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Abstract: Magnaporthe  oryzae  is  a  filamentous heterothallic  ascomycete  fungus globally distributed  in  rice‐

growing regions and serves as the causative agent of rice blast disease. Populations shaped by environmental 

factors  and  human  intervention  play  important  roles  in  the  formation  of  genetic  structure.  In  this  study, 

population structures and spatiotemporal dynamics were investigated based on the large‐scale whole genomic 

sequences of  rice‐infecting M.  oryzae  around  the world. By  analyzing  the genetic  structures, we  identified 

divergent clades that crossed geographic boundaries. While we observed associations between the isolates and 

their geographic origins, we also found that there were frequent migration events occurring worldwide. The 

populations  in  Asia  demonstrated  the  highest  genetic  diversity  due  to  the  continent’s  history  of  rice 

domestication, followed by separate gene flows to Africa, North America, South America and Europe. Within 

Asia, China was  the migration origin,  facilitating gene  flows  to  Japan and South Korea. Additionally, our 

analysis of  the  evolutionary history of global M.  oryzae populations provided  insights  into  the population 

expansion that has taken place  in recent decades. Overall, our findings  indicate that human‐mediated gene 

flows played a pivotal role in shaping the genetic structure of M. oryzae. 

Keywords: Magnaporthe oryzae; population structure; genetic diversity; gene flow 

 

1. Introduction 

Rice blast is a devastating disease that occurs in rice‐growing areas worldwide, it is caused by 

the  filamentous  ascomycete  fungus Magnaporthe  oryzae  and poses  a  serious  threat  to global  food 

security [1]. M. oryzae can rapidly overcome the resistance genes in rice and can coexist with resistant 

varieties within a few years of their initial deployment in rice agrosystems [2,3]. The pathogen infects 

rice  throughout  the  growth  period  and  also  has  a wide  host  range  that  includes more  than  50 

cultivated  and wild monocot plants,  such  as  rice  (Oryza  sativa),  barley  (Hordeum  vulgare), wheat 

(Triticum aestivum), finger millet (Eleusine coracana), goosegrass (Eleusine indica), perennial ryegrass 

(Lolium perenne) and more [4]. The asexual reproduction is prevalent in most rice fields, resulting in 

local populations of M. oryzae often exhibiting only one mating type[5–9].   

It is necessary to better understand the features of the genetic structure of M. oryzae in order to 

provide the genetic basis for developing sustainable and effective prevention and control strategies 
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for rice blast disease [10]. Genetic diversity can reflect the survival ability and adaptive potential of 

natural populations in the face of rapidly changing biotic and abiotic backgrounds [11]. For the plant 

pathogen M.  oryzae,  genetic  diversity  is  usually  estimated  using molecular markers,  including 

microsatellite markers, or DNA fingerprinting via amplified fragment length polymorphism. These 

methods  have  been  applied  in  several  countries  and  continents,  including China  [12–14],  India 

[15,16],  Thailand  [17],  the  Philippines  [18], Africa  [19],  Europe  [20]  and America  [21],  and  have 

revealed regional diversity variations underling local adaptations [22]. The establishment of genetic 

structures can be driven by geographic  isolation and ecological  factors.  In a previous population 

genomic analysis, three main genetic clades were identified in M. oryzae, which were associated with 

the distribution of mating types [23,24]. In a worldwide population structure analysis of M. oryzae, 

multiple endemic and pandemic  lineages were  identified, which were distributed  in specific rice‐

growing  areas  [25].  Based  on  the  amplified  fragment  length  polymorphism,  very  few  genetic 

differences have been found between the geographically distant populations of M. oryzae in Iran and 

Uruguay, although evidence of gene flow has been observed [26]. As a broad host pathogen, host 

specialization has also been reported to be a non‐negligible factor in the genetic differentiation of M. 

oryzae [27,28]. However, the limited genetic markers have hindered population genetic analysis from 

accurately identifying the comprehensive ensemble population structures of rice‐infecting lineages 

due to insufficient information regarding the incomplete divergent populations. In particular, there 

remains  a  scarcity  of  studies  addressing  the  spatiotemporal  dynamics  of  genetic  diversity  and 

population structures of M. oryzae through large‐scale genomic analysis. 

