Preprint
Article

Machine Learning Discoveries of TNF-X Synergy in ETC-1922159 Treated Colorectal Cancer Cells

Altmetrics

Downloads

52

Views

84

Comments

0

This version is not peer-reviewed

Submitted:

05 September 2024

Posted:

05 September 2024

You are already at the latest version

Alerts
Abstract
Often, in biology, we are faced with the problem of exploring relevant unknown biological hypotheses in the form of myriads of combinations of factors/genes/proteins that might be affecting the pathway under certain conditions. In colorectal cancer (CRC) cells treated with ETC-1922159, many genes were found up and down regu- lated, individually. A recently developed search engine ranked combinations of Tumor necrosis factor (TNF)-X (X, a particular gene/protein) at 2nd order level after drug administration. These rankings reveal which TNF-X combinations might be working synergistically in CRC. If found true, oncologists can further test the combination of interest in wet lab and determine the mechanism of functioning between the TNF and X. In this research work, we cover combinations of TNF with Wnt, mucin (MUC), six transmembrane epithelial antigen of prostate 4 (STEAP4), ubiquitin conjugating enzyme E2 (UBE2) family and BCL family.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematical and Computational Biology

1. Introduction

In the unpublished preprint Sinha [1], a frame work of a search engine was developed which can rank combinations of factors (genes/proteins) in a signaling pathway. Such combinations are of import due to the vast search space in which they exist and the difficulty to find them. The search engine facilitates in prioritizing the combinations as ranked biological hypotheses which the biologists might want to test in wet lab, to know if a synergistic combination is prevalent in a signaling pathway, in a direct or indirect manner. Interested readers are advised to go through unpublished preprints Sinha [1] and Sinha [2] for details regarding the search engine and the discoveries mentioned in there.

2. Materials and Methods

2.1. Combinatorial Search Problem and a Possible Solution

The issue of combinatorial search problem and a possible solution has been addressed in Sinha [3] and Sinha [2]. The details of the methodology of this manuscript have been explained in great detail in Sinha [3] & its application in Sinha [2]. Readers are requested to go through the same for gaining deeper insight into the working of the pipeline and its use of published data set generated after administration of ETC-1922159. In order to understand the significance of the solution proposed to the problem of combinatorial search that the biologists face in revealing unknown biological search problem, these works are of importance.
Briefly, from Sinha [2], the pipleline works by computing sensitivity indicies for each of these unique combinations and then vectorising these indices to connote and form discriminative feature vector for each combination. Since each combination is unique, the training and the test data are same. In the training data, the combinations are arranged and ranks from 1 to n are assigned. The ranking algorithm then learns the patterns from these combinations/sensitivity index vectors. Next the learned model is used to rank the test data by generating the ranking score for each of the unique combination. Sorting these shuffled scores of test data leads to prioritization of the combinations. Joachims [4] show an example of applying learned model to training data (same as the test data) in https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html. Note that these combinations are now ranked and give the biologists a chance to narrow down their focus on crucial biological hypotheses in the form of combinations which the biologists might want to test. Analogous to the webpage search engine, where the click of a button for a few key-words leads to a ranked list of web links, the pipeline uses sensitivity indices as an indicator of the strength of the influence of factors or their combinations, as a criteria to rank the combinations.

3. Results & Discussion

3.1. Tumor Necrosis Factor Related Synergies

3.1.1. TNF - WNT Cross Family Analysis

Brooks et al. [5] observed TNF- α induced alterations in the Wnt signaling cascade as a potential mechanism for obesity-associated colorectal tumorigenesis. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis have been studies in Adami et al. [6]. A complex interaction between Wnt signaling and TNF- α in nucleus pulposus cells has been studied by Hiyama et al. [7]. Ma and Hottiger [8] study the crosstalk between Wnt/ β -catenin and NF- κ B signaling pathway during inflammation. Roubert et al. [9] study the influence of tumor necrosis factor- α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women. Jang et al. [10] observe that WNT/ β -catenin pathway modulates the TNF- α -induced inflammatory response in bronchial epithelial cells. These studies suggest already existing synergistic roles of WNTs and TNFs. In CRC cells affected with ETC-1922159, members of TNF and WNT family were found to be up regulated. Our search engine alloted high numerical valued ranks to some of the combinations between WNTs and TNFs. Table 1 shows rankings of TNF w.r.t to WNTs on the left half and vice verse on the right half.
On the left half, we found TNF-RSF1A/RSF10A/RSF10B/SF15 to be up regulated w.r.t WNT2B. These were reflected in rankings of 2170 (laplace) and 2127 (linear) for TNFRSF1A - WNT2B; 1861 (laplace), 2367 (linear) and 1800 (rbf) for TNFRSF10A - WNT2B; 2020 (laplace) and 1881 (rbf) for TNFRSF10B - WNT2B and 2476 (laplace) and 2073 (rbf) for TNFSF15 - WNT2B. TNF-RSF10A/RSF10D/RSF12A/SF10 were found to be up regulated w.r.t WNT4. These were reflected in rankings of 2509 (laplace) and 2460 (linear) for TNFRSF10A - WNT4; 2233 (linear) and 2126 (rbf) for TNFRSF10D - WNT4; 2294 (linear), 1775 (linear) and 2384 (rbf) for TNFRSF12A - WNT4 and 2451 (linear) and 1782 (rbf) for TNFSF10 - WNT4. TNF-RSF12A/SF10 were found to be up regulated w.r.t WNT7B. These were reflected in rankings of 2100 (laplace) and 1983 (rbf) for TNFRSF12A - WNT7B and 2462 (laplace) and 2179 (rbf) for TNFSF10 - WNT7B. TNFRSF21 were found to be up regulated w.r.t WNT9A. These were reflected in rankings of 1805 (laplace) and 1999 (linear) for TNFRSF21 - WNT9A.
On the left half, we found WNT2B to be up regulated w.r.t TNF-RSF10B/RSF10D/RSF14. These were reflected in rankings of 1797 (laplace) and 2056 (rbf) for TNFRSF10B - WNT2B; 1989 (linear) and 2130 (rbf) for TNFRSF10D - WNT2B and 1932 (laplace) and 2399 (rbf) for TNFRSF14 - WNT2B. WNT4 was upregulated w.r.t TNF-AIP3/RSF10B. These are refliected in rankings of 2336 (laplace), 2511 (linear) and 2342 (rbf) for TNFAIP3 - WNT4 and 2105 (linear) and 2264 (rbf) for TNFRSF10B - WNT4. WNT7B was upregulated w.r.t TNF, TNF-RSF1A/RSF14. These are reflected in rankings of 2511 (linear) and 2210 (rbf) for TNF - WNT7B; 2084 (laplace), 1975 (linear) and 2154 (rbf) for TNFRSF1A - WNT7B and 2079 (laplace) and 1928 (rbf) for TNFRSF14 - WNT7B. WNT9A was upregulated w.r.t TNF-AIP2/AIP3/RSF10A/RSF12A/SF10. These are reflected in rankings of 2125 (laplace) and 2437 (linear) for TNFAIP2 - WNT9A; 1764 (laplace) and 2460 (linear) for TNFAIP3 - WNT9A; 2259 (laplace) and 2413 (linear) for TNFRSF10A - WNT9A; 2345 (laplace) and 2466 (rbf) for TNFRSF12A - WNT9A and 2054 (laplace) and 2338 (linear) for TNFSF10 - WNT9A.
Table 2 shows the derived influences which can be represented graphically, with the following influences - • TNF w.r.t WNT with TNF-RSF1A/RSF10A/RSF10B/SF15 < − WNT2B; TNF-RSF10A/RSF10D/RSF12A/SF10 < − WNT4; TNF-RSF12A/SF10 < − WNT7B and TNF-RSF21 < − WNT9A; and • WNT w.r.t TNF with TNF-RSF10B/RSF10D/RSF14 − > WNT2B; TNF-AIP3/RSF10B − > WNT4; TNF, TNF-RSF1A/RSF14 − > WNT7B; and TNF-AIP2/AIP3/RSF10A/RSF12A/SF10 − > WNT9A.

