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Abstract: The advancement of autonomous driving technology is becoming increasingly vital in the modern

technological landscape, promising notable enhancements in safety, efficiency, traffic management, and energy use.

Despite these benefits, conventional deep reinforcement learning algorithms often struggle to navigate complex

driving environments effectively. To tackle this challenge, we propose a novel network called DynamicNoise,

designed to significantly boost algorithmic performance by introducing noise into the Deep Q-Network (DQN)

and Double Deep Q-Network (DDQN). Drawing inspiration from the NoiseNet architecture, DynamicNoise

uses stochastic perturbations to improve the exploration capabilities of these models, leading to more robust

learning outcomes. Our experiments demonstrate a 57.25% improvement in navigation effectiveness within a

2D experimental setting. Moreover, by integrating noise into the action selection and fully connected layers

of the Soft Actor-Critic (SAC) model in the more complex 3D CARLA simulation environment, our approach

achieved an 18.9% performance gain, substantially surpassing traditional methods. These results confirm that the

DynamicNoise network significantly enhances the performance of autonomous driving systems across various

simulated environments, regardless of their dimensionality and complexity, by improving their exploration

capabilities rather than just their efficiency.

Keywords: reinforcement learning; autonomous driving; vehicle avoidance

1. Introduction

The emergence of autonomous driving technology marks a pivotal shift in the transportation
sector, with profound implications for road safety [1], efficiency [2], and accessibility [3]. Utilizing
advanced sensors, machine learning, and artificial intelligence, autonomous vehicles have been
designed to minimize human error—the primary cause of road accidents. This reduction is expected
to substantially decrease the incidence of collisions, injuries, and fatalities. Beyond enhancing safety,
autonomous driving technology promises to transform access for populations with limited mobility,
such as the elderly and disabled, thus providing increased independence. Additionally, these vehicles
are engineered to optimize routing and traffic management [4], which could [5] alleviate congestion
and lower environmental impacts through the promotion of more efficient fuel usage and accelerating
the adoption of electric vehicles. The potential applications of autonomous driving are extensive,
encompassing personal and public transport, logistics, and delivery services, transforming urban
environments and fundamentally altering our interaction with travel.

To advance the development of vehicles that can navigate and operate autonomously without
human intervention, traditional control methodologies such as [6,7] Proportional–Integral–Derivative
(PID) controllers and Model Predictive Control (MPC) [8] provide distinct approaches to automation.
PID controllers are lauded for their simplicity, which minimizes the discrepancy between the desired
trajectory and the actual position of the vehicle. This method is easy to implement and performs
effectively under stable conditions, making it ideal for straightforward applications such as cruise

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 August 2024                   doi:10.20944/preprints202408.2155.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202408.2155.v1
http://creativecommons.org/licenses/by/4.0/


2 of 23

control. However, its reactive nature is less effective in dynamic, complex environments, where the
ability to anticipate future conditions is crucial. In contrast, MPC is distinguished by its capacity to
incorporate future states and constraints, thus optimizing control inputs across a predictive horizon.
This forward-thinking approach enables MPC to proficiently manage intricate driving situations, such
as obstacle avoidance and adaptive cruise control. Despite its benefits, the computational intensity of
MPC presents challenges for real-time implementation, underscoring a significant trade-off between
predictive accuracy and computational efficiency.

In traditional reinforcement learning tasks [9], the deep Q-Network (DQN) has gained widespread
application [14] due to its benefits in end-to-end learning, stability, and efficiency, making it valuable
for addressing problems in environments with discrete action spaces [15]. However, DQN only
applies to discrete action spaces; other schemes are needed for continuous action spaces. The Soft
Actor–Critic (SAC) algorithm [16] is characterized by its high sampling efficiency, and better stability
and convergence can be achieved through both value and policy functions. In addition, SAC is
particularly effective for tasks with a continuous action space, making it suitable for applications such
as autonomous driving. However, these methods face common challenges, including slow convergence
rates, insufficient exploration, issues with time delays, and sub-optimal reward outcomes.

To address these issues, we propose a network framework named DynamicNoise, which intro-
duces an innovative approach to enhance network performance. One of the critical challenges in
reinforcement learning is balancing exploration and exploitation effectively. Traditional methods such
as the ε-greedy algorithm often fall short in facilitating sufficient exploration, leading to sub-optimal
policies. Our DynamicNoise network employs a straightforward strategy to balance exploration and
exploitation [17] through the incorporation of noise into the network architecture. This modification,
achieved with a singular adjustment of the weight vector, induces a consistent yet complex alteration in
the policy, which is dependent on the state over multiple time steps, contrasting sharply with jittering
strategies that insert uncorrelated noise, such as the ε-greedy strategy, at each decision point.

The main contributions of our work are as follows:
1. Enhanced Exploration in 2D Environments: We employ Markov models for environmental

inputs (e.g., vehicle speed, location, and destination) and action decisions (including acceleration and
turning) in DQN and DDQN networks, respectively, in a 2D setting. Subsequently, we introduce
random-valued noise to optimize the vehicle turning process, significantly improving exploration and
policy robustness.

2. Application in Realistic 3D Scenarios: To validate the applicability of our framework in more
realistic scenarios, as well as with different network architectures, we introduce noise into the action
selection and fully-connected layers of the SAC model in a 3D environment to optimize the process of
actual0 vehicle driving. This approach enhances the exploration capabilities of the SAC model, leading
to better performance in complex driving environments.

3. Comprehensive Validation and Future Implications: We first validate the feasibility of the
algorithm in a two-dimensional scenario and then demonstrate the superiority of the algorithm in a
more realistic three-dimensional scenario. The results indicate that our DynamicNoise framework
can more effectively accomplish the autonomous driving navigation task. The application of the
DynamicNoise framework could be extended to similar operating environments, suggesting broad
implications for future research and applications of autonomous systems.

The remainder of this paper is organized as follows: Section 2 reviews the related literature.
Section 3 describes the methodology. Section 4 presents the experimental setup. Section 5 discusses the
results. Finally, Section 6 concludes the paper and suggests future research directions.

2. Related Work

While autonomous driving has many challenges regarding its complexity and dynamics, riding
on the development of machine learning techniques, reinforcement learning has led to breakthroughs
in the field.
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Alizadeh et al. [18] established a decision-making and planning model based on the DQN
algorithm, which had better performance than the traditional method in a noisy environment with
different noise levels. Unfortunately, DQN networks are not without their challenges: one major
drawback of such an approach is the slow convergence rate, which may not allow for real-time
adaptation in dynamic driving scenes. Furthermore, poor exploration may result from poor policy
learning when using a DQN.

