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*  Correspondence: peter.koleda@tuzvo.sk 

Abstract: The article is focused mainly on verifying the suitability of data from experimental milling 

heat‐treated beech wood and on investigation of the effect of technical and technological parameters 

of milling on the energy consumption of this process. The independent parameters of machining 

process are cutting speed, feed speed, rake angle, and hydrothermal modification of experimental 

wood  material.  Based  on  analysis  of  variance  it  can  be  argued  that  the  greatest  statistically 

significant effect on energy consumption have cutting speed and rake angle of the tool while the 

feed speed had the least influence. The measured data of cutting power during milling were used 

to build a regression model and validate it, while the most suitable type of model with correlation 

of 87 % is Classification and Regression Tree followed by model created by Random Forests method. 

Keywords: milling; heat‐treated wood; energy consumption; regression model 

 

1. Introduction 

Wood as a material and  its uses as  interior and exterior  is one of  the greatest  importance  to 

humanity. Mechanical and aesthetic properties of wood could be reduced by outer influences [1,2]. 

By using surface inactivation, oil extraction substances can be expulsed onto the surface of the wood, 

preventing the access of hydroxyl groups to the wood cell wall. Some extracts from wood (namely 

fatty acids,  terpenes, phenols, and so on) may be displaced  to outside  layer of wood, becoming a 

resinous  layer.  Inactivating  surface  layer  for many wood  applications  shows  improvements  in 

smaller roughness, reducing losses in planning machine and higher quality wood surfaces.     

In  order  to  achieve  better  physical  and mechanical  properties  or  a  color  change  usage  of 

treatment process  is  important, which  is why usage Heat‐treatment  is one of  the most  common 

methods of material treatment [3]. Depending on medium and material used in treatment process 

there  are  several  types  of  heat‐treatment  [4].  Thermaly  modified  wood  can  be  found  almost 

everywhere nowadays most common are for example: ThermoWood in Finland, Plato Wood in the 

Netherlands, oilheat  treatment  (OHT)  in Germany, and Les Bois Perdure and  retification process 

(Retiwood) in France [5,6]. There are also lesser‐known treatment processes which use superheated 

steam,  such  as Wood Treatment Technology  (WTT)  in Denmark  and Firmolin  technology  in  the 

Netherlands, or a partial vacuum,  like Termovuoto  in  Italy  [7]. Overall process of heat  treatment 

could be defined as treatment in which wood is processed in high temperature in ranges between 100 

and 260  °C and  is  in  environment without  chemical  substance but  is  in  type of medium  (steam, 

nitrogen, oil, etc.) [6,8]. 

In  the  furniture  industry woodworking processes  such as milling are widespread, milling  is 

done by tools—cutters with a rotating motion, trajectory could be described as movement of cutting 

teeth  in  cycloid. Depending  on  requirements  and  quality milling  process  has  to  achieve  certain 

accuracy and  roughness of  the  surfaces  [9]. With  selection of  certain milling parameters one  can 

achieve  increased  surface  quality  of  woodworking  [10–12]  and  better  optimization  of  energy 

consumption  [13,14]. The  results of actual  research  show  that heat‐treated wood  can be used  for 

milling because it does not affect the grain size of chips formed in sawing and milling [15]. 
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Not only in manufacturing sphere, the using models created by machine learning algorithm of 

artificial intelligence is more common. Based on data acquired by experiments it is possible to create 

prediction model,  that predict  factors  that  influence  technical parameters  of manufacturing  [16]. 

Machine learning consists of computation of huge amount of acquired data for creation a prediction 

model which uses three basic types of machine learning for purpose of learning under supervision, 

unsupervised  learning  and  feedback  learning  [17].  For  predicting  process  parameters,  tools  for 

analysing measured data  and  subsequent model  creation  are used. These  tools  include machine 

learning as a subfield  in artificial  intelligence,  regression models, artificial neural networks, deep 

learning  [18,19],  decision  trees  and  support  vector machines  [20].  Common  algorithms  used  in 

unsupervised learning include hidden Markov models, k‐means, hierarchical clustering and models 

of the Gaussian mixture [20]. 