3.1.2. MUC - TNF Cross Family Analysis

In a recent development in Sheng et al. [11] MUC13 promoted tumor necrosis factro (TNF)-induced NFkB activation by interacting with TNFR1 and the E3 ligase, cIAP1, to increase ubiquitination of RIPK1. Dharmani et al. [12] show that TNF- α and MUC2 (Mucin 2) play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. TNF- α is also shown to induce mucin hypersecretion and MUC2 gene expression by human airway epithelial cells by Levine et al. [13]. Also, inhibition of TNF- α induced MUC5AC expression and production by wogonin through the inactivation of NF- κ B signaling in airway epithelial cells, as shown by Sikder et al. [14]. Similarly, neutrophil elastase induces MUC5AC production in human airway epithelial cells via a cascade involving protein kinase-C, reactive oxygen species, and TNF- α - converting enzyme, as shown by Shao and Nadel [15]. TNF- α or transforming growth factor- α stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein (Lora et al. [16]). In earlier experiments by Fischer et al. [17], TNF- α was found to stimulate mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. Similar earlier experiments by Lin et al. [18], induction of mucin gene expression in middle ear of rats by TNF- α was the potential cause for mucoid otitis media. Effects of TNF- α and IL-1 β on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells have been stuided by Yoon et al. [19]. Also, Mercogliano et al. [20] show that TNF- α induced MUC4 expression elicits trastuzumab resistance in HER2- + i v e breast cancer. These findings suggest deep synergy between Mucin family and TNF family members. However, not all synergies might have been explored till now. A set of family members of MUC and TNFs were found to be UP regulated after ETC-1922159 treatment in CRC cells.
Table 2 and Table 3 show the additional range of TNFs and MUCs that might be engaged in CRC through the NFkB pathway, in the light of the recent findings of MUC13 and TNFRSF1A in Sheng et al. [11]. Table 2 shows the rankings of the TNF family w.r.t to MUCIN family and Table 3 shows the rankings of the MUCIN family w.r.t to TNF family. Followed by this are the derived influences from the majority votings of the rankings in the foregoing tables, which are depicted in Table 4.
Ranking TNF family w.r.t MUC family
Ranking of TNF family w.r.t MUC1 Ranking of TNF family w.r.t MUC3A
laplace linear rbf laplace linear rbf
MUC1 - TNF 112 72 88 MUC3A - TNF 1353 1659 1479
MUC1 - TNFAIP1 1193 1603 997 MUC3A - TNFAIP1 2178 1209 1347
MUC1 - TNFAIP2 716 405 2340 MUC3A - TNFAIP2 1075 1614 1158
MUC1 - TNFAIP3 2115 1636 1882 MUC3A - TNFAIP3 962 1020 2491
MUC1 - TNFRSF1A 1380 422 1390 MUC3A - TNFRSF1A 461 1708 189
MUC1 - TNFRSF10A 1009 2180 1095 MUC3A - TNFRSF10A 2237 1910 335
MUC1 - TNFRSF10B 1923 732 88 MUC3A - TNFRSF10B 450 1443 2040
MUC1 - TNFRSF10D 2303 2154 376 MUC3A - TNFRSF10D 1678 2049 102
MUC1 - TNFRSF12A 2019 2009 1700 MUC3A - TNFRSF12A 2349 1315 382
MUC1 - TNFRSF14 1955 1899 1429 MUC3A - TNFRSF14 956 1442 1953
MUC1 - TNFRSF21 337 477 968 MUC3A - TNFRSF21 1297 1492 1959
MUC1 - TNFSF10 1111 1592 1198 MUC3A - TNFSF10 891 257 798
MUC1 - TNFSF15 936 986 2391 MUC3A - TNFSF15 2285 795 1164
Ranking of TNF family w.r.t MUC4 Ranking of TNF family w.r.t MUC12
laplace linear rbf laplace linear rbf
MUC4 - TNF 1896 231 1355 MUC12 - TNF 1862 102 135
MUC4 - TNFAIP1 864 397 987 MUC12 - TNFAIP1 1386 479 942
MUC4 - TNFAIP2 73 1011 1087 MUC12 - TNFAIP2 1056 303 1587
MUC4 - TNFAIP3 1159 1751 179 MUC12 - TNFAIP3 2493 1259 1330
MUC4 - TNFRSF1A 179 71 16 MUC12 - TNFRSF1A 1709 1440 837
MUC4 - TNFRSF10A 1668 1892 1652 MUC12 - TNFRSF10A 598 531 363
MUC4 - TNFRSF10B 2024 1396 331 MUC12 - TNFRSF10B 409 1572 1297
MUC4 - TNFRSF10D 2503 2403 2356 MUC12 - TNFRSF10D 30 102 149
MUC4 - TNFRSF12A 1684 700 745 MUC12 - TNFRSF12A 298 882 153
MUC4 - TNFRSF14 1675 2029 1146 MUC12 - TNFRSF14 1749 2237 135
MUC4 - TNFRSF21 647 326 323 MUC12 - TNFRSF21 1795 607 2438
MUC4 - TNFSF10 936 2134 1957 MUC12 - TNFSF10 801 1795 2435
MUC4 - TNFSF15 1440 1180 1627 MUC12 - TNFSF15 1741 889 1098
Considering Table 2, TNF family w.r.t MUC1, we find TNFAIP3, TNFRSF-10D/12A/14 to be highly up regulated. These are reflected in the rankings of 2115 (laplace) and 1882 (rbf) for MUC1 - TNFAIP3; 2303 (laplace) and 2154 (linear) for MUC1 - TNFRSF10D; 2019 (laplace) and 2009 (linear) for MUC1 - TNFRSF12A; and 1955 (laplace) and 1899 (linear) for MUC1 - TNFRSF14. TNF family w.r.t MUC3A, we find TNFRSF-10A/10D to be highly up regulated. These are reflected in the rankings of 2237 (laplace) and 1910 (linear) for MUC3 - TNFRSF10A; 1678 (laplace) and 2049 (linear) for MUC3 - TNFRSF10D. TNF family w.r.t MUC4 we find TNFRSF10D/TNFSF10 to be highly up regulated. These are reflected in the rankings of 2503 (laplace), 2403 (linear) and 2356 (rbf) for MUC4 - TNFRSF10D and 2134 (laplace) and 1957 (linear) for MUC4 - TNFSF10. TNF family w.r.t MUC12 we find TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 1795 (laplace) and 2438 (linear) for MUC12 - TNFRSF21 and 1795 (linear) 2435 (rbf) for MUC12 - TNFSF10. TNF family w.rt MUC13 we find TNFRSF10A/TNFRSF10D to be highly up regulated. These are reflected in the rankings of 2500 (laplace) and 1844 (rbf) for MUC13 - TNFRSF10A and 2263 (linear) and 2294 (rbf) for MUC13 - TNFRSF10D. TNF family w.r.t MUC17 we find TNFRSF-10A/10D/12A to be highly up regulated. These are reflected in the rankings of 2269 (laplace) 2364 (linear) and 2005 (rbf) for MUC17 - TNFRSF10A; 1798 (laplace) and 2302 (rbf) for MUC17 - TNFRSF10D and 2041 (laplace) and 2303 (linear) for MUC17 - TNFRSF12A. TNF family w.r.t MUC20 we find TNFAIP3/TNFSF15 to be highly up regulated. These are reflected in the rankings of 2205 (laplace) and 2136 (rbf) for MUC20 - TNFAIP3 and 2493 (laplace) and 2108 (rbf) for MUC20 - TNFSF15.
Considering Table 3, MUC1 w.r.t TNF family, we find TNFRSF1A to be highly up regulated. These are reflected in the rankings of 2344 (linear) and 2312 (rbf) for MUC1 - TNFRSF1A. MUC4 w.r.t TNF family, we find TNFAIP2 to be highly up regulated. These are reflected in the rankings of 1875 (laplace) and 1792 (linear) for MUC4 - TNFAIP2. MUC12 w.r.t TNF family we find TNFAIP1/TNFAIP2/TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 2321 (laplace) and 2457 (rbf) for MUC12 - TNFAIP1; 1829 (linear) and 1913 (rbf) for MUC12 - TNFAIP2; 1975 (linear) and 1769 (rbf) for MUC12 - TNFRSF21; 2135 (linear) and 2255 (rbf) for MUC12 - TNFSF10. MUC12 w.r.t TNF family we find TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 1795 (laplace) and 2438 (linear) for MUC12 - TNFRSF21 and 1795 (linear) and 2435 (rbf) for MUC12 - TNFSF10. MUC20 w.r.t TNF family we find TNFAIP1/TNFAIP2 to be highly up regulated. These are reflected in the rankings of 2266 (laplace) and 2057 (rbf) for MUC20 - TNFAIP1 and 2404 (linear) and 2157 (rbf) for MUC20 - TNFAIP2.
One can also interpret the results of the Table 4 graphically, with the following influences - • TNF family w.r.t MUC family with MUC1 − > TNFAIP3/TNFRSF-10D/12A/14; MUC3A − > TNFRSF-10A/10D; MUC4 − > TNFRSF10D/TNFSF10; MUC12 − > TNFRSF21/TNFSF10; MUC13 − > TNFRSF-10A/10D; MUC17 − > TNFRSF-10A/10D/12A; MUC20 − > TNFAIP3/TNFSF15 and • MUC family w.r.t TNF family with MUC1 < − TNFRSF1A; MUC4 < − TNFAIP2; MUC12 < − TNFAIP1/TNFAIP2/TNFRSF21/TNFSF10 and MUC13 < − TNFAIP1/TNFAIP2.

3.1.3. STEAP4 - TNF Cross Family Analysis

STEAP4 or six transmembrane epithelial antigen of prostate 4, resides in the golgi apparatus and functions as a metalloreductase with the capacity to reduce insoluble ferric ions F e 3 + to soluble ferrous ions F e 2 + . Emerging role of STEAP4 in metabolism and homeostasis of cellular iron and copper in metabolism and homeostasis of cellular iron and copper has been studied in Scarl et al. [21]. STEAP4 was first identified as a novel gene induced by TNF- α during adipose differentiation by Moldes et al. [22]. Zhang et al. [23] observe that STEAP4 was up-regulated by LPS at a very early time point, consistent with reports that STEAP4 could be up-regulated by tumor necrosis factor-alpha. Tanaka et al. [24] show that STEAP4 is expressed on monocytes/neutrophils, and is regulated by TNF antagonist in patients with rheumatoid arthritis. Also, Tanaka et al. [25] show STEAP4 is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Gauss et al. [26] observe that the STEAP4 expression in adipocytes is normally induced by nutritional stress, leptin, and proinflammatory cytokines, including TNF- α , interleukin-1 β , and interleukin-6. ZHANG et al. [27] show that the downregulation of STEAP4, a highly-expressed TNF- α -inducible gene in adipose tissue, is associated with obesity in humans 1. Liang et al. [28] show that STEAP comprises a novel inflammatory nexus in patients with pustular skin disorders. They show that in primary human keratinocytes STEAP4 expression was induced by TNF- α , IL-1 β , IL-36 α , IL-36 γ , IL-17A, and IL-17A combined with TNF- α or IL-22. Gomes et al. [29] further show the TNF STEAP interactions while studying the structure of STEAP proteins and its applications to cancer therapy. Such interactions point to the existing synergy between STEAP4 and TNF- α . In CRC cells treated with ETC-1922159, both TNF members and STEAP4 were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 6 shows the rankings of each with the other. On the left we found, TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 to be up regulated w.r.t STEAP4. These are reflected in rankings of 1914 (linear) and 2130 (rbf) for TNF - STEAP4; 2189 (laplace) and 1910 (rbf) for TNFAIP1 - STEAP4; 2002 (linear) and 1840 (rbf) for TNFAIP2 - STEAP4; 1882 (linear) and 2197 (rbf) for TNFAIP3 - STEAP4; 2210 (laplace), 1717 (linear) and 1827 (rbf) for TNFRSF10B - STEAP4; 2192 (linear) and 1797 (rbf) for TNFRSF10D - STEAP4; and 2083 (laplace) and 1773 (rbf) for TNFSF10 - STEAP4. On the right we found, STEAP4 to be up regulated w.r.t TNF-RSF10A/RSF10D/RSF14. These are reflected in rankings of 1796 (linear) and 2026 (rbf) for TNFRSF10A - STEAP4; 2339 (linear) and 2405 (rbf) for TNFRSF10D - STEAP4; and 1956 (linear) and 2256 (rbf) for TNFRSF14 - STEAP4.
Table 5. 2nd order combinatorial hypotheses between TNF and STEAP4 family.
Table 5. 2nd order combinatorial hypotheses between TNF and STEAP4 family.
Ranking TNF family vs STEAP4 family
Ranking of TNF family w.r.t STEAP4 Ranking of STEAP4 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - STEAP4 1579 1914 2130 TNF - STEAP4 1116 1482 999
TNFAIP1 - STEAP4 2189 1293 1910 TNFAIP1 - STEAP4 691 611 1105
TNFAIP2 - STEAP4 1172 2002 1840 TNFAIP2 - STEAP4 228 1747 2463
TNFAIP3 - STEAP4 1458 1882 2197 TNFAIP3 - STEAP4 159 727 219
TNFRSF1A - STEAP4 803 75 1086 TNFRSF1A - STEAP4 1483 408 1966
TNFRSF10A - STEAP4 239 1949 339 TNFRSF10A - STEAP4 1512 1796 2026
TNFRSF10B - STEAP4 2210 1717 1827 TNFRSF10B - STEAP4 565 571 248
TNFRSF10D - STEAP4 510 2192 1797 TNFRSF10D - STEAP4 1018 2339 2405
TNFRSF12A - STEAP4 757 338 1497 TNFRSF12A - STEAP4 1495 1430 581
TNFRSF14 - STEAP4 1323 1512 792 TNFRSF14 - STEAP4 1363 1956 2256
TNFRSF21 - STEAP4 1643 1920 165 TNFRSF21 - STEAP4 1646 802 160
TNFSF10 - STEAP4 2083 544 1773 TNFSF10 - STEAP4 845 675 2468
TNFSF15 - STEAP4 631 1296 1020 TNFSF15 - STEAP4 1558 600 784
Table 6. 2nd order combinatorial hypotheses between STEAP4 and TNF
One can also interpret the results of the Table 4 graphically, with the following influences - • TNF w.r.t STEAP4 with TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 < − STEAP4 and • STEAP4 w.r.t TNF with TNF-RSF10A/RSF10D/RSF14 − > STEAP4.
Unexplored combinatorial hypotheses
TNF w.r.t STEAP4
TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 STEAP4
STEAP4 w.r.t TNF
TNF-RSF10A/RSF10D/RSF14 STEAP4