Some of the limitations of DQNs have been addressed by creating the DDQN algorithm. Double
Q-learning, proposed by Hasselt et al. [19], mitigates the overestimation bias in Q-learning and acts as
the genesis point for the development of DDQN, which has been commonly used in the context of
autonomous driving. Liao et al. [20] used DDQN to address high-level decision-making problems
with large state spaces and obtained good safety results and performance. DDQN can still lead to
high-time decision delays under binary action spaces, offering sub-optimal reward outcomes.

Seong et al. [21] employed the SAC method to propose a spatio-temporal attention mechanism
to assist in the decision-making method for managing autonomous driving at intersections. SAC
algorithms, which are highly sample-efficient and stable, perform well in complex driving scenarios.
Nevertheless, similar to DQN and DDQN, SAC also needs to improve its convergence and exploration
problems, which can become ineffective, especially when considering a quickly changing environment.

Lillicrap et al. [22] proposed continuous control with deep reinforcement learning, which has
been instrumental in developing algorithms such as DDPG for more granular control in autonomous
driving tasks. Schulman et al. [23] developed Proximal Policy Optimization (PPO), another popular
RL algorithm used for continuous control tasks in autonomous driving.

Chen et al. [24] developed a safe reinforcement learning approach that integrates human driver
behavior, utilizing regret theory to determine whether to change lanes or maintain the current lane.
This composite model allows agents to learn safe and stable driving strategies, mimicking human
decision-making processes. Although this method still needs to improve its inefficiencies, it laid the
groundwork for improved approaches by enhancing the safety and stability of autonomous driving
strategies by incorporating human decision-making models.

Building on this, He et al. [25] adopted a constrained observation-robust Markov decision process
to simulate lane-changing behaviour in autonomous vehicles. Employing Bayesian optimization for
black-box attacks, they effectively approximated optimal adversarial observation perturbations. Their
algorithm demonstrated excellent generality and robustness in the face of observational perturbations,
further enhancing the stability of autonomous driving systems in complex and uncertain environments.
However, they did not verify continuous action spaces and, thus, could not address longitudinal
decision-making problems in autonomous vehicles.

To further mitigate driving risks, Li et al. [26] proposed a new method based on risk assessment,
using a probabilistic model to evaluate the risk and apply it to reinforcement learning driving strategies.
This approach aimed to minimize driving risks during lane-changing maneuvers, ensuring safer
decision-making processes. This research builds on previous work by focusing on risk management
and safety enhancement. However, such methods still need to consider integrating different decision-
making layers with various approaches, increasing the complexity of decision-making tasks.

Peng et al. [27] decoupled speed and lane-changing decisions, training them separately using
different reinforcement learning methods to address the complexity of decision-making in driving
tasks. This separation helped to overcome the training difficulties caused by the coupling of these tasks,
leading to more efficient learning and strategy optimization. However, this method does not allow
for the simultaneous inclusion of lane-change trajectories during the research process. Additionally,
the model performs poorly in situations characterized by high speeds and small distances between
vehicles.

Hoel et al. [28] combined Bayesian reinforcement learning with a Random Prior Function (RPF)
to estimate the confidence of actions, yielding more reliable action outputs at intersections under high
uncertainty and reducing the likelihood of collisions. This study enhanced the reliability of decision-
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making under uncertain environments through confidence evaluation. However, how to set the
parameter values systematically was not specified, nor could these parameter values be automatically
updated during the training process.

Finally, Zhang et al. [29] incorporated traffic rules into a reinforcement learning algorithm, inte-
grating the priority of surrounding vehicles into the state space. Combining this with Responsibility-
Sensitive Safety (RSS) detection, they were able to control the longitudinal speed more effectively,
assisting vehicles in ensuring their safe driving in various traffic scenarios. This study further enhanced
the practicality and safety of autonomous driving systems by combining rules and safety detection.

Despite these successes, balancing exploration and exploitation remains a challenge [30]. Studies
have explored value penalty factors and policy normalization to align the learned policies with expert
behaviors. Lillicrap et al. [31] explored techniques for training exploration strategies using correlated
noise, but these techniques may face difficulties under more variable conditions. Plappert et al. [32]
introduced a technique involving constant Gaussian noise in the network. Unlike these works, the
method proposed in this study allows for dynamic adjustment of noise applications over time, not
limited to the Gaussian mode, thereby enhancing its adaptability and effectiveness in different driving
environments.

Adding noise introduces new exploration opportunities, and while it can effectively handle
uncertainties within the training environment, it may struggle to address novel, unseen uncertainties
in real-world scenarios. To overcome this issue, Hunmin et al. [33] proposed an active, robust adaptive
control architecture for autonomous vehicles across various environments. This architecture estimates
unknown cornering stiffness using weather forecasts and vehicle network data, effectively balancing
performance and robustness. Currently, systems increasingly rely on machine learning. Although
many scholars have proposed effective techniques to demonstrate the robustness of predictions
against adversarial input perturbations, these techniques have often diverged from the downstream
control systems that use these predictions. Jinghan et al. [34] address this by providing robust
certification of control against adversarial input perturbations through robust control of the original
input disturbances. This enhances certification security, ensuring reliable operation under a broader
range of unpredictable conditions.

3. Methods

3.1. Markov Decision Process Modeling

The usefulness of the MDP has led to its continuous use in reinforcement learning. The MDP is
characterized by the tuple (S, R, A, γ, T), where S denotes the state space, R the reward function, A
the action space, γ the discount factor, and T the transition model, which describes the probability of
transitioning from one state to another.

3.1.1. State Space

State space in DQN Variants
The most critical aspect of successful autonomous driving is determining the state of the vehicle

itself and its surrounding environment. Relying on a single state makes it difficult for each vehicle
to make optimal decisions. Therefore, we introduce a multi-dimensional state. In our model, the
state configuration includes the observation information of the autonomous vehicles. Specifically,
the observation type is "Kinematics," and the number of observed vehicles is 15. We selected a series
of features to describe the state of each vehicle, including the presence of the vehicle, x-coordinate
(measured in meters, m), y-coordinate (measured in meters, m), velocity in the x-direction (measured
in meters per second, m/s, vx), velocity in the y-direction (measured in meters per second, m/s, vy),
and the cosine (cosh) and sine (sinh) of the heading angle.
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The value ranges for these features are as follows: the x-coordinate ranges from -100 to 100 meters,
the y-coordinate ranges from -100 to 100 meters, the velocity in the x-direction ranges from -20 to 20
meters per second, and the velocity in the y-direction ranges from -20 to 20 meters per second.

