
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assessed and presented. This strategy has significant implications that encourage the deployment of 
PEMFC technology in automobiles. 

2. Numerical PEMFC Model 

In this optimization study, a 3D, multiscale, two phase PEMFC model has been used. The model 
is based on the multiphase mixture (M2) model proposed by Wang and Cheng [31] and considers 
various components of a PEMFC cell which includes the BPs, GDLs, CLs and the membrane. The 
model has been validated against the experimental polarization curves measured under different cell 
designs and operating condition [32,33]. For a realistic model, the effects of clamping on the GDL 
structure and the variation in properties have been considered. Since the model employed in this 
study is identical to that described in our previous studies [33–35], the model assumptions and 
governing equations are presented in brief in Sections 2.1 and 2.2. Finally, in section 2.3 an outline of 
the boundary conditions and numerical implementation of the PEMFC model using ANSYS fluent 
(ANSYS Inc., USA) has been presented.  

2.1. Model Assumptions 

The following are the specific assumption used in this numerical study  
1. The operating pressure is low and hence ideal gas mixtures are assumed in the gas phase.  
2. The velocity of flow is low and laminar. 
3. The effect of gravity is neglected. 
4. In the porous region, immobile liquid saturation is neglected. 

2.2. Governing Equations and Source Terms 

In this study, the PEMFC model under consideration is governed by the five conservation 
equations: mass, momentum, species, charge, and thermal energy. The equations stated above are 
linked to source terms that are related to the hydrogen oxidation reaction (HOR) in the anode and 
oxygen reduction reaction (ORR) in the cathode. For further reference regarding the governing 
equations and source terms, readers can refer Table 1 and Table 2. 

Table 1. Governing equations for the PEMFC model. 

Governing equations  
Mass ∇ ∙ (ρ𝑢𝑢�⃗ ) = 0 (1) 

Momentum �
1
ε2
� ∇ ∙ (𝜌𝜌𝑢𝑢�⃗ 𝑢𝑢�⃗ ) = −∇𝑃𝑃 + ∇ ∙ 𝜏𝜏 + 𝑆𝑆𝑢𝑢 (2) 

Species 
Flow channels and porous media: 

∇ ∙ (γi𝜌𝜌𝑚𝑚𝑖𝑖𝑢𝑢�⃗ ) = ∇ ∙ �𝜌𝜌𝑔𝑔𝐷𝐷𝑖𝑖
𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒∇�mi

g�� + ∇ ∙ ��𝑚𝑚𝑖𝑖
𝑔𝑔 − 𝑚𝑚𝑖𝑖

𝑙𝑙�𝚥𝚥𝑙𝑙� + 𝑆𝑆𝑖𝑖 
(3) 

 
Water transport in membrane: 

∇ ∙ ��ρ
mem

𝐸𝐸𝐸𝐸
�Dw

mem∇𝜆𝜆�𝑀𝑀𝑤𝑤 − ∇ ∙ �𝑛𝑛𝑑𝑑 �
𝐼𝐼
𝐹𝐹
��𝑀𝑀𝑤𝑤 + ∇ ∙ (�𝜅𝜅

𝑚𝑚𝑚𝑚𝑚𝑚

𝜈𝜈𝑙𝑙
� ∇𝑃𝑃𝑙𝑙 = 0  (4) 

Charge 
Proton transport: 

∇ ∙ �κeff∇𝜙𝜙𝑒𝑒� + 𝑆𝑆𝜙𝜙 = 0  (5) 

 
Electron transport: 

∇ ∙ �σeff∇𝜙𝜙𝑠𝑠� − 𝑆𝑆𝜙𝜙 = 0  (6) 

Energy ∇ ∙ �ρ𝑢𝑢�⃗ 𝐶𝐶𝑝𝑝
𝑔𝑔𝑇𝑇� = ∇ ∙ (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒∇𝑇𝑇) + 𝑆𝑆𝑇𝑇  (7) 

Table 2. Source/sink terms used in the PEMFC model. 

Description  Expressions  

Momentum Porous media Su = −
𝜇𝜇
𝐾𝐾
𝑢𝑢�⃗   

Species H2 in anode CL S𝐻𝐻2,𝑎𝑎 = �−
𝑗𝑗

2𝐹𝐹
�M𝐻𝐻2  
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O2 in cathode CL S𝑂𝑂2,𝑐𝑐 = �
𝑗𝑗

4𝐹𝐹
�M𝑂𝑂2   

Water in anode CL S𝑤𝑤,𝑎𝑎 = �−∇ ∙ �
𝑛𝑛𝑑𝑑
𝐹𝐹
𝐼𝐼� +

𝑗𝑗
4𝐹𝐹
�M𝑤𝑤  

Water in cathode CL S𝑤𝑤,𝑐𝑐 = �−∇ ∙ �
𝑛𝑛𝑑𝑑
𝐹𝐹
𝐼𝐼� −

𝑗𝑗
2𝐹𝐹
�M𝑤𝑤  

Energy 

In anode CL ST,a = 𝑗𝑗 ∙ 𝜂𝜂 +
𝐼𝐼2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
  

In cathode CL ST,c = 𝑗𝑗 �𝜂𝜂 + 𝑇𝑇
𝑑𝑑𝑈𝑈0
𝑑𝑑𝑑𝑑

� +
𝐼𝐼2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
  

In membrane ST =
𝐼𝐼2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
  

Charge In CLs: S𝜙𝜙 = 𝑗𝑗  
Electrochemical reactions 

� 𝑠𝑠𝑖𝑖𝑀𝑀𝑖𝑖
𝑧𝑧 = 𝑛𝑛𝑒𝑒−, where �

𝑀𝑀𝑖𝑖 = chemical formula of species i
𝑠𝑠𝑖𝑖 = stoichiometric coefficient

𝑛𝑛 = number of electrons transferred𝑘𝑘
 

 
HOR on the anode side: H2 − 2H+ = 2e− 

 
ORR on the cathode side: 2H2O − O2 − 4H+ = 4e− 

 

Transfer 
current 
density, 
[𝐴𝐴/𝑚𝑚3] 

HOR in anode CL: 

𝑗𝑗 = (1 − 𝑠𝑠)𝑎𝑎𝑖𝑖0,𝑎𝑎
𝑟𝑟𝑟𝑟𝑟𝑟 �

𝐶𝐶𝐻𝐻2
𝐶𝐶𝐻𝐻2,𝑟𝑟𝑟𝑟𝑟𝑟

�

1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝐸𝐸𝑎𝑎
𝑅𝑅
�

1
𝑇𝑇
−

1
353.15

�� �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝛼𝛼𝑎𝑎𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂�

− 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛼𝛼𝑐𝑐𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂�� 

 

(8) 

ORR in cathode CL: 

𝑗𝑗 = −
3𝐿𝐿𝑃𝑃𝑃𝑃

𝑟𝑟𝑃𝑃𝑃𝑃 ∙ 𝜌𝜌𝑃𝑃𝑃𝑃 ∙ 𝛿𝛿𝐶𝐶𝐶𝐶
𝑖𝑖0,𝑐𝑐
𝑟𝑟𝑟𝑟𝑟𝑟 �

𝐶𝐶𝑂𝑂2
𝑃𝑃𝑃𝑃

𝐶𝐶𝑂𝑂2,𝑟𝑟𝑟𝑟𝑟𝑟
�
3/4

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐸𝐸𝑐𝑐
𝑅𝑅
�

1
𝑇𝑇

−
1

353.15
�� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝛼𝛼𝑐𝑐
𝑅𝑅𝑢𝑢𝑇𝑇

𝐹𝐹𝐹𝐹� 

(9) 

Overpotential 
𝜂𝜂 =  𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑒𝑒 − 𝑈𝑈 

where 𝑈𝑈 =  𝑈𝑈0 −  𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

ln 𝐶𝐶𝑂𝑂2
𝐶𝐶𝑂𝑂2 𝑟𝑟𝑟𝑟𝑟𝑟

 (10) 

In Table 3, the kinetic, transport and physiochemical properties of the PEMFC components have 
been listed. Table 4 lists all the pertaining equations that relate to the M2 mixture model suggested 
my Wang and Cheng [42]. Additionally, Table 5 lists a set of species transport properties which are 
correlated to the water content 𝜆𝜆 which in turn is a function of the water activity a [43]. 