3.1.4. TNF - UBE2 Cross Family Analysis

Fu et al. [30] show that the ubiquitin conjugating enzyme UBE2L3 regulates TNF α -induced linear ubiquitination. They show by western blotting of HOIL-1L immunoprecipitates demonstrates that endogenous HOIL-1L interacts with endogenous UBE2L3 in vivo and these associations are stable following TNF α stimulation. Through various hypotheses, the authors show the interaction of UBE2L3 with TNF. In conclusion, the authours state that increased UBE2L3 expression enhances NF- κ B activation, and increased levels of NF- κ B activity are linked to inflammatory and autoimmune diseases. Li et al. [31] show that TNF- α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UBCH2/E220k. Shembade et al. [32] show that IL-1 β or TNF induce late depletion of UBE2D3 (UBCH5C) and UBE2N (UBC13) in mouse embryonic fibroblasts. These studies show a definite synergy between UBE family and TNFs. In CRC cells treated with ETC-1922159, both TNF members and UBE2 were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 7 and Table 8 shows the rankings of each with the other.
On the left side is the ranking of UBE2 family w.r.t TNF family. We found UBE2A to be up regulated w.r.t TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/ RSF21/SF15. These are reflected in rankings of 2357 (linear) and 2455 (rbf) for TNFAIP1 - UBE2A; 2457 (laplace) and 2020 (rbf) for TNFRSF1A - UBE2A; 2164 (laplace) and 2126 (linear) for TNFRSF10A - UBE2A; 2284 (laplace) and 1901 (linear) for TNFRSF10B - UBE2A; 1989 (laplace) and 2291 (linear) for TNFRSF10D - UBE2A; 2484 (laplace) and 2427 (linear) for TNFRSF12A - UBE2A; 2301 (laplace), 2180 (linear) and 2323 (rbf) for TNFRSF14 - UBE2A; 2419 (laplace) and 2035 (linear) for TNFRSF21 - UBE2A; 1768 (laplace) and 1942 (rbf) for TNFSF15 - UBE2A. UBE2B to be up regulated w.r.t TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21. These are reflected in rankings of 2132 (laplace) and 2184 (rbf) for TNFRSF10A - UBE2B; 2399 (laplace) and 2000 (linear) for TNFRSF10B - UBE2B; 1959 (laplace) and 2232 (rbf) for TNFRSF10D - UBE2B; 2297 (linear) and 2373 (rbf) for TNFRSF14 - UBE2B; and 1986 (laplace) and 1754 (rbf) for TNFRSF21 - UBE2B. UBE2F to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15. These are reflected in rankings of 2162 (laplace), 2484 (linear) and 2500 (rbf) for TNF - UBE2F; 1732 (laplace), 2239 (linear) and 2003 (rbf) for TNFAIP1 - UBE2F; 1980 (laplace), 2255 (linear) and 1872 (rbf) for TNFRSF1A - UBE2F; 2085 (laplace), 2218 (linear) for TNFRSF10A - UBE2F; 2432 (laplace), 2011 (linear) and 2144 (rbf) for TNFRSF10B - UBE2F; 2458 (laplace) and 2336 (linear) for TNFRSF12A - UBE2F; 1910 (laplace) and 2353 (rbf) for TNFSF15 - UBE2F; UBE2H to be up regulated w.r.t TNF-RSF12A/RSF14/RSF21. These are reflected in rankings of 1950 (laplace), 1793 (linear) and 1851 (rbf) for TNFRSF12A - UBE2H; 2297 (laplace) and 2385 (rbf) for TNFRSF14 - UBE2H; and 2022 (laplace) and 2231 (rbf) for TNFRSF21 - UBE2H; UBE2J1 to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15. These are reflected in rankings of 2308 (linear) and 2336 (rbf) for TNF - UBE2J1; 2292 (linear) and 1756 (rbf) for TNFAIP1 - UBE2J1; 1992 (laplace) and 2268 (rbf) for TNFRSF1A - UBE2J1; 1893 (laplace), 2090 (linear) and 2363 (rbf) for TNFRSF10A - UBE2J1; 1913 (laplace) and 1838 (rbf) for TNFRSF10B - UBE2J1; 2401 (laplace) and 1901 (linear) for TNFRSF12A - UBE2J1; 2277 (laplace), 2347 (linear) and 1943 (rbf) for TNFRSF14 - UBE2J1; 1976 (laplace), 2333 (linear) for TNFRSF21 - UBE2J1; and 2021 (laplace), 2013 (linear) and 2515 (rbf) for TNFSF15 - UBE2J1; UBE2Z to be up regulated w.r.t TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15. These are reflected in rankings of 2264 (laplace), 2505 (linear) and 2479 (rbf) for TNF - UBE2Z; 2055 (linear) and 2332 (rbf) for TNFAIP1 - UBE2Z; 2404 (laplace) and 2139 (rbf) for TNFAIP2 - UBE2Z; 2473 (laplace), 2194 (linear) and 2405 (rbf) for TNFRSF1A - UBE2Z; 2234 (laplace) and 2152 (linear) for TNFRSF10A - UBE2Z; 2264 (laplace), 2360 (linear) and 2278 (rbf) for TNFRSF10D - UBE2Z; 2207 (laplace) and 2149 (linear) for TNFRSF12A - UBE2Z; 2374 (linear) and 2235 (rbf) for TNFSF10 - UBE2Z; and 2081 (laplace) and 2102 (rbf) for TNFSF15 - UBE2Z;
One the right side is the ranking of TNF family w.r.t UBE2 family. We found TNF-RSF10A to be up regulated w.r.t UBE2A. This is reflected in rankings of 2116 (laplace) and 2376 (rbf) for TNFRSF10A - UBE2A. TNF-RSF10A/RSF12A/SF10/SF15 were up regulated w.r.t UBE2B. These are reflected in rankings of 2318 (linear) and 2265 (linear) for TNFRSF10A - UBE2B; 1940 (laplace); 1868 (linear) and 1758 (linear) for TNFRSF12A - UBE2B; 2208 (laplace); 2326 (linear) and 2470 (linear) for TNFSF10 - UBE2B; and 2055 (laplace) and 1964 (linear) for TNFSF15 - UBE2B. TNF-RSF14 were up regulated w.r.t UBE2F. These is reflected in rankings of 2324 (laplace) and 1924 (linear) for TNF-RSF14 - UBE2F. TNF-SF15 were up regulated w.r.t UBE2H. These is reflected in rankings of 2416 (linear) and 1960 (rbf) for TNF-SF15 - UBE2H. TNF-RSF10A/RSF10D/RSF14 were up regulated w.r.t UBE2J1. These are reflected in rankings of 2379 (laplace), 2213 (linear) and 2135 (rbf) for TNFRSF10A - UBE2J1; 2393 (laplace) and 2102 (rbf) for TNFRSF10D - UBE2J1; and 2133 (linear) and 2313 (rbf) for TNFRSF14 - UBE2J1. TNF-RSF10A/RSF14 were up regulated w.r.t UBE2Z. These are reflected in rankings of 2410 (laplace) and 2103 (laplace) for TNFRSF10A - UBE2Z and 1779 (laplace) and 2100 (rbf) for TNFRSF14 - UBE2Z.
One can also interpret the results of the Table 9 graphically, with the following influences - • UBE2 w.r.t TNF with TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/ RSF21/SF15 − > UBE2A; TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21 − > UBE2B; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15 − > UBE2F; TNF-RSF12A/RSF14/RSF21 − > UBE2H; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15 − > UBE2J1; and TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15 − > UBE2Z • TNF w.r.t UBE2 with TNF-RSF10A < − UBE2A; TNF-RSF10A/RSF12A/SF10/SF15 < − UBE2B; TNF-RSF14 < − UBE2F; TNF-SF15 < − UBE2H; TNF-RSF10A/RSF10D/RSF14 < − UBE2J1; TNF-RSF10A/RSF14 < − UBE2Z.