Additionally, we use absolute coordinates to describe these features without flattening the ob-
servation matrix or considering the intentions of other vehicles. The number of controlled vehicles
is set to 1, the initial vehicle count is 10, and the probability of spawning a new vehicle is 0.6. This
multi-dimensional state representation helps the model to make more accurate and effective decisions
in various traffic scenarios.

State space in SAC
An RGB image is created by stitching together outputs from three 60-degree cameras mounted

on the car roof, resulting in a 180° wide-angle view. This stitched RGB image has a size of 3 × 84 ×
252. For training purposes, three consecutive images were stacked to capture temporal information,
making the final input to the model a tensor with a shape of 9 × 84 × 252. This configuration allows
the model to utilize both spatial and temporal features for more robust learning.

3.1.2. Action Space

Actions in DQN Variants
In our model, the action configuration defines the operations that autonomous vehicles can un-

dertake. We set the action type to DiscreteMetaAction, meaning the vehicles can select from predefined
discrete actions. The action space includes the following three operations:

• Decelerate (target velocity: 0 units);
• Maintain Speed (target velocity: 4.5 units);
• Accelerate (target velocity: 9 units).

These actions primarily control the vehicle’s longitudinal movement, allowing it to adjust its
speed in response to different driving scenarios. While the action space does not explicitly include
lateral actions such as turning, the vehicle’s ability to navigate intersections and perform turns is
achieved through the manipulation of its velocity components (vx and vy) and heading direction
(represented by cosh and sinh). This approach enables the vehicle to change direction smoothly by
adjusting the direction of its velocity vector within the physical simulation of the environment.

By focusing on these essential longitudinal actions with specific target velocities, the model
ensures operational stability and responsiveness while maintaining the flexibility to perform complex
manoeuvres, such as turning at intersections, through the underlying kinematic adjustments. This
design reduces unnecessary complexity and allows the model to effectively control the movement of
the vehicle in diverse and dynamic driving environments.

Actions in SAC
The action space is composed of two amplitude control dimensions: steering amplitude control

and brake (acceleration) amplitude control. The steering amplitude control is normalized to the contin-
uous interval [0,1], and in practice, it operates within a continuous range of continuous_steer_range
[-0.3, 0.3] radians (approximately -17.19 to 17.19 degrees). This allows the vehicle to adjust its direction
within this range.

The brake amplitude control, also normalized to the [0,1] interval, corresponds to the vehicle’s
acceleration control, defined by the continuous_accel_range of [-3.0, 3.0] m/s². Positive values of
this control result in acceleration, while negative values manage braking or deceleration.

3.1.3. Reward Function

Reward in DQN Variants
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In our task, vehicles traveling at high speeds, staying in their designated lanes, avoiding collisions,
and successfully reaching the destination will be rewarded. The reward function is defined according
to Formula 1:

R = (Wcollision × Rcollision + Wspeed × Rspeed + Warrived × Rarrived)× Rlane, (1)

where R is the total reward, Rcollision is the collision reward, Rspeed is the speed reward, and Rlane is the
lane reward. Rcollision, Rspeed, and Rlane are computed according to Formulas 2, ??, and 4, respectively:

Rcollision =

{
−5, if the car crashed,

0, otherwise,
(2)

Rspeed =


1, if Speed > 9,
Speed−7

2 , if 7 < Speed ≤ 9,

0, otherwise.

(3)

Rlane =

{
1, if the car is on road,

0, if the car is not on road.
(4)

If arrived_reward is True, then we get Formulas 5 and 6.

R = Rarrived, (5)

Rarrived =

{
1, if the car arrives,

0, if the car does not arrive.
(6)

In the above formulas, Wcollision, Wspeed, and Wlane are hyperparameters used to determine the
importance of speed, lane adherence, and safety. Each vehicle is represented as a rectangle (5 meters
long and 2 meters wide) in this environment. A collision occurs if there is an overlap between the
rectangle corresponding to the autonomous vehicle and those corresponding to other vehicles.

Reward in SAC
The reward is described by Formula 7.

rt(s, a) = vTû ∗ ∆t− Ci ∗ I − Cs∗ | steer |, (7)

where vTû represents the actual speed of the vehicle projected onto the road’s effective speed. This
term encourages the vehicle to maintain an optimal speed along the direction of the road, maximizing
the effective distance travelled during the time step ∆t.

I is the impact force (N/s) obtained through sensors, representing the external forces acting on the
vehicle. A higher impact force results in a greater penalty, discouraging aggressive or unsafe driving
behaviours. The coefficient Ci determines the severity of this penalty.

| steer | is the magnitude of the steering control, reflecting the extent of steering input. Excessive
steering, which could lead to instability, is penalized more heavily. The penalty is scaled by the
coefficient Cs, which adjusts the impact of steering control on the overall reward.

This reward function is designed to balance the trade-offs between maintaining efficient speed,
minimizing impact forces, and avoiding erratic steering, thereby promoting stable and safe driving
behaviours.

3.1.4. Discount Factor: γ

In the context of autonomous vehicles, particularly when considering models focused on turning
and obstacle avoidance, the discount factor (γ) is instrumental in shaping the learning process. This
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factor is crucial for balancing immediate and long-term goals, thereby enhancing the efficiency and
stability of learning outcomes. An appropriately calibrated discount factor not only prompts the
vehicle to execute safe and effective maneuvers in critical situations but also enhances the overall
efficiency and comfort of the journey. Doing so ensures that the developed driving strategies are
optimal regarding safety and practical usability. Therefore, carefully selecting the discount factor is
vital for achieving efficient and secure autonomous driving operations.

In the MDP, the action space At and reward function Rt are incorporated into the foundational
structure of a Markov process. We can conceptualize At as the input of the system and Rt as its
output. In this framework, as shown in Figure 1, the state transitions within the MDP are influenced
externally rather than solely by internal processes; that is, they are determined by the current state
St and the input At. Consequently, the subsequent state St+1 is dictated by the transition probability
model P(St+1|St) and, similarly, Rt is defined by the probability distribution P(Rt|St, At); which, for
simplicity, can be denoted as Rt(St, At).

Environment

Agent

Reward �� Action ��

Reward ��+1

State ��

State ��+1

Figure 1. MDP flow diagram.

