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Abstract: Background: The high global prevalence of prediabetes requires its early identification. 

Amino acids have emerged as potential predictors of prediabetes. This study aims to investigate the 

association between BCAAs and prediabetes in the Kazakh population. Materials and Methods: In 

this  case‐control  study,  plasma  BCAAs  levels  were  measured  using  the  Trace  GC  1310  gas 

chromatography system coupled with the TSQ 8000 triple quadrupole mass spectrometer (Thermo 

Scientific, Austin,  TX, USA)  followed  by  silylation with  the  BSTFA  +  1%  TMCS  derivatization 

method. Biochemical parameters, including total cholesterol, HDL‐C, LDL‐C, triglycerides, fasting 

glucose, HbA1c, and creatinine, were assessed for each participant. Anthropometric and physical 

examinations,  including blood pressure, heart  rate measurements, and  family history collection, 

were  conducted  by  trained  professionals.  Results:  The  final  analysis  included  data  from  112 

Kazakhs with  prediabetes  and  55 without  prediabetes,  aged  36‐65  years. Of  the  thirteen AAs 

analyzed, only alanine showed a significant association with prediabetes risk. Our findings revealed 

an inverse relationship between alanine and aspartic acid levels, and direct association of lysine and 

prediabetes in Kazakh ethnicity. Conclusion: Lower plasma level of alanine and aspartic acid, and 

higher level of lysine may serve as predictive biomarkers for prediabetes in the Kazakh population. 

This research is funded by the Science Committee of the Ministry of Education and Science of the 

Republic of Kazakhstan (grant AP14871855). 

Keywords: prediabetes; amino acids; prediction; Kazakh population 

 

1. Introduction 

The  introduction  should  briefly  place  the  study  in  a  broad  context  and  highlight why  it  is 

important.  It should define  the purpose of  the work and  its  significance. The current state of  the 
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research field should be carefully reviewed and key publications cited. Please highlight controversial 

and diverging hypotheses when necessary. Finally, briefly mention the main aim of the work and 

highlight the principal conclusions. As far as possible, please keep the introduction comprehensible 

to scientists outside your particular  field of  research. References should be numbered  in order of 

appearance and indicated by a numeral or numerals in square brackets—e.g., [1] or [2,3], or [4–6]. See 

the end of the document for further details on references. 

2. Materials and Methods 

This is a case‐control study, conducted in five primary care centers (PHCs) in Semey city of Abay 

oblast located in the East Kazakhstan. We recruited participants during the period from December 

2022 to March 2024. 

Data collection and Measurement 

Standardized  questionnaires were  employed  to  gather  demographic  information,  including 

smoking status, family history, and hereditary predispositions to cardiovascular diseases (CVD) and 

hypertension (HT). A comprehensive physical examination was conducted to assess anthropometric 

parameters,  which  included  measurements  of  weight,  height,  blood  pressure,  and  waist 

circumference which  performed  in  accordance with  the  guidelines  established  by  the  European 

Society  of  Cardiology  (ESC)  and  the  European  Society  of Hypertension  (ESH). A  standardized 

stadiometer  was  used  for  height  assessment,  while  a  calibrated  scale  was  utilized  for  weight 

measurement. Blood pressure (BP) was measured utilizing the Korotkov method, in accordance with 

the ESH/ESC algorithm, with participants resting  in a seated position during  the assessment  [17]. 

Two consecutive measurements were taken for each participant, and the average of these values was 

recorded. Body mass index (BMI) was calculated using the formula: weight (kg) divided by height 

(m²). Information regarding  the history of comorbidities and any medications taken was obtained 

from medical records as well as through participant interviews. All collected information for each 

participant  was  compiled  into  an  individualized  file  with  coded  personal  data  to  ensure 

confidentiality. 

Participants 

Initially, a total of 253 candidates of Kazakh ethnicity were enrolled in the study, comprising 130 

individuals diagnosed with prediabetes (cases) and 123 individuals with normal glycemia (controls) 

based on a simple random sampling. 

Exclusion criteria  included ethnicity other  than Kazakhs,  the presence of confirmed diabetes, 

history of stroke or myocardial infarction (MI), heart failure, thyrotoxicosis, hypothyroidism, and the 

use of statin therapy for less than six months prior to the initiation of the study. 

During the laboratory phase, 62 samples were excluded due to storage issues. Additionally, at 

the data analysis stage, 24 participants were excluded following the diagnosis of new‐onset T2DM. 