3.1.5. TNF - BCL Cross Family Analysis

Tamatani et al. [33] observe that tumor necrosis factor induces BCL-2 and BCL-x expression through NF κ B activation in primary hippocampal neurons. The role of Bcl-2 Expression in EGF Inhibition of TNF- α /IFN- γ -induced Villous Trophoblast Apoptosis has been studied by Ho et al. [34]. Genestier et al. [35] show that tumor necrosis factor- α up-regulates BCL-2 expression and decreases calcium-dependent apoptosis in human B cell lines. In breast carcinoma cells, Bcl-x and Bcl-2 inhibit TNF and FAS-induced apoptosis and activation of phospholipase A2 (Jäättelä et al. [36]). Kim et al. [37] show that TNF- α -induced ROS production triggering apoptosis is directly linked to Romo1 and BCL-XL. Kuwata et al. [38] showed that IL-10-inducible BCL-3 negatively regulates LPS-induced TNF- α production in macrophages. Esche et al. [39] showed that tumor necrosis factor- α -promoted expression of BCL-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. These studies show a definite synergy between BCL family and TNFs. In CRC cells treated with ETC-1922159, both TNF members and BCL were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 10 and Table 11 show the rankings of each with the other.
On the left side is the ranking of BCL family w.r.t TNF family. We found BCL2L2 to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/ SF10/SF15. These are reflected in rankings of 1822 (laplace), 1926 (linear) and 2359 (rbf) for TNF - BCL2L2; 2266 (laplace), 2478 (linear) and 1847 (rbf) for TNFAIP1 - BCL2L2; 2311 (linear) and 1920 (rbf) for TNFRSF1A - BCL2L2; 2478 (laplace) and 2239 (rbf) for TNFRSF10B - BCL2L2; 2278 (linear) and 2237 (rbf) for TNFRSF10D - BCL2L2; 1945 (laplace) and 2484 (rbf) for TNFRSF12A - BCL2L2; 2358 (laplace) and 2310 (rbf) for TNFRSF14 - BCL2L2; 2292 (laplace) and 1850 (linear) for TNFRSF21 - BCL2L2; 2438 (laplace) and 2013 (rbf) for TNFSF10 - BCL2L2 and 2443 (linear) and 2350 (rbf) for TNFSF15 - BCL2L2; BCL2L3 was up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/RSF14/RSF21/ SF10/SF15. These are reflected in rankings of 2437 (laplace), 2482 (linear) and 2482 (rbf) for TNF - BCL2L13; 1863 (laplace) and 2386 (linear) for TNFAIP1 - BCL2L13; 1962 (linear) and 2489 (rbf) for TNFRSF1A - BCL2L13; 2055 (linear) and 2499 (rbf) for TNFRSF10A - BCL2L13; 2204 (laplace), 2159 (linear) and 2343 (rbf) for TNFRSF10D - BCL2L13; 2183 (laplace), 2509 (linear) for TNFRSF12A - BCL2L13; 1852 (laplace), 1974 (linear) and 2339 (rbf) for TNFRSF14 - BCL2L13; 2280 (laplace), 2424 (linear) and 2301 (rbf) for TNFRSF21 - BCL2L13; 2429 (linear) and 1803 (rbf) for TNFSF10 - BCL2L13; and 2438 (linear) and 2252 (rbf) for TNFSF15 - BCL2L13; BCL3 was up regulated w.r.t TNFRSF10B. This is reflected in rankings of 2427 (laplace) and 1868 (rbf). BCL6 was up regulated w.r.t TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21. These are reflected in rankings of 2271 (laplace), 2071 (linear) and 1810 (rbf) for TNF - BCL6; 2135 (laplace) and 2158 (linear) for TNFAIP1 - BCL6; 2340 (laplace) 1808 (rbf) for TNFAIP2 - BCL6; 1771 (linear) and 2503 (rbf) for TNFRSF1A - BCL6; and 1831 (linear) and 2096 (rbf) for TNFRSF10A - BCL6; and 2213 (laplace) and 2188 (rbf) for TNFRSF10D - BCL6; and 2071 (linear) and 2335 (rbf) for TNFRSF21 - BCL6; BCL10 was up regulated w.r.t TNF-RSF10D/RSF12A. These are reflected in rankings of 1831 (laplace) and 2040 (rbf) for TNFRSF10D - BCL10; and 2015 (laplace) and 1883 (rbf) for TNFRSF12A - BCL10;
On the right side is the ranking of TNF family w.r.t BCL family. We found TNF-RSF10A/RSF10B/RSF10D/RSF12A/RSF14/SF10 to be up regulated w.r.t BCL2L1. These are reflected in rankings of 2273 (laplace) and 1928 (linear) for TNFRSF10A - BCL2L1; 2252 (linear) and 2217 (rbf) for TNFRSF10B - BCL2L1; 1868 (laplace), 2420 (linear) and 2392 (rbf) for TNFRSF10D - BCL2L1; 1923 (laplace) and 1936 (rbf) for TNFRSF12A - BCL2L1; 2350 (linear) and 2414 (rbf) for TNFRSF14 - BCL2L1 and 2115 (laplace) and 2299 (linear) for TNFSF10 - BCL2L1; TNFRSF10B was up regulated w.r.t BCL2L2. This is reflected in rankings of 2153 (laplace) and 1983 (rbf) for TNFRSF10B - BCL2L2; TNFRSF14 was up regulated w.r.t BCL2L13. This is reflected in rankings of 2459 (laplace) and 2381 (linear) for TNFRSF14 - BCL2L13; TNF-RSF10A/SF10D/SF10 were up regulated w.r.t BCL3. These are reflected in rankings of 2388 (laplace) and 2493 (linear) for TNFRSF10A - BCL3; 2213 (laplace) and 1972 (rbf) for TNFRSF10D - BCL3 and 1926 (laplace) and 2107 (rbf) for TNFSF10 - BCL3; TNFRSF12A was up regulated w.r.t BCL6. This is reflected in rankings of 2200 (linear) and 1910 (rbf) for TNFRSF12A - BCL6; TNF-AIP1/SF10/SF15 was up regulated w.r.t BCL9L. This is reflected in rankings of 2470 (linear) and 1802 (rbf) for TNFAIP1 - BCL9L; 1812 (laplace), 1796 (linear) and 2095 (rbf) for TNFSF10 - BCL9L; and 1939 (laplace), 2114 (linear) and 2405 (rbf) for TNFSF15 - BCL9L; TNFRSF14 was up regulated w.r.t BCL10. This is reflected in rankings of 1894 (linear) and 2227 (rbf) for TNFRSF14 - BCL10;
One can also interpret the results of the Table 12 graphically, with the following influences - • BCL w.r.t TNF with TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 − > BCL2L2; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/ RSF14/RSF21/SF10/SF15 − > BCL2L13; TNFRSF10B − > BCL3; TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21 − > BCL6; TNF-RSF10D/RSF12A − > BCL10; • TNF w.r.t BCL with TNF-RSF10A/RSF10B/RSF10D/RSF12A/ RSF14/SF10 < − BCL2L1; TNF-RSF10B < − BCL2L2; TNF-RSF14 < − BCL2L13; TNF-RSF10A/SF10D/SF10 < − BCL3; TNF-RSF12A < − BCL6; TNF-AIP1 < − BCL9L; TNF-SF10/SF15 < − BCL9L and TNF-RSF14 < − BCL10.

Conclusions

Presented here are a range of multiple synergistic TNF 2nd order combinations that were ranked via a search engine. Later, two way cross family analysis between components of these combinations were conducted. Via majority voting across the ranking methods, it was possible to find plausible unexplored synergistic combinations that might be prevalent in CRC cells after treatment with ETC-1922159 drug. The two-way cross family analysis also assists in deriving influences between components which serve as hypotheses for further tests. If found true, it paves way for biologists/oncologists to further investigate and understand the mechanism behind the synergy through wet experiments.

Author’s contributions

Concept, design, in silico implementation - SS. Analysis and interpretation of results - SS. Manuscript writing - SS. Manuscript revision - SS. Approval of manuscript - SS

Acknowledgements

Special thanks to Mrs. Rita Sinha and Mr. Prabhat Sinha for supporting the author financially, without which this work could not have been made possible.

Conflict of interest

There are no conflicts to declare.

Source of Data

Data used in this research work was released in a publication in Madan et al. [40]. The ETC-1922159 was released in Singapore in July 2015 under the flagship of the Agency for Science, Technology and Research (A*STAR) and Duke-National University of Singapore Graduate Medical School (Duke-NUS).