In the realm of RL, the environment responds by assigning a reward according to the action of
the agent and the current state. The RL model aims to discover the optimal policy by maximizing
this reward. For example, the policy for navigating intersections, as shown in Figure 2, represents
a specific type of MDP where the autonomous vehicle (AV) acts as an intelligent agent. This agent
enhances performance through dynamic interactions with other vehicles, continuously learning and
adapting. The delineation of a policy within the context of this MDP involves precise definitions of
these interactions and the resultant learning mechanisms.

Policy π

Agent

Environment

Action �� 

State �� 

Reward �� 

Accelerate  Decelerate  Maintain 

��

��

Figure 2. Schematic diagram of how the model works.
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3.2. The Proposed Framework

3.2.1. Overview

The DynamicNoise framework represents a comprehensive approach to enhancing deep reinforce-
ment learning capabilities to cope with complex dynamic environments. At the core of the framework
is the integration of high-level variants of standard DQN models and SAC models to better address
the challenges faced by autonomous systems, with a particular focus on increasing exploration and
improving the accuracy of decision-making.

The proposed DynamicNoise framework consists of two modules: NoisyNet based on the DQN
model and NoisyNet based on the SAC model, where NoisyNet based on the DQN model consists
of the DQN and the DDQN. Each of these components is designed to take advantage of the intrinsic
strengths of the basic model while, at the same time, introducing a noise mechanism that enhances the
exploration through the injection of noise.

1. DQN Model: This component modifies the traditional DQN by adding NoisyNet and intro-
ducing parameter noise into the network weights. The flowchart of the network is represented in
Figure 3. This noise enriches the policy exploration, allowing the network to explore a more diverse
set of actions without explicitly exploring specific hyperparameters, similar to ε in the ε-greedy policy.
Building on the DQN using NoisyNet, the DDQN using NoisyNet is made more efficient and effective
by using two separate networks to extend the framework, as in the traditional DDQN approach. This
setup helps to reduce the overestimation of action values, which often occurs in standard DQN models.
The flowchart of this network is simply represented in Figure 4. Adding NoisyNet to the policy and
target networks can further facilitate exploration and help speed up convergence by providing a wider
range of experience during training.

2. SAC Model: This component modifies the traditional SAC by adding NoisyNet and introducing
parameter noise into the network weights. The network flow is represented in Figure 5. This noise
enriches the exploration of strategies, making the NoisyNet SAC framework more efficient and
effective. This setup helps reduce the bias in value estimation that often occurs when using standard
SAC models.

Q-value network Q-value target

Replay buffer

Soft 
update

Input layer

Output layer

Fixed

Q-value 

network 

NoisyNet

argmax
𝑎

𝑄(𝑠, 𝑎)

Environment

Hidden layer

Input layer

Output layer

Hidden layer

Action

Data collection

Value

Temporal-Difference Loss

DecisionTraining

Rewards

NoisyNet
Observations

Target value 𝑄𝑡𝑎𝑟𝑔(𝑠𝑡, 𝑎)State value 𝑄(𝑠𝑡, 𝑎)

𝐃𝐐𝐍 frame with NoisyNet

Q-value network Q-value target

Replay buffer

Soft 
update

Input layer

Output layer

Fixed

Q-value 

network 

NoisyNet

argmax
𝑎

𝑄(𝑠, 𝑎)

Environment

Hidden layer

Input layer

Output layer

Hidden layer

Action

Data collection

Value

Temporal-Difference Loss

DecisionTraining

Rewards

NoisyNet
Observations

𝐃𝐃𝐐𝐍 frame with NoisyNet

𝑄𝑡𝑎𝑟𝑔(𝑠𝑡, argmax
𝑎

𝑄 𝑠𝑡, 𝑎 )State value 𝑄(𝑠𝑡, 𝑎)

Figure 3. Flowchart of DQN with NoisyNet.
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𝑎
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Figure 4. Flowchart of DDQN with NoisyNet.

Figure 5. Flowchart of SAC with NoisyNet.

3.2.2. DQN with NoisyNet

Through practical research, we found that the exploitation capability of DQN alone was insuffi-
cient. Therefore, we modified the DQN network to enhance its exploitation abilities.

We changed the traditional exploration mechanism by enhancing DQN by introducing parametric
noise into its network weights. Specifically, in the neural network of DQN, each weight is no longer a
fixed value but a random variable determined by a fixed mean parameter and a learnable variance
parameter. In this way, each forward propagation of the network produces a different result, depending
on the randomness of the weights, thus introducing exploration ability into the decision-making
process of agents. Unlike traditional ε-greedy exploration or noise-adding strategies, NoisyNet allows
the exploration behaviour of the agent to adapt along with the learning process, which is achieved by
optimizing the variance parameters of the weighted noise.

When the noise layer replaces the linear layer, the parametric action value function Q(x, a, ε; ζ) can
be considered a random variable. In particular, a dense neural network layer that inputs p dimensions
and outputs q dimensions is expressed as y = ω · x + b. The respective noisy layer is characterized by
Formula 8.

y = (µω + ϵω ⊙ σω)x + (µb + ϵb ⊙ σb), (8)

where µω, σω ∈ Rp×q, σb, µb ∈ Rq are trainable parameters, and ϵω ∈ Rp×q, ϵb ∈ Rq are noises. Given
that the loss of a noisy network is represented as an expectation over noise, the gradient can be
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calculated using L(ζ) = E[L(θ)]. In noisy networks, the parameters of the original DQN can be
replaced with trainable parameters, as shown in Formula 9:

L̄(ζ) = E[E(x,a,r,y)∼D[r + γ max
b∈a

Q(y, b, ϵ′; ζ)−Q(y, a, ϵ′; ζ)]2]. (9)

DQN stands out as a typical algorithm in the field of value-based reinforcement learning [35]. It
leverages the Temporal Difference (TD) error as the loss function for the neural network, incorporating
techniques such as convolution, an experienced buffer, and random experience replay. DQN has
achieved human-level performance in the domain of Atari games. At each time step, as shown in
Algorithm 1, the environment offers the agent an observation st. Initially, the agent selects an action
following the ε-greedy strategy and receives a response rt and the subsequent state st+1 from the
environment. Subsequently, the tuple (st, at, rt, st+1) is added to the experience buffer, and we obtain
Formula 10:

L(θ) = E[(rt + γ max
a

Qπ(st+1, a′; θ−)−Qπ(st, at; θ))2], (10)

where θ represents the parameters of the online network, while θ− denotes the parameters of the target
network. The parameters θ− are periodically updated to match θ at regular intervals.

Algorithm 1 DQN with NoisyNet.