Gene  flow,  or  migration,  implies  the  movement  of  genetic  material  among  spatially  or 

temporally  separated  populations  and  acts  as  a major  driving  force  for  organisms  to  establish 

population structures. It can accelerate novel variations through gene recombination, migration to 

found new populations  and  takeovers of other  local populations.  Island  [29]  and  stepping‐stone 

models [30] have indicated that the migration of one or more subpopulations can decrease the genetic 

correlation with geographical distance among sexually  reproducing species. For plant pathogens, 

spatial movement occurs in many forms, such as short‐distance transfer through rainwater and long‐

distance global transfer, which counteracts the disadvantage of immobility for large‐scale epidemics. 

Population structures are generally established by genetic variations and natural factors, as well as 

anthropogenic changes, especially among crop pathogens that are closely linked to human survival. 

Therefore, human movement significantly influences the migration of plant pathogens    [31,32].   

In agricultural ecosystems, human movement can aid the extensive spread of plant pathogens 

by breaking inherent mobility limitations or geographic barriers, such as rivers and mountains, that 

can restrict population expansion, thereby contributing to the complexity of population structures. 

Therefore, the globalization of agricultural products, largely driven by human activities, has led plant 

pathogens  to  evolve  toward metapopulation  formation  [31].  For  example,  the  transportation  of 

infected  seeds  is  one  of  that ways  that M.  oryzae  has migrated,  demystifying  the  close  genetic 

relationships  that  have  arisen  between  geographically  separate  populations  [33].  Through  the 

genome  sequence  analysis  of  global M.  oryzae  populations  over  different  time  periods,  a  sexual 

recombination  signature  was  detected  in  the  Southeast  Asian  endemic  lineage,  suggesting  the 

occurrence of gene flows among geographic population distributions [25]. Based on microsatellite 

markers, M. oryzae has been found to have weak geographic structures in three islands groups with 

limited natural migration, which was  induced by  the  transportation of  infected seeds around  the 

Philippines [18]. Based on amplified fragment length polymorphism analysis, frequent gene flows 

have been discovered in East African populations [34], as well as between the different provinces in 

Korea  [35]. This has also occurred with other plant viruses;  for example,  turnip mosaic potyvirus 

spread from west to east regions in Eurasia due to historical trade arteries, such as the Silk Road [36]. 

In this study, we first collected the published whole‐genome sequences of 189 rice‐infecting M. 

oryzae isolates from five continents and 22 re‐sequenced genomes from China. Then, we analyzed the 

genetic  diversity  and  population  structure  characteristics  to  evaluate  the  population  divergence 

driven by spatiotemporal changes. We  found  that a M. oryzae population from Asia exhibited the 

highest genetic diversity and could be divided into three divergent clades. The diffusion route of M. 
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oryzae followed human activity, suggesting that the Asian population served as the genetic pool for 

rice‐growing  regions worldwide, with China  being  the migration  origin within Asia. Our  study 

provides  a  detailed  understanding  of  the  spatiotemporal  dynamics  of  the  genetic  diversity  and 

population structures, which could be useful for developing cultivars with different resistant genes 

and could contribute new insights into disease management. 

2. Materials and Methods 

2.1. Isolate Sampling, DNA Preparation, Genome Sequencing and Published Genome Collection 

We collected 22 rice‐infecting M. oryzae isolates from rice fields in China. The sampling locations 

are described in Table S1. Genomic DNA was extracted from fresh mycelium cultures after single‐

spore  isolation,  as  previous  described  [37]. An  Illumina  paired‐end DNA  sample  prep  kit was 

employed to construct the Illumina fragment libraries and an Illumina HiSeq2500 instrument was 

used for the sequencing.   

A total of 189 M. oryzae genomes have been sequenced from rice, which we have downloaded 

from  the NCBI  database  using  the  ncbi‐genome‐download  script  (https://github.com/kblin/ncbi‐

genome‐download). The genome information is also listed in Table S1. 

2.2. Identification of Single‐Nucleotide Polymorphism   

To obtain high‐quality single‐nucleotide polymorphism sites from the sequencing reads, the raw 

data were first trimmed using Trimmomatic software [38]. The eighth version genome of 70‐15 was 

taken as  the  reference genome  and  the paired‐end  reads were aligned against  it using  the BWA 

v0.7.17 as the default parameters [39,40]. Then, single‐nucleotide polymorphism (SNP) mining was 

implemented using  the Genome Analysis Toolkit  (GATK v4.1.4.1), which compared  the  reference 

genome to the standard settings [41]. After that, VCFtools was used to  filter the biallelic site with 

minor allele count smaller than 3 and missing data lower than 20% [42]. 