Consequently, data  from  167  participants,  112  cases  and  55  controls, were  included  in  the  final 

analysis (Figure 1). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 August 2024                   doi:10.20944/preprints202408.2213.v1

https://doi.org/10.20944/preprints202408.2213.v1


  3 

 

 

Figure 1. Flow diagram of participant selection. 

Ethics Considerations 

The  research  protocol  received  approval  from  the  Ethics  Committee  of  Semey  Medical 

University  (protocol  #7,  date  of  approval  March  16,  2022).  In  adherence  to  ethical  standards, 

confidentiality and privacy were rigorously maintained throughout the study. All personal data were 

anonymized  and  stored  in  a  secure  database,  accessible  solely  to  the  project manager  and  two 

designated members  of  the  research  team.  Before  participation,  all  individuals  were  provided 

comprehensive information regarding the aims and objectives of the study. Participants were assured 

that their involvement was entirely voluntary, with the provision to withdraw from the study at any 

point  without  the  requirement  to  provide  a  rationale,  and  without  any  associated  penalties. 

Following this, informed consent was obtained from individuals who met the established inclusion 

criteria. 

Diagnostic Criteria 

Dysglycemia, encompassing impaired fasting glucose (IFG), impaired glucose tolerance (IGT), 

prediabetes, and diabetes, was defined in accordance with the current guidelines established by the 

American Diabetes Association (ADA) [18]. Glycemic status was classified based on HbA1c levels, 

with diabetes  indicated by values  ≥6.5% and prediabetes defined by values ranging  from 5.7%  to 

6.4%. MS was diagnosed  following  the  criteria outlined by  the  International Diabetes Federation 

[19,20], which requires the presence of abdominal obesity along with at  least two of the following 

four  clinical  factors:  systolic blood pressure  >130 mmHg or diastolic blood pressure  >85 mmHg, 

plasma triglycerides (TG) >1.7 mmol/L, high‐density lipoprotein cholesterol (HDL‐C) <1.03 mmol/L 

in men and <1.29 mmol/L in women, and plasma glucose levels >5.6 mmol/L. 

Obesity  was  classified  according  to  the WHO  criteria  based  on  BMI,  with  the  following 

categories established: normal weight as <25 kg/m², overweight as 25‐29.9 kg/m², and obesity as >30 

kg/m². 

Chemicals 

Biochemistry 

All blood samples were collected in the morning following a fasting period of at least twelve 

hours, utilizing intravenous venesection. The levels of total cholesterol (TC), low‐density lipoprotein 

cholesterol  (LDL‐C),  high‐density  lipoprotein  cholesterol  (HDL‐C),  triglycerides  (TG),  fasting 

glucose,  HbA1c,  and  creatinine  were  quantified  in  the  laboratory.  AA  concentrations  were 

determined via gas chromatography‐mass spectrometry (GC‐MS). The targeted amino acids included 
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lysine, tyrosine, alanine, valine, leucine, isoleucine, proline, serine, threonine, methionine, aspartic 

acid, glutamic acid, and phenylalanine. 

Gas‐Chromatography Mass‐Spectrometry 

High‐performance liquid chromatography (HPLC) grade methanol was purchased from Sigma‐

Aldrich (St. Louis, MO, USA). BSTFA+1% TMCS (N, O‐bis (trimethylsilyl) trifluoroacetamide with 

1% trimethylchlorosilane for GC) (> 99.0% purity), methoxyamine hydrochloride (> 98.0% purity) and 

pyridine  (> 99.8% purity), AAS‐18 chemical standards of metabolites were commercially obtained 

from Sigma‐Aldrich  (St. Louis, MO, USA). AAS  18 mixed  standard  amino  acid  solution  (Sigma‐

Aldrich, St. Louis, MO, USA). 

Sample Preparation 

Each 100 μL blood plasma sample was mixed with 400 μL methanol: acetone mixture (2:1, v:v) 

to precipitate the protein. Next, the mixture was vortex‐mixed for 30 s and centrifuged for 10 min 

(15,000 rpm) at 4˚C. The 300 μL supernatant was transferred into a 2 mL eppendorf centrifugation 

tube  and  evaporated  to  dryness  by  N2  gas  with  sample  concentrator  (Miulab,  NDK200‐1N, 

Hangzhou, China). 100 μL methoxamine hydrochloride  in pyridine (10 mg/mL) was added to the 

dried tube, and the mixture was mixed on a vortex for 30 s and incubated for 2 h at 37˚C. Finally, 100 

μL of BSTFA derivatization agent was added to the mixture, vortexed for 30 s, and heated at 50˚C for 

2 h. The final solution was taken for GC‐MS analysis [21,22]. 

