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Abstract: Developing new antibiotics poses a significant challenge in the fight against antimicrobial resistance
(AMR), a critical global health threat responsible for approximately 5 million deaths annually. Finding new
classes of antibiotics that are safe, have acceptable pharmacokinetic properties, and are appropriately active
against pathogens is a lengthy and expensive process. Therefore, high-throughput platforms are needed to
screen large libraries of synthetic and natural compounds. In this review, we present bacterial cytological
profiling (BCP) as a rapid, scalable, and cost-effective method for identifying the mechanisms of action of
antibiotics offering a promising tool for combating AMR and drug discovery. We present the application of
BCP for different bacterial organisms and different classes of antibiotics and discuss BCP's advantages,
limitations, and potential improvements. Furthermore, we highlight the studies that have utilized BCP to
investigate pathogens listed in the Bacterial Priority Pathogens List 2024 and we identify the pathogens whose
cytological profiles are missing. Lastly, we explore the most recent artificial intelligence and deep learning
techniques that could enhance the analysis of data generated by BCP, potentially advancing our understanding
of antibiotic resistance mechanisms and the discovery of novel druggable pathways.

Keywords: antibiotic resistance; bacterial cytological profiling; high-throughput screens; antibiotic mechanism
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1. Introduction

Antimicrobial resistance (AMR) has been declared by the World Health Organization (WHO) as
one of the top ten global public health threats facing humanity. It impacts both public health and
global development, resulting in severe morbidity and mortality worldwide. AMR is defined as a
condition characterized by the ability of microorganisms (bacteria, fungi, viruses, and parasites) to
live and grow in the presence of antimicrobial agents that were previously reported to be effective
against them. Resistance occurs through pathogen evolution, either naturally over time or acquired
by the use of antimicrobial drugs, which make these drugs ineffective [1].

It has been estimated that in 2019 alone, antimicrobial resistance killed at least 1.27 million
people globally, more deaths than HIV/AIDS or malaria, with 4.95 million deaths associated with
AMR [2]. According to the Centers for Disease Control and Prevention’s Antibiotic Resistance Threats
Report [3], in the United States, over 2.8 million antibiotic-resistant infections occur each year, leading
to over 35,000 deaths. Furthermore, it has been estimated that, if the AMR trend continues, the
cumulative loss to world economies might be as high as $100 trillion by 2050 [4]. These alarming
statistics underscore the urgent need to develop effective therapeutics to combat antimicrobial
resistance.

The efforts undertaken in the field of AMR until now have not been enough despite the research
effort and inventive therapeutic approaches. Since 1940 antimicrobials have been used widely [5] [6]
, in addition to treating infectious diseases, antibiotics made many modern medical procedures
possible, including cancer treatment, organ transplants and open-heart surgery [7]. Even before 1940
and for about 60 years after, most antibiotics were discovered by screening soil samples for such
natural products that kill bacteria, including known pathogens, first on culture plates and then in
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animal infection models [8] [7]. However, in the past 20 years, only two new antibiotic classes have
been developed that are only effective for Gram-positive bacteria [9]. To overcome the burden of
antibiotic resistance, new high- throughput screens based on bacterial cytological profiling have been
developed.

This review emphasizes the use of bacterial cytological profiling (BCP) as a highly effective
method for discovering novel antibiotics and rapidly identifying antibiotic targets in a cost-effective
manner. BCP initially creates a library of bacterial cell shapes and sizes induced by antibiotics with
known mechanisms of action. This library is then used to discover new antibiotics and classify
antibiotics based on the components of bacterial cells they target. In this review, we highlight how
BCP is used to improve our quantitative understanding of antibiotic pharmacodynamics and
bacterial stress responses, as well as how BCP enhances the development of non-traditional
antibacterial strategies such as phage therapies[10-12].

2. Antibiotic Mechanism of Action and Antibiotic Targets

AMR is a natural process that happens over time through genetic alterations or phenotypic
changes [13] in pathogens. Its emergence and spread are accelerated by human activity, mainly the
misuse and overuse of antimicrobials to treat, prevent or control infections in humans, animals, and
plants. To effectively tackle antibiotic-resistant bacteria, it is essential to understand how antibiotics
work, which is known as their mechanism of action (MOA), see Table 1. Understanding MOA
involves studying how antibiotics affect bacterial physiology and molecular interaction with bacterial
targets (Figure 1). However, determining MOA remains a serious challenge that limits both basic
research and antibiotic discovery programs.
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Figure 1. Antibiotic targets in bacteria. Antibiotics typically kill bacteria by targeting at least one of the five cell
components: cell wall, cell membrane, ribosome, DNA and RNA. Antibiotics interfere with the synthesis of or
directly damage cell structures to inhibit bacterial growth or irreversible damage bacterial integrity. Antibiotics
can inhibit the synthesis of some essential components, such as folate synthesis, a precursor for DNA synthesis.
Antibiotics are transported into cells across the cell membranes or through membrane porins that facilitate
antibiotic transport. Bacterial cells can also eliminate antibiotics by using efflux pumps, which are transport
proteins that actively expel antibiotics out of the cell.