References

  1. Sinha, S. Inchoative Discovery of Plausible (Un)explored Synergistic Combinatorial Biological Hypotheses for Static/Time Series Wnt Measurements via Ranking Search Engine : BioSearch Engine Design. Preprints 2018. [Google Scholar] [CrossRef]
  2. Sinha, S. Sensitivity analysis based ranking reveals unknown biological hypotheses for down regulated genes in time buffer during administration of PORCN-WNT inhibitor ETC-1922159 in CRC. bioRxiv 2017, p. 180927. [CrossRef]
  3. Sinha, S. Prioritizing 2nd order interactions via support vector ranking using sensitivity indices on time series Wnt measurements. bioRxiv 2017, p. 060228. [CrossRef]
  4. Joachims, T. Training linear SVMs in linear time. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2006, pp. 217–226.
  5. Brooks, R.S.; Ciappio, E.D.; Bennett, G.; Crott, J.W.; Mason, J.B.; Liu, Z. TNF-α induced alterations in the Wnt signaling cascade: a potential mechanism for obesity-associated colorectal tumorigenesis, 2010. [CrossRef]
  6. Adami, G.; Orsolini, G.; Adami, S.; Viapiana, O.; Idolazzi, L.; Gatti, D.; Rossini, M. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcified tissue international 2016, 99, 360–364. [Google Scholar] [CrossRef] [PubMed]
  7. Hiyama, A.; Yokoyama, K.; Nukaga, T.; Sakai, D.; Mochida, J. A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells. Arthritis research & therapy 2013, 15, R189. [Google Scholar]
  8. Ma, B.; Hottiger, M.O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Frontiers in immunology 2016, 7, 378. [Google Scholar] [CrossRef]
  9. Roubert, A.; Gregory, K.; Li, Y.; Pfalzer, A.C.; Li, J.; Schneider, S.S.; Wood, R.J.; Liu, Z. The influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women. Oncotarget 2017, 8, 36127. [Google Scholar] [CrossRef]
  10. Jang, J.; Jung, Y.; Chae, S.; Chung, S.I.; Kim, S.M.; Yoon, Y. WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells. Biochemical and biophysical research communications 2017, 484, 442–449. [Google Scholar] [CrossRef]
  11. Sheng, Y.H.; He, Y.; Hasnain, S.Z.; Wang, R.; Tong, H.; Clarke, D.T.; Lourie, R.; Oancea, I.; Wong, K.; Lumley, J.W.; others. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene 2017, 36, 700. [Google Scholar] [CrossRef]
  12. Dharmani, P.; Leung, P.; Chadee, K. Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PloS one 2011, 6, e25058. [Google Scholar] [CrossRef]
  13. Levine, S.J.; Larivee, P.; Logun, C.; Angus, C.W.; Ognibene, F.P.; Shelhamer, J.H. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 1995, 12, 196–204. [Google Scholar] [CrossRef]
  14. Sikder, M.A.; Lee, H.J.; Mia, M.Z.; Park, S.H.; Ryu, J.; Kim, J.H.; Min, S.Y.; Hong, J.H.; Seok, J.H.; Lee, C.J. Inhibition of TNF-α-Induced MUC5AC Mucin Gene Expression and Production by Wogonin Through the Inactivation of NF-κB Signaling in Airway Epithelial Cells. Phytotherapy Research 2014, 28, 62–68. [Google Scholar] [CrossRef]
  15. Shao, M.X.; Nadel, J.A. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. The Journal of Immunology 2005, 175, 4009–4016. [Google Scholar] [CrossRef] [PubMed]
  16. Lora, J.M.; Zhang, D.M.; Liao, S.M.; Burwell, T.; King, A.M.; Barker, P.A.; Singh, L.; Keaveney, M.; Morgenstern, J.; Gutiérrez-Ramos, J.C.; others. Tumor necrosis factor-α triggers mucus production in airway epithelium through an IκB kinase β-dependent mechanism. Journal of Biological Chemistry 2005, 280, 36510–36517. [Google Scholar] [CrossRef]
  17. Fischer, B.M.; Rochelle, L.G.; Voynow, J.A.; Akley, N.J.; Adler, K.B. Tumor necrosis factor-α stimulates mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. American Journal of Respiratory Cell and Molecular Biology 1999, 20, 413–422. [Google Scholar] [CrossRef]
  18. Lin, J.; Haruta, A.; Kawano, H.; Ho, S.B.; Adams, G.L.; Juhn, S.K.; Kim, Y. Induction of Mucin Gene Expression in Middle Ear of Rats by Tumor Necrosis Factor—α: Potential Cause for Mucoid Otitis Media. The Journal of infectious diseases 2000, 182, 882–887. [Google Scholar] [CrossRef] [PubMed]
  19. Yoon, J.H.; Kim, K.S.; Kim, H.U.; Linton, J.A.; Lee, J.G. Effects of TNF-a and IL-1 ß on Mucin, Lysozyme, IL-6 and IL-8 in passage-2 Normal human nasal epithelial cells. Acta oto-laryngologica 1999, 119, 905–910. [Google Scholar]
  20. Mercogliano, M.F.; De Martino, M.; Venturutti, L.; Rivas, M.A.; Proietti, C.J.; Inurrigarro, G.; Frahm, I.; Allemand, D.H.; Deza, E.G.; Ares, S.; others. TNFα-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clinical Cancer Research 2017, 23, 636–648. [Google Scholar] [CrossRef]
  21. Scarl, R.T.; Lawrence, C.M.; Gordon, H.M.; Nunemaker, C.S. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. Journal of Endocrinology 2017, 234, R123–R134. [Google Scholar] [CrossRef]
  22. Moldes, M.; Lasnier, F.; Gauthereau, X.; Klein, C.; Pairault, J.; Fève, B.; Chambaut-Guérin, A.M. Tumor necrosis factor-α-induced adipose-related protein (TIARP), a cell-surface protein that is highly induced by tumor necrosis factor-α and adipose conversion. Journal of Biological Chemistry 2001, 276, 33938–33946. [Google Scholar] [CrossRef] [PubMed]
  23. Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012, 97, 1826–1835. [Google Scholar] [CrossRef]
  24. Tanaka, Y.; Matsumoto, I.; Iwanami, K.; Inoue, A.; Umeda, N.; Sugihara, M.; Hayashi, T.; Ito, S.; Sumida, T. Six-transmembrane epithelial antigen of prostate 4 (STEAP4) is expressed on monocytes/neutrophils, and is regulated by TNF antagonist in patients with rheumatoid arthritis. Clinical and experimental rheumatology 2012, 30, 99–102. [Google Scholar]
  25. Tanaka, Y.; Matsumoto, I.; Iwanami, K.; Inoue, A.; Minami, R.; Umeda, N.; Kanamori, A.; Ochiai, N.; Miyazawa, K.; Sugihara, M. Six-transmembrane epithelial antigen of prostate4 (STEAP4) is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Modern rheumatology 2012, 22, 128–136. [Google Scholar] [CrossRef] [PubMed]
  26. Gauss, G.H.; Kleven, M.D.; Sendamarai, A.K.; Fleming, M.D.; Lawrence, C.M. The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site. Journal of Biological Chemistry 288, 20668–20682. [CrossRef]
  27. ZHANG, C.m.; Chi, X.; Wang, B.; Zhang, M.; NI, Y.h.; CHEN, R.h.; LI, X.n.; GUO, X.r. Downregulation of STEAP4, a highly-expressed TNF-α-inducible gene in adipose tissue, is associated with obesity in humans 1. Acta Pharmacologica Sinica 2008, 29, 587–592. [Google Scholar] [CrossRef] [PubMed]
  28. Liang, Y.; Xing, X.; Beamer, M.A.; Swindell, W.R.; Sarkar, M.K.; Roberts, L.W.; Voorhees, J.J.; Kahlenberg, J.M.; Harms, P.W.; Johnston, A.; others. Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. Journal of Allergy and Clinical Immunology 2017, 139, 1217–1227. [Google Scholar] [CrossRef]
  29. Gomes, I.M.; Maia, C.J.; Santos, C.R. STEAP proteins: from structure to applications in cancer therapy. Molecular Cancer Research 2012, 10, 573–587. [Google Scholar] [CrossRef]
  30. Fu, B.; Li, S.; Wang, L.; Berman, M.A.; Dorf, M.E. The ubiquitin conjugating enzyme UBE2L3 regulates TNFα-induced linear ubiquitination. Cell research 2014, 24, 376. [Google Scholar] [CrossRef]
  31. Li, Y.P.; Lecker, S.H.; Chen, Y.; Waddell, I.D.; Goldberg, A.L.; Reid, M.B. TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. The FASEB Journal 2003, 17, 1048–1057. [Google Scholar] [CrossRef]
  32. Shembade, N.; Ma, A.; Harhaj, E.W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
  33. Tamatani, M.; Che, Y.H.; Matsuzaki, H.; Ogawa, S.; Okado, H.; Miyake, S.i.; Mizuno, T.; Tohyama, M. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. Journal of Biological Chemistry 1999, 274, 8531–8538. [Google Scholar] [CrossRef]
  34. Ho, S.; Winkler-Lowen, B.; Morrish, D.; Dakour, J.; Li, H.; Guilbert, L. The role of Bcl-2 expression in EGF inhibition of TNF-α/IFN-γ-induced villous trophoblast apoptosis. Placenta 1999, 20, 423–430. [Google Scholar] [CrossRef]
  35. Genestier, L.; Bonnefoy-Berard, N.; Rouault, J.P.; Flacher, M.; Revillard, J.P. Tumor necrosis factor-α up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. International immunology 1995, 7, 533–540. [Google Scholar] [CrossRef] [PubMed]