For the genomes downloaded from the NCBI database, genome‐to‐genome SNP identification 

was  performed using  the  ‐maxmatch  and  ‐c  100  options  in MUMMer  [43]  against  the  reference 

genome. 

2.3. Characterization of Genetic Diversity and Population Genetic Structures   

To estimate the genetic diversity of M. oryzae populations that were divided by spatiotemporal 

boundaries,  the  nucleotide  diversity  of  the  whole‐genome  SNPs  was  calculated  using  the 

“PopGenome” v2.1.6 package with a 20 kb sliding window and 2 kb step size  [44]. The statistical 

significance  between  each  pair  of  geographical  populations was  estimated  using  Student’s t‐test 

(two‐tailed). A SNP‐based neighbor‐joining phylogenetic  tree was  reconstructed according  to  the 

bitwise distance with 1000 bootstrap replicates using  the “poppr” packages  in R  [45]. A principal 

component analysis (PCA) of the genetic structures of global populations from Asia, Europe, North 

America  and  South  America  was  implemented  on  the  matrix  of  binary  allele  sites  using  the 

“adegenet” package [46]. 

To  establish  the  population  structure  compositions,  the  SNP  dataset was  pruned  based  on 

linkage  disequilibrium  (LD)  with  a  value  of  r2   =  0.5  using  Plink  v.1.9  (https://www.cog‐

genomics.org/plink/). To evaluate the individual ancestry components and admixture proportions, a 

population  admixture  analysis was  performed  using  the  ADMIXTURE  v1.3.0  program  [47].  In 

ADMIXTURE, 5‐fold and 10‐fold cross‐validation procedures with K values between 2 and 10 were 

implemented  to  identify  the  optimal  number  of  population  clusters  (K) with  the  lowest  cross‐

validation error values. The admixture proportions of each sample from the geographic populations 

were visualized using PopHelper [48]. 
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2.4. Phylogeographic Analysis of M. oryzae 

To  detect  the  reticulation  events  of  the  populations,  such  as  hybridization,  horizontal  gene 

transfer  and  recombination,  the  phylogenetic  networks were  reconstructed  using  the  SplitsTree 

algorithm [49]. In order to assess the robustness of the tree topology, 1000 bootstrap replicates were 

performed using the “Neighbor‐Net” and “Uncorrected p‐distance” parameters. 

To  ascertain  the  phylogeographical  dispersal  routes  (including  migration  routes  and 

directionality) of M. oryzae across the world and in Asia (four regions), we employed the asymmetric 

discrete trait substitution model with the Bayesian stochastic search variable selection approach [50] 

using BEAST 1.10.4 [51]. Based on the Bayesian information criterion, the best nucleotide substitution 

model was estimated using jModeltest [52] after converting the SNP dataset into the Phylip format 

using vcf2phylip v2.0 [53]. The posterior distributions of the parameters were estimated using two 

independent  Markov  chain  Monte  Carlo  (MCMC)  methods  for  100  million  generations,  with 

sampling  every  20,000  generations. Tracer  v1.7 was used  to  check model  convergence  (effective 

sample size >200) after excluding 10% of the initial samples as burn‐in [54]. Using the SpreaD3 v0.9.6 

software, a Bayes factor analysis (BF >3) was performed to identify diffusion routes that were strongly 

supported by the data [55]. 

3. Results 

3.1. Spatiotemporal Dynamics of Genetic Diversity in M. oryzae Populations 

After  the SNP mining and  filtering, a  final SNP dataset of 605,369 whole‐genome SNPs was 

obtained  from  the samples, which was applied  for  the evaluation of  the genetic diversity of each 

geographical  population  of  M.  oryzae.  A  nucleotide  diversity  statistical  analysis  revealed  the 

variations  among  the  populations  in Asia,  Europe, Africa, North America  and  South America, 

indicating  an  average  nucleotide  diversity  index  (Pi)  of  553.57–774.30  for  each  analysis window 

(Figure 1). Additionally, according to the t‐test statistic between each of the pairwise populations, the 

M.  oryzae  samples  from  Asia  had  the  highest  nucleotide  diversity  (774.30).  By  contrast,  the 

populations  in Europe had  the  lowest nucleotide diversity  (553.57), while  those  in Africa, South 

America and North America had moderate diversity. 

 

Figure 1. The nucleotide diversity indices for rice‐infecting M. oryzae populations by continent. The 

spatiotemporal dynamics of the nucleotide diversity were based on the whole‐genome SNPs with 20 

kb  sliding windows  and  2  kb  steps. The  nucleotide diversity distribution  in different  continents 

include AS (Asia), AF (Africa), EU (Europe), SA(South America), NA (North America) and ALL (all 

continents) shown in X‐axis. Boxes show the first quartile, median and third quartile, and whiskers 

extend 1.5 times the interquartile range. Values for each of the window are shown as points scattered 

in boxplots. The dotted line is connecting the median values at each time period. 

3.2. Genetic Structures of Worldwide Geographic Populations 

A neighbor‐joining (NJ) tree was constructed for the global populations of M. oryzae based on 

the whole‐genome SNPs, which showed that the worldwide samples formed three distinct sub‐clades 

(Figure  2A). Out  of  these  clades,  the  samples  from Asia were  distributed  into  three  sub‐clades. 
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However,  for  the populations  from Europe, North America, South America and Africa, although 

there were a few isolates that were localized in other clades, the majority of the individual isolates 

were assigned to a single clade. Therefore, there was no obvious segregation of individuals based on 

geographical  location.  The  results  of  the  PCA  corresponded  to  the  phylogenetic  tree  topology, 

indicating  that  individuals were grouped  to  three clusters with  incomplete separation among  the 

geographic populations (Figure 2B). 

Furthermore,  population  structure  composition  analysis  using  ADMIXTURE  revealed  the 

individual  ancestry  and  admixture  proportions  within  each  population.  The  optimum  cluster 

number was K = 3 (Table S2), as it had the lowest cross‐validation error and was thus selected as the 

number of potential ancestors for the worldwide M. oryzae populations (Figure 2C). Among them, 

the genetic compositions of the populations from Asia, Africa, Europe and North America contained 

three  ancestral  lineages,  although  the  individuals were dominated  by  a  single  ancestral  lineage. 

However,  some  samples  contained  two  ancestral  lineages.  Notably,  the  European  populations 

consisted  of  three  independent  ancestral  lineages,  without  any mixed multilineage  isolates.  In 

addition, the South American populations were descended from two independent lineages.   

 

Figure 2. Population genetic structure analysis of M. oryzae from five continents. (A) phylogenetic 

tree based on the whole‐genome single‐nucleotide genetic variant data for worldwide samples using 

the  neighbor‐joining  (NJ) method with  1000  bootstrap  replicates  (the  different  colors  denote  the 

various geographic populations); (B) principal component analysis (PCA) for populations from five 

continents  (each dot  represents one  individual and  the colors correspond  to  the sample collection 

locations);  (C) ADMIXTURE bar plot of  the ancestral assignments of  individual  isolates using  the 

optimal K  =  3 (the length of each colored segment corresponds to the proportion of the individual’s 

genome ancestry). 

3.3. Migration Patterns of M. oryzae 

The genetic differentiation between populations (FST) ranged from 0.088 to 0.237 (Figure 3A, 

Table S3) with the 20 Kb window length and 2 Kb steps, indicating moderate genetic differentiation. 

This result implies the likelihood of M. oryzae migration occurring among the worldwide geographic 

populations. At the same time, the results from the phylogenetic network reconstruction exhibit the 

reticulate relationships within the three clades, suggesting the occurrence of spatial migration (Figure 

3B).  In  addition,  the  migration  pathways  of  this  pathogen  that  were  inferred  from  the 

phylogeographic analysis revealed that migration events could be detected from the spatial diffusion 

of M.  oryzae  across  the world  and Asia. The  results  also  show  that  five major migration  events 

occurred across five continents. Of these, Asia was the major source gene pool, which then flowed to 

other continents  (Figure 4A).  Interestingly, Europe served as a pivotal transfer station,  facilitating 
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gene  flow  to North America.  In Asia,  five major migration  events were  detected  among China 

(including Taiwan and the mainland), Japan and South Korea (Figure 4B). Mainland China acted as 

the primary source of gene migration, initially spreading to Japan and South Korea and subsequently 

extending to Taiwan via Japan. Additonally, bidirectional gene flows were observed between South 

Korea and Japan.   