Input: Env: Environment ε: a set of random variables for the network B: initialized as an empty replay

buffer ξ: initial parameters of the network ζ−: initial parameters of the target network NB: capacity

of the replay buffer NT : batch size for training N−: interval for updating the target network
Output: Q(·, ε; ξ)

1: for episode e ∈ {1, ..., M} do
2: Initialize state sequence x0 ∼ Env
3: for t ∈ {1, ...} do
4: Set x ← x0
5: Draw a noisy network sample ξ ∼ ε
6: Choose an action a← argmaxb∈aQ(x, b, ξ; ζ)
7: Draw the next state y← P(·|x, a), obtain reward r ← R(x, a), and set x0 ← y
8: Receive reward B[-1]← (x, a, r, y)
9: if |B| > NB then

10: Remove the oldest transition from B
11: end if
12: Sample a minibatch of NT transitions ((xj, aj, rj, yj) ∼ D)NT

j=1
13: Draw the noisy variable for the online network ξ ∼ ε
14: Generate the noisy variables for the target network. ζ0 ∼ ε
15: for j ∈ {1, ..., NT} do
16: if yj represents an ultimate state then
17: Q̂← yj
18: else
19: Q̂← rj + γ arg maxb∈A Q

(
yj, b, ξ ′′; ζ−

)
20: Perform a gradient update using the loss (Q̂−Q(xj, aj, ξ ′′; ζ))2

21: end if
22: if t ≡ 0(modN−) then
23: Generate the noisy variables for the target network: ζ− ← ξ
24: end if
25: end for
26: end for
27: end for

3.2.3. DDQN with NoisyNet

Building upon the DynamicNoiseDQN framework, we further explored incorporating a noise
layer into the DDQN structure to enhance the exploration capabilities of the network in complex
autonomous driving scenarios, particularly for tasks involving turning and avoiding other vehicles.
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DDQN improves upon the traditional DQN method by addressing the issue of overestimated
value estimations. This is achieved through two separate networks: one for action selection and the
other for evaluating the value of that action. Thus, we obtain the Formula 11.

Qtarget = r + γQ(s′, argmaxa′ Q(s′, a′; θ); θ−), (11)

where r represents the reward, γ is the discount factor, s′ is the next state, θ denotes the current network
parameters, and θ− denotes the target network parameters.

To further enhance exploration in DDQN, we introduced noise into the fully connected layers.
The parameters of these layers are defined by the following Formula 12, where the noise component
provides random perturbations to the parameters during training, facilitating the exploration of
different strategies.

w = σw ⊙ ϵw + µw, b = σb ⊙ ϵb + µb, (12)

where µw and σw are the mean and standard deviation of the weights, respectively, and ϵw is noise
sampled from a probability distribution. A similar setup is applied to the bias b.

During training, the noise vector ϵ is resampled at each training step, ensuring that each forward
pass of the network slightly differs. This dynamic change in network parameters, as shown in
Algorithm 2, not only enhances environmental exploration but also improves the network’s adaptability
to changing conditions. This is particularly valuable considering the variable conditions encountered
in autonomous driving.

Algorithm 2 DDQN with NoisyNet.

Input: Env: Environment ε: a set of random variables for the network B: initialized as an empty replay

buffer ξ: initial parameters of the network ζ−: initial parameters of the target network NB: capacity

of the replay buffer NT : batch size for training N−: interval for updating the target network
Output: Q(·, ε; ξ)

1: for episode e ∈ {1, ..., M} do
2: Initialize state sequence x0 ∼ Env
3: for t ∈ {1, ...} do
4: Set x ← x0
5: Draw a noisy network sample ξ ∼ ε
6: Choose an action a← argmaxb∈aQ(x, b, ξ; ζ)
7: Draw the next state y← P(·|x, a), obtain reward r ← R(x, a), and set x0 ← y
8: Receive reward B[-1]← (x, a, r, y)
9: if |B| > NB then

10: Remove the oldest transition from B
11: end if
12: Sample a minibatch of NT transitions ((xj, aj, rj, yj) ∼ D)NT

j=1
13: Draw the noisy variable for the online network ξ ∼ ε
14: Generate the noisy variables for the target network. ζ0 ∼ ε
15: for j ∈ {1, ..., NT} do
16: if yj represents an ultimate state then
17: Q̂← yj
18: else
19: Qonline ← argmaxb∈AQ(yj, b; ξ ′′)
20: Q̂← rj + γQ(yj, Qonline; ζ−)
21: end if
22: Perform a gradient update using the loss (Q̂−Q(xj, aj, ξ ′′; ζ))2

23: end for
24: if t ≡ 0(modN−) then
25: Update the parameters of the target network: ζ− ← ξ
26: end if
27: end for
28: end for
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Through these improvements, the noise-enhanced DDQN model demonstrates superior perfor-
mance in handling complex autonomous driving tasks, effectively learning and adapting to different
driving situations better than the traditional DDQN.

3.3. Soft Actor–Critic with Noisy Critic

To further validate the performance of our Noisynet in real-world autonomous driving scenarios,
we compared SAC+Noisynet with the existing SAC framework. SAC is a reinforcement learning
framework commonly used in high-dimensional continuous control scenarios with high efficiency and
stability. The SAC framework consists of two main components: the Critic and Actor networks. The
Critic network is responsible for learning Q-valued functions, while the Actor-network is responsible
for learning strategies. Critic networks evaluate the quality of the current policy by minimizing the
error of the Q-value function, while Actor networks update the policy by maximizing the expected
reward.

The purpose of the SAC algorithm is to maximize the future cumulative reward value and entropy,
such that the strategy is as random as possible; that is, the probability of the output of each action
is as scattered as possible rather than concentrated on one action. The objective function of the SAC
algorithm can be expressed as Formula 13:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ [r(st, at) + αH(π(· | st))], (13)

where T represents the total number of time steps of the interaction between the agent and the
environment, pπ represents the distribution under the strategy π(st, at), H(·) represents the entropy,
and α is a hyperparameter, the purpose of which is to control the randomness of the optimal strategy
and weigh the importance of entropy relative to the reward.

In our experiments, we integrated Noisynet into the SAC framework, as shown in Algorithm 3, to
evaluate its performance in autonomous driving tasks. Noisynet enhances exploration by adding noise
into neural networks to help find better strategies in complex environments. Our extensive experi-
ments on multiple simulation environments and real-world driving data revealed that SAC+Noisynet
outperforms the standard SAC framework in several performance metrics.
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Algorithm 3 Soft Actor-Critic with Noisy Critic.