  36. Jäättelä, M.; Benedict, M.; Tewari, M.; Shayman, J.; Dixit, V. Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 1995, 10, 2297–2305. [Google Scholar] [PubMed]
  37. Kim, J.; Lee, S.; Park, J.; Yoo, Y. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell death and differentiation 2010, 17, 1420. [Google Scholar] [CrossRef] [PubMed]
  38. Kuwata, H.; Watanabe, Y.; Miyoshi, H.; Yamamoto, M.; Kaisho, T.; Takeda, K.; Akira, S. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood 2003, 102, 4123–4129. [Google Scholar] [CrossRef]
  39. Esche, C.; Shurin, G.V.; Kirkwood, J.M.; Wang, G.Q.; Rabinowich, H.; Pirtskhalaishvili, G.; Shurin, M.R. Tumor necrosis factor-α-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. Clinical cancer research 2001, 7, 974s–979s. [Google Scholar]
  40. Madan, B.; Ke, Z.; Harmston, N.; Ho, S.Y.; Frois, A.; Alam, J.; Jeyaraj, D.A.; Pendharkar, V.; Ghosh, K.; Virshup, I.H.; others. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 2016, 35, 2197. [Google Scholar] [CrossRef]
Table 1. 2nd order combinatorial hypotheses between ABC and IL
Table 1. 2nd order combinatorial hypotheses between ABC and IL
Ranking TNF family vs WNT family
Ranking of TNF family w.r.t WNT2B Ranking of WNT2B w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT2B 503 893 1656 TNF - WNT2B 1341 808 1366
TNFAIP1 - WNT2B 235 156 1811 TNFAIP1 - WNT2B 1671 1434 1404
TNFAIP2 - WNT2B 868 527 2439 TNFAIP2 - WNT2B 1130 218 1105
TNFAIP3 - WNT2B 1135 2381 1688 TNFAIP3 - WNT2B 997 1280 1902
TNFRSF1A - WNT2B 2170 2127 1628 TNFRSF1A - WNT2B 1747 1857 1550
TNFRSF10A - WNT2B 1861 2367 1800 TNFRSF10A - WNT2B 100 464 1162
TNFRSF10B - WNT2B 2020 615 1881 TNFRSF10B - WNT2B 1797 120 2056
TNFRSF10D - WNT2B 29 2515 1174 TNFRSF10D - WNT2B 1348 1989 2130
TNFRSF12A - WNT2B 1072 2061 1109 TNFRSF12A - WNT2B 1595 298 1432
TNFRSF14 - WNT2B 333 1585 1247 TNFRSF14 - WNT2B 1932 277 2399
TNFRSF21 - WNT2B 1275 648 1114 TNFRSF21 - WNT2B 1396 620 2136
TNFSF10 - WNT2B 1204 2287 1396 TNFSF10 - WNT2B 1732 738 1751
TNFSF15 - WNT2B 2476 359 2073 TNFSF15 - WNT2B 402 128 1875
Ranking of TNF family w.r.t WNT4 Ranking of WNT4 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT4 1982 1301 928 TNF - WNT4 1021 420 864
TNFAIP1 - WNT4 1434 1078 804 TNFAIP1 - WNT4 1114 337 1015
TNFAIP2 - WNT4 1810 1047 330 TNFAIP2 - WNT4 1611 1341 423
TNFAIP3 - WNT4 646 1955 1534 TNFAIP3 - WNT4 2336 2511 2342
TNFRSF1A - WNT4 915 545 829 TNFRSF1A - WNT4 132 333 1321
TNFRSF10A - WNT4 2509 2460 897 TNFRSF10A - WNT4 535 202 582
TNFRSF10B - WNT4 517 875 1365 TNFRSF10B - WNT4 320 2105 2264
TNFRSF10D - WNT4 1719 2233 2126 TNFRSF10D - WNT4 660 49 341
TNFRSF12A - WNT4 2294 1775 2384 TNFRSF12A - WNT4 649 1756 780
TNFRSF14 - WNT4 1608 2284 1436 TNFRSF14 - WNT4 61 519 1542
TNFRSF21 - WNT4 1915 1596 93 TNFRSF21 - WNT4 201 533 657
TNFSF10 - WNT4 1747 2451 1782 TNFSF10 - WNT4 904 1511 2280
TNFSF15 - WNT4 1542 806 2439 TNFSF15 - WNT4 64 709 793
Ranking TNF family vs WNT family
Ranking of TNF family w.r.t WNT7 Ranking of WNT7 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT7B 815 381 47 TNF - WNT7B 1530 2511 2210
TNFAIP1 - WNT7B 313 1438 992 TNFAIP1 - WNT7B 2196 519 1058
TNFAIP2 - WNT7B 1897 85 631 TNFAIP2 - WNT7B 2121 599 1313
TNFAIP3 - WNT7B 577 1807 1251 TNFAIP3 - WNT7B 1901 1357 830
TNFRSF1A - WNT7B 165 844 353 TNFRSF1A - WNT7B 2084 1975 2154
TNFRSF10A - WNT7B 1084 1341 2119 TNFRSF10A - WNT7B 1301 1120 1663
TNFRSF10B - WNT7B 1274 1980 744 TNFRSF10B - WNT7B 1209 908 1075
TNFRSF10D - WNT7B 1314 774 1928 TNFRSF10D - WNT7B 1252 2301 1250
TNFRSF12A - WNT7B 2100 1332 1983 TNFRSF12A - WNT7B 1104 22 1879
TNFRSF14 - WNT7B 1576 981 1811 TNFRSF14 - WNT7B 2079 1028 1928
TNFRSF21 - WNT7B 1565 798 720 TNFRSF21 - WNT7B 2114 1219 737
TNFSF10 - WNT7B 1598 2462 2179 TNFSF10 - WNT7B 2129 763 204
TNFSF15 - WNT7B 1026 756 621 TNFSF15 - WNT7B 130 1599 2504
Ranking of TNF family w.r.t WNT9A Ranking of WNT9A w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT9A 1624 2025 799 TNF - WNT9A 1121 1930 1400
TNFAIP1 - WNT9A 1433 839 465 TNFAIP1 - WNT9A 1254 569 394
TNFAIP2 - WNT9A 40 2167 397 TNFAIP2 - WNT9A 2125 2437 1605
TNFAIP3 - WNT9A 1427 1109 2040 TNFAIP3 - WNT9A 1764 2460 1032
TNFRSF1A - WNT9A 1470 719 1933 TNFRSF1A - WNT9A 1645 58 1419
TNFRSF10A - WNT9A 2272 1234 918 TNFRSF10A - WNT9A 2259 2413 1204
TNFRSF10B - WNT9A 2249 1222 1071 TNFRSF10B - WNT9A 882 566 813
TNFRSF10D - WNT9A 410 2132 968 TNFRSF10D - WNT9A 1808 1055 568
TNFRSF12A - WNT9A 1080 373 1120 TNFRSF12A - WNT9A 2345 1211 2466
TNFRSF14 - WNT9A 1106 2166 198 TNFRSF14 - WNT9A 1127 1147 1191
TNFRSF21 - WNT9A 1805 1999 986 TNFRSF21 - WNT9A 1265 832 1098
TNFSF10 - WNT9A 1258 864 1839 TNFSF10 - WNT9A 2054 2338 1523
TNFSF15 - WNT9A 1621 1129 1139 TNFSF15 - WNT9A 37 1105 1076
Table 2. 2nd order combinatorial hypotheses between TNF and WNT family.
Table 2. 2nd order combinatorial hypotheses between TNF and WNT family.
Unexplored combinatorial hypotheses
TNF w.r.t WNT
TNF-RSF1A/RSF10A/RSF10B/SF15 WNT2B
TNF-RSF10A/RSF10D/RSF12A/SF10 WNT4
TNF-RSF12A/SF10 WNT7B
TNF-RSF21 WNT9A
WNT w.r.t TNF
TNF-RSF10B/RSF10D/RSF14 WNT2B
TNF-AIP3/RSF10B WNT4
TNF, TNF-RSF1A/RSF14 WNT7B
TNF-AIP2/AIP3/RSF10A/RSF12A/SF10 WNT9A
Ranking TNF family w.r.t MUC family
Ranking of TNF family w.r.t MUC13 Ranking of TNF family w.r.t MUC17
laplace linear rbf laplace linear rbf
MUC13 - TNF 2282 220 127 MUC17 - TNF 683 362 515
MUC13 - TNFAIP1 378 230 1935 MUC17 - TNFAIP1 117 188 272
MUC13 - TNFAIP2 2464 220 697 MUC17 - TNFAIP2 1311 414 351
MUC13 - TNFAIP3 2274 1233 1446 MUC17 - TNFAIP3 1589 1547 1539
MUC13 - TNFRSF1A 274 2152 514 MUC17 - TNFRSF1A 428 205 329
MUC13 - TNFRSF10A 2500 938 1844 MUC17 - TNFRSF10A 2269 2364 2005
MUC13 - TNFRSF10B 1891 1497 225 MUC17 - TNFRSF10B 1199 1323 2120
MUC13 - TNFRSF10D 1191 2263 2294 MUC17 - TNFRSF10D 1798 1378 2302
MUC13 - TNFRSF12A 460 1753 1704 MUC17 - TNFRSF12A 2041 2303 1049
MUC13 - TNFRSF14 2220 1602 1359 MUC17 - TNFRSF14 2043 825 1700
MUC13 - TNFRSF21 1612 1673 127 MUC17 - TNFRSF21 2013 393 119
MUC13 - TNFSF10 2236 1598 1495 MUC17 - TNFSF10 280 1025 817
MUC13 - TNFSF15 2423 1488 1292 MUC17 - TNFSF15 833 967 950
Ranking of TNF family w.r.t MUC20
laplace linear rbf
MUC20 - TNF 2267 262 145
MUC20 - TNFAIP1 1273 2296 178
MUC20 - TNFAIP2 1062 598 339
MUC20 - TNFAIP3 2205 435 2136
MUC20 - TNFRSF1A 483 2346 145
MUC20 - TNFRSF10A 100 2305 917
MUC20 - TNFRSF10B 775 1578 1556
MUC20 - TNFRSF10D 200 1487 799
MUC20 - TNFRSF12A 318 1607 2258
MUC20 - TNFRSF14 410 1832 745
MUC20 - TNFRSF21 1686 2259 164
MUC20 - TNFSF10 1005 2139 1548
MUC20 - TNFSF15 2493 387 2108
Table 3. 2nd order interaction ranking between MUC w.r.t TNF family members.
Table 3. 2nd order interaction ranking between MUC w.r.t TNF family members.
Ranking MUC family w.r.t TNF family
Ranking of MUC1 w.r.t TNF family Ranking of MUC3A w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC1 - TNF 368 142 21 MUC3A - TNF 1478 985 2373
MUC1 - TNFAIP1 692 91 1591 MUC3A - TNFAIP1 1485 536 1698
MUC1 - TNFAIP2 2290 476 398 MUC3A - TNFAIP2 1254 1265 75
MUC1 - TNFAIP3 810 492 748 MUC3A - TNFAIP3 1844 960 243
MUC1 - TNFRSF1A 1089 2344 2312 MUC3A - TNFRSF1A 496 574 792
MUC1 - TNFRSF10A 1263 351 826 MUC3A - TNFRSF10A 1315 1525 1815
MUC1 - TNFRSF10B 1630 1604 2103 MUC3A - TNFRSF10B 351 1920 1489
MUC1 - TNFRSF10D 975 1026 984 MUC3A - TNFRSF10D 596 950 1016
MUC1 - TNFRSF12A 1597 1811 1078 MUC3A - TNFRSF12A 436 595 2124
MUC1 - TNFRSF14 739 2119 938 MUC3A - TNFRSF14 1612 1383 329
MUC1 - TNFRSF21 766 1495 2322 MUC3A - TNFRSF21 1254 1357 1162
MUC1 - TNFSF10 1360 1969 477 MUC3A - TNFSF10 774 980 2053
MUC1 - TNFSF15 424 1183 542 MUC3A - TNFSF15 75 1261 624
Ranking of MUC4 w.r.t TNF family Ranking of MUC12 w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC4 - TNF 1656 777 565 MUC12 - TNF 266 1223 628
MUC4 - TNFAIP1 2483 895 390 MUC12 - TNFAIP1 2321 668 2457
MUC4 - TNFAIP2 1875 1792 180 MUC12 - TNFAIP2 281 1829 1913
MUC4 - TNFAIP3 54 498 464 MUC12 - TNFAIP3 2353 153 576
MUC4 - TNFRSF1A 1074 753 68 MUC12 - TNFRSF1A 1481 1952 1406
MUC4 - TNFRSF10A 683 311 997 MUC12 - TNFRSF10A 445 337 888
