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Abstract: Background: The high global prevalence of prediabetes requires its early identification.
Amino acids have emerged as potential predictors of prediabetes. This study aims to investigate the
association between BCAAs and prediabetes in the Kazakh population. Materials and Methods: In
this case-control study, plasma BCAAs levels were measured using the Trace GC 1310 gas
chromatography system coupled with the TSQ 8000 triple quadrupole mass spectrometer (Thermo
Scientific, Austin, TX, USA) followed by silylation with the BSTFA + 1% TMCS derivatization
method. Biochemical parameters, including total cholesterol, HDL-C, LDL-C, triglycerides, fasting
glucose, HbAlc, and creatinine, were assessed for each participant. Anthropometric and physical
examinations, including blood pressure, heart rate measurements, and family history collection,
were conducted by trained professionals. Results: The final analysis included data from 112
Kazakhs with prediabetes and 55 without prediabetes, aged 36-65 years. Of the thirteen AAs
analyzed, only alanine showed a significant association with prediabetes risk. Our findings revealed
an inverse relationship between alanine and aspartic acid levels, and direct association of lysine and
prediabetes in Kazakh ethnicity. Conclusion: Lower plasma level of alanine and aspartic acid, and
higher level of lysine may serve as predictive biomarkers for prediabetes in the Kazakh population.
This research is funded by the Science Committee of the Ministry of Education and Science of the
Republic of Kazakhstan (grant AP14871855).
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1. Introduction

The introduction should briefly place the study in a broad context and highlight why it is
important. It should define the purpose of the work and its significance. The current state of the
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research field should be carefully reviewed and key publications cited. Please highlight controversial
and diverging hypotheses when necessary. Finally, briefly mention the main aim of the work and
highlight the principal conclusions. As far as possible, please keep the introduction comprehensible
to scientists outside your particular field of research. References should be numbered in order of
appearance and indicated by a numeral or numerals in square brackets—e.g., [1] or [2,3], or [4-6]. See
the end of the document for further details on references.

2. Materials and Methods

This is a case-control study, conducted in five primary care centers (PHCs) in Semey city of Abay
oblast located in the East Kazakhstan. We recruited participants during the period from December
2022 to March 2024.

Data collection and Measurement

Standardized questionnaires were employed to gather demographic information, including
smoking status, family history, and hereditary predispositions to cardiovascular diseases (CVD) and
hypertension (HT). A comprehensive physical examination was conducted to assess anthropometric
parameters, which included measurements of weight, height, blood pressure, and waist
circumference which performed in accordance with the guidelines established by the European
Society of Cardiology (ESC) and the European Society of Hypertension (ESH). A standardized
stadiometer was used for height assessment, while a calibrated scale was utilized for weight
measurement. Blood pressure (BP) was measured utilizing the Korotkov method, in accordance with
the ESH/ESC algorithm, with participants resting in a seated position during the assessment [17].
Two consecutive measurements were taken for each participant, and the average of these values was
recorded. Body mass index (BMI) was calculated using the formula: weight (kg) divided by height
(m?). Information regarding the history of comorbidities and any medications taken was obtained
from medical records as well as through participant interviews. All collected information for each
participant was compiled into an individualized file with coded personal data to ensure
confidentiality.

Participants

Initially, a total of 253 candidates of Kazakh ethnicity were enrolled in the study, comprising 130
individuals diagnosed with prediabetes (cases) and 123 individuals with normal glycemia (controls)
based on a simple random sampling.

Exclusion criteria included ethnicity other than Kazakhs, the presence of confirmed diabetes,
history of stroke or myocardial infarction (MI), heart failure, thyrotoxicosis, hypothyroidism, and the
use of statin therapy for less than six months prior to the initiation of the study.

During the laboratory phase, 62 samples were excluded due to storage issues. Additionally, at
the data analysis stage, 24 participants were excluded following the diagnosis of new-onset T2DM.
Consequently, data from 167 participants, 112 cases and 55 controls, were included in the final
analysis (Figure 1).
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Figure 1. Flow diagram of participant selection.