Currently there exist several types of approaches to machine learning for purpose of prediction 

of  important parameters  in machining process  [21]  such as  cutting  force,  surface  roughness  [22], 

cutting performance [23]. However, very few works are dedicated to the creation of models and the 

analysis of signals  in the processing of wood‐based materials. New approaches to processing and 

analysis of measurable signals can also bring new insights in this field. Authors in [24] demonstrated 

the dependence of vibration amplitude on selected parameters during milling on a CNC machining 

centre. Furthermore, the currently ongoing digital revolution (Industry 4.0) provides a powerful tool 

for monitoring and data collection of the production process and their remote online processing by 

using interconnected cybernetic‐physical systems by creating digital twins [25]. 

In the phase of data training from input database, there is an attempt to teach the algorithm to 

predict the output as close as is possible. During the training phase, iterations are implemented to 

improve the success of the algorithm, while the parameters are random or have initialization values, 

where the results are predicted based on the given parameters. The actual values are subsequently 

compared with  these  values  and  the  parameters  are  adjusted.  The  data  comparison  process  is 

repeated cyclically until the model is reached, where it is no longer possible to improve it, i.e., the 

accuracy of the prediction no  longer shows improvement. There are two types of problems  in the 

training process: underfitting and overfitting [17]. 

In practice, based on experiments and research, there are several machine learning algorithms. 

In general, there is no algorithm that would be the best or the worst, and each has its advantages and 

disadvantages, so it is not even possible to compare them. According to [20] among the most well‐

known machine learning algorithms are: 

 Linear Regression, 

 Support Vector Machine, 

 Decision Trees and Boosted Trees, 

 Random Forest, 

 K‐Nearest Neighbours, 

 Neural Network. 

The  article  deals  with  the  use  of  cutting  power  data  obtained  during  the  milling  of 

hydrothermally modified beech wood  for purpose of creation a mathematical models of machine 

learning. First, the measured data are processed and evaluated statistically to determine the statistical 

significance of the effects of individual technical‐technological milling parameters. 

Subsequently, machine learning models are parameterized and created in order to evaluate their 

suitability for a given type of data. The evaluation is carried out using the correlation coefficient of 

measured and predicted data. At the end there are recommendations and comparisons with other 

authors. 
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2. Materials and Methods 

2.1. Experimental Wood Material 

European beech wood (Fagus sylvatica L.) was used as a material for the experimental samples. 

First, the boards of the radial medial timber with a thickness of 25 mm were manipulated from the 

logs on a band saw. The moisture of boards was higher than 45 %, so they were dried to moisture of 

12 %  in a wood drying kiln KAD 1x6  (KATRES  s.r.o.)  in  the corporation Sundermann  spol. s.r.o 

(Banská Štiavnica, Slovakia). Experimental samples were machined by circular saw DMMA 35 (Rema 

s.a., Reszel,  Poland)  and wood  thickness  planer machine  F2T80  (TOS  Svitavy, Czech Republic). 

Twenty experimental samples were prepared for each steaming mode, their final dimensions were 

600 × 100 × 20 mm (h × w × t). Part of the wood cuts were not heat‐treated and remained in the native 

state. Other wood cuts were heat‐treated in the APDZ 240 autoclave at a higher saturated water steam 

pressure. The process  of heat‐treatment was  carried out  in  the  company  Sundermann  spol.  s.r.o 

(Banská Štiavnica Slovak republic) what is described in more detail in [3]. The course of samples heat 

treatment is shown in Figure 1 with parameters in Table 1. In this table tmax is maximal temperature 

of steaming process, tmin is minimal temperature, t4 is temperature of finished controlled cooling. 

 

Figure 1. Time course of heat‐treatment. 

Table 1. Modes of hydrothermal treatment of beech wood with saturated steam. 

Modes 

Temperature of saturated 

steam (°C) 
Steaming time in hours (hours) 

tmax  tmin  t4 
τ0—

heating 

τ1—

phase I 

τ2 —phase 

II 

Total 

time 

Steaming mode 

I. 
107.5  102.5  100 

  ≈1.5 

3.5  1.0  ≈ 6.0 

Steaming mode 

II. 
130.0  125.0  100  4.0  1.0  ≈ 6.5 

Steaming mode 

III. 
140.0  135.0  100  4.5  1.0  ≈ 7.0 

The density measurement of the prepared samples was carried out in accordance with STN 49 

0108. The density is shown in Table 2. 

Table 2. Density of experimental samples. 

Treatment  Density[kg.m‐3]  Change to native [%] 

Native  683.5  ‐ 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0200.v1

https://doi.org/10.20944/preprints202409.0200.v1


  4 

 

105 °C  671.8  ‐1.74% 

125 °C  691.9  1.21% 

135 °C  705.1  3.05% 

2.2. Milling Blades and Milling Head 

In the experimental milling the milling blades had dimensions of 45 x 35 x 6 mm  (h × w ×  t) 

(Figure 2). They were manufactured from tool steel 19 573 (STN 41 9573) and induction hardened on 

the surface. The milling blades were coated by the Physical Vapor Deposition (PVD) method. The 

coating of the blades was carried out  in the corporation WOOD—B s.r.o (Nové Zámky, Slovakia). 

The milling blades chemical composition is stated in Table 3. 

   

Figure 2. Changeable milling blade. 

Table 3. Chemical Composition of Used Milling Blades. 

Blade from the tool steel 19 573   

Co  Mn  Si  P  S  Cr  Mo  V 

1.4 ÷ 1.65  0.2 ÷ 0.45  0.2 ÷ 0.45  0.03  0.035  11 ÷ 12.5  0.6 ÷ 0.95  0.8 ÷ 1.20 

The milling blades were clamped in the milling heads FH 45 STATON manufactured in SZT—

machines (Turany, Slovakia) (Figure 3). Parameters of Milling heads were: diameter of cutter body: 

125 mm, cutter body thickness: 45 mm, number of blades: 2, maximum speed: 8000 rpm. 

 

Figure 3. Milling heads used. 

2.3. Milling, Feeding and Measuring Devices 

The milling process was performed by  the  lower  spindle milling machine ZDS‐2  (Liptovské 

strojárne,  Slovakia)  (Figure  4)  with  feeding  device  Frommia  ZMD  252/137  (Maschinenfabrik 

Ferdinand Fromm, Fellbach, Germany). Main parameters of machinery used  are  in Table  4. The 

cutting conditions were as follow: direction of cut: down‐cut, depth of cut: 1 mm, cutting speed: 20, 

40 a 60 m.s‐1, feed rate: 6, 10 a 15 m.min‐1, rake angle: 20°, 25° a 30°. Milling was carried out in the 

direction of the wood fibers 6 times at specific technological conditions. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0200.v1

https://doi.org/10.20944/preprints202409.0200.v1


  5 

 

 

Figure 4. Lower spindle milling machine FVS and feeder mechanism Frommia ZMD 252/137. 

Table 4. Technical Parameters of the milling machine FVS and feeding device Frommia. 

Lower spindle miller FVS  Feeder Frommia ZMD 252/137 

Input power (kW)  4  Feed Range (m.min‐1)  2,5;10;15;20;30 

Voltage System (V)  360/220  Engine (m.min‐1)  2800 

Year of Production  1976  Year of Production  1972 

The bottom spindle milling machine has as electric engine a three‐phase induction motor and it 

was  controlled  via  a  frequency  converter  UNIFREM  400  007M  (Vonsch  s.r.o.,  Brezno,  Slovak 

Republic) with technical parameters in Table 5. The frequency of the three‐phase supply voltage was 

then set based on the required spindle revolutions calculated from the values of the selected cutting 

speeds according to: 

𝑛 ൌ ௩೎∙ଵ଴଴଴

గ∙஽
,  (1)

where n are revolutions (min‐1), vc is cutting speed (m.min‐1), D is milling head diameter. 

Table 5. Technical Parameters of the Frequency Converter. 

Type of 

Frequency 

Converter 

M—Quadratic Load  M—Constant Load  Nominal 

Output 

Current of 

Converter 

InIN (A) 

Engine 

Power 

Pnom 

(kW) 

Nominal 

Output 

Current 

INQ (A) 

Engine 

Power 

Pnom 

(kW) 

Nominal 

Output 

Current 

INK (A) 

Max. 

Output 

Current 

INK60 (A) 

Max. 

Output 

Current 

INK2 (A) 

UNIFREM 

400 007M 
7.5  18.1  5.5  13.2  19.8  26.4  18.1 

The required revolutions were adjusted by measuring with a non‐contact digital tachometer DT‐

2234BL (Lutron Instruments, Taiwan). 

Frequency  converter  was  connected  to  computer  by  USB  serial  converter  (Figure  5).  The 

program LPM—View was used to record the values of electrical power (9 values per second) and 

then these values were saved into a table to another processing in STATISTICA version 12. Cutting 

power was  computed  as mathematical difference between  the mean power  consumption during 

cutting and idling: 

P = PC − PI,  (2)

where P is calculated cutting power (W), PC is power during milling (W), PI is power during idling 

(W). 
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Figure  5.  Connection  of  measuring  apparatus:  1—frequency  converter  and  sine  filter,  2—

asynchronous motor, 3—milling machine, 4—computer (laptop), L1, L2, L3—phase wires, U, V, W—

motor wires. 

Processed data of the experiment were tested if they are normally distributed. The results of the 

effects of factors were generated via one‐factorial analysis and multi‐factorial analysis. The F‐test was 

used for study the hypothesis if the means of measured data set, having the same standard deviation, 

are equal. The confidence level was 95 %. Furthermore, measured values were used for analysing 

their suitability for generating prediction models also using software STATISTICA. 

3. Results and Discussion 

Results of descriptive statistics of cutting power are presented  in Table 6. The cutting power 

values were calculated according to Equation (2), i.e., as the difference between the recorded power 

when the milling machine was running and idling. 

Table 6. Descriptive statistics of cutting power. 

Parameter  Value 
Average 

P (W) 

Standard 

deviation 

Standard 

error 
‐95 %  +95 % 

vf
 

(m
.m

in
‐

1 )
 

6  83.57  42.68  2.87  77.91  89.23 

10  89.98  50.48  3.68  82.72  97.24 

15  99.59  53.90  4.46  90.78  108.41 

γ
 (
°)
  20  54.93  25.95  2.00  50.98  58.89 

25  100.22  45.90  3.31  93.68  106.75 

30  110.03  50.84  3.64  102.85  117.21 

vc
 (
m
.s
‐1
) 

20  54.07  23.69  1.66  50.79  57.36 

40  95.24  36.27  2.74  89.83  100.65 

60  125.48  52.61  3.94  117.70  133.26 

T
 (
°C

) 

105  88.14  46.30  3.88  80.46  95.82 

125  91.14  49.77  4.20  82.83  99.46 

135  79.29  45.61  3.91  71.56  87.03 

N  101.21  51.47  4.39  92.52  109.91 

Aspects of statistical significance of the effects of technical‐technological parameters on cutting 

power  were  evaluated  by  ANOVA. Whereas  the  values  of  cutting  power  were  calculated  as 

difference between milling and  idling power consumption at every single milling. The results are 

shown in Figure 6. The greatest impact on cutting power determined by F‐test had cutting speed (F‐
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test: 127.04) followed by rake angle (69.59) and material (F‐test: 6.97). Feed speed had smallest impact 

on cutting input (F‐test: 2.32). Similar corelations also found authors in [26]. 

 

Figure 6. analysis of variance of selected independent variables. 

From the curves in Figure 6, the fact was confirmed that increasing the cutting speed increases 

the power required to remove the material with the cutting tool, because cutting power is a product 

of elementary cutting force and cutting speed [27]. The same conclusions are confirmed by both older 

and more recent results of milling wood and wood‐based materials, e.g., in [28–30] From the point of 

view of the material, the highest values of the cutting power are when milling natural wood and the 

lowest when milling wood  treated at  the highest  temperature. This dependence  is  related  to  the 

density of wood and chemical processes  that change  it by hydrothermal  treatment, which  is also 

confirmed for example in [31,32], although a slight decrease in density was detected at a temperature 

of 105 °C. 

Measured data were  tested  for probability of  similarity by Duncan’s post‐hoc  test. Here,  the 

effect of changing cutting speed, feed speed and rake angle came out as statistically significant. That 

means, that the probability of similarity of data sets in individual groups of variables was less than 5 

%. At the heat‐treatment temperature, the similarity probabilities of the data sets were also below 5 

%, except for the data at temperatures of 105 and 125, where this was 33.2 %. 

The creation and testing of mathematical models were realized using STATISTICA 12 software 

with the Data mining  tool. Before  testing  the data itself,  it was necessary to define the dependent 

(target)  and  independent  variables  (input)  for  the  most  suitable  mathematical  model.  The 

independent variable was the feed speed vf, the angular geometry of the tool γ, the cutting speed vc 

and the hydrothermal modification of the material T. The dependent variable was the cutting power 

P.  After  definition,  the  type  of  variables was  chosen,  either  categorical  or  continuous, what  is 

displayed in Table 7. In the next step, data training and calculation of the basic statistics of the model 

were performed, where all the data were inputted to the training. The data were evaluated as suitable 

for  creating a mathematical model. The  last  step was  the  selection of methods, where  the model 

methods were: Decision Tree C&RT (Classification and Regression Tree), Random Forests, Neural 

Networks, Support Trees and Support Vectors Machine (SVM). 
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Table 7. Role and type of model variables. 

Variable name  Role  Type  Observed min.  Observed max. 

vf (m.min‐1)  Input  Continuous  6  15 

γ (°)  Input  Continuous  20  30 

vc (m.s‐1)  Input  Continuous  20  60 

T (°C)  Input  Categorical     

P (W)  Target  Continuous  13.85  239.94 

In  Figures  7–11  the  linear  regression  of  individual methods  of  the model  are  shown with 

regression  lines  (solid  line) and 95 % confidence  interval (dotted  line). On the x‐axis there are the 

cutting power values calculated according to equation (1), which entered the model as output values; 

on  the y‐axis are the values predicted by  the model. Regression equation  is displayed above each 

graph. Figure 7 shows the C&RT (Classification and regression tree) that determines how the target 

values of variable can be predicted according to predictor variable. Figure 8 shows random forest 

model  that constructs a multitude of decision  trees at  training  time. Figure 9 shows boosted trees 

model that creates new trees according to errors of trees in previous training rounds. Figure 10 shows 

neural network model based on artificial neural network algorithms. Figure 11 shows support vector 

machine model  for  classification  and  regression  that  tries  to  find  optimal  hyperplane  in  an N‐

dimensional space separating the data points in different classes. 

 

Figure 7. Decision trees C&RT model. 
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Figure 8. Random forests model. 

 

Figure 9. Boosted trees model. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2024 doi:10.20944/preprints202409.0200.v1

https://doi.org/10.20944/preprints202409.0200.v1


  10 

 

 

Figure 10. Neural network model. 

 

Figure 11. Support vectors machine model. 

Based on  the  results of  the  linear  regression of  the  correlation matrix and  training  residuals 

(Table 8), it was possible to determine the most appropriate mathematical method for modelling a 

process of woodworking for this type of data. 

Table 8. Correlation matrix of regression models. 

Method  Training residual  Correlation coefficient (r2) 

C&RT  574.6  0.87076 

Random Forests  771.6  0.82316 

Boosted trees  843.45  0.80379 

Neural network  857.57  0.79962 

SVM  1284.69  0.77435 

From the Table 8, the highest correlation coefficient r2 was achieved with the C&RT decision tree 

method, where the value was 0.87. The correlation coefficient of the worst model changed by 12 % 
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compared to the best. However, it  is still possible to claim that all models can be characterized as 

models with high  interpretation  (correlation  from 0.7 to 0.9). Therefore, based on  the value of the 

correlation coefficient, it can be argued that the most appropriate method of the mathematical model 

is  the C&RT method. Authors  in  [33] used a quadratic model for modelling a process of medium 

density  fibreboard  helical  up‐milling.  Authors  in  [34]  used  response  surface  methodology  for 

prediction of cutting force during gypsum fiber composite milling. They achieved minimal relative 

errors between predicting results and confirmatory test, which meant that also their models had high 

predicting  accuracy. Authors  in  [35]  stated  that  power  consumption  can  be  used  for  predictive 

modelling of wood milling with correlation from 0.92 to 0.99. 

The results of the correlation matrix can also be derived from the results of the linear regression 

graph of the C&RT decision tree method, which is shown in Figure 7. The values of cutting power P 

obtained by research are placed on the horizontal axis of the graph and the predicted values by the 

model are placed on the vertical axis. It can be seen in the figure that the lowest deviation of the error 

rate was at lower values of the cutting power, that is at lower values of the cutting speed, where the 

values were closest to the regression line, which represents the values predicted by the model. It is 

also clear from the graph that increasing the cutting power directly increases the error rate, i.e., the 

deviation from the values generated by the mathematical model. 

The  last  step  to  create  a mathematical model was  the generation of  the decision  tree of  the 

material processing due  to  the consumption of electricity, which  is  the cutting power P with  the 

appropriate table of the tree structure. A part of the tree structure table is shown to explain individual 

abbreviations in the table (Table 9). 

Table 9. Example of model tree structure. 

ID 

Number 

of 

nodes 

Size of 

node 

Average 

of node 

(W) 

Variable 
Criteria of subgroup 

1 (next node) 

Criteria of 

subgroup 2 

(next node) 

1  2  556  90  vc (m.s‐1)    ≤ 29.56 (2)    > 29.56 (3) 

2  2  202  54  γ (°)    ≤ 22.5 (4)    > 22.5 (5) 

4  2  68  34  T (°C)  135, 125, 105 °C (6)  N (7) 

6  2  52  33  vf (m.min‐1)    ≤ 8 (8)    > 8 (9) 

8  2  21  36  T (°C)  135 °C (10)  105, 125 °C (11) 

10      7  31             

In the table of the decision tree, it is possible to see the ID, which is the designation of the node 

in the tree structure and at the same time the position of the node in the table. The number of nodes 

on the given subgroup is displayed for the identifiers of individual nodes. For example, the first level 

of the decision tree has two nodes. The size of the node N defines the number of records, so in this 

case for the first level it is equal to 556 measurements, which remain for all subgroups of nodes of the 

decision tree. The value of the size of the node decreases with individual branches and with the nodes 

in the lowest subgroups. The average of a node is the average value of predicted cutting power at the 

given level of the decision tree. The variables defined in the next column are the cutting speed vc, the 

face angle γ, the hydrothermal modification of the material T and the feed speed vf. The criteria of 

subgroups 1 and 2 are the values calculated and generated by the program during the creation of a 

mathematical model  for  achieving  optimal  values  of  cutting  power  in  the  context  of machining 

parameters. The number in parentheses is the number of the next node when a particular criterion is 

valid. The structure of the model assembled in this way calculates predicted value of cutting power 

according to input parameter of milling. 

4. Conclusions 

The  first  goal  of  this  article was  to  determine  the  influence  of  technical  and  technological 

parameters on the cutting power when milling heat‐treated beech wood. Evaluation of analysis of 

variance showed that the highest impact on cutting power determined by F‐test had cutting speed 
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(F‐test:  127.04)  followed  by  rake  angle  (F‐test:  69.59)  and material  (F‐test:  6.97).  Feed  speed  had 

smallest impact on cutting input (F‐test: 2.32). 

The second goal was  to determine  the appropriateness of creating a  regressive model of  the 

dependence of cutting power on independent technical and technological parameters during milling 

of heat‐treated beech wood. 

During the creation of the mathematical model in the STATISTICA 12 software, graphs of the 

basic methods of mathematical modelling were created, as well as  the determination of  the most 

suitable method, which was  the C&RT decision  tree method, where  the value of  the  correlation 

coefficient r2 was at the level of 0.87. However, the correlation coefficient of other models was also 

high: Random Forests (0.82), Boosted trees (0.80), Neural network (0.8), SVM (0.77). 

For a better understanding of the creation of the mathematical model, the overall table of the 

tree structure was explained with the meaning of individual nodes. The creation of a mathematical 

model  in  the  STATISTICA  12  program demonstrated  the  appropriateness  of using  the  obtained 

research data for the mathematical modelling at the level of 87 %, which represents a 13 % difference 

between the values obtained from the research and the prediction values of the mathematical model. 

Based on the interpretation of the correlation coefficient r2, the result of all models can be classified 

as a high interpretation of the model’s prediction, as the suitability ranged from 0.70 to 0.90, which is 

presented as a high interpretation. 

The comprehensive conclusion of this research is that consumption measurement is suitable for 

creating  prediction  models  for  machining  not  only  homogeneous  but  also  non‐homogeneous 

materials such as wood. However, these require a larger amount of experimentally obtained data for 

adequate training of prediction models. The research results will be further developed for the creation 

of dynamic models suitable for adaptive control of the machining process. 
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