Table 3. Kinetic, transport, and physiochemical properties. 

Description Value/ Expression  
Exchange current density of HOR × ECSA per unit 

CL volume, 𝑎𝑎𝑎𝑎0,a
𝑟𝑟𝑟𝑟𝑟𝑟  

1.2 × 1010 A/m3 [36] 

Exchange current density for ORR, 𝐼𝐼0,c
𝑟𝑟𝑟𝑟𝑟𝑟  2.0 × 10−4 A/cm2-Pt  

Activation energy of anode, 𝐸𝐸𝑎𝑎 10.0 kJ/mol [36] 
Activation energy of cathode, 𝐸𝐸𝑐𝑐 70.0 kJ/mol [36] 

Transfer coefficient of HOR, 𝛼𝛼𝑎𝑎 = 𝛼𝛼𝑐𝑐 1 [37] 
Transfer coefficient of ORR, 𝛼𝛼𝑐𝑐 1 [37] 

Reference H2/O2 molar concentration, 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 40.88 mol/m3 [36] 
Permeability of GDL/CL, 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺/𝐾𝐾𝐶𝐶𝐶𝐶  1.0 × 10−12/1.0 × 10−13 m2 [38] 

Equivalent weight of electrolyte in the membrane, 
𝐸𝐸𝐸𝐸 1.1 kg/mol [39] 
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Youngs modulus of GDL 6.16MPa [40] 
Poisson ratio of GDL 0.09 [35] 
Faraday’s constant, F 96,485 C/mol  

Universal gas constant, 𝑅𝑅𝑢𝑢 8.314 𝐽𝐽/(𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐾𝐾)  
H2 diffusivity in the anode gas channel, 𝐷𝐷0,𝐻𝐻2,𝑎𝑎

𝑔𝑔  1.1028 × 10−4 m2/s [41] 
H2O diffusivity in the anode gas channel, 𝐷𝐷0𝐻𝐻2𝑂𝑂,𝑎𝑎

𝑔𝑔  1.1028 × 10−4 m2/s [41] 
O2 diffusivity in the cathode gas channel, 𝐷𝐷0,𝑂𝑂2,𝑐𝑐

𝑔𝑔  3.2348 × 10−4 m2/s [41] 
H2O diffusivity in the cathode gas channel, 𝐷𝐷0,𝐻𝐻2𝑂𝑂,𝑐𝑐

𝑔𝑔  7.35 × 10−5 m2/s [41] 

Binary gas diffusivity (𝐷𝐷𝑖𝑖
𝑔𝑔) 

For nonporous regions 

𝐷𝐷𝑖𝑖
𝑔𝑔 = 𝐷𝐷𝑜𝑜

𝑔𝑔 �
𝑇𝑇
𝑇𝑇0
�
3/2

�
𝑃𝑃0
𝑃𝑃
� 

(11) 

Effective diffusivity (𝐷𝐷𝑖𝑖
𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒) 

For porous regions 
𝐷𝐷𝑖𝑖
𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜀𝜀𝜏𝜏 ∙ 𝐷𝐷𝑖𝑖

𝑔𝑔 
(12) 

Table 4. Expressions used in the two-phase mixture model. 

Description Expression  
Mixture density (ρ) ρ = ρ𝑙𝑙𝑠𝑠 + 𝜌𝜌𝑔𝑔(1 − 𝑠𝑠) (13) 

Gas mixture density 
(𝜌𝜌𝑔𝑔) 

𝜌𝜌𝑔𝑔 = �
𝑃𝑃
𝑅𝑅𝑢𝑢𝑇𝑇

�
1

∑
𝑚𝑚𝑖𝑖

𝑔𝑔

𝑀𝑀𝑖𝑖
𝑖𝑖

 
(14) 

Mixture velocity (𝜌𝜌𝑢𝑢�⃗ ) 𝜌𝜌𝑢𝑢�⃗ = 𝜌𝜌𝑙𝑙𝑢𝑢�⃗ 𝑙𝑙 + 𝜌𝜌𝑔𝑔𝑢𝑢�⃗ 𝑔𝑔 (15) 

Mixture mass fraction 𝑚𝑚𝑖𝑖 =
𝜌𝜌𝑙𝑙𝑠𝑠𝑚𝑚𝑖𝑖

𝑙𝑙 + 𝜌𝜌𝑔𝑔(1 − 𝑠𝑠)𝑚𝑚𝑖𝑖
𝑔𝑔

𝜌𝜌
 (16) 

Relative permeability 𝑘𝑘𝑟𝑟
𝑙𝑙 = 𝑠𝑠3 
𝑘𝑘𝑟𝑟
𝑔𝑔 = (1 − 𝑠𝑠)3 

(17) 
(18) 

Kinematic viscosity of 
the two-phase mixture 𝑣𝑣 = �

𝑘𝑘𝑟𝑟𝑙𝑙

𝑣𝑣𝑙𝑙
+
𝑘𝑘𝑟𝑟
𝑔𝑔

𝑣𝑣𝑔𝑔
�
−1

 (19) 

Kinematic viscosity of 
the gas mixture 

𝑣𝑣𝑔𝑔 =
𝜇𝜇𝑔𝑔

𝜌𝜌𝑔𝑔
=

1
𝜌𝜌𝑔𝑔

�
𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖

∑ 𝑥𝑥𝑗𝑗𝜙𝜙𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

where 𝜙𝜙𝑖𝑖𝑖𝑖 = 1
√8
�1 + 𝑀𝑀𝑖𝑖

𝑀𝑀𝑗𝑗
�
−1/2

�1 + �𝜇𝜇𝑖𝑖
𝜇𝜇𝑗𝑗
�
1/2

�
𝑀𝑀𝑗𝑗

𝑀𝑀𝑖𝑖
�
1/4
�
2

 

and 

𝜇𝜇𝑖𝑖[𝑁𝑁. 𝑠𝑠.𝑚𝑚−2] =

⎩
⎪
⎨

⎪
⎧ 𝜇𝜇𝐻𝐻2 = 0.21 × 10−6𝑇𝑇0.66

𝜇𝜇𝑤𝑤 = 0.00584 × 10−6𝑇𝑇1.29

𝜇𝜇𝑁𝑁2 = 0.237 × 10−6𝑇𝑇0.76

𝜇𝜇𝑂𝑂2 = 0.246 × 10−6𝑇𝑇0.78

, T in kelvin 

 

(20) 
 

(21) 
 
 

(22) 
 

Relative mobility 𝜆𝜆𝑙𝑙 =
𝑘𝑘𝑟𝑟𝑙𝑙

𝑣𝑣𝑙𝑙
𝑣𝑣 

𝜆𝜆𝑔𝑔 = 1 − 𝜆𝜆𝑙𝑙  

(23) 
(24) 

Diffusive mass flux 𝚥𝚥𝑙𝑙��⃗ = 𝜌𝜌𝑙𝑙𝑢𝑢�⃗ 𝑙𝑙 − 𝜆𝜆𝑙𝑙𝜌𝜌𝑢𝑢�⃗ =
𝐾𝐾
𝑣𝑣
𝜆𝜆𝑙𝑙𝜆𝜆𝑔𝑔𝛻𝛻𝑃𝑃𝑐𝑐 (25) 

Capillary pressure Pc 𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑔𝑔 − 𝑃𝑃𝑙𝑙 = 𝜎𝜎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 �
𝜀𝜀
𝐾𝐾
�
1/2

𝐽𝐽(𝑠𝑠) (26) 

Leverett function J(s) 
𝐽𝐽

= �1.417(1 − 𝑠𝑠) − 2.120(1 − 𝑠𝑠)2 + 1.263(1 − 𝑠𝑠)3

1.417𝑠𝑠 − 2.120𝑠𝑠2 + 1.263𝑠𝑠3
if 𝜃𝜃𝑐𝑐 < 90∘
if 𝜃𝜃𝑐𝑐 > 90∘ 

(27) 
 

Table 5. Transport properties in the electrolyte. 