Ethics Considerations

The research protocol received approval from the Ethics Committee of Semey Medical
University (protocol #7, date of approval March 16, 2022). In adherence to ethical standards,
confidentiality and privacy were rigorously maintained throughout the study. All personal data were
anonymized and stored in a secure database, accessible solely to the project manager and two
designated members of the research team. Before participation, all individuals were provided
comprehensive information regarding the aims and objectives of the study. Participants were assured
that their involvement was entirely voluntary, with the provision to withdraw from the study at any
point without the requirement to provide a rationale, and without any associated penalties.
Following this, informed consent was obtained from individuals who met the established inclusion
criteria.

Diagnostic Criteria

Dysglycemia, encompassing impaired fasting glucose (IFG), impaired glucose tolerance (IGT),
prediabetes, and diabetes, was defined in accordance with the current guidelines established by the
American Diabetes Association (ADA) [18]. Glycemic status was classified based on HbAlc levels,
with diabetes indicated by values 26.5% and prediabetes defined by values ranging from 5.7% to
6.4%. MS was diagnosed following the criteria outlined by the International Diabetes Federation
[19,20], which requires the presence of abdominal obesity along with at least two of the following
four clinical factors: systolic blood pressure >130 mmHg or diastolic blood pressure >85 mmHg,
plasma triglycerides (TG) >1.7 mmol/L, high-density lipoprotein cholesterol (HDL-C) <1.03 mmol/L
in men and <1.29 mmol/L in women, and plasma glucose levels >5.6 mmol/L.

Obesity was classified according to the WHO criteria based on BMI, with the following
categories established: normal weight as <25 kg/m?, overweight as 25-29.9 kg/m?, and obesity as >30
kg/m?2.

Chemicals

Biochemistry

All blood samples were collected in the morning following a fasting period of at least twelve
hours, utilizing intravenous venesection. The levels of total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), fasting
glucose, HbAlc, and creatinine were quantified in the laboratory. AA concentrations were
determined via gas chromatography-mass spectrometry (GC-MS). The targeted amino acids included
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lysine, tyrosine, alanine, valine, leucine, isoleucine, proline, serine, threonine, methionine, aspartic
acid, glutamic acid, and phenylalanine.

Gas-Chromatography Mass-Spectrometry

High-performance liquid chromatography (HPLC) grade methanol was purchased from Sigma-
Aldrich (St. Louis, MO, USA). BSTFA+1% TMCS (N, O-bis (trimethylsilyl) trifluoroacetamide with
1% trimethylchlorosilane for GC) (>99.0% purity), methoxyamine hydrochloride (> 98.0% purity) and
pyridine (> 99.8% purity), AAS-18 chemical standards of metabolites were commercially obtained
from Sigma-Aldrich (St. Louis, MO, USA). AAS 18 mixed standard amino acid solution (Sigma-
Aldrich, St. Louis, MO, USA).

Sample Preparation

Each 100 pL blood plasma sample was mixed with 400 uL methanol: acetone mixture (2:1, v:v)
to precipitate the protein. Next, the mixture was vortex-mixed for 30 s and centrifuged for 10 min
(15,000 rpm) at 4°C. The 300 uL supernatant was transferred into a 2 mL eppendorf centrifugation
tube and evaporated to dryness by N2 gas with sample concentrator (Miulab, NDK200-1N,
Hangzhou, China). 100 pL methoxamine hydrochloride in pyridine (10 mg/mL) was added to the
dried tube, and the mixture was mixed on a vortex for 30 s and incubated for 2 h at 37°C. Finally, 100
uL of BSTFA derivatization agent was added to the mixture, vortexed for 30 s, and heated at 50°C for
2 h. The final solution was taken for GC-MS analysis [21,22].