Input: Initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer D
1: Set target parameters equal to main parameters ϕtarg,i ← ϕi, ϕtarg,2 ← ϕ2
2: repeat
3: Observe state s and select action a ∼ πθ(·|s)
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store (s, a, r, s′, d) in replay buffer D
7: if s′ is terminal then
8: Reset environment state
9: end if

10: if it’s time to update then
11: for j in range(however many updates) do
12: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
13: Compute targets for the Q functions:

y(r, s′, d) = r + γ(1− d)
(

min
i=1,2

Qϕtarg,i (s
′, a′)− α log πθ(a′|s′)

)
, a′ ∼ πθ(·|s′)

14: Update Q-functions by one step of gradient descent using

∇ϕi

1
|B| ∑

(s,a,r,s′ ,d)∈B

(
Qϕi (s, a)− y(r, s′, d)

)2 for i = 1, 2

where Qϕi (s, a) includes noisy layers:

Qϕi (s, a) = Qnoisy_fc(s, a)

15: Define Qnoisy_fc :

Qnoisy_fc(x) = (W + σW ⊙ ϵW)x + (b + σb ⊙ ϵb)

with ϵW , ϵb ∼ N (0, 1).
16: Update policy by one step of gradient ascent using

∇θ
1
|B| ∑

s∈B

(
min
i=1,2

Qϕi (s, ãθ(s))− α log πθ(ãθ(s)|s)
)

,

where ãθ(s) is a sample from πθ(·|s) which is differentiable with respect to θ via the reparameteri-

zation trick.
17: Update target networks with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

18: end for
19: end if
20: until convergence

4. Experiment

4.1. Experiment in Highway_env

To evaluate the objectives outlined in the introduction, we implemented the noise-enhanced
DynamicNoiseDQN network within a car turning scenario at an intersection utilizing the open-source
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highway_env [36] simulation platform. Specifically, the intersection-v0 environment was employed to
simulate intersection dynamics, where Vehicle trajectories were created using the kinematic bicycle
model. This setting enables vehicles to execute continuous-valued steering and throttle control actions,
thereby closely replicating real-life driving scenarios.

In the intersection scenario shown in Figure 6, the agent being tested (represented by a green
vehicle) was tasked with executing a collision-free, unprotected left turn at a two-lane intersection
in the presence of another vehicle (represented by a blue vehicle). A collision in this context is
considered a rare event, with the adversarial policy reflecting the behavior of the surrounding vehicle.
The primary goal is to evaluate stationary deterministic strategies, which include maintaining a
constant speed and adhering to lane protocols. This involves following standard rules at intersections
without traffic signals, such as yielding to vehicles approaching from the right, maintaining a safe
distance, avoiding arbitrary acceleration or deceleration, and not changing lanes unpredictably. To
compare the performance of the noise-enhanced network with that of a conventional DQN network,
ten independent and distinct experiments were conducted for each model.

Initialization pass collisions

Figure 6. Environment in highway_env, showing the initial state, the collision state, and the passage
state.

To showcase the effectiveness of our proposed approach, we compared our method with contem-
porary, state-of-the-art traditional RL strategies, and the performance was assessed across multiple
dimensions using a variety of metrics.

a) Speed of convergence: We compared the efficiency of our model by examining the number
of episodes required to reach convergence for two data sets. This was performed by calculating the
average number of episodes over ten experiments and assessing whether our model demonstrated a
significant improvement in efficiency.

b) Success rate: In an autonomous driving system, safety is the primary performance indicator. In
our framework, the success rate and average passing time served as general metrics for performance
assessment. The success rate directly reflects how the RL agent handles the specified task. Our
framework defines the success rate according to Formula 14.

successrate =
SuccessCounts
TotalNumbers

× 100%, (14)

c) Time for completion of tasks: In our analysis of successfully completed journeys, we meticu-
lously documented the time each vehicle took to traverse from the starting point to the designated
destination. The efficacy of our network strategy was directly correlated with the efficiency exhibited
by vehicles, as reflected in the average time required to accomplish the task.

For training of the DQN network, we adopted a discount factor of 0.95 and set the batch size
to 64. To avoid overfitting, we limited the number of training episodes to 2000. We choose a target
update value of 256 for training the noise network, with the batch size remaining at 64 and the discount
factor set to 0.9. Our DynamicNoiseDQN network structure was a 128 × 128 fully connected network,
and the target memory_capacity value was set to 15,000. When training the DQN network with the
ε-greedy strategy, we set the value of ε to 0.5. In the training task for NoisyNet with DDQN, we kept
the other settings unchanged and set the value of double to 1.
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In our implementation of NoisyNet, the noise is generated by sampling from a standard normal
distribution and applying a non-linear transformation. Specifically, the noise ϵ is calculated as ϵ =

sign(x) ·
√
|x|, where x ∼ N (0, 1). This approach ensures that the noise retains the properties of the

normal distribution while providing more stable variance, thereby enhancing the model’s exploration
capabilities during training.

4.2. Experiment in CARLA

To verify the superiority and reliability of our algorithm, we performed additional validation
in a 3D scene. We simulated realistic scenarios using the CARLA[37] simulator. This open-source
autonomous driving simulator was built from scratch as a modular and flexible API to solve various
tasks involved in autonomous driving problems. Town 4, as shown in Figure 7, is a small town
with a backdrop of snow-capped mountains and conifers. As seen in Figure 8, a multi-lane road
circumnavigates the town. The road network consists of a small network of short streets and junctions
between commercial and residential buildings, with a "figure of 8"-style ring road circumnavigating
the buildings and a nearby mountain. The crossing of the road is designed as an underpass/overpass
with circular slip roads.

In our task setup, our objective was to maximize the effective distance travelled by the vehicle
agent within a fixed 1000 environment steps. The metrics for evaluating the performance of this task
were the driving distance and reward. The greater the driving distance and reward, the better the
model was considered to have performed.Further hyperparameters are described in Table 1.

Figure 7. Overhead view of town 4. A multi-lane road circumnavigates the town in a "figure of 8"
shape.

Figure 8. The network also features an underpass and overpass with circular slip roads.
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Table 1. Key hyperparameters used in training stage.