 

Figure 3. Phylogenetic network of worldwide M. oryzae populations, according to a Neighbor‐Net 

analysis. (A) The Heatmap of genetic differentiation (FST) between populations. (B) The analysis was 

implemented  using  SplitsTree  software with  the  “Neighbor‐Net”  and  “Uncorrected  p‐distance” 

parameters. The  reticulate dendrogram  in  the  tree  represents  the  incompatible  signals,  implying 

incompatible or ambiguous relationships between the samples. 

 

Figure 4. Schematic presentation of migration pathways of M. oryzae. (A) The migration pathways 

across five continents. (B) The migration pathways In Asian regions. The arrows show the directions 

of immigration and emigration between the different locations. 
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3.4. Demographic History of M. oryzae Populations 

To investigate the demographic history of M. oryzae, effective population sizes were calculated 

using a pairwise  sequentially Markovian coalescent  (PSMC) model. As previously  reported,  rice‐

infecting  isolates  of M.  oryzae  evolved  from grass‐infecting  isolates  around  1000  years  ago  [23]. 

Therefore, the effective population sizes were predicted for the last 800 years (Figure 5). Our finding 

indicated  that  M.  oryzae  underwent  a  striking  population  expansion  across  five  continents 

approximately 100 years ago.   

 

Figure 5. The demographic history of M. oryzae, illustrating the effective population sizes from the 

different  geographical  groups.  The  coordinates  were  logarithmically  scaled.  The  colored  lines 

represent the different geographical populations. 

4. Discussion 

For fungal pathogens of plants in agroecosystems, genetic diversity can reflect their capacity to 

adapt and survive under biotic and abiotic stresses [56,57]. This diversity is closely  linked to their 

population origin and evolution, influencing their formation and maintenance [58,59]. In this study, 

Asian populations of M. oryzae exhibited the highest nucleotide diversity based on whole‐genome 

polymorphism, in contrast to populations from Africa, Europe, North America and South America. 

This  suggests  that  Asian  populations  could  serve  as  potential  reservoirs  of M.  oryzae  variants 

containing more novel genotypes. Furthermore, among the three Asian countries studied, including 

Taiwan island and mainland of China, Japan and South Korea, the highest nucleotide diversity was 

observed in Chinese populations. This suggests that China serves as a center of genetic diversity of 

M.  oryzae  in  Asia,  as  indicated  by  the microsatellite markers  [24].  Based  on  its  history  of  rice 

domestication, China is also deemed to be the center of origin for rice [60,61], meaning that M. oryzae 

would have accumulated more abundant genetic resources for adaptation and expansion across its 

host range. 

For M. oryzae populations, the temporal dynamics of genetic diversity are often closely related 

to rice cultivation. According to the US Department of Agriculture (https://www.ers.usda.gov/data‐

products/rice‐yearbook/), worldwide rice cultivation areas have expanded rapidly, increasing by 11% 

from 1960 to 2019. The main rice‐planting acreage and production regions are concentrated in Asia, 

where M. oryzae populations have maintained a high level of genetic diversity. Factors contributing 

to this diversity include genomic diversification, genetic instability and high variation rates, such as 

the presence of abundant variable number tandem repeats (VNTRs) and transposable elements (TEs) 

[62–64]. The rapidly decreasing genetic diversity observed in the 2020s could potentially be attributed 

to  insufficient  sampling  from  this period.  In  addition,  the  frequent host‐shifting  and  host  range 

expansion of this pathogen  in crops and weeds have historically contributed to  its sustained high 

genetic  diversity  [37,65,66],  along with  the  gene  flow  events  between  cereal‐  and  grass‐specific 

lineages  [28]. However,  the continually growing genetic diversity of M. oryzae poses a significant 

threat to rice production, as these pathogens with diversified genetic resources could more rapidly 

overcome resistant genes in rice. While this genetic diversity could provide important new insights 
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into the development and deployment of resistant rice varieties in practice. Under these scenarios, 

our findings underscore the need for greater attention to the effective monitoring and control of rice 

blast disease.   

However,  past  hybridization  events  have  imprinted  on  individual  genome  samples.  In  this 

study,  the  phylogenetic  reticulate  network  and  population  differentiation  indices  indicated  that 

incompatible events occurred within worldwide geographic populations, reflecting their harbored 

admixture status. In addition, three main clades were identified in worldwide populations from the 

genetic  structure  analysis,  with  each  clade  containing  individuals  from  different  continents, 

suggesting  that  geographical  location  could  not  sufficiently  account  for  the  population  genetic 

differentiation  of M.  oryzae. Although  geographical  isolation plays  an  important  role  in  shaping 

genetic divergence and leading to the geographic differentiation of many plant pathogen populations 

[67,68], the genetic differentiation of M. oryzae appears to be more vulnerable to its mating types [23]. 

While both MAT1‐1 and MAT1‐2 mating types have been identified in China [69], the individuals 

from China are distributed across three divergent clades. The population differentiation indices, as 

represented by FST values, demonstrate  that  the African populations are genetically distant  from 

other  populations,  aligning with  previous  findings  that African  populations maintain  relatively 

distant genetic relationships with Asian populations and are predominantly distributed in MAT1‐2 

[19,70].   

In  terms  of  the  population  structures  of M.  oryzae,  populations with  only  one mating  type 

occupied the principal position, indicating that clonal lineages dominated by asexual reproduction 

were prevalent in natural populations. The species can be geographically separated into a series of 

genetically  less closely related subpopulations, according  to population communication decreases 

[71] or gradual subpopulation  increases  following extinction and recolonization events. However, 

migration mediated by human activity and the transportation of infected seed [33] has made plant 

pathogen populations deviate from their evolutionary routes through recombination. In this study, 

an  incomplete  separation  signature was  also detected  in  the  SplitsTree  analysis  for  the  reticular 

structures  in  the clades, which contained samples  from Asia, Africa, Europe and North America. 

Additionally, five migration events among five continents were identified, consistent with findings 

reported by Tharreau et al. [33], indicating a global distribution of virulent genotypes. In this study, 

Asia was considered as a gene pool, which agreed with the result that Southeast Asia was recognized 

as  a  center  of  origin  and  diversity  based  on microsatellite markers  [72].  This  result  is  further 

corroborated  by previous  genetic diversity  studies, which  consistently  revealed  a higher genetic 

diversity within Asian populations [22,72]. Additionally, the Asian populations exhibited the highest 

nucleotide diversity  in  this  study, underscoring Asia’s  role as a center of genetic diversity and a 

source of migration. This  finding  aligns with  the putative origins of  rice  in  southern China  and 

northeast India [60,61,73,74]. As a seed‐borne pathogen, M. oryzae can infect two major subspecies: 

Oryzae sativa subsp. Japonica and Indica. The Japonica subspecies originated from rice domestication 

and then diverged into temperate and tropical Japonica subspecies, which progressively led to the 

formation of the Indica subspecies. This implies the possibility of pathogen migration following the 

domestication and introduction of rice crops [73,75,76]. Within Asia, migration events were observed 

in South Korea, Japan and China. Given that China is considered as the global origin of M. oryzae, it 

likely served as a foundational source for migration within Asia. Our results suggest that migration 

pathways originated from mainland China, initially extending to Japan and subsequently to Taiwan. 

These migration pathways have mainly been attributed to rice cultivars, as Japonica rice is preferred 

in both Japan and Taiwan. Furthermore, the limited trade and agricultural exchange between Taiwan 

and mainland China in recent decades could also have contributed to the limited gene flow. Similarly, 

a  reciprocal gene  flow was observed between populations  in  Japan and South Korea, potentially 

influenced by frequent interstate trade between these two countries. A similar pattern of results has 

been  observed  in  Fusarium  head  blight  pathogens,  where  agricultural  practices  and  human 

migration have been critical driving forces in shaping the population genetic structure of Fusarium 

asiaticum [77]. 
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In summary, gene flows at different geographical scales have exerted a significant influence on 

the establishment of the genetic structure of M. oryzae. Understanding the spatiotemporal dynamics 

of population  compositions  following  the  success of  introduced  fungal pathogens  is essential  for 

combatting plant disease pandemics [78,79].   
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