GC‐MS Analysis 

The  plasma  amino  acid  analysis was  conducted  on  a  Trace GC  1310  gas  chromatography 

instrument coupled to TSQ 8000 triple quadrupole mass spectrometer (Thermo Scientific, Austin, TX, 

USA), and equipped with an autosampler AS 1310. The column used for all analyses was a Thermo 

Scientific TG‐5SilMS column (30 m × 0.25 mm × 0.25 μm). The column temperature procedure was 

designed as follow: initially maintained at 50˚C for 5 min, programmed to 250˚C at a rate of 5˚C/min, 

and then held at 250˚C for 15 min. 99% pure helium was used as a carrier gas and the device was 

equipped with a  triple helium gas filter  (Thermo, Singapore) with a  flow rate of 1.0 mL/min. The 

septum purge was switched on with a flow rate of 3 mL/min constantly. The injector temperature 

was set at 280˚C, MS transfer line temperature was set at 250˚C and the ion source temperature was 

240˚C. The mass spectrometer was operated under electron ionization (EI) in full scan mode range 

varied from m/z 30 to 550 with a 0.2 s scan velocity, and the detector voltage was 0.96 kV. Ionization 

was achieved by a 70 eV electron beam. Instrument control, data acquisition, and data processing 

were performed by XCalibur software (Thermo Scientific, Austin, TX, USA). All of the detected peak 

features were identified by standards and the NIST Mass Spectral Search Program [23]. 

Quantitative Variables 

The status of prediabetes, HT, hereditary predisposition to CVDs, and lipid profile parameters, 

including TC, LDL‐C, HDL‐C, and TG, were designated as binary variables based on NCEP ATP III 

[24]. Smoking status was categorized into three groups: nonsmokers, former smokers, and current 

smokers. BMI was classified as a ranked variable, with categories of normal weight, overweight, and 

obesity. Age was stratified into four groups: less than 39 years, 40‐49 years, 50‐59 years, and older 

than  60  years.  Each AA was  treated  as  a  binary  variable  based  on  the  50th  percentile  cut‐off. 

Preliminary statistical analyses were conducted to assess the normality of all continuous variables. 

For  those variables exhibiting a highly skewed distribution  to  the right, a  log  transformation was 

applied, if provided the proportion of zero values was less than 2%. 

Statistical Methods 

Statistical analysis was conducted using STATA Statistical Software, release 15, College Station, 

TX; StataCorp LLC. Continuous variables were reported as means ± standard deviation (SD) if they 
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followed a normal distribution, while categorical variables were presented as proportions expressed 

in percentages. For the primary analysis, chi‐squared test and odds ratios (ORs) and Mantel‐Haenszel 

ORs  with  95%  confidence  intervals  (CI)  were  calculated  to  examine  the  associations  between 

categorical risk factors and the primary outcome of interest. The final statistical analysis employed a 

stepwise method with  forward  selection  in  a multiple  binary  logistic  regression model, which 

included covariates demonstrating significance for the fitted final model. The adequacy of the model 

was evaluated through a likelihood ratio test (LRT). Receiver operating characteristic (ROC) analysis 

was  performed  to determine  the  area  under  the  curve  (AUC)  for  selected  into  the  final  logistic 

regression  (LR) model targeted amino acids, specifically lysine, alanine, and aspartic acid. Cut‐off 

levels  for  these amino acids were established with  their  corresponding  sensitivity and  specificity 

were determined using Liu’s test. 

3. Results 

3.1. Descriptive Data 

In total, data from 75 Kazakh males and 95 females were included into final analysis. There were 

112  individuals with  prediabetes  and  55 without  prediabetes. Only  quarter  of  participants  had 

healthy weight and almost half met criteria of MS. Baseline characteristics and distribution of the 

potential risk factors for prediabetes are summarized in Table 1. 

Table 1. Baseline characteristics of the study population. 

Characteristics  Absolute 

number/% 

or mean/SD 

Prediabetes,%  P‐value 

Yes  No 

Gender, male  75/44.12  70.83  29.17  0.367 

Age (years)  50.55/7.47       

<39  10/5.88  4.46  9.09  0.04 

40‐49  70/41.18  35.71  52.73   

50‐59  70/41.18  44.64  32.73   

>60  20/11.76  15.18  5.45   

BMI categories (kg/m2) 

<24.9  43/25.75  18.35  41.82  0.001, 

0.0002* 

25‐29.9  70/41.92  42.20  41.82   

>30.0  54/32.34  39.45  16.36   

Hypertension  50/29.94  33.94  21.82  0.109 

Smoking 

No  113/67.66  69.72  63.64  0.03 

Quitted  34/20.36  15.60  30.91   

Yes  20/11.98  14.68  5.45   

High fasting glucose 

(>5.6) 