GC-MS Analysis

The plasma amino acid analysis was conducted on a Trace GC 1310 gas chromatography
instrument coupled to TSQ 8000 triple quadrupole mass spectrometer (Thermo Scientific, Austin, TX,
USA), and equipped with an autosampler AS 1310. The column used for all analyses was a Thermo
Scientific TG-551IMS column (30 m x 0.25 mm x 0.25 pum). The column temperature procedure was
designed as follow: initially maintained at 50°C for 5 min, programmed to 250°C at a rate of 5°C/min,
and then held at 250°C for 15 min. 99% pure helium was used as a carrier gas and the device was
equipped with a triple helium gas filter (Thermo, Singapore) with a flow rate of 1.0 mL/min. The
septum purge was switched on with a flow rate of 3 mL/min constantly. The injector temperature
was set at 280°C, MS transfer line temperature was set at 250°C and the ion source temperature was
240°C. The mass spectrometer was operated under electron ionization (EI) in full scan mode range
varied from m/z 30 to 550 with a 0.2 s scan velocity, and the detector voltage was 0.96 kV. Ionization
was achieved by a 70 eV electron beam. Instrument control, data acquisition, and data processing
were performed by XCalibur software (Thermo Scientific, Austin, TX, USA). All of the detected peak
features were identified by standards and the NIST Mass Spectral Search Program [23].

Quantitative Variables

The status of prediabetes, HT, hereditary predisposition to CVDs, and lipid profile parameters,
including TC, LDL-C, HDL-C, and TG, were designated as binary variables based on NCEP ATP III
[24]. Smoking status was categorized into three groups: nonsmokers, former smokers, and current
smokers. BMI was classified as a ranked variable, with categories of normal weight, overweight, and
obesity. Age was stratified into four groups: less than 39 years, 40-49 years, 50-59 years, and older
than 60 years. Each AA was treated as a binary variable based on the 50th percentile cut-off.
Preliminary statistical analyses were conducted to assess the normality of all continuous variables.
For those variables exhibiting a highly skewed distribution to the right, a log transformation was
applied, if provided the proportion of zero values was less than 2%.

Statistical Methods

Statistical analysis was conducted using STATA Statistical Software, release 15, College Station,
TX; StataCorp LLC. Continuous variables were reported as means + standard deviation (SD) if they
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followed a normal distribution, while categorical variables were presented as proportions expressed
in percentages. For the primary analysis, chi-squared test and odds ratios (ORs) and Mantel-Haenszel
ORs with 95% confidence intervals (CI) were calculated to examine the associations between
categorical risk factors and the primary outcome of interest. The final statistical analysis employed a
stepwise method with forward selection in a multiple binary logistic regression model, which
included covariates demonstrating significance for the fitted final model. The adequacy of the model
was evaluated through a likelihood ratio test (LRT). Receiver operating characteristic (ROC) analysis
was performed to determine the area under the curve (AUC) for selected into the final logistic
regression (LR) model targeted amino acids, specifically lysine, alanine, and aspartic acid. Cut-off
levels for these amino acids were established with their corresponding sensitivity and specificity
were determined using Liu’s test.

3. Results

3.1. Descriptive Data

In total, data from 75 Kazakh males and 95 females were included into final analysis. There were
112 individuals with prediabetes and 55 without prediabetes. Only quarter of participants had
healthy weight and almost half met criteria of MS. Baseline characteristics and distribution of the
potential risk factors for prediabetes are summarized in Table 1.

Table 1. Baseline characteristics of the study population.

Characteristics Absolute Prediabetes, % P-value
number/% Yes No
or mean/SD
Gender, male 75/44.12 70.83 29.17 0.367
Age (years) 50.55/7.47
<39 10/5.88 4.46 9.09 0.04
40-49 70/41.18 35.71 52.73
50-59 70/41.18 44.64 32.73
>60 20/11.76 15.18 5.45
BMI categories (kg/m2)
<24.9 43/25.75 18.35 41.82 0.001,
0.0002*
25-29.9 70/41.92 42.20 41.82
>30.0 54/32.34 39.45 16.36
Hypertension 50/29.94 33.94 21.82 0.109
Smoking
No 113/67.66 69.72 63.64 0.03
Quitted 34/20.36 15.60 30.91
Yes 20/11.98 14.68 5.45
High fasting glucose 23/13.61 73,91 26.09 0.452
(>5.6)
Lipid profile (mmol/L)
High LDL-C (>3.3) 73/42.94 70.83 29.17 0.367
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Low HDL-C (<1.03 in 57/33.53 75.44 24.56 0.097
males, <1.29 in
females)
High TG (>1.7) 46/27.06 79.55 20.45 0.04

*p for trend of odds; BMI, body mass index, LDL-C, low density lipoprotein cholesterol, HDL-C, high density
lipoprotein cholesterol, TG, triglycerides Comparisons between prediabetes and control subjects have been
conducted by chi-square test for categorical variables.

In a comparative analysis, individuals diagnosed with prediabetes exhibited a higher prevalence
of unhealthy weight, smoking habits, hypertension, and dyslipidemia relative to control subjects. The
study identified that 70.83% males and 64.21% females were classified as prediabetic. Among the
female participants, the majority were non-smokers (85.26%), while nearly half of the male
participants (44.44%) also refrained from smoking. Conversely, 8.42% of females and 36.11% of males
were identified were identified as current smokers, with 6.32% of females and 19.44% of males
classified as former smokers (p=0.0001). Notably, 76% of participants with confirmed hypertension
were receiving regular antihypertensive therapy. There was strong evidence of a linear trend, with
the proportion of cases with prediabetes increasing with age (p=0.005).

3.2. Amino Acids and Lipid Profile

Table 2 presents a summary of the association between AAs and parameters of the lipid profile.
The analysis revealed that lower plasma level of alanine, serine, methionine, glutamic acid and
phenylalanine were associated with a two-fold increase in healthy plasma HDL-C levels in both male
and female subjects. Notably, adjusting for BMI did not significantly alter ORs for the associations.
Additionally, lower plasma levels of threonine were linked to a three-fold increase in the odds of
achieving healthy HDL-C levels. Similar to the previous findings, adjusting for BMI did not influence
the strength of the association between threonine and HDL-C levels. Conversely, we found no
significant associations between plasma concentrations of lysine, aspartic acid, valine, leucine, and
isoleucine and any parameters of the lipid profile. Importantly, none of the AAs examined exhibited
a relationship with LDL-C levels.

Table 2. ORs for increased levels of LDL-C, HDL-C, and TG crude and adjusted for BMIa.

Amino acids, mmol/L High LDL-C>3.3 HDL-C>1.03 mmol/L TG>1.7 mmol/L
mmol/L in males and >1.29
mmol/L in females
ORecrude ORadjusted ORcrude ORadjusted ORGcrude ORadjusted
Lysine <2.57 1.02 1.05 1.45 1.50 0.72 0.76
Tyrosine <1.03 1.28 1.18 1.50 1.64 1.02 0.86
Alanine <10.86 1.26 1.37 2.22*% 2.29% 0.28** 0.28**
Valine <5.74 0.95 0.86 0.92 0.97 1.89 1.72
Leucine <6.36 0.90 0.94 0.96 0.87 0.75 0.88
Isoleucine <3.58 0.98 0.94 0.85 1.01 2.30% 1.99*
Proline <3.70 0.72 0.70 1.51 1.55 0.45* 0.45*
Serine <1.69 1.12 1,23 2.11* 1.97 0.24*** 0.27%**
Threonine <1.52 1.74 1.96 3.01** 2.93** 0.32** 0.35*
Methionine <1.14 0.96 1.06 1.77 1.73 0.27*** 0.28**
Asparticacid <0.27 1.95 1.80 1.09 1.3 13 1.02
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Glutamic acid <0.87 1.0 0.99 2.16* 2.45% 0.37%* 0.35**

Phenylalanine <0.58 1.0 1.13 2.22*% 2.31% 0.45* 0.54
o Chi-square test for categorical variables. *P<0.05, **p<0.005, ***p<0.0005.

3.3. Amino Acids and the Risk of Prediabetes

We analyzed the association between AAs and the risk of prediabetes, as detailed in Table 3.
Among the thirteen AAs examined, only alanine, lysine and aspartic acid exhibited significant
associations with the risk of prediabetes. Alanine and aspartic acid were found to have an inverse
relationship with the risk of prediabetes, indicating that higher plasma levels of these AAs
corresponded to reduced likelihood of developing this condition. Conversely, elevated plasma levels
of lysine were positively associated with the increased risk of prediabetes, suggesting a direct

association.
Table 3. Association between AAs and prediabetes®.

AAs, mmol/L ORerude 95%ClI p-value
Lysine >2.57 2.19 1.04;4.63 0.039
Tyrosine <1.03 0.75 0.35;1.63 0.47
Alanine <10.86 1.89 0.96;3.70 0.064
Valine <5.74 0.60 0.29;,1.21 0.153
Leucine <6.36 0.74 0.38;1.43 0.367
Isoleucine <3.58 0.67 0.34;1.33 0.249
Proline <3.70 1.04 0.52;2.09 0.911
Serine <1.69 1.02 0.51;2.07 0.953
Threonine <1.52 1.27 0.60;2.66 0.531
Methionine <1.14 0.55 0.28;1.09 0.087
Aspartic <0.27 291 1.24;6.81 0.014
Glutamic <0.87 0.83 0.42;1.66 0.595
Phenylalanine <0.58 0.73 0.35;1.55 0.416

*Binary logistic regression.

We adjusted all AAs for potential confounding factors to elucidate the true associations between
AAs and risk of prediabetes risk, as summarized in Table 4. The analysis revealed that only age and
BMI served as significant confounding factors influencing the relationships between alanine, lysine
and aspartic acid and risk of prediabetes. At fix values of covariates in the final binary logistic
regression model] alanine lower than 10.86 mmol/L, aspartic lower than 0.27 mmol/L. In case of lysine
we found inverse association with prediabetes, higher plasma levels of lysine (above 2.57 mmol/L)
was associated with prediabetes. Other variable, including smoking status, gender, lipid profile and
history of hypertension did not have a significant impact on these associations. Notably, when
controlling for age and BMI the strength of the association was enhanced for both alanine and lysine;
however, this adjustment did not yield a similar effect for aspartic acid. Furthermore, the Likelihood
Ratio Test (LRT) substantiated the significance for both age and BMI across all logistic regression
models.
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Table 4. Crude and adjusted ORs of prediabetes for plasma level of alanine, lysine and aspartic

acid®.
Number of OR of 95%ClI P-value Adjusted for | Model
observations prediabetes

Alanine<10.86 mmol/L

156 1.89 0.96;3.70 0.064 Crude 1

156 2.17 1.06;4.48 0.035 Age®

153 2.19 1.03;4.60 0.042 Age+BMIP 3
Lysine > 2.57 mmol/L

129 2.19 1.04;4.63 0.039 Crude

129 2.11 0.99;4.50 0.053 Age® 2

126 2.31 1.03;5.14 0.041 Aget+BMIP
Aspartic<(0.27 mmol/L

103 291 1.24;6.81 0.014 Crude 1

103 3.0 1.25;7.22 0.014 Age® 2

100 2.87 1.12;9.86 0.026 Age+BMIP 3

*Multiple binary logistic regression. a, 3-LRT (Likelihood Ratio Test) for the significance of age and BMI, p<0.01.

When assessing the odds of developing prediabetes at fixed values of the covariates in the final
logistic regression model, individuals in older age groups exhibited odds ratios ranging from 2.52 to
5.83 compared to their younger counterparts. Additionally, those classified as overweight
demonstrated 2.26-fold increased odds of developing prediabetes (95%CI 0.97;5.23; p=0.05), while
individuals with obesity exhibited an even greater odds ratio of 4.87 when compared to individuals
with a healthy weight (95% CI 1.77; 13.34; p = 0.02). These findings highlight the critical roles of age
and BMI in elucidating the associations between specific amino acids and the risk of prediabetes.

3.4. AAs and Prediction of Prediabetes

To evaluate the predictive potential of alanine, lysine, and aspartic acid in the context of
prediabetes, we conducted a ROC analysis utilizing both crude and fitted logistic regression models.
These models assessed the associations between the aforementioned AAs and prediabetes, while
adjusting for potential confounding variables, specifically age and BMI (refer to Table 5). Our analysis
revealed that the inclusion of age and BMI significantly enhanced the predictive accuracy of alanine,
lysine, and aspartic acid, with the area under the ROC curve (AUC) increasing from 0.47, 0.61, and
0.49 to 0.73, 0.74, and 0.76, respectively. Furthermore, we determined the optimal cut-off levels for
these AAs to effectively predict prediabetes within the study population.

Table 5. Crude and adjusted AUCs for LR models of association between AAs and prediabetes

risk*.
LR AUC Cutoff Sensitivity, | Specificity,
Models Crude Adjusted for point®*, % %
age and BMI mmol/L
Alanine 0.47 0.73 10.21 90.00 37.74
Lysine 0.61 0.74 2.51 79.01 48.89
Aspartic 0.49 0.76 0.056 90.77 45.71

*ROC analysis, **Estimation by Liu method. LR - logistic regression, AUC — area under curve, BMI — body mass

index.
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4. Discussion

In the present study, we investigated the association of thirteen A As with the risk of prediabetes
within the Kazakh population. Our findings indicate a significant relationship between alanine,
lysine, and aspartic acid and the risk of prediabetes. Specifically, alanine and aspartic acid exhibited
a negative association with prediabetes risk, while lysine demonstrated a positive correlation.
Conversely, the remaining AAs - tyrosine, valine, leucine, isoleucine, proline, serine, threonine,
methionine, glutamic acid, and phenylalanine - were not associated with prediabetes risk.

Emerging evidence suggests that dysregulated metabolism of AAs plays a crucial role in the
mechanisms underlying altered gluconeogenesis and the pathogenesis of IR [25,26]. Disturbances in
the metabolomic profile are evident in both prediabetes and T2DM [27] with most existing research
focusing on the associations between AAs and clinically manifested T2DM, while fewer studies have
addressed prediabetes specifically. Notably, BCAAs - including valine, leucine, and isoleucine - have
been identified as potential biomarkers for the early detection of prediabetes and IR, as well as the
subsequent risk of T2DM [28]. A recent meta-analysis encompassing 22 studies, including ten studies
specifically examining prediabetes and AAs, revealed that tryptophan and BCAAs are directly
associated with prediabetes and may serve as predictors of this condition [29].

Interestingly, our study identified lower plasma level of alanine as a significant predictor of
prediabetes risk, a finding not previously reported in the context of prediabetes. However, a recent
systematic review highlighted the strong positive predictive value of alanine and other AAs in
relation to T2DM risk [30]. Our data further corroborate the notion that lower levels of alanine are
associated with an increased risk of prediabetes. It has been suggested that lower alanine levels in
obese individuals may be associated with reduced anaplerotic oxaloacetate formation and, hence,
reduced efficiency of the tricarboxylic acid (TCA) cycle activity and reduced gluconeogenesis.
Hepatic glucose production occurs through three primary pathways: glycogenolysis,
gluconeogenesis from glycerol, and gluconeogenesis from lactate/pyruvate/AAs [31], with the latter
being the predominant pathway during prolonged fasting, which is often disrupted [32,33] in the
diabetic liver [34].

Alanine emerges as the principal amino acid catabolized by the liver in all mammals of all amino
acids contributing to gluconeogenesis [35-37]. In muscle cells, pyruvate is converted to alanine
through the catalytic action of alanine aminotransferase, (alanine transaminase, ALT) [38]. Alanine
transports amino groups to the liver, where alanine is subsequently reconverted to pyruvate,
enabling its entry into gluconeogenic pathways, providing energy during fasting or intense exercise
[39]. Alanine undergoes transamination reactions by transferring its amino group to form pyruvate
and glutamate [40]. Such processes serve to interconnect amino acid metabolism with the citric acid
cycle and subsequent energy production in the liver, kidneys, and small intestine [41].

For gluconeogenesis to occur, alanine must be converted to pyruvate. This conversion is
facilitated by two enzymes, ALT1 and ALT2, highly expressed in the liver. ALT1 is found in the
cytosol, while ALT?2 is located in the mitochondrial matrix [41]. While transamination can occur in
the cytosol, recent investigations suggest that mitochondrial ALT2 plays a critical role in
gluconeogenesis by facilitating the conversion of alanine to pyruvate within the mitochondrial matrix
[42,43].

Increased expression of ALT2 has been observed in both obese humans and murine models [44].
ALT?2 expression is regulated by activating transcription factor 4 (ATF4) in liver. Notably, silencing
ALT?2 in the liver of obese mice has been reported to diminish alanine-induced hyperglycemia while
concurrently elevating plasma alanine levels, suggesting a regulatory feedback mechanism pertinent
to alanine metabolism in obesity [45].

In muscle cells, the conversion of pyruvate to alanine is catalyzed by ALT. This transamination
reaction facilitates the conversion of alanine and a-ketoglutarate into pyruvate and glutamate [46].
Alanine serves as a vehicle for the transport of amino groups from peripheral tissues to the liver,
where alanine is reconverted to pyruvate facilitating its subsequent utilization in gluconeogenesis.
This pathway is particularly vital during periods of fasting or intense physical exercise. While ALT
is predominantly found in the liver, it is also present in other tissues including the kidneys, heart,
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and muscle cells, highlighting its importance in amino acid metabolism across different physiological
contexts [47] (Figure 2).
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Figure 2. Impact of Mitochondrial Metabolic Activity on Circulating Levels of Alanine and Aspartic
Acid: Insights from the Cahill Cycle.

This figure illustrates the role of alanine in gluconeogenesis, emphasizing the enzymatic
conversion of alanine to pyruvate through the action of ALT isoenzymes, specifically ALT1 in the
cytosol and ALT2 in the mitochondria The involvement of ALT2 in this metabolic pathway is critical
for gluconeogenesis. Elevated expression levels of ALT2 have been observed in both obese human
subjects and relevant animal models, which suggests a potential link between ALT2 activity and
obesity-related metabolic alterations. The regulation of ALT2 expression by the transcription factor
ATF4 underscores its significant role in the metabolic adaptation in obesity. Experimental evidence
indicates that silencing ALT2 in the hepatic tissue of obese mice leads to a decrease in alanine-induced
hyperglycemia and a concomitant increase in plasma alanine levels. These findings suggest the
existence of a feedback mechanism governing alanine metabolism in obesity.

Aspartic acid metabolism plays a significant role in maintaining essential cellular functions, with
a particular focus on the biochemical pathway leading to the synthesis of L-aspartic acid. L-aspartic
acid is generated from the transamination reaction between oxaloacetate and glutamate, catalyzed
by mitochondrial AST. In the context of diabetes, there is a significant decline in the synthesis of
aspartic acid from oxaloacetate, which has been associated with decreased activity of AST and
BCAAs dysregulation.

Our investigation also revealed a positive association between lysine levels and prediabetes risk,
consistent with findings from studies conducted in Mexican populations. However, our results
diverged from those studies regarding threonine and arginine, which were not found to be significant
in our analysis [48]. Lysine, an essential amino acid, has been implicated in the progression of
prediabetes and T2DM. Elevated levels of lysine and its metabolite, a-aminoadipic acid, have been
observed in individuals with insulin resistance, indicating a potential link between lysine metabolism
and the development of T2DM [49]. Additionally, L-homoarginine, a metabolite derived from lysine
catabolism, may be associated with cardiovascular disease and T2DM through pathways involving
arginine and nitric oxide production [50].
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Ethnic disparities in AA metabolism are noteworthy. Recent data have highlighted the
predictive role of aspartic acid (Asp) in prediabetes among European Americans, with a reported 2.7-
fold increase in risk. Our findings, however, suggest an inverse association within the Kazakh
population, and we did not confirm the predictive potential of histidine as reported in previous
studies [51]. Asp metabolism is essential for various cellular processes, with L-aspartic acid
synthesized from oxaloacetate and glutamate by mitochondrial aspartate aminotransferase. This
amino acid plays critical roles in protein synthesis, gluconeogenesis, and neurotransmission, and
contributes to NADH delivery and redox balance via the malate-aspartate shuttle [52]. Moreover, a
high asparagine to Asp ratio has been associated with an elevated risk of T2DM, particularly in
females or individuals over 50 years of age [53]. In diabetes, impaired Asp synthesis from
oxaloacetate has been attributed to decreased mitochondrial aspartate aminotransferase activity and
dysregulation of BCAAs [54].

The results of the present study indicate an inverse association between AAs and HDL-C.
Conversely, a direct association was observed between AAs and TG for the AAs alanine, serine,
threonine, glutamic acid, and phenylalanine. We hypothesize that under a high-fat diet, alanine
metabolism becomes dysregulated, leading to the excessive generation of acetyl-CoA from pyruvate
and subsequent deficits in energy metabolism. Previous studies have noted significant correlations
between serine, alanine, and pyruvate levels, indicating that decreased serine levels may disrupt the
acetyl-CoA pathway. Xiao-fan et al. observed that lower concentrations of specific AAs (alanine,
serine, methionine, glutamic acid, and phenylalanine) correlated with higher [HDL-C] levels in
hyperlipidemic rats subjected to a high-fat diet. Decreased threonine levels were associated with
higher odds of achieving healthy HDL-C levels [55]. In contrast, elevated serum BCAA levels were
positively correlated with TG and negatively with HDL-C in the entire population [56].

External factors and alterations in cellular metabolomes can trigger distinct glycogenesis
pathways, resulting in changes in metabolite utilization. Mitochondrial aging is characterized by
reduced TCA cycle efficiency and gluconeogenesis. Mitochondrial dysfunction in high metabolic rate
tissues, such as the brain, liver, and heart, leads to decreased energy capacity and disrupted redox
balance. This decline manifests as diminished TCA cycle efficiency due to reduced oxidative capacity,
impaired oxidative phosphorylation, and decreased ATP production [57]. Furthermore,
compromised glucose transport and TCA cycle function may contribute to increased alanine
catabolism to pyruvate [58]. Hepatic insulin signaling can suppress gluconeogenesis while
stimulating de novo lipogenesis, further complicating metabolic regulation [59]. The decline in
mitochondrial capacity in liver and adipose tissues significantly impacts glucose and fatty acid
metabolism, contributing to age-related metabolic disorders.

In the present study we have an attempt to determine optimal cutoff points for prediction
prediabetes after controlling for potential confounding factors like age and BMI in Kazakh
population. We estimated that for alanine the optimal cutoff level is 10.21 mmol/L (sensitivity 90%,
specificity 37.74%), for lysine the optimal cutoff point is 2.51 mmol/L (sensitivity 79.01%,

Limitations

The study has its own limitations that warrant careful consideration. Firstly, the diagnosis of
prediabetes in this study was exclusively based on fasting glucose and HbAlclevels, which represent
only a subset of potential diagnostic criteria. Incorporating the glucose tolerance test (GTT) could
enhance the precision and accuracy of the classification of prediabetes within our cohort. Secondly,
the imbalance in the ratio of cases to controls presents a concern for diminished statistical power. To
mitigate this issue, we increased the total sample size; however, this adjustment may not entirely
offset the potential limitations imposed by the original case-control ratio. Thirdly, the findings of this
study are primarily applicable to the Kazakh ethnicity, thereby limiting the generalizability of the
results to broader populations. As such, caution should be exercised when attempting to extrapolate
these findings to other ethnic groups.
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5. Conclusions

Lower plasma levels of alanine and aspartic acid, alongside elevated levels of lysine, were
significantly associated with an increased risk of prediabetes, particularly after controlling for age
and BMI in the Kazakh population. These findings suggest a potential metabolic dysregulation that
may contribute to the pathophysiology of prediabetes. However, to validate our conclusions and
explore the underlying mechanisms, further studies with substantially larger sample sizes are
warranted.
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