Hyperparameter Value

Camera number 3
Full FOV angles 3× 60 degree

Observation downsampling 84× 252
Initial exploration steps 100

Training frames 500,000
Replay buffer capacity 30,000

Batch size 64
Action repeat 4

Stacked frames 3
∆t 0.05 seconds
Ci 0.0001
Cs 1.0

Learning rate 0.0005
Optimizer Adam

5. Results

5.1. Result in Highway_env

5.1.1. Rewards

We analyzed the reward values from 2000 episodes collected across three experimental sets. After
averaging these values, we applied a smoothing technique to the data and plotted the resulting curves.
The reward comparison graphs (Figures 9 and 10) reveal important insights into the performance
of different DQN and DDQN variants across episodes. In Figure 9, DQN with NoisyNet clearly
outperforms both the standard DQN and DQN with ϵ-greedy, highlighting the effectiveness of
NoisyNet in enhancing exploration and achieving higher rewards. The ϵ-greedy variant shows some
improvement over the standard DQN, but it doesn’t reach the level of performance seen with NoisyNet.
In contrast, Figure 10 shows that while DDQN with NoisyNet initially performs well, the standard
DDQN eventually surpasses it as training progresses. This suggests that although NoisyNet provides
early benefits, the standard DDQN may offer better long-term stability and higher rewards. The
DDQN with the ϵ-greedy variant demonstrates more consistent performance than NoisyNet but still
falls short of the standard DDQN. These figures collectively underscore the complex dynamics of
exploration strategies in reinforcement learning, with NoisyNet offering strong early performance,
while the standard DDQN shows superior long-term results in certain cases.

The reward distribution charts in Figure 12 reveal significant differences in how DQN and its
variants perform in terms of reward distribution. The standard DQN shows a bimodal distribution,
with rewards mainly concentrated around 0 and close to 10. This indicates that DQN can achieve high
rewards in certain states, but overall, the reward values remain relatively low, reflecting inconsistent
learning effectiveness across different states. The DQN with ϵ-greedy strategy exhibits a more pro-
nounced peak in the reward distribution, primarily around 0, with a noticeable spread in the positive
reward range (between 5 and 10). This suggests that the ϵ-greedy strategy enhances DQN exploration
capability, leading to a more balanced distribution of rewards, though still leaning towards lower
values. In contrast, the reward distribution for DQN with NoisyNet is more dispersed. Although the
bimodal structure persists, the reward values are more evenly spread, covering a range from -5 to 10.
This indicates that NoisyNet significantly boosts DQN exploration ability, preventing rewards from
being overly concentrated in a specific range, thus demonstrating stronger exploration capabilities
and broader reward coverage. Overall, these distribution charts clearly reflect the impact of different
strategies on DQN exploration and exploitation balance. In particular, the introduction of NoisyNet
results in a more diversified reward distribution, highlighting its advantages in enhancing learning
performance.
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The analysis of the reward distribution charts in Figure 13 indicates that DDQN and DDQN with
ϵ-greedy exhibit more concentrated reward values compared to other variants, with no occurrence
of particularly low rewards. This suggests that both algorithms maintain stable performance during
training, effectively avoiding the pitfall of extremely low rewards. This characteristic is confirmed
by the reward distribution charts, where the smaller shaded areas (variance) further demonstrate
the reduced reward fluctuations, highlighting the consistency and reliability of these algorithms.
Specifically, the rewards for DDQN and DDQN with ϵ-greedy are primarily concentrated in the
mid-range. Although they fail to explore rewards above 7, they successfully avoid the trap of low
reward regions. This indicates that these algorithms can effectively enhance overall performance while
maintaining relatively stable learning outcomes. However, this stability might come at the cost of
exploring higher reward regions, but overall, they show more consistent performance and reduce the
risk of extremely low rewards.

NoisyNet-DDQN, on the other hand, manages to retain the advantages of DDQN and DDQN
with ϵ-greedy while also effectively exploring high-value regions. Specifically, NoisyNet-DDQN
not only exhibits a reward distribution similar to the other two algorithms, characterized by stable
and mid-range reward values that avoid extremely low rewards but also demonstrates a strong
exploratory capability, more frequently reaching reward regions above 7. This indicates that the
random perturbation mechanism introduced by NoisyNet enhances the diversity of exploration,
enabling the algorithm to break out of local optima and discover and exploit higher rewards, all while
maintaining overall performance stability.

Figure 9. Comparison of reward scenarios between DQN, DQN with ε-greedy, and DQN with NoisyNet

The cumulative rewards graph (Figure 11) clearly illustrates the significant differences in perfor-
mance among various DQN and DDQN variants. The combination of DDQN with NoisyNet performs
the best, achieving the highest cumulative rewards, indicating its superior ability to balance exploration
and exploitation, leading to better long-term learning outcomes. While DDQN with ϵ-greedy also
outperforms standard DDQN, it does not reach the levels of the NoisyNet variant, suggesting that
NoisyNet is more effective in reducing overestimation bias and enhancing learning robustness. In
contrast, although DQN with NoisyNet outperforms other DQN variants, it still falls short of the
DDQN combinations, further highlighting the advantages of the DDQN architecture when paired with
exploration strategies like NoisyNet. Overall, the combination of NoisyNet with DDQN demonstrates
the most significant improvement in cumulative rewards in complex reinforcement learning tasks.
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Figure 10. Comparison of reward scenarios between DDQN, DDQN with ε-greedy, and DDQN with
NoisyNet

Figure 11. Cumulative rewards across episodes for different DQN and DDQN variants.

Figure 12. Reward distribution of DQN, DQN with ε-greedy and DQN with NoisyNet
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Figure 13. Reward distribution of DDQN, DDQN with ε-greedy and DDQN with NoisyNet

5.1.2. Success Rate

The success rate of vehicle passage is a crucial metric reflecting the effectiveness of our models.
We computed the success rates for the traditional DQN, DDQN, and our DynamicNoise-enhanced
algorithms across ten experiments and then determined their average values. The success rate for
the conventional DQN was 52.8%, while the ϵ-greedy modification achieved 62.5%. The DDQN
algorithm achieved a success rate of 68.6%, with the ϵ-greedy variation reaching 74.5%. Both were
still significantly lower than the 88.9% success rate recorded for DQN with NoisyNet and 91.2% for
DDQN with NoisyNet. Analysis of the reward distribution revealed that the rewards obtained by the
algorithms using the DynamicNoise framework were mainly concentrated in higher values, indirectly
affirming their excellent success rates and suggesting that their network architectures are more efficient.

Moreover, we analyzed the variance of rewards for all methods across the ten data sets, computing
average values. The variance of the traditional DQN network was 18.46, while the ϵ-greedy method had
a variance of 19.32. In contrast, DQN with NoisyNet had a higher variance value of 23.26, and DDQN
with NoisyNet showed a similar trend with a variance of 23.61, indicating their enhanced exploratory
capabilities. However, the DDQN algorithm and its ϵ-greedy variation, known for more conservative
exploration strategies, exhibited lower variance values of 14.14 and 15.26, respectively. This lower
variance reflects the DDQN-based methods’ tendency towards stability and reduced exploration,
compared to the more aggressive exploration in the NoisyNet-enhanced strategies. Overall, the higher
variance observed in the DynamicNoiseDQN-based methods confirms their superior exploratory
capabilities, while the lower variance in the DDQN methods underscores their focus on stability and
consistent performance.

5.1.3. Number of Iterations at Convergence

To further assess the task completion efficiency, we compared the minimum number of episodes
required by all networks to achieve their objectives. DDQN with NoisyNet particularly stood out,
requiring only 210 attempts to succeed, a drastic reduction from the original 1220 attempts with DQN,
representing an improvement of 82.79%. The DDQN algorithm required 370 attempts, and its ϵ-greedy
variation further improved to 290 attempts, both significantly fewer than the traditional DQN and
its ϵ-greedy variant, which required 1240 episodes. This comparison underscores the effectiveness
of integrating advanced strategies such as NoisyNet and doubling techniques into both DQN and
DDQN networks. Such enhancements not only boost the efficiency of the learning process but also
significantly increase the speed and reliability of reaching optimal solutions in dynamic environments.

5.1.4. Time for Completion of Tasks

The comparative data showcase significant advancements in time efficiency across various DQN
configurations. From Table 2, it can be seen that the original DQN model required an average of
6.58 seconds per episode, which is indicative of the baseline performance. When incorporating the
ε-greedy strategy, the time was slightly reduced to 6.41 seconds, indicating a marginal improvement in
processing efficiency.
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However, the integration of DDQN and the DynamicNoiseDQN framework presented more
notable time reductions. The standard DDQN model required 6.40 seconds, while the DDQN with ε-
greedy strategy further reduced this to 6.25 seconds. DQN with NoisyNet reduced the average time to
6.01 seconds, and DDQN with NoisyNet achieved the most efficient time of 5.93 seconds, representing
a 10.96% improvement over the original DQN model. These results highlight the effectiveness of using
NoisyNet in combination with DDQN, demonstrating significant improvements in both time efficiency
and overall task performance.

These results demonstrate that integrating advanced strategies such as NoisyNet and the doubling
technique enhances the time efficiency of the network. This reduction in time not only indicates quicker
decision-making capabilities but also highlights the ability of models to handle dynamic environments
more effectively.

Table 2. Experimental results for DQN Variants

Reward Success rate Minimum number of times
to complete

Time for completion
of tasks

DQN 2.62 52.8% 1220 6.58 s
DQN with ε-greedy 3.05 62.5% 1240 6.41 s
DQN with NoisyNet 3.72 88.9% 240 6.01 s

DDQN 2.85 68.6% 370 6.40 s
DDQN with ε-greedy 3.17 74.5% 290 6.25 s
DDQN with NoisyNet 4.12 91.2% 210 5.93 s

Improvement 57.25% 72.73% 82.79% 10.96%

5.2. Result in CARLA

We report the comparison data regarding the episode distance and episode reward for the vehicle
over 1000 fixed environment steps in Table 3, while the obstacle avoidance ability of the vehicle is
visualized in Figure 14. The average steering control magnitude percentage per step was recorded
throughout the training.

Table 3. Comparison of Performance Metrics in CARLA Autonomous Driving Evaluation.

Methods Distance Eval Reward Steer(%)

SAC 454.1±13.6 92.9±7.0 22.4±1.3
SAC+noisynet(Ours) 540.5±2.7 115.8±1.5 16.6±2.0

① ② ⑤④③

① ② ⑤④③

Figure 14. The red car in the middle represents the agent. This sequence of observations indicates that
the algorithm can effectively avoid other cars and complete the driving task.

The experiments demonstrate that the proposed method, when integrated into the SAC reinforce-
ment learning framework, can effectively enhance driving performance to the base framework. The
results obtained with the two algorithms are shown in Figure 15. Specifically, on the one hand, the
proposed method (SAC+NoisyNet) achieved the optimal episode driving distance of 540.5 meters,
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an improvement of nearly 18.9% compared to the 454.1 meters achieved by the original SAC method
(as shown in Table 3). On the other hand, as shown on the right side of the Figure, the proposed
method performed better in steering control, maintaining a stable steering magnitude, effectively
enhancing the overall driving distance. Overall, these qualitative experiments strongly prove the
control performance of the proposed method in the context of autonomous driving.
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Figure 15. Comparison of Performance Metrics in CARLA Autonomous Driving.

6. Conclusion

We proposed the NoisyNet framework to address slow convergence, instability, and low explo-
ration efficiency in high-dimensional state spaces of reinforcement learning algorithms, particularly
in complex driving scenarios. By introducing noise parameters, NoisyNet effectively balances explo-
ration and exploitation, enhancing decision-making and adaptability. Integrated with DQN and SAC
algorithms, NoisyNet has been experimentally validated, demonstrating significant improvements in
both performance and stability. This framework shows great promise for optimizing the intelligence
and reliability of autonomous driving systems, improving their ability to manage complex traffic
environments, enhancing decision-making and control efficiency, and optimizing the collaborative
operation of autonomous vehicle fleets to increase overall traffic efficiency and safety.

Despite its strong performance in laboratory settings, NoisyNet may encounter challenges when
applied to real-world environments, where complexity and interference can affect its effectiveness.
To address this, our future work will focus on enhancing the robustness of the framework through
extensive testing on autonomous vehicles and UGVs in various real-world traffic scenarios, including
urban, highway, and rural environments. We will refine NoisyNet for seamless integration with
existing autonomous driving systems, ensuring real-time processing and adherence to safety standards
required for deployment. Additionally, we plan to validate the performance of NoisyNet under
practical conditions, collaborating with industry partners to ensure it meets the rigorous demands of
real-world applications. By expanding its application to intelligent transportation systems, we aim to
develop more resilient and efficient traffic management solutions, ultimately bridging the gap between
simulation and real-world deployment.

7. Patents
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RL Reinforcement Learning
SAC Soft Actor–Critic
KDE Kernel Density Estimate
DQN Deep Q-Network
DDQN Double DQN
MPC Model Predictive Control
PID Proportional–Integral–Derivative
MDP Markov Decision Process
UAV unmanned aerial vehicles
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