23/13.61  73,91  26.09  0.452 

Lipid profile (mmol/L) 

High LDL‐C (>3.3)  73/42.94  70.83  29.17  0.367 
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Low HDL‐C (<1.03 in 

males, <1.29 in 

females) 

57/33.53  75.44  24.56  0.097 

High TG (>1.7)  46/27.06  79.55  20.45  0.04 

*p for trend of odds; BMI, body mass index, LDL‐C, low density lipoprotein cholesterol, HDL‐C, high density 

lipoprotein  cholesterol, TG,  triglycerides Comparisons  between prediabetes  and  control  subjects  have  been 

conducted by chi‐square test for categorical variables. 

In a comparative analysis, individuals diagnosed with prediabetes exhibited a higher prevalence 

of unhealthy weight, smoking habits, hypertension, and dyslipidemia relative to control subjects. The 

study  identified  that 70.83% males and 64.21%  females were classified as prediabetic. Among  the 

female  participants,  the  majority  were  non‐smokers  (85.26%),  while  nearly  half  of  the  male 

participants (44.44%) also refrained from smoking. Conversely, 8.42% of females and 36.11% of males 

were  identified were  identified  as  current  smokers, with  6.32%  of  females  and  19.44%  of males 

classified as former smokers (p=0.0001). Notably, 76% of participants with confirmed hypertension 

were receiving regular antihypertensive therapy. There was strong evidence of a linear trend, with 

the proportion of cases with prediabetes increasing with age (p=0.005). 

3.2. Amino Acids and Lipid Profile 

Table 2 presents a summary of the association between AAs and parameters of the lipid profile. 

The  analysis  revealed  that  lower  plasma  level  of  alanine,  serine, methionine,  glutamic  acid  and 

phenylalanine were associated with a two‐fold increase in healthy plasma HDL‐C levels in both male 

and female subjects. Notably, adjusting for BMI did not significantly alter ORs for the associations. 

Additionally,  lower plasma  levels of threonine were  linked to a three‐fold increase in the odds of 

achieving healthy HDL‐C levels. Similar to the previous findings, adjusting for BMI did not influence 

the  strength  of  the  association  between  threonine  and HDL‐C  levels. Conversely, we  found  no 

significant associations between plasma concentrations of lysine, aspartic acid, valine, leucine, and 

isoleucine and any parameters of the lipid profile. Importantly, none of the AAs examined exhibited 

a relationship with LDL‐C levels. 

Table 2. ORs for increased levels of LDL‐C, HDL‐C, and TG crude and adjusted for BMIα. 

Amino acids, mmol/L  High LDL‐C>3.3 

mmol/L 

HDL‐C>1.03 mmol/L 

in males and >1.29 

mmol/L in females 

TG>1.7 mmol/L 

ORcrude  ORadjusted  ORcrude  ORadjusted  ORcrude  ORadjusted 

Lysine <2.57  1.02  1.05  1.45  1.50  0.72  0.76 

Tyrosine <1.03  1.28  1.18  1.50  1.64  1.02  0.86 

Alanine <10.86  1.26  1.37  2.22*  2.29*  0.28**  0.28** 

Valine <5.74  0.95  0.86  0.92  0.97  1.89  1.72 

Leucine <6.36  0.90  0.94  0.96  0.87  0.75  0.88 

Isoleucine <3.58  0.98  0.94  0.85  1.01  2.30*  1.99* 

Proline <3.70  0.72  0.70  1.51  1.55  0.45*  0.45* 

Serine <1.69  1.12  1,23  2.11*  1.97  0.24***  0.27*** 

Threonine <1.52  1.74  1.96  3.01**  2.93**  0.32**  0.35* 

Methionine <1.14  0.96  1.06  1.77  1.73  0.27***  0.28** 

Aspartic acid    <0.27  1.95  1.80  1.09  1.3  1.3  1.02 
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Glutamic acid <0.87  1.0  0.99  2.16*  2.45*  0.37**  0.35** 

Phenylalanine <0.58  1.0  1.13  2.22*  2.31*  0.45*  0.54 

α Chi‐square test for categorical variables. *P<0.05, **p<0.005, ***p<0.0005. 

3.3. Amino Acids and the Risk of Prediabetes 

We analyzed the association between AAs and the risk of prediabetes, as detailed in Table 3. 

Among  the  thirteen AAs  examined,  only  alanine,  lysine  and  aspartic  acid  exhibited  significant 

associations with the risk of prediabetes. Alanine and aspartic acid were found to have an inverse 

relationship  with  the  risk  of  prediabetes,  indicating  that  higher  plasma  levels  of  these  AAs 

corresponded to reduced likelihood of developing this condition. Conversely, elevated plasma levels 

of  lysine were  positively  associated with  the  increased  risk  of  prediabetes,  suggesting  a  direct 

association. 

Table 3. Association between AAs and prediabetes*. 

AAs, mmol/L  ORcrude  95%CI  p‐value 

Lysine >2.57  2.19  1.04;4.63  0.039 

Tyrosine <1.03  0.75  0.35;1.63  0.47 

Alanine <10.86  1.89  0.96;3.70  0.064 

Valine <5.74  0.60  0.29;1.21  0.153 

Leucine <6.36  0.74  0.38;1.43  0.367 

Isoleucine <3.58  0.67  0.34;1.33  0.249 

Proline <3.70  1.04  0.52;2.09  0.911 

Serine <1.69  1.02  0.51;2.07  0.953 

Threonine <1.52  1.27  0.60;2.66  0.531 

Methionine <1.14  0.55  0.28;1.09  0.087 

Aspartic <0.27  2.91  1.24;6.81  0.014 

Glutamic <0.87  0.83  0.42;1.66  0.595 

Phenylalanine <0.58  0.73  0.35;1.55  0.416 

*Binary logistic regression. 

We adjusted all AAs for potential confounding factors to elucidate the true associations between 

AAs and risk of prediabetes risk, as summarized in Table 4. The analysis revealed that only age and 

BMI served as significant confounding factors influencing the relationships between alanine, lysine 

and  aspartic  acid  and  risk  of prediabetes. At  fix  values  of  covariates  in  the  final  binary  logistic 

regression model alanine lower than 10.86 mmol/L, aspartic lower than 0.27 mmol/L. In case of lysine 

we found inverse association with prediabetes, higher plasma levels of lysine (above 2.57 mmol/L) 

was associated with prediabetes. Other variable, including smoking status, gender, lipid profile and 

history  of  hypertension  did  not  have  a  significant  impact  on  these  associations. Notably, when 

controlling for age and BMI the strength of the association was enhanced for both alanine and lysine; 

however, this adjustment did not yield a similar effect for aspartic acid. Furthermore, the Likelihood 

Ratio Test  (LRT) substantiated  the significance  for both age and BMI across all  logistic regression 

models. 
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Table 4. Crude and adjusted ORs of prediabetes for plasma level of alanine, lysine and aspartic 

acid*. 

Number of 

observations 

OR of 

prediabetes 

95%CI P-value Adjusted for Model 

Alanine<10.86 mmol/L 

156 1.89 0.96;3.70 0.064 Crude 1 

156 2.17 1.06;4.48 0.035 Ageα 2 

153 2.19 1.03;4.60 0.042 Age+BMIβ 3 

Lysine > 2.57 mmol/L 

129 2.19 1.04;4.63 0.039 Crude 1 

129 2.11 0.99;4.50 0.053 Ageα 2 

126 2.31 1.03;5.14 0.041 Age+BMIβ  

Aspartic<0.27 mmol/L 

103 2.91 1.24;6.81 0.014 Crude 1 

103 3.0 1.25;7.22 0.014 Ageα 2 

100 2.87 1.12;9.86 0.026 Age+BMIβ 3 
*Multiple binary logistic regression. α, β‐LRT (Likelihood Ratio Test) for the significance of age and BMI, p<0.01. 

When assessing the odds of developing prediabetes at fixed values of the covariates in the final 

logistic regression model, individuals in older age groups exhibited odds ratios ranging from 2.52 to 

5.83  compared  to  their  younger  counterparts.  Additionally,  those  classified  as  overweight 

demonstrated 2.26‐fold  increased odds of developing prediabetes  (95%CI 0.97;5.23; p=0.05), while 

individuals with obesity exhibited an even greater odds ratio of 4.87 when compared to individuals 

with a healthy weight (95% CI 1.77; 13.34; p = 0.02). These findings highlight the critical roles of age 

and BMI in elucidating the associations between specific amino acids and the risk of prediabetes. 

3.4. AAs and Prediction of Prediabetes 

To  evaluate  the  predictive  potential  of  alanine,  lysine,  and  aspartic  acid  in  the  context  of 

prediabetes, we conducted a ROC analysis utilizing both crude and fitted logistic regression models. 