Description Expression  
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Membrane water 
content (λ) 

𝜆𝜆 =

�𝜆𝜆𝑔𝑔 = 0.043 + 17.81𝑎𝑎 − 39.85𝑎𝑎2 + 36.0𝑎𝑎3       𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑎𝑎 ≤ 1
𝜆𝜆𝑙𝑙 = 22     

  Water activity, 𝑎𝑎 = 𝐶𝐶𝑤𝑤
𝑔𝑔𝑅𝑅𝑢𝑢𝑇𝑇
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

 [00] 

(28) 
 

(29) 

Electro-osmotic drag 
(EOD) coefficient of 

water (𝑛𝑛𝑑𝑑) 
𝑛𝑛𝑑𝑑 =

2.5𝜆𝜆
22

 (30)  

Proton conductivity (𝜅𝜅) 𝜅𝜅 = (0.5139𝜆𝜆 − 0.326) 𝑒𝑒𝑒𝑒𝑒𝑒 �1268 �
1

303
−

1
𝑇𝑇
�� (31) 

Water diffusion 
coefficient (𝐷𝐷𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) 

𝐷𝐷𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧ 2.692661843 ∙ 10−10𝑓𝑓𝑓𝑓𝑓𝑓 𝜆𝜆 ≤ 2

�0.87(3 − 𝜆𝜆) + 2.95(𝜆𝜆 − 2)} ∙ 10−10 ∙ 𝑒𝑒(7.9728−2416⁄   

{2.95(4 − 𝜆𝜆) + 1.642454(𝜆𝜆 − 3)} ∙ 10−10 ∙ 𝑒𝑒(7.9728−2

(2.563 − 0.33𝜆𝜆 + 0.0264𝜆𝜆2 − 0.000671𝜆𝜆3) ∙ 10−10 ∙ 𝑒𝑒(79728  

  (32)  

Interfacial resistance of 
the water film 

Ω𝑤𝑤,𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑤𝑤
𝛿𝛿𝑤𝑤
𝐷𝐷𝑂𝑂2,𝑤𝑤

 (33) 

2.3. Boundary Conditions and Numerical Implementation 

Figure 1. illustrates the micro and macro scale computational domains of the PEMFC along with 
the various switching variables exchanged during the 3-D multi-scale simulations. The figure 
includes the structure of an individual unit cell and boundary conditions considered in the present 
study. Apart from the inlet and outlet regions of the anode and cathode gas channels, all the external 
surfaces have been considered for mass flow under the no slip and impermeability boundary 
conditions. In terms of thermal boundary conditions in the computational domain, an isothermal 
boundary condition is considered for the side walls of the anode and cathode, whereas an adiabatic 
boundary condition is considered to the top and bottom surfaces. The PEMFC can be operated either 
in the galvanostatic or potentiostatic mode and this can be achieved by applying a constant voltage 
or current density at the outer side wall of the cathode, while the electric potential 𝜙𝜙𝑠𝑠 is fixed to zero. 
Figure 1b, presents the results of the grid-independent study and the number of meshes required to 
achieve good analysis accuracy is determined to be about 240,000. The PEMFC model consider in the 
study is numerically implemented by employing user-defined functions in the commercially 
available CFD program ANSYS Fluent ver. 23 (ANSYS, Inc., US) and the convergence criteria is set 
to 10-8 for the equation residuals. 
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Figure 1. a) Illustration of the micro and macro-scale computational domains in PEMFC, emphasizing 
the variables exchanged during 3D multi-scale simulations; (b) Grid independence test results, 
demonstrating the stability and accuracy of the computational model across various grid resolutions. 

3. Overview of Design Optimization Strategies for Engineering Application 

In engineering design, the two fundamental strategies typically employed to optimize a design 
is the DDO and RBDO approach. The DDO method is centered around maximizing or minimizing a 
single/multi objective function while adhering to a specific set of constraints. This strategy is widely 
followed in industries and is computationally efficient and provides a well-defined single design 
solution. However, the RBDO approach considers the uncertainties in design variables and aims to 
achieve a set level of reliability. This method involves estimating the probability of failure under 
different uncertain conditions and using this information the design variables are estimated to 
minimize the probability of failure. When compared to DDO approach, RBDO is a more sophisticated 
design strategy as it considers the inherent variability and uncertainties associated with the design 
variables.  

A typical DDO problem for a single objective optimization problem with the objective of 
minimizing the cost function 𝑓𝑓(𝑿𝑿) is formulated as  

Minimize 𝑓𝑓(𝑿𝑿) (34)  
subjected to  
𝐺𝐺𝑗𝑗(𝑿𝑿) ≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … . , 𝐽𝐽         
𝑿𝑿𝒊𝒊𝑳𝑳 ≤ 𝑿𝑿 ≤ 𝑿𝑿𝒊𝒊𝑼𝑼, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … . ,𝑁𝑁     (35)  

where, 𝑿𝑿 = { 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁}𝑇𝑇  is the vector of 𝑁𝑁  input design variables, and 𝐽𝐽  is the number of 
constraints. 𝐺𝐺𝑗𝑗(𝑿𝑿) ≥ 0 represents the inequality constraint where all the constraints 𝐽𝐽 are satisfied. 
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The constraints are violated if 𝐺𝐺𝑗𝑗(𝑿𝑿) < 0. The terms 𝑿𝑿𝒊𝒊𝑼𝑼  and 𝑿𝑿𝒊𝒊𝑳𝑳  represent the lower and upper 
bounds of the design variables 𝑁𝑁 design variables. 

Figure 2 shows the solution for a deterministic single objective optimization problem with two 
design variables (𝑋𝑋1,𝑋𝑋2), and two constraints 𝐺𝐺1(𝑿𝑿) and 𝐺𝐺2(𝑿𝑿), obtained through DDO approach 
such that Eq. 34 is satisfied. As seen, the deterministic optimum point denoted by 𝑋𝑋1 = 𝑑𝑑1,𝑋𝑋2 = 𝑑𝑑2 
lies at the intersection of the two constraint curves denoted by 𝐺𝐺1(𝑿𝑿) = 0 and 𝐺𝐺2(𝑿𝑿) = 0. The region 
below the constraint boundaries is known as the infeasible region. The solution for Eqs. (34-35) is said 
to be violated when the constraint solution is 𝐺𝐺𝑗𝑗(𝑋𝑋1,𝑋𝑋2) ≤ 0 and is said to be acceptable when 
𝐺𝐺𝑗𝑗(𝑋𝑋1,𝑋𝑋2) ≥ 0. The region dividing the feasible and infeasible regions denoted are denoted by the 
constraint boundaries, 𝐺𝐺1(𝑋𝑋) = 0 and 𝐺𝐺2(𝑋𝑋) = 0. When optimization is performed using the DDO 
approach without accounting for uncertainties in the design variables, there is a significant risk that 
the optimal design will exceed the constraint limits, potentially resulting in the failure of the DDO 
design. 

 

Figure 2. Illustrations depicting the outcomes of RBDO and DDO on the solution of a hypothetical 
optimization problem, highlighting the impact of uncertainty in the design variables 𝑋𝑋1 and 𝑋𝑋2. 

The basic idea underlying RBDO is to apply a numerical optimization technique to ensure that 
the optimal design meets the reliability criteria under uncertainty. The RBDO problem is formulated 
to balance performance and reliability, incorporating probabilistic constraints to account for 
uncertainties in design parameters. A general RBDO problem is further formulated as follows, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝒅𝒅)         (36)  
subjected to  
𝑃𝑃𝐹𝐹𝐹𝐹(𝒅𝒅) = 𝑃𝑃�𝐺𝐺𝑗𝑗(𝑿𝑿) > 0� ≤ 𝑃𝑃𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  for 𝑗𝑗 = 1, . . , 𝐽𝐽  
𝒅𝒅𝒊𝒊𝑳𝑳 ≤ 𝒅𝒅 ≤ 𝒅𝒅𝒊𝒊𝑼𝑼 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … . ,𝑁𝑁 (37)  

where, 𝒅𝒅 = { 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑁𝑁}𝑇𝑇 is the vector of 𝑁𝑁 random input design variables which is made up of 
mean values of each of the 𝑁𝑁 random design variables. 𝒅𝒅 can be further represented as, 𝒅𝒅 = 𝝁𝝁(𝑿𝑿), 
where 𝝁𝝁(·)  is the mean value operator and 𝑿𝑿 = { 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁}𝑇𝑇  is the random design variable 
vector. 𝑃𝑃𝐹𝐹𝐹𝐹(𝒅𝒅) represents the probability of failure at the 𝑗𝑗𝑡𝑡ℎ constraint of the design vector 𝒅𝒅, 𝐺𝐺𝑗𝑗 
represents the 𝑗𝑗𝑡𝑡ℎ  constraint, 𝑃𝑃[·]  is the probability that the 𝑗𝑗𝑡𝑡ℎ constraint is violated, 𝐽𝐽  is the 
number of constraints, 𝑃𝑃𝐹𝐹𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  is the target probability of failure for the 𝑗𝑗𝑡𝑡ℎ  constraint and, 𝒅𝒅𝒊𝒊𝑳𝑳 and 𝒅𝒅𝒊𝒊𝑼𝑼 
are the lower and upper bounds of the random input design variables in the design space.  
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The RBDO solution to Eqs. (36–37) is shown in Figure 2, where it can be compared to the DDO 
problem’s solution. The reliable solution, as indicated by the blue star is in the feasible region and 
has a slightly higher objective functional value than the deterministic design ensuring compliance 
with reliability constraints. The deterministic optimal point, initially in the failure region (red circle), 
is adjusted in RBDO to meet a target probability of failure, ensuring the design remains within the 
feasible region. For instance, at the DDO optimal, 50% of the joint probability contours exceed the 
constraint boundary, reflecting a 50% reliability. Conversely, the RBDO method achieves a reliable 
optimal with 95% reliability, as only 5% of the total violate the constraint condition. 

Figure 3 demonstrates the process flow for estimating a reliable optimal design solution using 
RAMDO’s sampling based RBDO software. As seen, the RBDO process starts with a deterministic 
optimal design. In this study, we attain the deterministic optimal point using the PSO algorithm in 
conjunction with the MLP surrogate model, as detailed in our previous research. For a comprehensive 
description of the model and optimization algorithm, interested readers can refer to our earlier 
studies [27,44]. Further, at the deterministic optimal point the input design variables i.e., 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑑𝑑𝑐𝑐ℎ, 
𝑤𝑤𝑐𝑐ℎ , and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are assumed to follow a marginal normal input distribution. These input distributions 
are further used to construct the DKG surrogate model which is basically an approximation of the 
true PEMFC numerical model. The construction of the DKG surrogate is based on Design of 
Experiments (DoE) where a combination of input parameters from the respective normal 
distributions, and 3D PEMFC simulation model is used to generate the performance of the PEMFC. 
Once the surrogate is constructed the accuracy of the surrogate must be verified. The mean square 
error (MSE) is used as a metric for checking the accuracy of the constructed surrogate and is set to 
0.001. The surrogates developed are then utilized to direct reliability estimation via MCS. Given that 
MCS requires very large sample points, evaluations of true samples make it practically impossible. 
As a result, the use of the DKG surrogate makes the task easier. The entire optimization scheme is 
based on a single loop optimization structure and has a significant reduction in computational time 
when compared to reliability-based index approach and the performance measure approach.  
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Figure 3. Flowchart of the RBDO process beginning with the initial deterministic PEMFC design that 
sequentially follows through scanning for Design of Experiments (DoE) samples, generating 
additional samples if needed, executing 3D PEMFC simulations, constructing and verifying the 
dynamic Kriging surrogate model, and performing Monte Carlo simulations for reliability 
assessment. The process concludes with the RBDO optimizer determining if an optimal design 
convergence has been achieved. 

4. Estimating the Material Costs of the Cathode GDL and BP in PEMFCs 

The fuel cell system’s acquisition cost needs to be reduced to a level comparable with that of an 
internal combustion engine for PEMFCs to be a viable choice for commercial application. A study by 
Simon et al. [45] reveals that the fuel cell stack accounts to approximately 45% of the total system cost, 
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while majority of the cost is contributed by the MEAs (includes catalysts, membrane, GDLs and the 
MEA assembly) and the BPs. At high production volumes of above 500,000 stacks/year the material 
used in the GDL and BP dominates most of the manufacturing expenses, accounting for 89% and 57% 
of the total production cost incurred [46]. Thus, estimating the material cost of the GDL and BP in 
PEMFs is crucial to ensure economic viability of this clean energy technology. In addition, an accurate 
estimation of material costs enables manufactures to plan budgets effectively and help optimize the 
production process, thereby reducing the overall costs.  

In this study, we base our cathode GDL material cost estimation model on Ballard material 
products, which are comparable to those from other GDL manufacturers [47]. The production of a 
GDL involves two main steps: carbon fiber papermaking and hydrophobic treatment. First, carbon 
fibers are chopped and mixed with water and polyvinyl alcohol. This mixture is then laid onto a web 
using a wet-laid papermaking technique, dried, and re-spooled. To control the porosity, the carbon 
and resin content is carefully regulated, followed by heat treatment under oxidation conditions. 
Finally, fluorinated ethylene propylene (FEP) is added to the surface to enhance hydrophobicity. As 
reported by Brian et al. [47], the 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of a GDL with thickness of 105 microns is 1.58$/m2. This 
reference material cost includes various components such as paper making, impregnation coating for 
porosity, oxidation/carbonization/graphitization, and impregnation coating for hydrophobicity. By 
summing up the individual material cost at each step involved we derive a single equation for the 
total material cost of GDL as is given as follow, 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔
𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟

× 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺
𝑟𝑟𝑟𝑟𝑟𝑟  (38) 

where, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the active area of the cell, set at 0.03m2, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the number of cells needed 
to produce a stack of 100kW, set at 550, 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 is the thickness of the reference GDL, set at 105 micron, 
and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺

𝑟𝑟𝑟𝑟𝑟𝑟  is the material cost of the reference GDL, set at 1.58$/m2. 
Further, to estimate the material cost of the cathode BP the material cost equation reported by 

Battelle Memorial Institute [48] has been used and is given as follows, 
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜌𝜌𝐵𝐵𝐵𝐵 × 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × (2𝑑𝑑𝑐𝑐ℎ + 𝑑𝑑𝐵𝐵𝐵𝐵) × 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (39) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝐵𝐵𝐵𝐵 × 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚  (40) 

where, 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 is the mass of the cathode BP, 𝜌𝜌𝐵𝐵𝐵𝐵 is the density of the bipolar plate material used and 
is considered as 1900kg/m3, the term 𝑑𝑑𝐵𝐵𝐵𝐵 represents the thickness of the base material in the BP, set 
at 1mm, 𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the overage allowance and is considered as 5%, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 represents the cost of the 
bipolar material used and is given as 2.066$/kg. 

5. Formulation of the Optimization Problem 

The modern engineering community is increasingly using optimization as a design tool to 
achieve optimal designs that minimize costs while meeting performance constraints. Optimization is 
used to find optimal designs characterized by lower cost while satisfying performance constraints. In 
the present study, two design optimization strategies for PEMFCs: DDO and RBDO have been used. 
In DDO, the primary objective is to maximize the performance of the objective function(𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), while 
adhering to specific deterministic constraints and design variable bounds. This approach ensures that 
the design variables are optimized within predefined bounds, leading to a solution that meets the set 
criteria without considering uncertainties. Considering the aforementioned criteria for DDO the 
optimization problem is formulated as follows: 

Maximize 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐗𝐗) (41) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝐗𝐗) ≥ 0 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐(𝐗𝐗) ≥ 0  for 𝐗𝐗𝐿𝐿 ≤ 𝐗𝐗 ≤ 𝐗𝐗𝑈𝑈  

𝐗𝐗𝑳𝑳 = [0.05, 0.3, 0.3, 0.3]        
𝐗𝐗𝑼𝑼 = [0.4, 2, 2, 1] (42)  

where, 𝐗𝐗 is the vector of the four design variables represented as 𝑿𝑿 = �𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔,𝑑𝑑𝑐𝑐ℎ ,𝑤𝑤𝑐𝑐ℎ ,𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
𝑇𝑇, 𝐗𝐗𝑳𝑳 and 

𝐗𝐗𝑼𝑼 represent the lower and upper bounds of the design variables. The deterministic optimization 
described in Eqs. 41 and 42 does not account for uncertainties in the design variables. As a result, the 
optimized designs obtained through DDO have a high probability of failure due to violations of the 
constraints which would lead to potential design failures.  
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In a fuel cell system, the material employed has a significant impact on its performance, 
reliability, and cost. As previously discussed, the material costs on the cathode side, particularly for 
the GDL and BP are significant throughout the manufacturing process. The permissible variation in 
the dimensions of the GDLs and BP, known as tolerance, is critical during production. Therefore, it 
is essential to study the consequences of tolerance variations to mitigate their impact on material 
costs. To address these challenges, RBDO is employed. In RBDO, material costs for BP and GDL are 
considered as reliability constraints, ensuring that the design remains robust under uncertainty. The 
problem can be formulated as follows:  

Maximize 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐝𝐝) (43) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
𝑃𝑃𝐹𝐹1(𝐝𝐝) = 𝑃𝑃[𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐗𝐗) ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 ] ≤ 𝑃𝑃𝐹𝐹1𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝐹𝐹2(𝐝𝐝) = 𝑃𝑃[𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐(𝐗𝐗) ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷] ≤ 𝑃𝑃𝐹𝐹2𝑡𝑡𝑡𝑡𝑡𝑡
 (44)  

𝐝𝐝 represents the design vector and 𝐝𝐝 = �𝝁𝝁 �𝐗𝐗𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔� ,𝝁𝝁�𝐗𝐗𝑑𝑑𝑐𝑐ℎ�, 𝝁𝝁�𝐗𝐗𝑤𝑤𝑐𝑐ℎ�,𝝁𝝁�𝐗𝐗𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙��
𝑇𝑇
, which is the 

mean value of the four design variables, 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑑𝑑𝑐𝑐ℎ ,𝑤𝑤𝑐𝑐ℎ and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The terms 𝑃𝑃𝐹𝐹1(𝐝𝐝)and 𝑃𝑃𝐹𝐹2(𝐝𝐝) are 
defined as the probability of failure of the two constraint function vector at the design vector 𝒅𝒅 and, 
𝐗𝐗  is the random design variable vector represented as 𝐗𝐗 = {X𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , X𝑑𝑑𝑐𝑐ℎ , X𝑤𝑤𝑐𝑐ℎ , X𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} . The two 
constraints, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 represent the material cost of the cathode GDL and BP at the 
deterministic optimal as a result of the DDO. The target probability of failure 𝑃𝑃𝐹𝐹1𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑃𝑃𝐹𝐹2𝑡𝑡𝑡𝑡𝑡𝑡  for the 
two constraints, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 is considered as 5%, where the target reliability is 95%. 

6. Results and Discussion 

In this study, the results of an optimization framework aimed towards optimizing fuel cell stack 
performance while taking in account of the cathode, GDL and BP material cost as constraints has 
been presented. The analysis is carried out with the 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  as the objective function that is being 
maximized, while the dimensional uncertainties of the four key PEMFC design variables i.e., 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔, 
𝑑𝑑𝑐𝑐ℎ ,𝑤𝑤𝑐𝑐ℎ, and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , has been considered. In addition, the cost of the materials for the cathode, GDL 
and BP is also considered as a criterion that must be met. In Section 6.1, we evaluate the predictive 
capability of the MLP surrogate. In section 6.2, results of the DDO approach are presented. 
Furthermore, in section 6.3, a comprehensive discussion of the RBDO approach wherein the 
uncertainties in design variables have been considered has been presented.  

As seen in Figure 4, to ensure that the 3D numerical PEMFC model considered in the present 
study can predict the performance of the fuel cell, a 3D PEMFC numerical model that was previously 
developed and validated against experimental polarization curves under various cell designs and 
operating conditions has been taken into consideration[31]. This validated model has been 
considered as the baseline for the present optimization study and has incorporated a 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 =
0.215 mm,𝑑𝑑𝑐𝑐ℎ = 0.54 mm , 𝑤𝑤𝑐𝑐ℎ = 1 mm , and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 mm , under 20% GDL compression (the 
thickness of GDL is reduced by 20% from its initial value). These values are consistent and well 
defined within the range of the design variable space specified in Eqs. (41) and (42).  
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Figure 4. Comparison of simulated polarization curves for the baseline and deterministic optimal 
design predicted with DDO optimization strategy via MLP-PSO surrogate. The simulations are 
conducted under controlled operating conditions for the anode and cathode: both set at pressures of 
2 bar and stoichiometries of 1.2 and 2.0 respectively, with inlet relative humidity maintained at 100% 
for each. The baseline design is with 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.215mm,𝑑𝑑𝑐𝑐ℎ = 0.54mm,𝑤𝑤𝑐𝑐ℎ = 1mm and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1mm 
and the deterministic optimal design is with 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.188mm,𝑑𝑑𝑐𝑐ℎ = 0.3mm,𝑤𝑤𝑐𝑐ℎ = 0.614mm and 
𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.310mm. 

6.1. Evaluation of Predictive Capability of the MLP Surrogate 

To estimate maximum 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  via surrogate-based design optimization under suitable constraint 
condition as described in Section 5, at first a MLP surrogate model that was developed using 
MATLAB, with detailed construction and implementation described in our previous work [27,44] has 
been utilized. The model was trained with a dataset of 75 samples. To effectively evaluate the 
predictive performance of the trained MLP model, a separate test set comprising of 15 samples, 
distinct from the trained set was employed. An error analysis was conducted to measure the 
predictive capability of the trained surrogate, using RMSE and adjucted R2 error metrices which are 
described in Eqs. (45) and (46), respectively.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑣𝑣�𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑁𝑁
𝑖𝑖=1 )2 (45)  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅2 = 1 − 𝑁𝑁−1
𝑁𝑁−𝑑𝑑−1

�1 − �1 − ∑ (𝑣𝑣𝑖𝑖−𝑣𝑣�𝑖𝑖)2
𝑁𝑁
𝑖𝑖=1

∑ (𝑣𝑣𝑖𝑖−𝑣𝑣�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

�� (46)  

where, 𝑣𝑣𝑖𝑖 and 𝑣𝑣�𝑖𝑖 denote the responses of the 3D PEMFC simulations and the predicted values of 
the MLP model, respectively; 𝑣̅𝑣𝑖𝑖 denotes the mean value of the observed data at the 𝑁𝑁 test points, 
and 𝑑𝑑 is the number of design variables. RMSE measures the average magnitude of the errors between 
predicted and actual values. Lower RMSE values indicate better model performance, with values 
approaching 0 indicating the best accuracy. The adjusted R2 value ranges from 0 to 1, while a value 
of 0 indicates that the model does not explain any of the variability in the response data around its 
mean, and a value of 1 indicates that the model is capable of considering the variability in the 
response data around its mean.  

Figure 5 illustrates a scatter plot comparing the prediction capability of MLP surrogate on both 
the training and test datasets. As shown in Figure 5a, the MLP model’s predictions on the training 
data are relatively high and are closer to line of perfect prediction indicated in red. In addition, results 
of the error analysis indicate a RMSE of 2.03 mV and adjusted R2 value of 0.956. These values imply 
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that the MLP model is capable of nearly capturing the effects of changes in the training samples. In 
contrast, Figure 5b illustrates the MLP models performance on the test dataset. The MLP model 
exhibits a very minor decline in prediction capability, with RMSE of 2.45 mV and adjusted R2 value 
of 0.952, when compared to the training dataset. Nevertheless, the resulting scatter plot reveals that 
the trained MLP is capable to predict near the line of perfect prediction, highlighting the model’s 
capability to predict unseen data. 

 
Figure 5. Scatter plots illustrating the prediction accuracy of the MLP surrogate for (a) training data 
and (b) test data. The plots highlight the correlation between predicted and actual values, with 
performance metrics RMSE and adjusted R² indicated for each dataset. 

6.2. DDO to Access Superior PEMFC Performance 

After evaluating the prediction capability of the MLP model to predict 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for a given set of 
unseen data across a wide range of design variables within the confined design bounds, it was further 
linked to the PSO algorithm to address a DDO problem, which primarily focuses on predicting 
maximum 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .  

Figure 6, illustrates a scatter plot for the relationship between 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and cathode side material 
cost parameters: 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, across various PEMFC designs, including the baseline, DDO, 
RBDO1 and RBDO2. As seen in Figure 6, the optimized PEMFC design via MLP-PSO(DDO) method 
shows maximum 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  performance. Table 6 lists the design variables and corresponding 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for 
various PEMFC designs and cathode side material cost parameters i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 . 
Particularly, as compared with the baseline design, DDO design shows a rise of 31mV in 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . A drop 
in 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  performance is seen in the baseline design which is due to 𝑤𝑤𝑐𝑐ℎ/𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  = 1:1, and a larger 𝑑𝑑𝑐𝑐ℎ 
corresponds to lower overall air velocity in the gas channel; these factors weaken oxygen transport 
and the removal of water that is accumulated inside the cathode GDL, while a thicker GDL limits 
oxygen transport along the through-plane direction (x). Interestingly, the increase in 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  of the 
DDO design also leads to a drop in 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  by 6.71 $/stack and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  by 32.64 $/stack. The 
resulting difference in cost parameters can be primarily attributed to the fact that the dimensions of 
the cathode side GDL and BP for the baseline design are significantly larger than the optimal values 
obtained through the DDO method. However, as noted in Table 6, the resulting DDO design 
predicted via MLP-PSO predicts design variables with 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.188mm , 𝑑𝑑𝑐𝑐ℎ = 0.3mm , 𝑤𝑤𝑐𝑐ℎ =
0.614mm, 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.31mm with 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 46.68 $/stack and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 = 108.81 $/stack, where the 
𝑑𝑑𝑐𝑐ℎ  is predicted at the extreme end of the design space, in particular the lower bound which 
corresponds to the least possible cathode BP material cost. Take note, for further discussions, material 
cost parameters of the cathode side GDL and BP, predicted by DDO will be denoted as 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  and 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷, respectively.  

Table 6. Comparison of design variables and corresponding cell voltage (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and nominal material 
costs of the cathode GDL and BP across various PEMFC designs: baseline, DDO, RBDO1 and RBDO2. 
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Parameters Baseline design 
Optimization approach 

DDO RBDO1 RBDO2 
 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔, [mm] 0.215 0.188 0.139 0.172 
𝑑𝑑𝑐𝑐ℎ, [mm] 0.54 0.300 0.382 0.349 
𝑤𝑤𝑐𝑐ℎ, [mm] 1 0.614 0.855 0.687 
𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, [mm] 1 0.310 0.300 0.300 
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , [V] 0.681 0.712 0.710 0.711 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [$/stack] 53.38 46.68 34.43 42.59 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 
[$/stack] 141.45 108.81 119.99 115.52 

 
Figure 6. Evaluation of a) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  b) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , across various PEMFC designs at 
𝐼𝐼 = 1.5  𝐴𝐴/𝑐𝑐𝑚𝑚2 . This figure illustrates: sample data(●), baseline model(★), the optimal design 
solutions obtained through, DDO(★) and RBDO: RBDO1(★) and RBDO2(★). 

6.3. RBDO for Cathode, GDL and BP Material Costs 

In engineering design, DDO models have widely been used to maximize/minimize the cost 
function in consideration of constraints. Over the past decade, significant efforts have been dedicated 
to optimizing PEMFC designs and their components using DDO models. However, due to 
uncertainties in the production process, there is a need to transition to RBDO to ensure robust and 
reliable designs. As discussed in Section 6.2, DDO offers superior 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , with reduction in 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 . When manufacturing uncertainties are incorporated into the design variables, the 
optimal solution often tends to deviate from desired outcome, resulting in unreliable design. To 
address the limitations of DDO, an RBDO problem is developed, as detailed in Section 5, specifically 
Eqs. (43-44). In Table 7, the uncertainties that may arise during manufacturing of GDL, and BPs have 
been considered for RBDO. These uncertainties are analyzed in two cases: Case 1 represents a high 
level of uncertainty, with standard deviations of 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.03mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.05mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.05mm, 
and 𝜎𝜎wland = 0.05mm. Case 2 represents a lower level of uncertainty, with standard deviations of 
𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.01mm , 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.03mm , 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.03 mm, and 𝜎𝜎wland = 0.03mm  This distinction helps in 
understanding the impact of varying uncertainty levels on the reliability of the PEMFC design. 
Additionally, as seen in the table, the standard deviation of the GDL is typically lower than that of 
the BP. This is because the GDLs play a critical role in the transport of reactant gases and the removal 
of product water formed during fuel cell operation. Small variations in thickness and porosity can 
lead to deviations in the flow of reactants and products, thereby altering the overall performance of 
the fuel cell. In contrast, BPs primarily provide mechanical support and electrical connectivity in the 
fuel cell. While dimensional accuracy is necessary, slight changes in dimensional variations do not 
significantly alter 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , compared to the GDL. Additionally, the materials used in BPs provide high 
structural stability and are less sensitive to dimensional variations compared to porous GDLs. 
Therefore, the robustness of BPs offers a slightly relaxed edge in terms of manufacturing uncertainties 
compared to the GDL. Figs. 7a to 7d show the probability distribution(PDF) with 95% probability 
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intervals for the four design variables: 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑑𝑑𝑐𝑐ℎ , 𝑤𝑤𝑐𝑐ℎ , and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  at DDO optimal. These figures 
correspond to Case 1, where the design variables are subjected to uncertainties with standard 
deviations of 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.03mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.05mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.05mm, and 𝜎𝜎wland = 0.05mm, respectively.  

Table 7. Distribution of design variables with mean(𝜇𝜇) and standard deviations(𝜎𝜎) for different 
cases. 

Design variables 
Distribution 

 
Mean (𝝁𝝁) [mm] Standard deviation (𝝈𝝈), [mm]  

DDO  𝐂𝐂𝐂𝐂𝐂𝐂𝐞𝐞𝟏𝟏  𝐂𝐂𝐂𝐂𝐂𝐂𝐞𝐞𝟐𝟐  
GDL thickness ( δgdl), [mm] Normal 0.188 0.03 0.01 
Channel depth (dch), [mm] Normal 0.3 0.05 0.03 
Channel width (wch), [mm] Normal 0.614 0.05 0.03 
Land width (wland), [mm] Normal 0.310 0.05 0.03 

The objective of RBDO in present study is to maximize the objective function (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) considering 
uncertainties in manufacturing, as defined in Case 1 and Case 2, while ensuring that the constraints 
i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  do not violate the boundaries of significant performance metrices. 
Moreover, these cost parameters are accessed for reliability ensuring that the PEMFC design remains 
robust under uncertainty. Therefore, setting the limits of these constraints is an important part of 
RBDO. As seen in Figure 3, the DDO design predicted via MLP-PSO is an optimal starting point for 
RBDO due to its significant advantages in both cost and performance compared to the baseline 
design. Specifically, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 at the DDO is 46.68 $/stack, which is notably lower than 53.38$/stack 
for the baseline design. Similarly, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  is at 108.81 $/stack, compared to 141.45$/stack for the 
baseline design. These improvements demonstrate that the DDO not only reduces costs significantly 
but also enhances 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , making it a more optimal starting point for further RBDO.  

In Figure 7b and 9b, at the DDO optimal, considering the uncertainties in design variables as 
defined in Case1  and Case2 , variation in values for 𝑑𝑑𝑐𝑐ℎ  is observed. Specifically, 𝑑𝑑𝑐𝑐ℎ  falls 
significantly below the lower bound of the design space, set at 𝑑𝑑𝑐𝑐ℎ𝐿𝐿 = 0.3mm. This deviation violates 
the design bounds. According to Eq. (40), 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 is directly proportional to 𝑑𝑑𝑐𝑐ℎ. Therefore, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  
will also fail to meet the design bounds for 𝑑𝑑𝑐𝑐ℎ values below 𝑑𝑑𝑐𝑐ℎ𝐿𝐿 = 0.3m. This necessitates to fix the 
constraint value to 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 108.81 $/stack, i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 . The 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is estimated 
based on Eq. (38) and is directly proportional to 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔. As seen in Figure 7a and 7b, when uncertainties 
in 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 as defined in Case1 and Case2 are considered, the variation in 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 set at 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.188mm, 
is well above the lower bound 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔𝐿𝐿 = 0.03mm . Therefore, the constraint for 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is set as 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 . 
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Figure 7. PDF plots with a 95% probability interval that corresponds to Case1  for four design 
variables: a)  𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , b) 𝑑𝑑𝑐𝑐ℎ , c) 𝑤𝑤𝑐𝑐ℎ , and d) 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . These plots account for uncertainties in design 
variables with standard deviations 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.03mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.05mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.05mm, and 𝜎𝜎wland =

0.05 mm. 

As shown in Figure 3, after defining the performance constraints, RBDO is initiated from the 
DDO considering uncertainties in design variables as defined in Case 1. The aim of the optimization 
process is to find a reliable optimal solution, referred as RBDO1. Figure 8a and 8b compares the results 
of DDO and RBDO1 . As seen, the PDF plots at DDO indicate a clear violation of the constraints 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  with the distribution plots extending into the 
infeasible region depicted by gray shaded area. In contrast, RBDO1  distribution plots are more 
spread out, reflecting a design strategy that accommodates the uncertainties while staying within the 
feasible cost region. Comparing and analyzing the detailed result listed in Table 8 reveals that the 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 at DDO achieves a reliability of 49.87%, indicating that 50.13% of the designs are unreliable 
and fail to meet 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 . Conversely, the RBDO approach shows that the reliability for 
achieving 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  at RBDO1  is 95.0%. Regarding, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 , at DDO the reliability is 
50.0%, which indicates that 50.0% of the designs are unreliable and fall below the 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 =
46.68$/stack. Furthermore, comparing the nominal values of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 indicate that a reduction of 
12.25$/stack is achieved, attributed to the RBDO strategy in reducing the material cost of the cathode 
GDL. Consequently, the material cost for the cathode BP, 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 , inevitably increases by 
11.18$/stack, causing the reliability of meeting 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 to increase from 50.0% to 94.99%. 
RBDO1 has successfully navigated manufacturing uncertainties while consistently achieving target 
reliability of 95% for both 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  and these are well illustrated in Figure 8. As 
outlined in Table 6, comparing the results of design variables at DDO and RBDO1 reveal that the 
DDO design variables, optimize the 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  by enhancing reactant distribution and water management, 
resulting in superior 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  of 0.712V. In contrast, the RBDO1 design achieve a comparable 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  of 
0.710V by balancing efficiency and reliability thereby aiming for a robust and reliable operation.  

Table 8. A summary of various performance metrices for the cost parameters: 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐, 
including the nominal and mean(𝜇𝜇) value, standard deviation(𝜎𝜎) and the reliability assessments for 
the two cases: case 1 and case 2, predicted through DDO and RBDO approach. 
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Case Parameter 

Optimization approach 
𝐃𝐃𝐃𝐃𝐃𝐃 RBDO 

Reliabil
ity 
[%] 

Nominal 
value 

[$/stack] 

Mean 
value (𝝁𝝁) 
[$/stack] 

Standard 
deviation 

(𝝈𝝈) 
[$/stack] 

Reliabil
ity [%] 

Nominal 
value 

[$/stack] 

Mean 
value (𝝁𝝁) 
[$/stack] 

Standard 
deviation 

(𝝈𝝈) 
[$/stack] 

1 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
[$/stack] 49.87 46.68 46.68 7.45 95.00 34.43 34.42 7.44 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 
[$/stack] 50.00 108.81 108.81 6.78 94.99 119.99 120.0 6.80 

2 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
[$/stack] 49.87 46.68 46.68 2.48 95.02 42.59 42.58 2.48 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 
[$/stack] 50.00 108.81 108.81 4.07 94.99 115.52 115.51 4.08 

 
Figure 8. Comparison of PDF plots that corresponds to Case1 for a) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and b) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 at DDO 
(𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.188mm , 𝑑𝑑𝑐𝑐ℎ = 0.3mm , 𝑤𝑤𝑐𝑐ℎ = 0.614mm , 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.31mm ) and RBDO1 (𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.139mm , 
𝑑𝑑𝑐𝑐ℎ = 0.382mm, 𝑤𝑤𝑐𝑐ℎ = 0.855mm, 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3mm), incorporating uncertainties in design variables 
with standard deviations 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.03mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.05mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.05mm, and 𝜎𝜎wland = 0.05 mm. 
The operating current density at which 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 is estimated is 𝐼𝐼 = 1.5 A/cm2. 

Accessing the effects of variability in uncertainty on PEMFC performance is of high interest. By 
analyzing multiple cases Case1  and Case2  ensures that the PEMFC design is robust and reliable 
under different conditions. Figure 9 illustrates the PDF plots with a 95% probability interval that 
corresponds to Case2 for four design variables: a)  𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔, b) 𝑑𝑑𝑐𝑐ℎ , c) 𝑤𝑤𝑐𝑐ℎ , and d) 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . These plots 
account for uncertainties in design variables with standard deviations 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.01mm , 𝜎𝜎𝑑𝑑𝑐𝑐ℎ =
0.03mm , 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.03 mm, and 𝜎𝜎wland = 0.03 mm.  The RBDO approach aligns with previous 
descriptions, so our discussions are focused on how RBDO2 affects PEMFC designs. Figure 10a and 
10b display the distributions of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 , where more than half of the distribution curve 
violate the constraints set at 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷. Comparing the values of 
DDO and RBDO2 shows that the RBDO method predicts a 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 much lower that DDO and the 
reduction in cost is 4.09$ with a reliability of 95.02%. Regarding 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 the RBDO method shows 
and inevitable cost rise of 6.71$/stack while achieving a reliability target of 95%. Comparing and 
analyzing the effects of varying uncertainty as defined in Case1  and Case2  reveals that RBDO 
method tries to achieve the target reliability of 95% in both the cases. In addition, RBDO1 and RBDO2 
show how different levels of uncertainty effect on the design variables and performance. RBDO1, 
with higher variability, results in a more conservative design with lower costs but slightly and 
slightly lower 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . In contrast, RBDO2, with lower variability, achieves a more optimized design 
with slightly higher costs but similar 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Both approaches maintain comparable cell voltages, 
demonstrating robust performance despite the differences in design strategies. 
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Figure 9. PDF plots with a 95% probability interval that corresponds to Case2  for four design 
variables: a)  𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , b) 𝑑𝑑𝑐𝑐ℎ , c) 𝑤𝑤𝑐𝑐ℎ , and d) 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . These plots account for uncertainties in design 
variables with standard deviations 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.01mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.03mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ = 0.03mm, and 𝜎𝜎wland =

0.03 mm. 

 
Figure 10. Comparison of PDF plots that corresponds to Case2 for a) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and b) 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 at 
DDO (𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.188mm, 𝑑𝑑𝑐𝑐ℎ = 0.3mm, 𝑤𝑤𝑐𝑐ℎ = 0.614mm, 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.31mm) with standard deviation 
and RBDO2 ( 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.172mm , 𝑑𝑑𝑐𝑐ℎ = 0.349mm , 𝑤𝑤𝑐𝑐ℎ = 0.687mm , 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3mm ), incorporating 
uncertainties in design variables with standard deviations 𝜎𝜎 𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 = 0.01mm, 𝜎𝜎𝑑𝑑𝑐𝑐ℎ = 0.03mm, 𝜎𝜎𝑤𝑤𝑐𝑐ℎ =
0.03mm, and 𝜎𝜎wland = 0.03 mm. The operating current density at which 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  is 
estimated is 𝐼𝐼 = 1.5 A/cm2. 

7. Conclusions 

This study presents a methodology for optimizing the four key PEMFC design variables i.e., 
𝛿𝛿𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑑𝑑𝑐𝑐ℎ , 𝑤𝑤𝑐𝑐ℎ , and 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . We employed two optimization strategies namely DDO and RBDO, to 
evaluate and compare effectiveness. At first, an MLP model was developed based on the results from 
a comprehensive multi-scale, two-phase, 3D numerical PEMFC model. The predictive accuracy of the 
MLP was evaluated on the test set of 15 design samples using the RMSE and adjusted R2, with values 
of RMSE = 2.45 mV and adjusted R2= 0.952. The MLP was integrated with a PSO to perform DDO, 
which identified a design that improved 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  by 31 mV at a current density of 1.5 A/cm². This 
superior 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is primarily due to its optimized design parameters by reducing the design variables 
as compared to the baseline case. These optimized dimensions enhance the flow distribution, leading 
to higher 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  of 0.712V. Given the manufacturing variability cathode GDL and BP, these 
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uncertainties were modeled using statistical distributions, and RBDO was conducted. The RBDO 
results indicated that designs deemed optimal in DDO contexts failed to meet the cost constraint, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 ≥  𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷, illustrating the need for RBDO to enhance robustness 
in the manufacturing process by optimizing design variable to achieve over 95% reliability in 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . The RBDO approach effectively balances efficiency and reliability, achieving 
a target reliability of 95% for both 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . RBDO1, with higher variability, results in 
a more conservative design with lower costs, while RBDO2, with lower variability, achieves a more 
optimized design with slightly higher costs. Both designs maintain comparable 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , demonstrating 
robust performance despite different design strategies.  
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Nomenclature 

a Ratio of active surface area per unit electrode volume, m2/m3 or water activity 
A Area, m2  

C Molar concentration of species, mol/m3 
d Vector of design variables or solution of a deterministic optimization problem 
D  Species diffusivity, m2/s 
E Activation energy, kJ/mol 
EW Equivalent weight of a dry membrane, kg/mol 
f Objective function that needs to be minimized or maximized in the optimization problem 
F  Faraday’s constant, 96,487 C/mol 

G  Constraint condition for the 𝑗𝑗-th constraint 
i0  Exchange current density, A/cm2 

id Density estimation parameter 

I  Operating current density, A/cm2 

j Transfer current density, A/cm3, 
𝐽𝐽 Total number of constraint functions in the optimization problem 
k Thermal conductivity, W/m·K, or Relative permeability, or index representing the specific 

objective function in the optimization problem 
K Hydraulic permeability, m2 
L Amount of loading, mg/cm2 
n Number of electrons transferred in the electrode reaction 
N Number of design varaibles  
MW Molecular weight, kg/mol 
MSE Mean squared error 
P Pressure, Pa, 
P Probability 
RMSE Root mean squared error 
s Liquid saturation 
S  Source term in the transport equation 
t time 
T  Temperature, K 
u�⃗  Fluid velocity and superficial velocity in a porous medium, m/s 
V Voltage, V or Volume, m3  
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X Vector of the design variables in the optimization problem 
𝑋𝑋𝑖𝑖 Lower or upper bound of the i-th design variable 
𝑥𝑥  Input variable 
𝑣𝑣 Observed response 
𝑣𝑣� Predicted response  
𝑣̅𝑣 Mean value of the observed data 
z Transport resistance coefficient 
Greek symbols 
α Transfer coefficient 
𝛽𝛽 Weight coefficient 
γ Reaction order 
δ Thickness, m 
ε Volume fraction or error 
η Surface overpotential, V 
𝜃𝜃 Contact angle of the gas diffusion layer 
𝜆𝜆 Water content 
𝜇𝜇 Mean value of random design variables 
κ Proton conductivity, S/m 

Phase potential, V 
ρ Density, kg/m 
σ Electronic conductivity, S/m 
τ Viscous shear stress, N/m2 
ξ Stoichiometry flow ratio 
Ω Oxygen transport resistance 
Superscripts 
c  Catalyst coverage coefficient 
eff Effective 
g Gas 
l Liquid 
L Lower bound of a design variable 
max Maximum 
mem Membrane 
min Minimum 
op Operating 
ref Reference value 
tar Target 
T Transpose operation of a matrix 
U Upper bound of a design variable 
Subscripts 
a  Anode 
aCL Anode catalyst layer 
allw   Allowance 
c  Cathode 
C Carbon 
CL  Catalyst layer 
cCL  Cathode catalyst layer 
ch  Gas channel 
e  Electrolyte 
ECSA Electro chemical active surface area 
gdl  Gas diffusion layer 
𝐹𝐹𝐹𝐹 Index representing the failure of the 𝑗𝑗-th constraint 
I/C Ionomer to carbon weight ratio 
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i  Species or index representing the lower or upper bound of the N-th design variable 
in   Channel inlet 
int   Interface 
j  Index representing the specific constraint function in a problem with multiple constraints 
k Index representing the specific objective function in the optimization problem 
MEA Membrane electrode assembly 
mem  Membrane 
min Minimum 
N Number of design varaibles 
nd n-th random design variable 
Pt/C Weight ratio of Platinum to carbon 
Pt Platinum 
s  Solid, surface 
T  Temperature 
u  Momentum equation 
w  Water 
0  Initial conditions or standard conditions, i.e., 298.15 K and 101.3 kPa (1 atm) 
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