MUC4 - TNFRSF10B 98 1413 704 MUC12 - TNFRSF10B 792 164 133
MUC4 - TNFRSF10D 1916 230 80 MUC12 - TNFRSF10D 167 193 521
MUC4 - TNFRSF12A 1321 2190 150 MUC12 - TNFRSF12A 216 2093 302
MUC4 - TNFRSF14 606 704 1493 MUC12 - TNFRSF14 105 59 69
MUC4 - TNFRSF21 1225 1967 1093 MUC12 - TNFRSF21 1471 1975 1769
MUC4 - TNFSF10 815 1108 1906 MUC12 - TNFSF10 662 2135 2255
MUC4 - TNFSF15 1141 1841 920 MUC12 - TNFSF15 1619 2204 1257
Ranking MUC family w.r.t TNF family
Ranking of MUC13 w.r.t TNF family Ranking of MUC17 w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC13 - TNF 623 292 295 MUC17 - TNF 203 811 57
MUC13 - TNFAIP1 823 755 81 MUC17 - TNFAIP1 381 193 118
MUC13 - TNFAIP2 1118 2464 116 MUC17 - TNFAIP2 1069 822 136
MUC13 - TNFAIP3 1189 546 541 MUC17 - TNFAIP3 2132 47 937
MUC13 - TNFRSF1A 978 1506 490 MUC17 - TNFRSF1A 120 497 864
MUC13 - TNFRSF10A 1180 540 1926 MUC17 - TNFRSF10A 852 218 346
MUC13 - TNFRSF10B 280 1105 190 MUC17 - TNFRSF10B 933 1667 1166
MUC13 - TNFRSF10D 655 725 1668 MUC17 - TNFRSF10D 546 133 304
MUC13 - TNFRSF12A 401 1242 999 MUC17 - TNFRSF12A 18 1675 86
MUC13 - TNFRSF14 1324 374 389 MUC17 - TNFRSF14 819 296 1014
MUC13 - TNFRSF21 690 2337 107 MUC17 - TNFRSF21 1659 814 889
MUC13 - TNFSF10 1146 1208 2159 MUC17 - TNFSF10 387 1542 156
MUC13 - TNFSF15 1633 314 155 MUC17 - TNFSF15 1207 1040 522
Ranking of MUC20 w.r.t TNF family
laplace linear rbf
MUC20 - TNF 57 216 903
MUC20 - TNFAIP1 1265 2266 2057
MUC20 - TNFAIP2 241 2404 2157
MUC20 - TNFAIP3 484 1012 513
MUC20 - TNFRSF1A 748 173 2193
MUC20 - TNFRSF10A 620 427 1054
MUC20 - TNFRSF10B 765 1563 790
MUC20 - TNFRSF10D 509 2185 794
MUC20 - TNFRSF12A 216 2093 302
MUC20 - TNFRSF14 2298 651 1368
MUC20 - TNFRSF21 2374 1611 1140
MUC20 - TNFSF10 1257 1088 1031
MUC20 - TNFSF15 142 2159 7
Table 4. 2nd order combinatorial hypotheses between MUC and TNF.
Table 4. 2nd order combinatorial hypotheses between MUC and TNF.
Unexplored combinatorial hypotheses
TNF w.r.t MUC
MUC1 TNFAIP3/TNFRSF10D/TNFRSF12A/TNFRSF14
MUC3A TNFRSF10A/TNFRSF10D
MUC4 TNFRSF10D/TNFSF10
MUC12 TNFRSF21/TNFSF10
MUC13 TNFRSF10A/TNFRSF10D
MUC17 TNFRSF10A/TNFRSF10D/TNFRSF12A
MUC20 TNFAIP3/TNFSF15
MUC w.r.t TNF
MUC1 TNFRSF1A
MUC4 TNFAIP2
MUC12 TNFAIP1/TNFAIP2/TNFRSF21/TNFSF10
MUC13 TNFAIP1/TNFAIP2
Table 7. 2nd order combinatorial hypotheses between UBE2 and TNF
Table 7. 2nd order combinatorial hypotheses between UBE2 and TNF
Ranking TNF family vs UBE2 family
Ranking of UBE2A w.r.t TNF family Ranking of TNF family w.r.t UBE2A
laplace linear rbf laplace linear rbf
TNF - UBE2A 1360 2307 1720 TNF - UBE2A 499 1379 750
TNFAIP1 - UBE2A 498 2357 2455 TNFAIP1 - UBE2A 1340 2494 578
TNFAIP2 - UBE2A 524 1161 2385 TNFAIP2 - UBE2A 441 1852 691
TNFAIP3 - UBE2A 855 1642 812 TNFAIP3 - UBE2A 1157 1048 207
TNFRSF1A - UBE2A 2457 1087 2020 TNFRSF1A - UBE2A 1066 655 1701
TNFRSF10A - UBE2A 2164 2126 621 TNFRSF10A - UBE2A 2116 858 2376
TNFRSF10B - UBE2A 2284 1901 1203 TNFRSF10B - UBE2A 362 1083 756
TNFRSF10D - UBE2A 1989 2291 677 TNFRSF10D - UBE2A 1848 1336 903
TNFRSF12A - UBE2A 2484 2427 339 TNFRSF12A - UBE2A 1537 1304 629
TNFRSF14 - UBE2A 2301 2180 2323 TNFRSF14 - UBE2A 908 1519 1945
TNFRSF21 - UBE2A 2419 2035 1169 TNFRSF21 - UBE2A 605 2245 60
TNFSF10 - UBE2A 832 2202 1036 TNFSF10 - UBE2A 1520 44 2125
TNFSF15 - UBE2A 1768 1184 1942 TNFSF15 - UBE2A 545 580 1448
Ranking TNF family vs UBE2 family
Ranking of UBE2B w.r.t TNF family Ranking of TNF family w.r.t UBE2B
laplace linear rbf laplace linear rbf
TNF - UBE2B 1072 2046 1316 TNF - UBE2B 1719 218 346
TNFAIP1 - UBE2B 1097 744 1295 TNFAIP1 - UBE2B 920 90 1028
TNFAIP2 - UBE2B 669 1158 2407 TNFAIP2 - UBE2B 1680 147 45
TNFAIP3 - UBE2B 470 1528 1388 TNFAIP3 - UBE2B 2259 742 1610
TNFRSF1A - UBE2B 937 1473 2390 TNFRSF1A - UBE2B 1277 1454 1258
TNFRSF10A - UBE2B 2132 1128 2184 TNFRSF10A - UBE2B 551 2318 2265
TNFRSF10B - UBE2B 2399 2000 402 TNFRSF10B - UBE2B 2272 1268 1080
TNFRSF10D - UBE2B 1959 1562 2232 TNFRSF10D - UBE2B 1157 207 1729
TNFRSF12A - UBE2B 1632 12 2259 TNFRSF12A - UBE2B 1940 1868 1758
TNFRSF14 - UBE2B 1137 2297 2373 TNFRSF14 - UBE2B 1143 1657 1507
TNFRSF21 - UBE2B 1986 1439 1754 TNFRSF21 - UBE2B 1291 569 17
TNFSF10 - UBE2B 2265 1488 769 TNFSF10 - UBE2B 2208 2326 2470
TNFSF15 - UBE2B 1432 2460 1655 TNFSF15 - UBE2B 2055 1964 183
Ranking of UBE2F w.r.t TNF family Ranking of TNF family w.r.t UBE2F
laplace linear rbf laplace linear rbf
TNF - UBE2F 2162 2484 2500 TNF - UBE2F 638 435 1471
TNFAIP1 - UBE2F 1732 2239 2003 TNFAIP1 - UBE2F 447 1376 1357
TNFAIP2 - UBE2F 693 1446 1706 TNFAIP2 - UBE2F 900 208 883
TNFAIP3 - UBE2F 498 2265 1264 TNFAIP3 - UBE2F 1881 113 1185
TNFRSF1A - UBE2F 1980 2255 1872 TNFRSF1A - UBE2F 368 1756 266
TNFRSF10A - UBE2F 2085 2218 179 TNFRSF10A - UBE2F 1767 1599 781
TNFRSF10B - UBE2F 2432 2011 2144 TNFRSF10B - UBE2F 1413 1157 1510
TNFRSF10D - UBE2F 1164 1400 2150 TNFRSF10D - UBE2F 389 206 2481
TNFRSF12A - UBE2F 2458 2336 531 TNFRSF12A - UBE2F 581 2022 630
TNFRSF14 - UBE2F 1757 574 1070 TNFRSF14 - UBE2F 2324 1924 1954
TNFRSF21 - UBE2F 1056 2498 1418 TNFRSF21 - UBE2F 718 2123 1022
TNFSF10 - UBE2F 1710 2365 1691 TNFSF10 - UBE2F 1656 1584 810
TNFSF15 - UBE2F 1910 1171 2353 TNFSF15 - UBE2F 1224 1637 394
Table 8. 2nd order combinatorial hypotheses between UBE2 and TNF
Table 8. 2nd order combinatorial hypotheses between UBE2 and TNF
Ranking TNF family vs UBE2 family
Ranking of UBE2H w.r.t TNF family Ranking of TNF family w.r.t UBE2H
laplace linear rbf laplace linear rbf
TNF - UBE2H 967 1966 1018 TNF - UBE2H 2277 770 640
TNFAIP1 - UBE2H 1235 1484 817 TNFAIP1 - UBE2H 883 2396 608
TNFAIP2 - UBE2H 1251 978 2517 TNFAIP2 - UBE2H 762 1362 593
TNFAIP3 - UBE2H 889 1055 1837 TNFAIP3 - UBE2H 1942 1421 1467
TNFRSF1A - UBE2H 589 1498 1428 TNFRSF1A - UBE2H 1134 2154 182
TNFRSF10A - UBE2H 1317 905 2229 TNFRSF10A - UBE2H 1139 202 1061
TNFRSF10B - UBE2H 33 2128 1725 TNFRSF10B - UBE2H 1053 539 1207
TNFRSF10D - UBE2H 1326 1814 1657 TNFRSF10D - UBE2H 2227 926 791
TNFRSF12A - UBE2H 1950 1793 1851 TNFRSF12A - UBE2H 1347 776 1899
TNFRSF14 - UBE2H 2297 1601 2385 TNFRSF14 - UBE2H 2244 703 1208
TNFRSF21 - UBE2H 2022 1131 2231 TNFRSF21 - UBE2H 827 880 672
TNFSF10 - UBE2H 2387 7 760 TNFSF10 - UBE2H 1313 1169 2002
TNFSF15 - UBE2H 125 58 96 TNFSF15 - UBE2H 350 2416 1960
Ranking of UBE2J1 w.r.t TNF family Ranking of TNF family w.r.t UBE2J1
laplace linear rbf laplace linear rbf
TNF - UBE2J1 1289 2308 2336 TNF - UBE2J1 1101 1549 105
TNFAIP1 - UBE2J1 1109 2292 1756 TNFAIP1 - UBE2J1 329 1971 252
TNFAIP2 - UBE2J1 1379 1516 1696 TNFAIP2 - UBE2J1 112 22 969
TNFAIP3 - UBE2J1 187 1261 1065 TNFAIP3 - UBE2J1 289 891 1202
TNFRSF1A - UBE2J1 1992 326 2268 TNFRSF1A - UBE2J1 1422 624 73
TNFRSF10A - UBE2J1 1893 2090 2363 TNFRSF10A - UBE2J1 2379 2213 2135
TNFRSF10B - UBE2J1 1913 1299 1838 TNFRSF10B - UBE2J1 807 1793 1231
TNFRSF10D - UBE2J1 325 1500 588 TNFRSF10D - UBE2J1 2393 1360 2102
TNFRSF12A - UBE2J1 2401 1901 437 TNFRSF12A - UBE2J1 380 1284 650
TNFRSF14 - UBE2J1 2277 2347 1943 TNFRSF14 - UBE2J1 1614 2133 2313
TNFRSF21 - UBE2J1 1976 2333 1681 TNFRSF21 - UBE2J1 1315 1266 1070
TNFSF10 - UBE2J1 511 2508 506 TNFSF10 - UBE2J1 1322 203 1148
TNFSF15 - UBE2J1 2021 2013 2515 TNFSF15 - UBE2J1 678 886 1128
Ranking TNF family vs UBE2 family
Ranking of UBE2Z w.r.t TNF family Ranking of TNF family w.r.t UBE2Z
laplace linear rbf laplace linear rbf
TNF - UBE2Z 2264 2505 2479 TNF - UBE2Z 739 701 1241
TNFAIP1 - UBE2Z 1283 2055 2332 TNFAIP1 - UBE2Z 1198 1213 226
TNFAIP2 - UBE2Z 2404 1625 2139 TNFAIP2 - UBE2Z 1281 1431 492
TNFAIP3 - UBE2Z 1066 1152 1627 TNFAIP3 - UBE2Z 530 51 972
TNFRSF1A - UBE2Z 2473 2194 2405 TNFRSF1A - UBE2Z 692 43 1382
TNFRSF10A - UBE2Z 2234 2152 713 TNFRSF10A - UBE2Z 2410 2103 1513
TNFRSF10B - UBE2Z 1501 451 2081 TNFRSF10B - UBE2Z 948 1369 403
TNFRSF10D - UBE2Z 2264 2360 2278 TNFRSF10D - UBE2Z 1786 661 1746
TNFRSF12A - UBE2Z 2207 2149 353 TNFRSF12A - UBE2Z 1621 2010 1448
TNFRSF14 - UBE2Z 1683 1983 705 TNFRSF14 - UBE2Z 1779 1360 2100
TNFRSF21 - UBE2Z 994 604 219 TNFRSF21 - UBE2Z 459 1030 584
TNFSF10 - UBE2Z 516 2374 2235 TNFSF10 - UBE2Z 1100 2047 168
TNFSF15 - UBE2Z 2081 1037 2102 TNFSF15 - UBE2Z 1342 1180 536