These models assessed  the associations between  the aforementioned AAs and prediabetes, while 

adjusting for potential confounding variables, specifically age and BMI (refer to Table 5). Our analysis 

revealed that the inclusion of age and BMI significantly enhanced the predictive accuracy of alanine, 

lysine, and aspartic acid, with the area under the ROC curve (AUC) increasing from 0.47, 0.61, and 

0.49 to 0.73, 0.74, and 0.76, respectively. Furthermore, we determined the optimal cut‐off levels for 

these AAs to effectively predict prediabetes within the study population. 

Table 5. Crude and adjusted AUCs for LR models of association between AAs and prediabetes 

risk*. 

LR 

Models 

AUC Cutoff 

point**, 

mmol/L 

Sensitivity, 

% 

Specificity, 

% Crude Adjusted for 

age and BMI 

Alanine 0.47 0.73 10.21 90.00 37.74 

Lysine 0.61 0.74 2.51 79.01 48.89 

Aspartic 0.49 0.76 0.056 90.77 45.71 
*ROC analysis, **Estimation by Liu method. LR – logistic regression, AUC – area under curve, BMI – body mass 

index. 
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4. Discussion 

In the present study, we investigated the association of thirteen AAs with the risk of prediabetes 

within  the Kazakh  population. Our  findings  indicate  a  significant  relationship  between  alanine, 

lysine, and aspartic acid and the risk of prediabetes. Specifically, alanine and aspartic acid exhibited 

a  negative  association  with  prediabetes  risk,  while  lysine  demonstrated  a  positive  correlation. 

Conversely,  the  remaining AAs  ‐  tyrosine,  valine,  leucine,  isoleucine,  proline,  serine,  threonine, 

methionine, glutamic acid, and phenylalanine ‐ were not associated with prediabetes risk. 

Emerging evidence suggests  that dysregulated metabolism of AAs plays a crucial role  in  the 

mechanisms underlying altered gluconeogenesis and the pathogenesis of IR [25,26]. Disturbances in 

the metabolomic profile are evident in both prediabetes and T2DM [27] with most existing research 

focusing on the associations between AAs and clinically manifested T2DM, while fewer studies have 

addressed prediabetes specifically. Notably, BCAAs ‐ including valine, leucine, and isoleucine ‐ have 

been identified as potential biomarkers for the early detection of prediabetes and IR, as well as the 

subsequent risk of T2DM [28]. A recent meta‐analysis encompassing 22 studies, including ten studies 

specifically  examining  prediabetes  and AAs,  revealed  that  tryptophan  and  BCAAs  are  directly 

associated with prediabetes and may serve as predictors of this condition [29]. 

Interestingly, our study  identified  lower plasma  level of alanine as a significant predictor of 

prediabetes risk, a finding not previously reported in the context of prediabetes. However, a recent 

systematic  review  highlighted  the  strong  positive  predictive  value  of  alanine  and  other AAs  in 

relation to T2DM risk [30]. Our data further corroborate the notion that lower levels of alanine are 

associated with an increased risk of prediabetes. It has been suggested that lower alanine levels in 

obese  individuals may be associated with reduced anaplerotic oxaloacetate  formation and, hence, 

reduced  efficiency  of  the  tricarboxylic  acid  (TCA)  cycle  activity  and  reduced  gluconeogenesis. 

Hepatic  glucose  production  occurs  through  three  primary  pathways:  glycogenolysis, 

gluconeogenesis from glycerol, and gluconeogenesis from lactate/pyruvate/AAs [31], with the latter 

being  the predominant pathway during prolonged  fasting, which  is often disrupted  [32,33]  in  the 

diabetic liver [34]. 

Alanine emerges as the principal amino acid catabolized by the liver in all mammals of all amino 

acids  contributing  to  gluconeogenesis  [35–37].  In muscle  cells,  pyruvate  is  converted  to  alanine 

through the catalytic action of alanine aminotransferase, (alanine transaminase, ALT) [38]. Alanine 

transports  amino  groups  to  the  liver,  where  alanine  is  subsequently  reconverted  to  pyruvate, 

enabling its entry into gluconeogenic pathways, providing energy during fasting or intense exercise 

[39]. Alanine undergoes transamination reactions by transferring its amino group to form pyruvate 

and glutamate [40]. Such processes serve to interconnect amino acid metabolism with the citric acid 

cycle and subsequent energy production in the liver, kidneys, and small intestine [41]. 