Table 1. General classification of antibiotics based on their target and chemical structure, including their
mechanism of action (MOA), examples of each antibiotic type, and their typical clinical uses.

Target Chemical Mechanism Of Action (MOA) Generic Name Use
Structure Examples
Cell Wall [-Lactams Inhibit penicillin-binding  Penicillins, To treat a variety of

proteins (PBPs) that crosslink cephalosporins, infections, including
peptidoglycan chains in the cephamycins, skin infections, chest

bacterial cell wall [16], carbapenems, infections, urinary

and others.
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disrupting cell wall integrity

and causing cell lysis [17].
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tract infections sepsis

and meningitis.

Glycopeptides Target gram-positive bacteria ~Vancomicyn Last resort medication
by binding to the acyl-D-Ala- for the treatment of
D-Ala terminus to the growing sepsis and lower
peptidoglycan and then cross- respiratory tract, skin,
linking peptides within and and bone infections
between peptidoglycan [18]. caused by Gram-
positive bacteria.
Mebrane Lipopeptides Insert in the cell membrane Daptomycin, For  treatment of
and cause depolarization, Colistin complicated skin and
reducing the ability to create skin-structure
ATP and cell death [19]. infections associated
to Gram-positive
bacteria.
Fatty Acid | Chlorophenol Block the reduction step of the Triclosan Added to many
Synthesis fatty acid synthesis pathway consumer products as
by inhibiting an enoyl-ACP soaps, body washes
reductase (fabl) [20]. and toothpastes,
intended to reduce or
prevent bacterial
contamination.
Oxirane Irreversibly binds to fatty acid Cerulenin Antifungal agent
carboxylic acids ~ synthase,  specifically  b- whose activity
ketoacyl-acyl carrier protein interferes with or
synthase. In sterol synthesis, otherwise acts to
inhibits HMG-CoA synthetase prevent the formation
activity [21]. of fatty acids and
sterols. With selective
cytotoxicity to cancer
cells
Protein Aminoglycosides Interact with the 30s ribosomal Gentamicin, To treat mainly very
Synthesis subunit of 165 RNA causing tobramicin, serious illnesses and
misreading and/or truncated kanamycin infections such as

proteins and cell death [17]
[22].

sepsis, as they can
cause very serious side

effects.
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Tetracyclines Inhibit translation by binding Tetracycline, To treat a wide range
to 16S rRNA of the 30S doxycycline of infections, acne and
ribosomal subunit, preventing and skin conditions as
tRNA binding to 30S [23]. lymecycline rosacea.

Macrolides It binds to the 23S rRNA of the  Azithromicin, Particularly useful to
50S ribosomal subunit, leading  erythromycin treat lung and chest
to the  production of and infections, as an
incomplete peptide chains [24].  clarithromicyn  alternative for people

with a  penicillin
allergy or penicillin-
resistant strains.

Lincosamide It binds to the 50S ribosome Clindamicyn Primarily used to treat
subunit to stimulate gram-positive
dissociation of the peptidyl- bacterial infections in
tRNA molecule from the which there is
ribosomes during elongation resistance or
[25] intolerance to

penicillin.

Oxazolidinones Limit translation by binding to  Linezolid Active against
23S rRNA of the 50S subunit multidrug-resistant
and preventing the formation staphylococci,
of a functional 70S subunit [26]. streptococci, and

enterococci.
DNA Fluoroquinoles Inhibit DNA replication by Ciprofloxacin Broad-spectrum
Synthesis targeting DNA gyrase and and antibiotics that are
topoisomerase IV[27,28]. levofloxacin used to treat a wide
range of infections,
especially respiratory
and urinary tract
infections. Not
commonly used due to
their risk of serious
side effects.

Sulfonamides Competitive  inhibitor ~ of Sulfamethazine, Utilized in the
Dihydropteroate synthase sulfapyridine treatment of tonsillitis,
(DHPS) involved in folate septicemia,
synthesis [29] meningococcal

meningitis, bacillary
dysentery, and

number of infections

of urinary tract
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RNA Rifamycins It binds to the RNA Rifapentine, Effective against
Synthesis polymerase and blocks the Rifampin mycobacteria, and are
RNA synthesis [30] therefore used to treat

tuberculosis, leprosy,
and mycobacterium
avium complex

(MAC) infections.

*Classification of frequently used antibiotics. For more detailed classifications based on the antibiotic targets see
[20,29,30], or classifications based on chemical structure, see [31].

Traditionally, a variety of assays are performed to determine the MOA, by the evaluation of
whether one of the five basic pathways is inhibited (Figure 1). These efforts typically begin with
macromolecular synthesis (MMS) assays that use radioactively labeled precursors to determine
whether a compound specifically inhibits peptidoglycan, lipid, protein, RNA or DNA synthesis or
whether it blocks all simultaneously [14]. Despite being an important technique, MMS assays are time
consuming and suffer from low resolution, low accuracy, and relatively low throughput [15].

To address the limitations associated with MMS assays, various alternative techniques for
determining the mechanism of action (MOA) have been devised [32]. These include biochemical
approaches, such as affinity chromatography that identify direct biophysical interactions between
antimicrobials and their targets through an array where the antibiotic interacts with protein from
whole-cell extracts[33-35]. Genetic approaches, such as selection for resistance and resistance
screening [33], focus on the genetic comparison between non-resistant strains and strains that have
evolved and mutated to become resistant to a specific antibiotic, this approach is often able to identify
the molecular target of an antibiotic, the specific amino acid residues important for its interaction and
the frequency with which resistance occurs.

While these methods offer various benefits, they also come with limitations that hinder their
effectiveness. The main disadvantage of these methods is the required time to conduct the assay,
moreover, these methods necessitate substantial quantities of purified compounds, which can be
challenging as newly discovered lead compounds are frequently available in limited amounts.

Apart from all limitations in determining MOA, discovering new compounds that are active
against Gram-positive and Gram-negative bacteria remains challenging. In the past 20 years, only
two new antibiotic classes (lipopeptides and oxazolidinones) have been developed and approved by
international drug agencies (US Food and Drug Administration and European Medicines Agency)—
both of which provide coverage against Gram-positive bacteria [9]. The quinolones, discovered in
1962, were the last novel drug class identified to be active against Gram-negative bacteria [36].

From a technical perspective, finding new classes of antibiotics that are safe, have acceptable
pharmacokinetic properties, and are appropriately active is a challenging issue [36]. Additionally, the
profit margins for producing antibiotics are relatively low given the high cost for production and the
lengthy timeline for research, testing, and approval [36]. Therefore, new, high-throughput screening
platforms are needed for the fast and inexpensive screening of large libraries of synthetic and natural
compounds that are highly effective against human pathogens[37,38]. The following section reviews
the quick and scalable bacterial cytological profiling methods (BCPs) and discusses their availability
for some of the most important human pathogens as outlined in the latest WHO 2024 report.

3. BCP to Identify the Mechanism of Action

In 2013, Poochit et al. designed Bacterial Cytological Profiling (BCP) analysis for E. coli cells using
different classes of antibiotics [15] (Figure 2). BCP data are obtained using fluorescent microscopy of
E. coli cells stained with fluorescent membrane and DNA dyes as well as fluorescent reporter for
membrane permeability. Using image analysis software, various bacterial cell parameters, such as
cell length, width, solidity, and DNA content, are extracted [15]. Subsequently, complex
multidimensional data are analyzed using the Principal Component Analysis (PCA) technique, to
cluster cells based on their cytological profile to identify the mechanism of action of known and
unknown antibacterial compounds (Figure 2B, Box 1). Since the cytological profiling method
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produces data at a single-cell level [41], it identifies the metabolic pathways targeted by drugs or
other toxins through their effects on bacterial chromosomal condensation, cell shape and overall
cellular morphology [15] (Figure 2B). Furthermore, this approach can lead to the identification of
antibiotics that are effective against multidrug-resistant bacteria [15].
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Figure 2. Bacterial Cytological Profiling. (A) Different morphologies adopted by bacteria under the stress of
antibiotics targeting different pathways. The cartoon drawings are based on the microscopy images from Poochit
et al [15]., where bacterial cells were treated with antibiotics targeting five major biosynthetic pathways (DNA,
Ribosome, RNA, Cell Wall, Membrane), using fluorescent dyes FM4-64 (red) and DAPI (blue) to stain bacterial
membranes and DNA respectively. Scale bar, 1 um. (B) Principal Component Analysis (PCA) is used to cluster
different bacterial cell shapes based on the antibiotic mechanism of action. Each point on the graph represents a
single cell. The graph also illustrates that when green dots, representing a characteristic morphology of a DNA-
targeting antibiotic, cluster with orange dots, representing untreated bacteria, it indicates no morphological
change and suggests possible antibiotic resistance or persistence[42,43].

Box 1. Principle Component Analysis (PCA)

PCA is a widely used statistical technique for analyzing data by identifying a set of principal
components that capture the maximum variance in the data with the fewest components [44]. It
involves transforming the original variables into a new set of uncorrelated variables, known as
principal components, which are linear combinations of the original variables. These principal
components are ordered so that the first component explains the maximum variance in the data,
followed by the second component, and so on [44]. The process of PCA starts by calculating a matrix
that shows how the original variables are related to each other. Then, it finds special vectors
(eigenvectors) and values (eigenvalues) from this matrix. The eigenvectors show the new directions
for the data, while the eigenvalues tell us how much of the data's variation is captured by each new
direction. The principal components are then derived from these eigenvectors, and the data is
projected onto these components to obtain the transformed dataset. PCA has diverse applications
across almost all scientific fields, including biology, medicine, computer science, and geology. In the
context of biomedical research, PCA has been utilized to analyze human cell atlas and prostate cancer
risk prediction[45,46]. In computer science, PCA is employed for data processing, dimensionality
reduction, and feature extraction[47-49]. In Bacterial Cytological Profiling, PCA is used to analyze
microscopy data by grouping the phenotypic changes in bacteria after antibiotic exposure, thereby
determining the target of the antibiotics (Error! Reference source not found.B). Together, Principal
Component Analysis is a powerful statistical method that enables the transformation of complex data

into a new simplified coordinate system to reveal underlying patterns and structures. Its wide-

ranging applications underscore its significance in various scientific disciplines.
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The cytological profiles triggered by antibiotics reveal their damaging effects. For example,
compounds that block translation led to chromosome compaction due to the interference with
coordinated translation and insertion of proteins into the membrane, whereas compounds that block
transcription lead to chromosome decondensation due to the absence of active RNA polymerase
(Error! Reference source not found.). BCP takes advantage of the limited presence of cell-cycle
checkpoints in bacteria, combined with the precision of high-resolution imaging.

When stressed by antibiotics, bacteria show phenotypical changes that are characteristic of the
antibiotic target. Treated bacteria transform into spheroplast, protoplast, ovoid or filamenting cells
[50]. Spheroplast and protoplast are cells that have lost their peptidoglycan layer, spheroplasts are
Gram-negative bacteria that keep their outer membrane, whereas protoplasts are formed from Gram-
positive bacteria that lack both a peptidoglycan layer and an outer membrane [51]. Bacterial variants
that lack a cell wall, encompassing both Gram-negative and Gram-positive bacteria, are known as L-
forms[52-55].

Ovoid cells refer to bacterial rods (bacilli) that have decreased in length and become oval or
round-shaped during antibacterial treatment[56,57]. Nomenclature in the literature varies, with some
authors referring to them as ‘round forms’[58,59], ‘round cells’[60-62], ‘spherical forms’, ‘spherical
cells’[63-65], or ‘coccoid forms’[66,67]. Filamentation, or cell elongation, occurs when rod-shaped
bacteria (or sometimes cocci) produce peptidoglycan for their side walls but not for their division
walls during growth, causing the cells to become unusually elongated [50]. Filamentation can occur
following inhibition or disruption of peptidoglycan synthesis [56] but can also occur if DNA synthesis
is inhibited[68,69] or DNA is damaged[70-72] by a process known as the SOS response that inhibits
cell division [28](Error! Reference source not found.).

Other phenotypic changes can be shown by bacteria under antibiotic exposure as altered cell
size, localized swelling, bulge formation, blebbing, peptidoglycan thickening [50]. Phenotypical
changes confer an increase in fitness to bacteria in the presence of antibiotics [73]. Resistance to
antibiotics is commonly attained via reducing the intracellular concentration of the antibiotic or by
reducing antibiotic binding affinities for their specific intracellular targets [74]. By using available
BCP data, recent studies have shown that by reducing the surface-to-volume ratio (5/V), bacteria can
effectively reduce the antibiotic concentration inside a cell, thereby promoting cell growth by
decreasing antibiotic influx [74]. Similarly, an increase in S/V can also provide adaptive benefits by
increasing the rate of nutrient uptake or by increasing the rate of antibiotic efflux[74-76]. These
studies explain how cell shape transformations promote bacterial survival under antibiotic
treatments — pointing towards potential new druggable targets that control cell shape and size under
stress.

BCP has been successfully employed to study the MOA of various antibacterial agents, including
azithromycin [77], diphenylureas [78] and thailandamide [79]. It has also been used to identify the
cellular pathways targeted by anticancer metal complexes [80], to study the response of bacteria to
antibiotics in different growth conditions [81]. Additionally, BCP has been used to identify the
cellular pathways targeted by antibacterial molecules affecting different cellular pathways [82] [83],
making it a valuable tool not only for determining antibacterial targets but also to potentially identify
novel MOA i.e., ones that target new proteins or new pathways (Figure 3).

BCP offers unprecedented insights not only into antibiotic therapies but also into phage
therapies, revealing how phages exploit or disrupt bacterial cellular processes[10-12,84]. BCP enables
the visualization of distinct cytological changes within bacterial cells during phage infection. These
cytological signatures not only uncover the pathways and cellular targets that phages manipulate to
propagate their lifecycle but also highlight the role of bacterial defense mechanisms in combating
phage infection [11]. BCP has demonstrated how the overexpression of phage-related proteins can
induce specific cytological changes that inhibit phage replication, showcasing the potential for
targeting bacterial metabolic pathways to modulate phage activity [10]. Additionally, BCP has been
instrumental in assessing the impact of various antibiotics on phage replication, revealing that certain
antibiotics can synergize with phages to enhance bacterial cell lysis, while others inhibit phage
propagation by disrupting essential bacterial processes [11]. This dual capability of BCP to monitor
both the direct effects of phage infection and the influence of external agents such as antibiotics makes
it an invaluable tool in studying phage-bacteria dynamics.
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4. BCP of Important Human Pathogens

Most importantly, BCP has been successfully used to study some of the most important human
pathogens from the WHO Bacterial Priority Pathogens List (Error! Reference source not found.). In
2017, using a multicriteria decision analysis technique, WHO experts together with researchers from
the Division of Infectious Diseases at the University of Tiibingen, Germany, developed the first
Bacterial Priority Pathogen List (BPPL) to guide investment into the R&D of new antibacterials for
guiding AMR surveillance, prevention and control [85]. During the past 7 years, the antibiotic
development pipeline brought to the market nine new antibiotics with in-vitro or in-vivo activity
against the 2017 BPPL “critical” priority pathogens, although resistant strains have since been
described for almost all of them[86,87]. In 2024, WHO published an updated list to address current
challenges and provide essential guidance for policymakers, national health authorities and others
involved in decisions about R&D and investment. The 2024 BPPL includes 15 families of antibiotic-
resistant pathogens, grouped into critical, high and medium categories of priority for R&D and public
health measures [88] (Error! Reference source not found.). Out of 15 families, bacterial cytological
profiling is not available for 30 % of them: Non-typhoidal Salmonella, Neisseria gonorrhoeae, Group A
and B Streptococci, Haemophilus influenzae. Therefore, urgent BCPs regarding these severe pathogenic
organisms are needed.

Table 2. BCP Analysis for the WHO Bacterial Priority Pathogens List (2024). In third column, this table indicates
whether bacterial have been studied using Bacterial Cytological Profiling (BCP) or not. We consider any BCP
done in the wild-type strain rather than in the resistant strain.

Bacterial
Bacteria Resistant to Cytological
Profilling (BCP)
Priority 1. Critical group
Acinetobacter baumannii Carbapenems Yes[41,77,81,89]
Enterobacteriaceae® Third generation cephalosporine | Yes[15,80,90-92]
Enterobacteriaceae** Carbapenems, ESBL-producing Yes[77,93,94]
Rifampicin-Resistant Tuberculosis (RR-TB)*** Rifampicin Yes[95,96]
Priority 2. High group
Salmonella Thypi Fluoroquinolones Yes [94]
Shigella spp. Fluoroquinolones Yes [97]
Enterococcus faecium Vancomycin Yes [98]
Pseudomonas aeruginosa Carbapenems Yes[11,77,93,94]
Non-typhoidal Salmonella Fluoroquinoles No
o Cephalosporin,
Neisseria gonorrhoeae No
Fluoroquinolonas
Staphylococcus aureus Methicillin and vancomycin Yes[78,99-101]
Priority 3. Medium group
Group A Streptococci Macrolide No
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) Macrolide/No sensitivity to
Streptococcus pneumoniae o Yes [102]
penicillin
Haemophilus influenzae Ampicillin No
Group B Streptococci Penicillin No

* The BCP column uses Escherichia coli as a reference for this group ** The BCP column uses Klebsiella pneumoniae
as a reference for this group ***RR-TB was evaluated independently in a tailored approach so it was technically
“not” included in the list but after the evaluation by specialists, it was determined as a critically dangerous
bacteria therefore. RR-TB stands apart from the list due to the distinct nature of its evaluation process.

5. BCP to Identify New Druggable Cell Pathways

BCP is used to scan new antibacterial components to identify their specific targets (Figure 3). As
demonstrated, BCP effectively differentiates between various morphological changes induced by
different antibiotics, thereby providing insights into the antibiotic’s mechanism of action. If a novel
antibiotic places bacteria in a distinct region of the PCA plot compared to known antibiotic targets, it
could indicate a new pathway target or MOA previously uncharacterized (Figure 3). For example, if
the PCA analysis shows that the morphology of bacteria treated with a new antibiotic clusters in a
region associated with membrane or RNA targets (Arrows 2 and 3 in Error! Reference source not
found.), it directly indicates the antibiotic's mode of action. Conversely, if the antibiotic's effect causes
a morphology change that places bacteria in a novel zone, as illustrated with Arrow 4, it may suggest
the discovery of a new antibacterial pathway or target.

A Principal Component Analysis of Antibiotics Targeting Different Pathways

2 Unknow Pathway
Membrane

PCA 2
/:

Q RNA

Antibiotic

L >
PCA 1

Figure 3. Representation of Principal Component Analysis (PCA) using bacterial morphologies to determine the
mechanism of action (MOA) of a novel antibiotic. Arrow 1 indicates the antibiotic used against certain bacteria,
which can change their shape depending on the antibiotic's MOA. If the bacteria exhibit a morphology as
indicated by arrow 2, the antibiotic targets the membrane. Conversely, if the bacteria display a morphology as
indicated by arrow 3, the antibiotic targets RNA. However, if the morphology is completely different from the
known and clustered morphologies, as shown by arrow 4, it suggests that the antibiotic targets a novel pathway
and if the bacteria do not show any change, it suggests that they are not susceptible to this antibiotic or, in the
worst-case scenario, that they are resistant to the antibiotic.

Together, BCP significantly enhances drug development processes by offering a precise, fast and
systematic method for characterizing the effects of new antibacterial agents. Its ability to identify
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target-specific morphological changes provides a comprehensive tool for uncovering novel antibiotic
targets and advancing our understanding of bacterial physiology.

6. BCP Limitations

Even with all the advantages we mentioned about BCP, it has certain limitations. BCP can
identify the general target of an antibiotic, but it cannot provide precise information about the exact
site within the target that is affected. For instance, while BCP can indicate that an antibiotic targets
the ribosome, it cannot specify which part of the ribosome is involved.

BCP requires staining chemicals to evaluate DNA content and cell size and shape, with
fluorescent dye intensity being a crucial variable (Table 3). These factors are essential for determining
the mechanism of action of antibiotics. A plethora of dyes, protein fusions, and reporter strains are
available and have been used in BCP, enabling both rapid mode of action categorization and in-depth
analysis of antibiotic mechanisms. However, the plethora of possible dyes, strains, and assays can
make it difficult to choose which specific phenotypic experiments are the most suited for a given
purpose (Table 3). Furthermore, bacterial cell physiology is complex, and many cellular processes are
intimately interconnected, e.g., by co-dependent regulation or metabolic flux [103]- [104].

Table 3. Organisms used in BCP and how images were analysed.

Processed
Organism Dyes/Fluorophores| Data Segmentation | Feature extraction [Source
available
Acinetobacter FM4-64
baumannii and E. DAPI Yes CellProfiler CellProfiler [105]
coli SYTOX-Green
FM4-64
Acinetobacter
B DAPI No Tlastic CellProfiler [106]*
baumannii
SYTOX-Green
Manually
Pseudomonas FM4-64 Manually
, Yes (FIJI/Image] [107]*
aeruginosa DAPI ) (FIJI/Image])
FM4-64
Semi-Manual Semi-Manual
S. aureus DAPI Yes (FIII 0 (FIII 0 [15]*
mage mage
SYTOX-Green 8 8
FM4-64
DAPI
S. aureus Yes CellProfiler CellProfiler [99]*
SYTOX-Green
WGA-647
S. aureus,
FM4-64
S. Typhimurium,
d DAPI Yes Harmony Harmony [94]
an
SYTOX-Green
K. pneumoniae
FM 4-64
CellProfiler
B. subtilis DAPI Yes CellProfiler FII [108]*
SYTOX Green
B. subtilis FM4-64 No CellProfiler CellProfiler [109]*
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DAPI
SYTOX-Green
Nile red
B. subtilis No Microbe] Microbe] [110]*
DAPI
FM4-64
Bacillus subtilis, Wasabi software| Wasabi software
DAPI No [111]
E. coli (Hamamatsu) (Hamamatsu)
GFP
FM4-64
E. coli Hoechst-33342 No FIJI/Image] FIJI/Image] [80]
Dendra?2 protein
E. coli
FM4-64
Caulobacter No Oufti Oufti [112]%
DAPI
crescentus
FM4-64
Semi-Manual Semi-Manual
E. coli DAPI No (FITI/I N (FITI/I N [113]*
mage mage
SYTOX-Green 8 8
FM4-64
DAPI
Achromobacter FIJI/Image] and FIJI/Image] and
) SYTOX-Green No [114]
xylosoxidans CellProfiler CellProfiler
NBD
Azithromycin
M. smegmatis ParB-mCherry Yes Microbe] Microbe] [115]*
M. tuberculosis FM4-64FX
Yes MorphEUS MorphEUS [116]*
Erdman SYTO 24
Ffh-mVenus
Shewanella
) FtsY-mVenus Yes FIJI/Image] FIJI/Image] [1177%
putrefaciens
uL1-mVenus
FM4-64
V. parahaemolyticus No FIJI/Image] FIJI/Image] [84]
DAPI
FM4-64
DAPI
Bacillus subtilis No - Manual w/ FIJI [118]%
SYTOX-Green
SYTO-9
Manual w/ FIJT or
) FM4-64 with Cell Counter
M. smegmatis
GFP Yes Omnipose installation in FIJI | [119]
M. tuberculosis
CellROX Custom python
script
FM4-64
E. coli FIJI/Image] and FIJI/Image] and
DAPI No [120]
B. subtilis Microbe] Microbe]

GFP
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DiSC | |

*Pipelines, scripts, or instructions are detailed and/or included in the paper. Programs are also widely accessible.

7. BCP Potential Improvements

Despite the cell walls being one of the primary antibiotic targets, direct visualization methods of
cell wall synthesis and remodeling during antibiotic exposure have been lacking in BCP approaches
developed so far (Table 3). In 2012, Kuru et al. discovered a groundbreaking method for bacterial cell
wall staining using fluorescent amino acids [121]. Cell wall provides the shape and structural
integrity to the cell. It is made of peptidoglycan (PG), which consists of glycan strands cross-linked
by d-amino acid (DAA) [122]. The team introduced HADA and NADA, two fluorescent d-amino
acids (FDAAs) attached to a d-amino acid backbone (3-amino-d-alanine). This chemical biology
approach aims to detect and visualize the exact location and amount of new peptidoglycan layer
synthesis in bacteria. By using HADA or NADA as fluorescently labeled peptidoglycan components
during cell wall synthesis, the technique allows researchers to observe morphological changes in
bacteria over time. This provides a chronological account of shifts in peptidoglycan synthesis within
individual cells across various bacterial species. This is relevant as HADA and NADA can be
implemented in the methodology of BCP as dyes to unravel the growth modes of bacteria under
antibiotic exposure as they exhibit a diverse array of growth patterns that confer selective advantages
in their environments [123] [74].

Other fluorescent dyes are available to quantitatively probe bacterial physiological states: ThT
and DiBAC: for bacterial membrane potential[124-127], carboxy-H.DCFDA for reactive oxygen
species (ROS) [127], and DAF-FM for reactive nitrogen species (RNS) [127]. By integrating membrane
potential, ROS, and RNS into cytological profiles could provide additional information regarding
bacterial physiology and bacterial stress response during antibiotic treatment.

8. Image Analysis Tools for BCP and Data Availability

Although fluorescent microscopy is a valuable tool for characterizing cellular and subcellular
structures and dynamics, quantitative analysis of microscopy images remains a persistent
challenge[119,128]. Once the fluorescence microscopy is done, analyzing the images obtained is a
critical step for accurately determining cell morphologies. This is especially evident in the study of
bacterial shapes since their cell body is composed of a small number of pixels (for example, ~ 100—
300 px [2] for E.coli in typical experiments) [129]. At this scale, accurate subcellular localization
requires defining the cell boundary with single-pixel precision or more desirable sub-pixel resolution
[130].

In addition to their small size, bacteria exhibit a diverse array of shapes. While many frequently
studied bacteria can be adequately represented as rods or spheres, there is growing interest in those
with more complex forms or the atypical shapes that emerge after exposure to antibiotics, such as
seen in Caulobacter crescentus [73]. Cell segmentation allows us to analyze microscopy images more
precisely to identify these different shapes. Segmentation is a method of partitioning an image into
distinct regions with similar attributes, such as texture, intensity, or gray level, with the goal of
distinguishing the cells from the background to enable quantitative analysis such as cell feature
extraction [130].

Cell segmentation is a complex problem that extends far beyond microbiological research where
advances can be lagging as expertise is less common; thus, many solutions are currently available
within Image] [128,131,132] which broaden the number of potential users, but many more also use
stand-alone image-analysis programs which can at times be less supported and less accessible
[133,134]. Many traditional solutions use image-processing techniques such as the Otsu thresholding
method to segment isolated cells [130]; however, this approach performs poorly on cells in close
contact and it requires image-by-image tuning to optimize parameters. Furthermore, whilst
implementing image-by-image thresholds instead of one static threshold can potentially improve
segmentation, it also introduces bias [135].

Classical image segmentation techniques have been in use since the 1960s[136,137], laying the
groundwork for the more advanced artificial intelligence methods used nowadays. In 2016
SuperSegger was developed to address thresholding issues in classical segmentation specifically in
bacterial phase-contrast images and is an interesting example of classical segmentation combined
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with Deep learning [138].This program utilizes traditional image filtering techniques now with a
shallow neural network to correct for errors that thresholding and watershed segmentation tend to
produce [139]. This would soon be overshadowed by other Deep neural networks (DNNs) which
have now become the backbone of most Deep learning segmentation methods and are widely
recognized as superior tools for cell segmentation [140]. This has marked a successful trend in using
classical techniques to supplement or in conjunction with DNN methods for cell segmentation.
However, as showcased in Table 3 there is currently a significant gap in Deep learning being used in
BCP. Unlike traditional image processing, machine-learning approaches such as DNNs require
training on a ground-truth dataset of cells and corresponding labels. Trained DNNs are thus limited
in applicability to images that are representative of those in the training dataset and require greater
knowledge to set up than popular classical segmentation methods [141]. Early DNN approaches were
based on the Mask R-CNN architecture, whereas more recent algorithms such as StarDist, Cellpose
and MiSiC are based on the U-net architecture[131,132,142,143] but new Transformer-based object
detection frameworks may begin to surpass them. We have already seen remarkable results from
team Osi lab in the multimodality cell segmentation challenge, with their algorithm outcompeting all
other entries and some established and popular algorithms[128,133].

Among easily available Deep learning segmentation algorithms, Pachitariu et al. showed that
Cellpose outperforms the popular programs Mask R-CNN and StarDist on a variety of cell types and
cell-like objects, distinguishing it as a relatively powerful general solution for cell segmentation [131].
Cutler et al. evaluated the performance of (at the time) state-of-the-art cell segmentation algorithms
on a diverse collection of bacterial cells. Their findings motivated the design of a new algorithm,
Omnipose, which substantially outperforms all segmentation algorithms tested across a wide range
of bacterial cell sizes, morphologies, and optical characteristics and as such has been used extensively
in literature [129]. Omnipose, whilst well supported and widely used in bioimage analysis as a
generalist segmentation algorithm is now demonstrably worse than more recent generalist
algorithms for many cellular morphologies. The winner of the Multimodality cell segmentation
challenge published in 2024, a competition for the best generalist bioimage segmentation algorithms
was a team led by Gihun Lee presenting their algorithm, MEDIAR[128,133]. The competition used
1000 images of multiple organisms from over 20 labs; 50 different experiments; using brightfield,
fluorescent, PC and DIC microscopy techniques. Importantly, there was also a direct comparison
between models submitted by the contestants, and models from the widely acclaimed Cellpose and
Omnipose showcasing the higher accuracy of the entries.. Beyond segmentation, Deep learning has
been used to predict morphologies of unlabeled cells, allowing researchers to simulate more tags than
are currently possible to image at once and potentially extending the power of cytological
profiling[144-146].

Segmented data availability (Table 3) is invaluable for scientific communities and accelerates
new findings. By using published BCP data and mathematical modelling, the researchers uncovered
the robustness of scaling behavior between cell surface area and volume in E. coli [75] and B. subtilis
[76], inferred cell physiological alterations upon antibiotic treatments [147], and proposed a new
antibiotic resistance pathway mediated by cell surface-to-volume ratio (5/V) transformations [74].
Therefore, the availability of BCP data is good practice and should be considered as a benchmark for
all future BCP platforms, especially for pathogenic bacteria (Table 2).

9. Conclusions

Despite significant advances in research and the development of new tools, combating
antimicrobial resistance (AMR) requires a multifaceted approach. Continued investment in research
and development, global collaboration, and the effective implementation of surveillance and
prevention strategies are crucial. Bacterial Cytological Profiling (BCP) stands out as a rapid and cost-
effective technique that facilitates drug discovery by revealing the mechanism of action of novel
antibacterial agents through detailed physiological and morphological analysis. Furthermore, BCP
could be used to identify phenotypic changes when multiple antibiotics are used, revealing unique
or overlapping cell morphologies induced by these combinations [41]. However, systematic
explorations of cytological profiles for drug combinations are still missing.

Apart from bacteria, cytological profiling methods are also widely used for other organisms such
as yeast[148,149], fungi [150], and human cells[151-153]. However, deep learning techniques
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employed for yeast and human cells, unfortunately, have not yet been applied to bacteria. Therefore,
wider availability, applications and integration of machine learning tools across different scientific
fields are needed.

Besides BCP being used to discover new antibiotics, BCP has been used to investigate complex
interactions between bacteria and their predators — bacteriophages[10-12]. By leveraging high-
resolution imaging, BCP enables the identification of metabolic pathways and cellular processes
targeted by phages and antibiotics, both individually and in combination, offering valuable insights
into the molecular mechanisms governing the phage-bacteria interaction, ultimately paving the way
for more effective phage-based antibacterial therapies.
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