Table 9. 2nd order combinatorial hypotheses between TNF and UBE2 family.
Table 9. 2nd order combinatorial hypotheses between TNF and UBE2 family.
Unexplored combinatorial hypotheses
UBE2 w.r.t TNF
TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF15 UBE2A
TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21 UBE2B
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15 UBE2F
TNF-RSF12A/RSF14/RSF21 UBE2H
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15 UBE2J1
TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15 UBE2Z
TNF w.r.t UBE2
TNF-RSF10A UBE2A
TNF-RSF10A/RSF12A/SF10/SF15 UBE2B
TNF-RSF14 UBE2F
TNF-SF15 UBE2H
TNF-RSF10A/RSF10D/RSF14 UBE2J1
TNF-RSF10A/RSF14 UBE2Z
Table 10. 2nd order combinatorial hypotheses between BCL and TNF
Table 10. 2nd order combinatorial hypotheses between BCL and TNF
Ranking TNF family vs BCL family
Ranking of BCL2L1 w.r.t TNF family Ranking of TNF family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
TNF - BCL2L1 174 14 235 TNF - BCL2L1 56 1101 294
TNFAIP1 - BCL2L1 1527 435 791 TNFAIP1 - BCL2L1 1497 1150 74
TNFAIP2 - BCL2L1 2142 1735 798 TNFAIP2 - BCL2L1 1485 1735 400
TNFAIP3 - BCL2L1 2467 842 867 TNFAIP3 - BCL2L1 1109 1939 1553
TNFRSF1A - BCL2L1 1004 1558 383 TNFRSF1A - BCL2L1 492 376 1016
TNFRSF10A - BCL2L1 1906 1270 1222 TNFRSF10A - BCL2L1 2273 1928 508
TNFRSF10B - BCL2L1 1506 2235 589 TNFRSF10B - BCL2L1 1003 2252 2217
TNFRSF10D - BCL2L1 1920 1555 1787 TNFRSF10D - BCL2L1 1868 2420 2392
TNFRSF12A - BCL2L1 1254 1388 1319 TNFRSF12A - BCL2L1 1923 53 1936
TNFRSF14 - BCL2L1 688 237 2009 TNFRSF14 - BCL2L1 340 2350 2414
TNFRSF21 - BCL2L1 1465 1269 100 TNFRSF21 - BCL2L1 2139 718 289
TNFSF10 - BCL2L1 532 560 2332 TNFSF10 - BCL2L1 2115 2299 1307
TNFSF15 - BCL2L1 1026 1551 1134 TNFSF15 - BCL2L1 453 423 25
Ranking of BCL2L2 w.r.t TNF family Ranking of TNF family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
TNF - BCL2L2 1822 1926 2359 TNF - BCL2L2 2140 109 1062
TNFAIP1 - BCL2L2 2266 2478 1847 TNFAIP1 - BCL2L2 2235 1607 712
TNFAIP2 - BCL2L2 823 535 1117 TNFAIP2 - BCL2L2 109 1002 54
TNFAIP3 - BCL2L2 1201 1103 1511 TNFAIP3 - BCL2L2 1470 1696 1276
TNFRSF1A - BCL2L2 1124 2311 1920 TNFRSF1A - BCL2L2 1912 169 1531
TNFRSF10A - BCL2L2 1063 1532 2458 TNFRSF10A - BCL2L2 1643 1095 953
TNFRSF10B - BCL2L2 2478 739 2239 TNFRSF10B - BCL2L2 2153 1164 1983
TNFRSF10D - BCL2L2 910 2278 2237 TNFRSF10D - BCL2L2 35 1012 1905
TNFRSF12A - BCL2L2 1945 240 2484 TNFRSF12A - BCL2L2 1971 1633 975
TNFRSF14 - BCL2L2 2358 1648 2310 TNFRSF14 - BCL2L2 1027 825 1228
TNFRSF21 - BCL2L2 2292 1850 1014 TNFRSF21 - BCL2L2 1138 486 554
TNFSF10 - BCL2L2 2438 547 2013 TNFSF10 - BCL2L2 2212 902 169
TNFSF15 - BCL2L2 1196 2443 2350 TNFSF15 - BCL2L2 2285 165 1330
Ranking TNF family vs BCL family
Ranking of BCL2L13 w.r.t TNF family Ranking of TNF family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
TNF - BCL2L13 2437 2482 2482 TNF - BCL2L13 1162 103 462
TNFAIP1 - BCL2L13 1863 2386 989 TNFAIP1 - BCL2L13 852 606 787
TNFAIP2 - BCL2L13 793 293 1846 TNFAIP2 - BCL2L13 438 479 742
TNFAIP3 - BCL2L13 1350 1030 2129 TNFAIP3 - BCL2L13 1804 879 626
TNFRSF1A - BCL2L13 1173 1962 2489 TNFRSF1A - BCL2L13 1577 1512 476
TNFRSF10A - BCL2L13 737 2055 2499 TNFRSF10A - BCL2L13 1534 2360 1105
TNFRSF10B - BCL2L13 1992 885 906 TNFRSF10B - BCL2L13 2177 960 1053
TNFRSF10D - BCL2L13 2204 2159 2343 TNFRSF10D - BCL2L13 171 1983 960
TNFRSF12A - BCL2L13 2183 2509 241 TNFRSF12A - BCL2L13 59 1706 2046
TNFRSF14 - BCL2L13 1852 1974 2339 TNFRSF14 - BCL2L13 2459 2381 1187
TNFRSF21 - BCL2L13 2280 2424 2301 TNFRSF21 - BCL2L13 52 1054 394
TNFSF10 - BCL2L13 1088 2429 1803 TNFSF10 - BCL2L13 1764 1186 1227
TNFSF15 - BCL2L13 1286 2438 2252 TNFSF15 - BCL2L13 638 1962 814
Table 11. 2nd order combinatorial hypotheses between BCL and TNF
Table 11. 2nd order combinatorial hypotheses between BCL and TNF
Ranking TNF family vs BCL family
Ranking of BCL3 w.r.t TNF family Ranking of TNF family w.r.t BCL3
laplace linear rbf laplace linear rbf
TNF - BCL3 652 370 642 TNF - BCL3 598 311 2473
TNFAIP1 - BCL3 168 723 124 TNFAIP1 - BCL3 596 500 158
TNFAIP2 - BCL3 642 856 1098 TNFAIP2 - BCL3 59 776 323
TNFAIP3 - BCL3 2377 534 567 TNFAIP3 - BCL3 300 940 1527
TNFRSF1A - BCL3 163 206 740 TNFRSF1A - BCL3 83 476 1355
TNFRSF10A - BCL3 799 865 1044 TNFRSF10A - BCL3 2388 2493 88
TNFRSF10B - BCL3 1632 2427 1868 TNFRSF10B - BCL3 757 1508 1062
TNFRSF10D - BCL3 1110 858 714 TNFRSF10D - BCL3 2213 1091 1972
TNFRSF12A - BCL3 273 931 623 TNFRSF12A - BCL3 671 1869 1286
TNFRSF14 - BCL3 232 85 1422 TNFRSF14 - BCL3 2149 1311 1650
TNFRSF21 - BCL3 340 1384 2474 TNFRSF21 - BCL3 411 729 998
TNFSF10 - BCL3 1537 1753 1638 TNFSF10 - BCL3 1926 1523 2107
TNFSF15 - BCL3 129 284 729 TNFSF15 - BCL3 1649 1032 2122
Ranking of BCL6 w.r.t TNF family Ranking of TNF family w.r.t BCL6
laplace linear rbf laplace linear rbf
TNF - BCL6 2271 2071 1810 TNF - BCL6 806 437 1411
TNFAIP1 - BCL6 2135 2158 1330 TNFAIP1 - BCL6 1089 850 372
TNFAIP2 - BCL6 2340 1428 1808 TNFAIP2 - BCL6 152 334 703
TNFAIP3 - BCL6 267 1336 1219 TNFAIP3 - BCL6 1884 1935 855
TNFRSF1A - BCL6 1598 1771 2503 TNFRSF1A - BCL6 788 741 1130
TNFRSF10A - BCL6 1327 1831 2096 TNFRSF10A - BCL6 607 1249 2360
TNFRSF10B - BCL6 1373 1873 1264 TNFRSF10B - BCL6 1746 1282 361
TNFRSF10D - BCL6 2213 2188 788 TNFRSF10D - BCL6 1540 1301 2008
TNFRSF12A - BCL6 1867 99 2261 TNFRSF12A - BCL6 545 2200 1910
TNFRSF14 - BCL6 1409 1337 2028 TNFRSF14 - BCL6 731 1302 1902
TNFRSF21 - BCL6 645 2071 2335 TNFRSF21 - BCL6 40 1850 50
TNFSF10 - BCL6 919 445 99 TNFSF10 - BCL6 2119 1102 1626
TNFSF15 - BCL6 2106 1692 1451 TNFSF15 - BCL6 969 1475 226
Ranking TNF family vs BCL family
Ranking of BCL9L w.r.t TNF family Ranking of TNF family w.r.t BCL9L
laplace linear rbf laplace linear rbf
TNF - BCL9L 1964 1172 1478 TNF - BCL9L 2218 98 425
TNFAIP1 - BCL9L 439 1445 264 TNFAIP1 - BCL9L 766 2470 1802
TNFAIP2 - BCL9L 1250 1473 696 TNFAIP2 - BCL9L 646 567 85
TNFAIP3 - BCL9L 534 630 618 TNFAIP3 - BCL9L 1046 1223 2296
TNFRSF1A - BCL9L 2050 1096 978 TNFRSF1A - BCL9L 863 500 825
TNFRSF10A - BCL9L 212 1682 980 TNFRSF10A - BCL9L 2140 241 1547
TNFRSF10B - BCL9L 952 698 685 TNFRSF10B - BCL9L 286 414 2046
TNFRSF10D - BCL9L 1315 181 1423 TNFRSF10D - BCL9L 1956 112 990
TNFRSF12A - BCL9L 430 1167 1470 TNFRSF12A - BCL9L 1797 1280 1699
TNFRSF14 - BCL9L 1433 635 1497 TNFRSF14 - BCL9L 670 1055 1540
TNFRSF21 - BCL9L 495 2326 468 TNFRSF21 - BCL9L 1291 1378 246
TNFSF10 - BCL9L 1889 974 183 TNFSF10 - BCL9L 1812 1796 2095
TNFSF15 - BCL9L 878 2389 71 TNFSF15 - BCL9L 1939 2114 2405
Ranking of BCL10 w.r.t TNF family Ranking of TNF family w.r.t BCL10
laplace linear rbf laplace linear rbf
TNF - BCL10 708 79 979 TNF - BCL10 1931 114 1573
TNFAIP1 - BCL10 1657 805 1298 TNFAIP1 - BCL10 690 1941 7
TNFAIP2 - BCL10 1101 2197 312 TNFAIP2 - BCL10 523 2099 339
TNFAIP3 - BCL10 985 813 767 TNFAIP3 - BCL10 935 595 1870
TNFRSF1A - BCL10 745 1191 1288 TNFRSF1A - BCL10 362 173 448
TNFRSF10A - BCL10 451 819 954 TNFRSF10A - BCL10 1547 415 2426
TNFRSF10B - BCL10 791 537 1446 TNFRSF10B - BCL10 582 658 1464
TNFRSF10D - BCL10 1831 1694 2040 TNFRSF10D - BCL10 302 19 2497
TNFRSF12A - BCL10 2015 1072 1883 TNFRSF12A - BCL10 1865 1234 1540
TNFRSF14 - BCL10 254 1400 847 TNFRSF14 - BCL10 1175 1894 2227
TNFRSF21 - BCL10 1912 571 958 TNFRSF21 - BCL10 848 1943 418
TNFSF10 - BCL10 1743 931 1657 TNFSF10 - BCL10 2020 1522 1054
TNFSF15 - BCL10 254 1469 577 TNFSF15 - BCL10 1256 188 1074
Table 12. 2nd order combinatorial hypotheses between TNF and BCL family.
Table 12. 2nd order combinatorial hypotheses between TNF and BCL family.
Unexplored combinatorial hypotheses
BCL w.r.t TNF
TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 BCL2L2
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 BCL2L13
TNFRSF10B BCL3
TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21 BCL6
TNF-RSF10D/RSF12A BCL10
TNF w.r.t BCL
TNF-RSF10A/RSF10B/RSF10D/RSF12A/RSF14/SF10 BCL2L1
TNF-RSF10B BCL2L2
TNF-RSF14 BCL2L13
TNF-RSF10A/SF10D/SF10 BCL3
TNF-RSF12A BCL6
TNF-AIP1 BCL9L
TNF-SF10/SF15 BCL9L
TNF-RSF14 BCL10
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated