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Abstract: Developing new antibiotics poses a significant challenge in the fight against antimicrobial resistance 
(AMR), a critical global health threat responsible for approximately 5 million deaths annually. Finding new 
classes of antibiotics that are safe, have acceptable pharmacokinetic properties, and are appropriately active 
against pathogens is a lengthy and expensive process. Therefore, high-throughput platforms are needed to 
screen large libraries of synthetic and natural compounds. In this review, we present bacterial cytological 
profiling (BCP) as a rapid, scalable, and cost-effective method for identifying the mechanisms of action of 
antibiotics offering a promising tool for combating AMR and drug discovery. We present the application of 
BCP for different bacterial organisms and different classes of antibiotics and discuss BCP's advantages, 
limitations, and potential improvements. Furthermore, we highlight the studies that have utilized BCP to 
investigate pathogens listed in the Bacterial Priority Pathogens List 2024 and we identify the pathogens whose 
cytological profiles are missing. Lastly, we explore the most recent artificial intelligence and deep learning 
techniques that could enhance the analysis of data generated by BCP, potentially advancing our understanding 
of antibiotic resistance mechanisms and the discovery of novel druggable pathways. 

Keywords: antibiotic resistance; bacterial cytological profiling; high-throughput screens; antibiotic mechanism 
of action; bacterial priority pathogen list; cell segmentation; machine learning; deep learning  
 

1. Introduction 
Antimicrobial resistance (AMR) has been declared by the World Health Organization (WHO) as 

one of the top ten global public health threats facing humanity. It impacts both public health and 
global development, resulting in severe morbidity and mortality worldwide. AMR is defined as a 
condition characterized by the ability of microorganisms (bacteria, fungi, viruses, and parasites) to 
live and grow in the presence of antimicrobial agents that were previously reported to be effective 
against them. Resistance occurs through pathogen evolution, either naturally over time or acquired 
by the use of antimicrobial drugs, which make these drugs ineffective [1]. 

It has been estimated that in 2019 alone, antimicrobial resistance killed at least 1.27 million 
people globally, more deaths than HIV/AIDS or malaria, with 4.95 million deaths associated with 
AMR [2]. According to the Centers for Disease Control and Prevention’s Antibiotic Resistance Threats 
Report [3], in the United States, over 2.8 million antibiotic-resistant infections occur each year, leading 
to over 35,000 deaths. Furthermore, it has been estimated that, if the AMR trend continues, the 
cumulative loss to world economies might be as high as $100 trillion by 2050 [4]. These alarming 
statistics underscore the urgent need to develop effective therapeutics to combat antimicrobial 
resistance.  

The efforts undertaken in the field of AMR until now have not been enough despite the research 
effort and inventive therapeutic approaches. Since 1940 antimicrobials have been used widely [5], [6] 

, in addition to treating infectious diseases, antibiotics made many modern medical procedures 
possible, including cancer treatment, organ transplants and open-heart surgery [7]. Even before 1940  
and for about 60 years after, most antibiotics were discovered by screening soil samples for such 
natural products that kill bacteria, including known pathogens, first on culture plates and then in 
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animal infection models [8], [7]. However, in the past 20 years, only two new antibiotic classes have 
been developed that are only effective for Gram-positive bacteria [9]. To overcome the burden of 
antibiotic resistance, new high- throughput screens based on bacterial cytological profiling have been 
developed. 

This review emphasizes the use of bacterial cytological profiling (BCP) as a highly effective 
method for discovering novel antibiotics and rapidly identifying antibiotic targets in a cost-effective 
manner. BCP initially creates a library of bacterial cell shapes and sizes induced by antibiotics with 
known mechanisms of action. This library is then used to discover new antibiotics and classify 
antibiotics based on the components of bacterial cells they target.  In this review, we highlight how 
BCP is used to improve our quantitative understanding of antibiotic pharmacodynamics and 
bacterial stress responses, as well as how BCP enhances the development of non-traditional 
antibacterial strategies such as phage therapies[10–12]. 

2. Antibiotic Mechanism of Action and Antibiotic Targets 
AMR is a natural process that happens over time through genetic alterations or phenotypic 

changes [13] in pathogens. Its emergence and spread are accelerated by human activity, mainly the 
misuse and overuse of antimicrobials to treat, prevent or control infections in humans, animals, and 
plants. To effectively tackle antibiotic-resistant bacteria, it is essential to understand how antibiotics 
work, which is known as their mechanism of action (MOA), see Table 1. Understanding MOA 
involves studying how antibiotics affect bacterial physiology and molecular interaction with bacterial 
targets (Figure 1). However, determining MOA remains a serious challenge that limits both basic 
research and antibiotic discovery programs. 

 
Figure 1. Antibiotic targets in bacteria. Antibiotics typically kill bacteria by targeting at least one of the five cell 
components: cell wall, cell membrane, ribosome, DNA and RNA. Antibiotics interfere with the synthesis of or 
directly damage cell structures to inhibit bacterial growth or irreversible damage bacterial integrity. Antibiotics 
can inhibit the synthesis of some essential components, such as folate synthesis, a precursor for DNA synthesis. 
Antibiotics are transported into cells across the cell membranes or through membrane porins that facilitate 
antibiotic transport. Bacterial cells can also eliminate antibiotics by using efflux pumps, which are transport 
proteins that actively expel antibiotics out of the cell. 

Table 1. General classification of antibiotics based on their target and chemical structure, including their 
mechanism of action (MOA), examples of each antibiotic type, and their typical clinical uses. 

Target Chemical 

Structure 

Mechanism Of Action (MOA) Generic Name 

Examples 

Use 

Cell Wall β-Lactams Inhibit penicillin-binding 

proteins (PBPs) that crosslink 

peptidoglycan chains in the 

bacterial cell wall [16], 

Penicillins, 

cephalosporins, 

cephamycins, 

carbapenems, 

and others. 

To treat a variety of 

infections, including 

skin infections, chest 

infections, urinary 
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disrupting cell wall integrity 

and causing cell lysis [17]. 

tract infections sepsis 

and meningitis. 

Glycopeptides Target gram-positive bacteria 

by binding to the acyl-D-Ala-

D-Ala terminus to the growing 

peptidoglycan and then cross-

linking peptides within and 

between peptidoglycan [18]. 

Vancomicyn Last resort medication 

for the treatment of 

sepsis and lower 

respiratory tract, skin, 

and bone infections 

caused by Gram-

positive bacteria.  

Mebrane Lipopeptides Insert in the cell membrane 

and cause depolarization, 

reducing the ability to create 

ATP and cell death [19]. 

Daptomycin, 

Colistin 

For treatment of 

complicated skin and 

skin-structure 

infections associated 

to Gram-positive 

bacteria. 

FaĴy Acid 

Synthesis 

Chlorophenol Block the reduction step of the 

faĴy acid synthesis pathway 

by inhibiting an enoyl-ACP 

reductase (fabI) [20]. 

Triclosan Added to many 

consumer products as 

soaps, body washes 

and toothpastes, 

intended to reduce or 

prevent bacterial 

contamination. 

Oxirane 

carboxylic acids 

Irreversibly binds to faĴy acid 

synthase, specifically b-

ketoacyl-acyl carrier protein 

synthase. In sterol synthesis, 

inhibits HMG-CoA synthetase 

activity [21]. 

 

Cerulenin Antifungal agent 

whose activity 

interferes with or 

otherwise acts to 

prevent the formation 

of faĴy acids and 

sterols. With selective 

cytotoxicity to cancer 

cells 

Protein 

Synthesis  

Aminoglycosides Interact with the 30s ribosomal 

subunit of 16S RNA causing 

misreading and/or truncated 

proteins and cell death [17],  

[22]. 

Gentamicin, 

tobramicin, 

kanamycin 

To treat mainly very 

serious illnesses and 

infections such as 

sepsis, as they can 

cause very serious side 

effects. 
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Tetracyclines Inhibit translation by binding 

to 16S rRNA of the 30S 

ribosomal subunit, preventing 

tRNA binding to 30S [23]. 

Tetracycline, 

doxycycline 

and 

lymecycline 

To treat a wide range 

of infections, acne and 

skin conditions as 

rosacea. 

Macrolides It binds to the 23S rRNA of the 

50S ribosomal subunit, leading 

to the production of 

incomplete peptide chains [24].  

Azithromicin, 

erythromycin 

and 

clarithromicyn 

Particularly useful to 

treat lung and chest 

infections, as an 

alternative for people 

with a penicillin 

allergy or penicillin-

resistant strains. 

Lincosamide It binds to the 50S ribosome 

subunit to stimulate 

dissociation of the peptidyl- 

tRNA molecule from the 

ribosomes during elongation 

[25] 

Clindamicyn Primarily used to treat 

gram-positive 

bacterial infections in 

which there is 

resistance or 

intolerance to 

penicillin. 

Oxazolidinones Limit translation by binding to 

23S rRNA of the 50S subunit 

and preventing the formation 

of a functional 70S subunit [26]. 

Linezolid Active against 

multidrug-resistant 

staphylococci, 

streptococci, and 

enterococci.  

DNA 

Synthesis  

Fluoroquinoles Inhibit DNA replication by 

targeting DNA gyrase and 

topoisomerase IV[27,28]. 

Ciprofloxacin 

and 

levofloxacin 

Broad-spectrum 

antibiotics that are 

used to treat a wide 

range of infections, 

especially respiratory 

and urinary tract 

infections. Not 

commonly used due to 

their risk of serious 

side effects. 

 Sulfonamides Competitive inhibitor of 

Dihydropteroate synthase 

(DHPS) involved in folate 

synthesis [29] 

Sulfamethazine, 

sulfapyridine 

Utilized in the 

treatment of tonsillitis, 

septicemia, 

meningococcal 

meningitis, bacillary 

dysentery, and 

number of infections 

of urinary tract 
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RNA 

Synthesis 

Rifamycins It binds to the RNA 

polymerase and blocks the 

RNA synthesis [30] 

Rifapentine, 

Rifampin 

Effective against 

mycobacteria, and are 

therefore used to treat 

tuberculosis, leprosy, 

and mycobacterium 

avium complex 

(MAC) infections. 
*Classification of frequently used antibiotics. For more detailed classifications based on the antibiotic targets see 
[20,29,30], or classifications based on chemical structure, see [31]. 

Traditionally, a variety of assays are performed to determine the MOA, by the evaluation of 
whether one of the five basic pathways is inhibited (Figure 1). These efforts typically begin with 
macromolecular synthesis (MMS) assays that use radioactively labeled precursors to determine 
whether a compound specifically inhibits peptidoglycan, lipid, protein, RNA or DNA synthesis or 
whether it blocks all simultaneously [14]. Despite being an important technique, MMS assays are time 
consuming and suffer from low resolution, low accuracy, and relatively low throughput [15]. 

To address the limitations associated with MMS assays, various alternative techniques for 
determining the mechanism of action (MOA) have been devised [32]. These include biochemical 
approaches, such as affinity chromatography that identify direct biophysical interactions between 
antimicrobials and their targets through an array where the antibiotic interacts with protein from 
whole-cell extracts[33–35]. Genetic approaches, such as selection for resistance and resistance 
screening [33], focus on the genetic comparison between non-resistant strains and strains that have 
evolved and mutated to become resistant to a specific antibiotic, this approach is often able to identify 
the molecular target of an antibiotic, the specific amino acid residues important for its interaction and 
the frequency with which resistance occurs. 

While these methods offer various benefits, they also come with limitations that hinder their 
effectiveness. The main disadvantage of these methods is the required time to conduct the assay, 
moreover, these methods necessitate substantial quantities of purified compounds, which can be 
challenging as newly discovered lead compounds are frequently available in limited amounts. 

Apart from all limitations in determining MOA, discovering new compounds that are active 
against Gram-positive and Gram-negative bacteria remains challenging. In the past 20 years, only 
two new antibiotic classes (lipopeptides and oxazolidinones) have been developed and approved by 
international drug agencies (US Food and Drug Administration and European Medicines Agency)—
both of which provide coverage against Gram-positive bacteria [9]. The quinolones, discovered in 
1962, were the last novel drug class identified to be active against Gram-negative bacteria [36]. 

From a technical perspective, finding new classes of antibiotics that are safe, have acceptable 
pharmacokinetic properties, and are appropriately active is a challenging issue [36]. Additionally, the 
profit margins for producing antibiotics are relatively low given the high cost for production and the 
lengthy timeline for research, testing, and approval [36]. Therefore, new, high-throughput screening 
platforms are needed for the fast and inexpensive screening of large libraries of synthetic and natural 
compounds that are highly effective against human pathogens[37,38]. The following section reviews 
the quick and scalable bacterial cytological profiling methods (BCPs) and discusses their availability 
for some of the most important human pathogens as outlined in the latest WHO 2024 report. 

3. BCP to Identify the Mechanism of Action 
In 2013, Poochit et al. designed Bacterial Cytological Profiling (BCP) analysis for E. coli cells using 

different classes of antibiotics [15] (Figure 2). BCP data are obtained using fluorescent microscopy of 
E. coli cells stained with fluorescent membrane and DNA dyes as well as fluorescent reporter for 
membrane permeability. Using image analysis software, various bacterial cell parameters, such as 
cell length, width, solidity, and DNA content, are extracted [15]. Subsequently, complex 
multidimensional data are analyzed using the Principal Component Analysis (PCA) technique, to 
cluster cells based on their cytological profile to identify the mechanism of action of known and 
unknown antibacterial compounds (Figure 2B, Box 1). Since the cytological profiling method 
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produces data at a single-cell level [41], it identifies the metabolic pathways targeted by drugs or 
other toxins through their effects on bacterial chromosomal condensation, cell shape and overall 
cellular morphology [15] (Figure 2B). Furthermore, this approach can lead to the identification of 
antibiotics that are effective against multidrug-resistant bacteria [15].  

 
Figure 2. Bacterial Cytological Profiling. (A) Different morphologies adopted by bacteria under the stress of 
antibiotics targeting different pathways. The cartoon drawings are based on the microscopy images from Poochit 
et al [15]., where bacterial cells were treated with antibiotics targeting five major biosynthetic pathways (DNA, 
Ribosome, RNA, Cell Wall, Membrane), using fluorescent dyes FM4-64 (red) and DAPI (blue) to stain bacterial 
membranes and DNA respectively. Scale bar, 1 µm. (B) Principal Component Analysis (PCA) is used to cluster 
different bacterial cell shapes based on the antibiotic mechanism of action. Each point on the graph represents a 
single cell. The graph also illustrates that when green dots, representing a characteristic morphology of a DNA-
targeting antibiotic, cluster with orange dots, representing untreated bacteria, it indicates no morphological 
change and suggests possible antibiotic resistance or persistence[42,43]. 

Box 1. Principle Component Analysis (PCA) 

PCA is a widely used statistical technique for analyzing data by identifying a set of principal 

components that capture the maximum variance in the data with the fewest components [44]. It 

involves transforming the original variables into a new set of uncorrelated variables, known as 

principal components, which are linear combinations of the original variables. These principal 

components are ordered so that the first component explains the maximum variance in the data, 

followed by the second component, and so on [44]. The process of PCA starts by calculating a matrix 

that shows how the original variables are related to each other. Then, it finds special vectors 

(eigenvectors) and values (eigenvalues) from this matrix. The eigenvectors show the new directions 

for the data, while the eigenvalues tell us how much of the data's variation is captured by each new 

direction. The principal components are then derived from these eigenvectors, and the data is 

projected onto these components to obtain the transformed dataset. PCA has diverse applications 

across almost all scientific fields, including biology, medicine, computer science, and geology. In the 

context of biomedical research, PCA has been utilized to analyze human cell atlas and prostate cancer 

risk prediction[45,46]. In computer science, PCA is employed for data processing, dimensionality 

reduction, and feature extraction[47–49]. In Bacterial Cytological Profiling, PCA is used to analyze 

microscopy data by grouping the phenotypic changes in bacteria after antibiotic exposure, thereby 

determining the target of the antibiotics (Error! Reference source not found.B). Together, Principal 

Component Analysis is a powerful statistical method that enables the transformation of complex data 

into a new simplified coordinate system to reveal underlying patterns and structures. Its wide-

ranging applications underscore its significance in various scientific disciplines.  
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The cytological profiles triggered by antibiotics reveal their damaging effects. For example, 
compounds that block translation led to chromosome compaction due to the interference with 
coordinated translation and insertion of proteins into the membrane, whereas compounds that block 
transcription lead to chromosome decondensation due to the absence of active RNA polymerase 
(Error! Reference source not found.). BCP takes advantage of the limited presence of cell-cycle 
checkpoints in bacteria, combined with the precision of high-resolution imaging. 

When stressed by antibiotics, bacteria show phenotypical changes that are characteristic of the 
antibiotic target. Treated bacteria transform into spheroplast, protoplast, ovoid or filamenting cells 
[50]. Spheroplast and protoplast are cells that have lost their peptidoglycan layer, spheroplasts are 
Gram-negative bacteria that keep their outer membrane, whereas protoplasts are formed from Gram-
positive bacteria that lack both a peptidoglycan layer and an outer membrane [51]. Bacterial variants 
that lack a cell wall, encompassing both Gram-negative and Gram-positive bacteria, are known as L-
forms[52–55].  

Ovoid cells refer to bacterial rods (bacilli) that have decreased in length and become oval or 
round-shaped during antibacterial treatment[56,57]. Nomenclature in the literature varies, with some 
authors referring to them as ‘round forms’[58,59], ‘round cells’[60–62], ‘spherical forms’, ‘spherical 
cells’[63–65], or ‘coccoid forms’[66,67]. Filamentation, or cell elongation, occurs when rod-shaped 
bacteria (or sometimes cocci) produce peptidoglycan for their side walls but not for their division 
walls during growth, causing the cells to become unusually elongated [50]. Filamentation can occur 
following inhibition or disruption of peptidoglycan synthesis [56] but can also occur if DNA synthesis 
is inhibited[68,69] or DNA is damaged[70–72] by a process known as the SOS response that inhibits 
cell division  [28](Error! Reference source not found.). 

Other phenotypic changes can be shown by bacteria under antibiotic exposure as altered cell 
size, localized swelling, bulge formation, blebbing, peptidoglycan thickening [50]. Phenotypical 
changes confer an increase in fitness to bacteria in the presence of antibiotics [73]. Resistance to 
antibiotics is commonly aĴained via reducing the intracellular concentration of the antibiotic or by 
reducing antibiotic binding affinities for their specific intracellular targets [74]. By using available 
BCP data, recent studies have shown that by reducing the surface-to-volume ratio (S/V), bacteria can 
effectively reduce the antibiotic concentration inside a cell, thereby promoting cell growth by 
decreasing antibiotic influx [74]. Similarly, an increase in S/V can also provide adaptive benefits by 
increasing the rate of nutrient uptake or by increasing the rate of antibiotic efflux[74–76]. These 
studies explain how cell shape transformations promote bacterial survival under antibiotic 
treatments – pointing towards potential new druggable targets that control cell shape and size under 
stress.  

BCP has been successfully employed to study the MOA of various antibacterial agents, including 
azithromycin [77], diphenylureas [78] and thailandamide [79]. It has also been used to identify the 
cellular pathways targeted by anticancer metal complexes [80], to study the response of bacteria to 
antibiotics in different growth conditions [81]. Additionally, BCP has been used to identify the 
cellular pathways targeted by antibacterial molecules affecting different cellular pathways [82], [83], 
making it a valuable tool not only for determining antibacterial targets but also to potentially identify 
novel MOA i.e., ones that target new proteins or new pathways (Figure 3). 

BCP offers unprecedented insights not only into antibiotic therapies but also into phage 
therapies, revealing how phages exploit or disrupt bacterial cellular processes[10–12,84]. BCP enables 
the visualization of distinct cytological changes within bacterial cells during phage infection. These 
cytological signatures not only uncover the pathways and cellular targets that phages manipulate to 
propagate their lifecycle but also highlight the role of bacterial defense mechanisms in combating 
phage infection [11]. BCP has demonstrated how the overexpression of phage-related proteins can 
induce specific cytological changes that inhibit phage replication, showcasing the potential for 
targeting bacterial metabolic pathways to modulate phage activity [10]. Additionally, BCP has been 
instrumental in assessing the impact of various antibiotics on phage replication, revealing that certain 
antibiotics can synergize with phages to enhance bacterial cell lysis, while others inhibit phage 
propagation by disrupting essential bacterial processes [11]. This dual capability of BCP to monitor 
both the direct effects of phage infection and the influence of external agents such as antibiotics makes 
it an invaluable tool in studying phage-bacteria dynamics. 
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4. BCP of Important Human Pathogens 
Most importantly, BCP has been successfully used to study some of the most important human 

pathogens from the WHO Bacterial Priority Pathogens List (Error! Reference source not found.). In 
2017, using a multicriteria decision analysis technique, WHO experts together with researchers from 
the Division of Infectious Diseases at the University of Tübingen, Germany, developed the first 
Bacterial Priority Pathogen List (BPPL) to guide investment into the R&D of new antibacterials for 
guiding AMR surveillance, prevention and control [85]. During the past 7 years, the antibiotic 
development pipeline brought to the market nine new antibiotics with in-vitro or in-vivo activity 
against the 2017 BPPL “critical” priority pathogens, although resistant strains have since been 
described for almost all of them[86,87]. In 2024, WHO published an updated list to address current 
challenges and provide essential guidance for policymakers, national health authorities and others 
involved in decisions about R&D and investment. The 2024 BPPL includes 15 families of antibiotic-
resistant pathogens, grouped into critical, high and medium categories of priority for R&D and public 
health measures [88] (Error! Reference source not found.). Out of 15 families, bacterial cytological 
profiling is not available for 30 % of them: Non-typhoidal Salmonella, Neisseria gonorrhoeae, Group A 
and B Streptococci, Haemophilus influenzae. Therefore, urgent BCPs regarding these severe pathogenic 
organisms are needed. 

Table 2. BCP Analysis for the WHO Bacterial Priority Pathogens List (2024). In third column, this table indicates 
whether bacterial have been studied using Bacterial Cytological Profiling (BCP) or not. We consider any BCP 
done in the wild-type strain rather than in the resistant strain. 

Bacteria Resistant to 

Bacterial 

Cytological 

Profilling (BCP) 

Priority 1. Critical group 

Acinetobacter baumannii Carbapenems Yes[41,77,81,89] 

Enterobacteriaceae* Third generation cephalosporine Yes[15,80,90–92] 

Enterobacteriaceae** Carbapenems, ESBL-producing Yes[77,93,94] 

Rifampicin-Resistant Tuberculosis (RR-TB)*** Rifampicin Yes[95,96] 

Priority 2. High group 

Salmonella Thypi Fluoroquinolones Yes [94] 

Shigella spp. Fluoroquinolones Yes [97] 

Enterococcus faecium Vancomycin Yes [98] 

Pseudomonas aeruginosa Carbapenems Yes[11,77,93,94] 

Non-typhoidal Salmonella Fluoroquinoles No 

Neisseria gonorrhoeae 
Cephalosporin, 

Fluoroquinolonas 
No 

Staphylococcus aureus Methicillin and vancomycin Yes[78,99–101] 

Priority 3. Medium group 

Group A Streptococci Macrolide  No 
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Streptococcus pneumoniae 
Macrolide/No sensitivity to 

penicillin 
Yes [102] 

Haemophilus influenzae Ampicillin No  

Group B Streptococci Penicillin No  
* The BCP column uses Escherichia coli as a reference for this group ** The BCP column uses Klebsiella pneumoniae 
as a reference for this group ***RR-TB was evaluated independently in a tailored approach so it was technically 
“not” included in the list but after the evaluation by specialists, it was determined as a critically dangerous 
bacteria therefore. RR-TB stands apart from the list due to the distinct nature of its evaluation process. 

5. BCP to Identify New Druggable Cell Pathways 
BCP is used to scan new antibacterial components to identify their specific targets (Figure 3). As 

demonstrated, BCP effectively differentiates between various morphological changes induced by 
different antibiotics, thereby providing insights into the antibiotic’s mechanism of action. If a novel 
antibiotic places bacteria in a distinct region of the PCA plot compared to known antibiotic targets, it 
could indicate a new pathway target or MOA previously uncharacterized (Figure 3). For example, if 
the PCA analysis shows that the morphology of bacteria treated with a new antibiotic clusters in a 
region associated with membrane or RNA targets (Arrows 2 and 3 in Error! Reference source not 
found.), it directly indicates the antibiotic's mode of action. Conversely, if the antibiotic's effect causes 
a morphology change that places bacteria in a novel zone, as illustrated with Arrow 4, it may suggest 
the discovery of a new antibacterial pathway or target. 

 
Figure 3. Representation of Principal Component Analysis (PCA) using bacterial morphologies to determine the 
mechanism of action (MOA) of a novel antibiotic. Arrow 1 indicates the antibiotic used against certain bacteria, 
which can change their shape depending on the antibiotic's MOA. If the bacteria exhibit a morphology as 
indicated by arrow 2, the antibiotic targets the membrane. Conversely, if the bacteria display a morphology as 
indicated by arrow 3, the antibiotic targets RNA. However, if the morphology is completely different from the 
known and clustered morphologies, as shown by arrow 4, it suggests that the antibiotic targets a novel pathway 
and if the bacteria do not show any change, it suggests that they are not susceptible to this antibiotic or, in the 
worst-case scenario, that they are resistant to the antibiotic. 

Together, BCP significantly enhances drug development processes by offering a precise, fast and 
systematic method for characterizing the effects of new antibacterial agents. Its ability to identify 
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target-specific morphological changes provides a comprehensive tool for uncovering novel antibiotic 
targets and advancing our understanding of bacterial physiology.  

6. BCP Limitations  
Even with all the advantages we mentioned about BCP, it has certain limitations. BCP can 

identify the general target of an antibiotic, but it cannot provide precise information about the exact 
site within the target that is affected. For instance, while BCP can indicate that an antibiotic targets 
the ribosome, it cannot specify which part of the ribosome is involved. 

BCP requires staining chemicals to evaluate DNA content and cell size and shape, with 
fluorescent dye intensity being a crucial variable (Table 3). These factors are essential for determining 
the mechanism of action of antibiotics. A plethora of dyes, protein fusions, and reporter strains are 
available and have been used in BCP, enabling both rapid mode of action categorization and in-depth 
analysis of antibiotic mechanisms. However, the plethora of possible dyes, strains, and assays can 
make it difficult to choose which specific phenotypic experiments are the most suited for a given 
purpose (Table 3). Furthermore, bacterial cell physiology is complex, and many cellular processes are 
intimately interconnected, e.g., by co-dependent regulation or metabolic flux [103], [104]. 

Table 3. Organisms used in BCP and how images were analysed. 

Organism Dyes/Fluorophores 

Processed 

Data 

available 

Segmentation Feature extraction Source

Acinetobacter 

baumannii and E. 

coli 

FM4-64 

DAPI 

SYTOX-Green 

Yes CellProfiler CellProfiler  [105] 

Acinetobacter 

baumannii 

FM4-64 

DAPI 

SYTOX-Green 

No Ilastic CellProfiler  [106]*  

Pseudomonas 

aeruginosa 

FM4-64 

DAPI  
Yes 

Manually 

(FIJI/ImageJ 

) 

Manually  

(FIJI/ImageJ) 
 [107]* 

S. aureus 

FM4-64 

DAPI 

SYTOX-Green 

Yes 
Semi-Manual 

(FIJI/ImageJ) 

Semi-Manual 

(FIJI/ImageJ) 
 [15]* 

S. aureus 

FM4-64 

DAPI 

SYTOX-Green 

WGA-647 

Yes CellProfiler CellProfiler  [99]* 

S. aureus, 

S. Typhimurium, 

and 

K. pneumoniae 

FM4-64 

DAPI 

SYTOX-Green 

Yes Harmony Harmony  [94] 

B. subtilis 

FM 4-64 

DAPI 

SYTOX Green 

Yes CellProfiler 
CellProfiler 

FIJI 
 [108]* 

B. subtilis FM4-64 No CellProfiler CellProfiler  [109]* 
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DAPI 

SYTOX-Green 

B. subtilis 
Nile red 

DAPI 
No MicrobeJ MicrobeJ  [110]* 

Bacillus subtilis,  

E. coli 

FM4-64 

DAPI 

GFP 

No 
Wasabi software 

(Hamamatsu) 

Wasabi software 

(Hamamatsu) 
 [111] 

E. coli 

FM4-64 

Hoechst-33342 

Dendra2 protein 

No FIJI/ImageJ FIJI/ImageJ  [80] 

E. coli 

Caulobacter 

crescentus 

FM4-64 

DAPI 
No Oufti Oufti  [112]* 

E. coli 

FM4-64 

DAPI 

SYTOX-Green 

No 
Semi-Manual 

(FIJI/ImageJ) 

Semi-Manual 

(FIJI/ImageJ) 
 [113]*  

Achromobacter 

xylosoxidans 

FM4-64 

DAPI 

SYTOX-Green  

NBD 

Azithromycin 

No 
FIJI/ImageJ and 

CellProfiler 

FIJI/ImageJ and 

CellProfiler 
 [114] 

M. smegmatis ParB-mCherry Yes MicrobeJ MicrobeJ  [115]* 

M. tuberculosis 

Erdman 

FM4-64FX 

SYTO 24 
Yes MorphEUS MorphEUS  [116]* 

Shewanella 

putrefaciens 

Ffh-mVenus 

FtsY-mVenus 

uL1-mVenus 

Yes FIJI/ImageJ FIJI/ImageJ  [117]* 

V. parahaemolyticus 
FM4-64 

DAPI 
No FIJI/ImageJ FIJI/ImageJ  [84] 

Bacillus subtilis 

FM4-64 

DAPI 

SYTOX-Green 

SYTO-9 

No - Manual w/ FIJI  [118]* 

M. smegmatis 

M. tuberculosis 

FM4-64  

GFP 

CellROX  

Yes Omnipose 

Manual w/ FIJI or 

with Cell Counter 

installation in FIJI 

Custom python 

script  

 [119] 

E. coli 

B. subtilis 

FM4-64 

DAPI 

GFP 

No 
FIJI/ImageJ and 

MicrobeJ 

FIJI/ImageJ and 

MicrobeJ 
 [120] 
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*Pipelines, scripts, or instructions are detailed and/or included in the paper. Programs are also widely accessible. 

7. BCP Potential Improvements 
Despite the cell walls being one of the primary antibiotic targets, direct visualization methods of 

cell wall synthesis and remodeling during antibiotic exposure have been lacking in BCP approaches 
developed so far (Table 3). In 2012, Kuru et al. discovered a groundbreaking method for bacterial cell 
wall staining using fluorescent amino acids [121]. Cell wall provides the shape and structural 
integrity to the cell. It is made of peptidoglycan (PG), which consists of glycan strands cross-linked 
by d-amino acid (DAA) [122].  The team introduced HADA and NADA, two fluorescent d-amino 
acids (FDAAs) aĴached to a d-amino acid backbone (3-amino-d-alanine). This chemical biology 
approach aims to detect and visualize the exact location and amount of new peptidoglycan layer 
synthesis in bacteria. By using HADA or NADA as fluorescently labeled peptidoglycan components 
during cell wall synthesis, the technique allows researchers to observe morphological changes in 
bacteria over time. This provides a chronological account of shifts in peptidoglycan synthesis within 
individual cells across various bacterial species. This is relevant as HADA and NADA can be 
implemented in the methodology of BCP as dyes to unravel the growth modes of bacteria under 
antibiotic exposure as they exhibit a diverse array of growth paĴerns that confer selective advantages 
in their environments [123], [74].  

Other fluorescent dyes are available to quantitatively probe bacterial physiological states: ThT 
and DiBAC4 for bacterial membrane potential[124–127], carboxy-H2DCFDA for reactive oxygen 
species (ROS) [127], and DAF-FM for reactive nitrogen species (RNS) [127]. By integrating membrane 
potential, ROS, and RNS into cytological profiles could provide additional information regarding 
bacterial physiology and bacterial stress response during antibiotic treatment. 

8. Image Analysis Tools for BCP and Data Availability 
Although fluorescent microscopy is a valuable tool for characterizing cellular and subcellular 

structures and dynamics, quantitative analysis of microscopy images remains a persistent 
challenge[119,128]. Once the fluorescence microscopy is done, analyzing the images obtained is a 
critical step for accurately determining cell morphologies. This is especially evident in the study of 
bacterial shapes since their cell body is composed of a small number of pixels (for example, ~ 100–
300 px [2] for E. coli in typical experiments) [129]. At this scale, accurate subcellular localization 
requires defining the cell boundary with single-pixel precision or more desirable sub-pixel resolution 
[130]. 

In addition to their small size, bacteria exhibit a diverse array of shapes. While many frequently 
studied bacteria can be adequately represented as rods or spheres, there is growing interest in those 
with more complex forms or the atypical shapes that emerge after exposure to antibiotics, such as 
seen in Caulobacter crescentus [73]. Cell segmentation allows us to analyze microscopy images more 
precisely to identify these different shapes. Segmentation is a method of partitioning an image into 
distinct regions with similar aĴributes, such as texture, intensity, or gray level, with the goal of 
distinguishing the cells from the background  to enable quantitative analysis such as cell feature 
extraction [130]. 

Cell segmentation is a complex problem that extends far beyond microbiological research where 
advances can be lagging as expertise is less common; thus, many solutions are currently available 
within ImageJ [128,131,132] which broaden the number of potential users, but many more also use 
stand-alone image-analysis programs which can at times be less supported and less accessible 
[133,134]. Many traditional solutions use image-processing techniques such as the Otsu thresholding 
method to segment isolated cells  [130]; however, this approach performs poorly on cells in close 
contact and it requires image-by-image tuning to optimize parameters. Furthermore, whilst 
implementing image-by-image thresholds instead of one static threshold can potentially improve 
segmentation, it also introduces bias [135].  

Classical image segmentation techniques have been in use since the 1960s[136,137], laying the 
groundwork for the more advanced artificial intelligence methods used nowadays. In 2016 
SuperSegger was developed to address thresholding issues in classical segmentation specifically in 
bacterial phase-contrast images and is an interesting example of classical segmentation combined 

DiSC 
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with Deep learning [138].This program utilizes traditional image filtering techniques now with a 
shallow neural network to correct for errors that thresholding and watershed segmentation tend to 
produce [139]. This would soon be overshadowed by other Deep neural networks (DNNs) which 
have now become the backbone of most Deep learning segmentation methods and are widely 
recognized as superior tools for cell segmentation [140]. This has marked a successful trend in using 
classical techniques to supplement or in conjunction with DNN methods for cell segmentation. 
However, as showcased in Table 3 there is currently a significant gap in Deep learning being used in 
BCP. Unlike traditional image processing, machine-learning approaches such as DNNs require 
training on a ground-truth dataset of cells and corresponding labels. Trained DNNs are thus limited 
in applicability to images that are representative of those in the training dataset and require greater 
knowledge to set up than popular classical segmentation methods [141]. Early DNN approaches were 
based on the Mask R-CNN architecture, whereas more recent algorithms such as StarDist, Cellpose 
and MiSiC are based on the U-net architecture[131,132,142,143] but new Transformer-based object 
detection frameworks may begin to surpass them. We have already seen remarkable results from 
team Osi lab in the multimodality cell segmentation challenge, with their algorithm outcompeting all 
other entries and some established and popular algorithms[128,133]. 

Among easily available Deep learning segmentation algorithms, Pachitariu et al. showed that 
Cellpose outperforms the popular programs Mask R-CNN and StarDist on a variety of cell types and 
cell-like objects, distinguishing it as a relatively powerful general solution for cell segmentation [131]. 
Cutler et al. evaluated the performance of (at the time) state-of-the-art cell segmentation algorithms 
on a diverse collection of bacterial cells. Their findings motivated the design of a new algorithm, 
Omnipose, which substantially outperforms all segmentation algorithms tested across a wide range 
of bacterial cell sizes, morphologies, and optical characteristics and as such has been used extensively 
in literature  [129]. Omnipose, whilst well supported and widely used in bioimage analysis as a 
generalist segmentation algorithm is now demonstrably worse than more recent generalist 
algorithms for many cellular morphologies. The winner of the Multimodality cell segmentation 
challenge published in 2024, a competition for the best generalist bioimage segmentation algorithms 
was a team led by Gihun Lee presenting their algorithm, MEDIAR[128,133]. The competition used 
1000 images of multiple organisms from over 20 labs; 50 different experiments; using brightfield, 
fluorescent, PC and DIC microscopy techniques. Importantly, there was also a direct comparison 
between models submiĴed by the contestants, and models from the widely acclaimed Cellpose and 
Omnipose showcasing the higher accuracy of the entries.. Beyond segmentation, Deep learning has 
been used to predict morphologies of unlabeled cells, allowing researchers to simulate more tags than 
are currently possible to image at once and potentially extending the power of cytological 
profiling[144–146].  

Segmented data availability (Table 3) is invaluable for scientific communities and accelerates 
new findings. By using published BCP data and mathematical modelling, the researchers uncovered 
the robustness of scaling behavior between cell surface area and volume in E. coli [75] and B. subtilis 
[76], inferred cell physiological alterations upon antibiotic treatments [147], and proposed a new 
antibiotic resistance pathway mediated by cell surface-to-volume ratio (S/V) transformations [74]. 
Therefore, the availability of BCP data is good practice and should be considered as a benchmark for 
all future BCP platforms, especially for pathogenic bacteria (Table 2). 

9. Conclusions 
Despite significant advances in research and the development of new tools, combating 

antimicrobial resistance (AMR) requires a multifaceted approach. Continued investment in research 
and development, global collaboration, and the effective implementation of surveillance and 
prevention strategies are crucial. Bacterial Cytological Profiling (BCP) stands out as a rapid and cost-
effective technique that facilitates drug discovery by revealing the mechanism of action of novel 
antibacterial agents through detailed physiological and morphological analysis. Furthermore, BCP 
could be used to identify phenotypic changes when multiple antibiotics are used, revealing unique 
or overlapping cell morphologies induced by these combinations [41]. However, systematic 
explorations of cytological profiles for drug combinations are still missing. 

Apart from bacteria, cytological profiling methods are also widely used for other organisms such 
as yeast[148,149], fungi [150], and human cells[151–153]. However, deep learning techniques 
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employed for yeast and human cells, unfortunately, have not yet been applied to bacteria. Therefore, 
wider availability, applications and integration of machine learning tools across different scientific 
fields are needed.  

Besides BCP being used to discover new antibiotics, BCP has been used to investigate complex 
interactions between bacteria and their predators – bacteriophages[10–12]. By leveraging high-
resolution imaging, BCP enables the identification of metabolic pathways and cellular processes 
targeted by phages and antibiotics, both individually and in combination, offering valuable insights 
into the molecular mechanisms governing the phage-bacteria interaction, ultimately paving the way 
for more effective phage-based antibacterial therapies. 
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