For  gluconeogenesis  to  occur,  alanine  must  be  converted  to  pyruvate.  This  conversion  is 

facilitated by  two enzymes, ALT1 and ALT2, highly expressed  in  the  liver. ALT1  is  found  in  the 

cytosol, while ALT2 is located in the mitochondrial matrix [41]. While transamination can occur in 

the  cytosol,  recent  investigations  suggest  that  mitochondrial  ALT2  plays  a  critical  role  in 

gluconeogenesis by facilitating the conversion of alanine to pyruvate within the mitochondrial matrix 

[42,43]. 

Increased expression of ALT2 has been observed in both obese humans and murine models [44]. 

ALT2 expression is regulated by activating transcription factor 4 (ATF4) in liver. Notably, silencing 

ALT2 in the liver of obese mice has been reported to diminish alanine‐induced hyperglycemia while 

concurrently elevating plasma alanine levels, suggesting a regulatory feedback mechanism pertinent 

to alanine metabolism in obesity [45]. 

In muscle cells, the conversion of pyruvate to alanine is catalyzed by ALT. This transamination 

reaction facilitates the conversion of alanine and α‐ketoglutarate into pyruvate and glutamate [46]. 

Alanine serves as a vehicle  for the  transport of amino groups from peripheral  tissues to  the  liver, 

where alanine is reconverted to pyruvate facilitating its subsequent utilization in gluconeogenesis. 

This pathway is particularly vital during periods of fasting or intense physical exercise. While ALT 

is predominantly found in the liver, it is also present in other tissues including the kidneys, heart, 
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and muscle cells, highlighting its importance in amino acid metabolism across different physiological 

contexts [47] (Figure 2). 

 

Figure 2. Impact of Mitochondrial Metabolic Activity on Circulating Levels of Alanine and Aspartic 

Acid: Insights from the Cahill Cycle. 

This  figure  illustrates  the  role  of  alanine  in  gluconeogenesis,  emphasizing  the  enzymatic 

conversion of alanine to pyruvate through the action of ALT isoenzymes, specifically ALT1  in the 

cytosol and ALT2 in the mitochondria The involvement of ALT2 in this metabolic pathway is critical 

for gluconeogenesis. Elevated expression levels of ALT2 have been observed in both obese human 

subjects and  relevant animal models, which  suggests a potential  link between ALT2 activity and 

obesity‐related metabolic alterations. The regulation of ALT2 expression by the transcription factor 

ATF4 underscores its significant role in the metabolic adaptation in obesity. Experimental evidence 

indicates that silencing ALT2 in the hepatic tissue of obese mice leads to a decrease in alanine‐induced 

hyperglycemia  and  a  concomitant  increase  in  plasma  alanine  levels.  These  findings  suggest  the 

existence of a feedback mechanism governing alanine metabolism in obesity. 

Aspartic acid metabolism plays a significant role in maintaining essential cellular functions, with 

a particular focus on the biochemical pathway leading to the synthesis of L‐aspartic acid. L‐aspartic 

acid is generated from the transamination reaction between oxaloacetate and glutamate, catalyzed 

by mitochondrial AST.  In  the context of diabetes,  there  is a significant decline  in  the synthesis of 

aspartic  acid  from  oxaloacetate, which  has  been  associated with  decreased  activity  of AST  and 

BCAAs dysregulation. 

Our investigation also revealed a positive association between lysine levels and prediabetes risk, 

consistent with  findings  from  studies  conducted  in Mexican  populations. However,  our  results 

diverged from those studies regarding threonine and arginine, which were not found to be significant 

in  our  analysis  [48].  Lysine,  an  essential  amino  acid,  has  been  implicated  in  the  progression  of 

prediabetes and T2DM. Elevated levels of lysine and its metabolite, α‐aminoadipic acid, have been 

observed in individuals with insulin resistance, indicating a potential link between lysine metabolism 

and the development of T2DM [49]. Additionally, L‐homoarginine, a metabolite derived from lysine 

catabolism, may be associated with cardiovascular disease and T2DM through pathways involving 

arginine and nitric oxide production [50]. 
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Ethnic  disparities  in  AA  metabolism  are  noteworthy.  Recent  data  have  highlighted  the 

predictive role of aspartic acid (Asp) in prediabetes among European Americans, with a reported 2.7‐

fold  increase  in  risk. Our  findings,  however,  suggest  an  inverse  association within  the  Kazakh 

population, and we did not  confirm  the predictive potential of histidine as  reported  in previous 

studies  [51].  Asp  metabolism  is  essential  for  various  cellular  processes,  with  L‐aspartic  acid 

synthesized  from  oxaloacetate  and  glutamate  by mitochondrial  aspartate  aminotransferase.  This 

amino acid plays critical  roles  in protein  synthesis, gluconeogenesis, and neurotransmission, and 

contributes to NADH delivery and redox balance via the malate‐aspartate shuttle [52]. Moreover, a 

high  asparagine  to Asp  ratio has been associated with an  elevated  risk of T2DM, particularly  in 

females  or  individuals  over  50  years  of  age  [53].  In  diabetes,  impaired  Asp  synthesis  from 

oxaloacetate has been attributed to decreased mitochondrial aspartate aminotransferase activity and 

dysregulation of BCAAs [54]. 

The  results  of  the  present  study  indicate  an  inverse  association  between AAs  and HDL‐C. 

Conversely, a direct association was observed between AAs and TG  for  the AAs alanine,  serine, 

threonine, glutamic  acid,  and phenylalanine. We hypothesize  that under  a high‐fat diet,  alanine 

metabolism becomes dysregulated, leading to the excessive generation of acetyl‐CoA from pyruvate 

and subsequent deficits in energy metabolism. Previous studies have noted significant correlations 

between serine, alanine, and pyruvate levels, indicating that decreased serine levels may disrupt the 

acetyl‐CoA pathway. Xiao‐fan  et al. observed  that  lower  concentrations of  specific AAs  (alanine, 

serine, methionine,  glutamic  acid,  and  phenylalanine)  correlated with  higher  [HDL‐C]  levels  in 

hyperlipidemic  rats  subjected  to a high‐fat diet. Decreased  threonine  levels were associated with 

higher odds of achieving healthy HDL‐C levels [55]. In contrast, elevated serum BCAA levels were 

positively correlated with TG and negatively with HDL‐C in the entire population [56]. 

External  factors  and  alterations  in  cellular  metabolomes  can  trigger  distinct  glycogenesis 

pathways,  resulting  in  changes  in metabolite utilization. Mitochondrial aging  is  characterized by 

reduced TCA cycle efficiency and gluconeogenesis. Mitochondrial dysfunction in high metabolic rate 

tissues, such as the brain, liver, and heart, leads to decreased energy capacity and disrupted redox 

balance. This decline manifests as diminished TCA cycle efficiency due to reduced oxidative capacity, 

impaired  oxidative  phosphorylation,  and  decreased  ATP  production  [57].  Furthermore, 

compromised  glucose  transport  and  TCA  cycle  function  may  contribute  to  increased  alanine 

catabolism  to  pyruvate  [58].  Hepatic  insulin  signaling  can  suppress  gluconeogenesis  while 

stimulating  de  novo  lipogenesis,  further  complicating metabolic  regulation  [59].  The  decline  in 

mitochondrial  capacity  in  liver  and  adipose  tissues  significantly  impacts  glucose  and  fatty  acid 

metabolism, contributing to age‐related metabolic disorders. 

In  the present  study we  have  an  attempt  to determine  optimal  cutoff  points  for  prediction 

prediabetes  after  controlling  for  potential  confounding  factors  like  age  and  BMI  in  Kazakh 

population. We estimated that for alanine the optimal cutoff level is 10.21 mmol/L (sensitivity 90%, 

specificity 37.74%), for lysine the optimal cutoff point is 2.51 mmol/L (sensitivity 79.01%, 

Limitations 

The study has  its own  limitations that warrant careful consideration. Firstly, the diagnosis of 

prediabetes in this study was exclusively based on fasting glucose and HbA1c levels, which represent 

only a subset of potential diagnostic criteria. Incorporating  the glucose  tolerance  test  (GTT) could 

enhance the precision and accuracy of the classification of prediabetes within our cohort. Secondly, 

the imbalance in the ratio of cases to controls presents a concern for diminished statistical power. To 

mitigate  this  issue, we  increased the  total sample size; however, this adjustment may not entirely 

offset the potential limitations imposed by the original case‐control ratio. Thirdly, the findings of this 

study are primarily applicable to the Kazakh ethnicity, thereby limiting the generalizability of the 

results to broader populations. As such, caution should be exercised when attempting to extrapolate 

these findings to other ethnic groups. 
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5. Conclusions 

Lower  plasma  levels  of  alanine  and  aspartic  acid,  alongside  elevated  levels  of  lysine, were 

significantly associated with an increased risk of prediabetes, particularly after controlling for age 

and BMI in the Kazakh population. These findings suggest a potential metabolic dysregulation that 

may contribute  to  the pathophysiology of prediabetes. However,  to validate our conclusions and 

explore  the  underlying mechanisms,  further  studies  with  substantially  larger  sample  sizes  are 

warranted. 
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