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Optimal Boundary Control Problem for the Stokes
Equation in Cardiovascular Applications

Irene Marín-Gayte

Departamento Métodos Cuantitativos, Universidad Loyola Andalucía, Campus Sevilla, Sevilla, Spain; imgayte@uloyola.es

Abstract: In this work, we study a boundary control problem for the evolutionary Stokes equations, under mixed

boundary conditions, in two and three dimensions. The Stokes equation is a valuable tool in cardiovascular

biomechanics, especially for modeling blood flow in low-velocity and high-viscosity conditions. Its application

in the microvasculature, the design of medical devices, and the study of cardiovascular diseases helps improve

the understanding and treatment of various pathological conditions. We provide a comprehensive theoretical

framework to address the analysis and the derivation of a system of first-order optimality conditions that

characterizes the solution of the control problem. Finally, solution-finding algorithm is proposed and illustrated

with some simulations.

Keywords: optimal control; partial differential equations; fluid dynamics; stokes equation; total stress; boundary

control; finite element method

1. Introduction

Optimal control problems of systems governed by partial differential equations (PDEs) have
garnered significant attention in recent decades. The Stokes equations, a simplified version of the
Navier-Stokes equations, are pivotal in describing the flow behavior of incompressible fluids under low
Reynolds number conditions where viscous forces dominate inertial forces. These problems may be
applied in different science and engineering fields such as atmospheric and ocean sciences, aeronautics,
and industrial design. In [15,25], several relevant topics related to both theoretical and numerical
aspects may be found, as a result of, at least, a decade of research by different authors. More recently,
the application of flow control to computational blood flow modeling has also been investigated.
Examples can be seen in [4,14], for the stationary case, or [7] for time-dependent equations.

From the applications point of view, the Stokes and Navier-Stokes equations have been comple-
mented with Dirichlet boundary conditions, mixed with imposed stress conditions, also known as
traction boundary conditions. Nevertheless, as it was indicated in [8], for the purpose of considering
the coupling of the fluid with a model representing the blood vessel wall, imposing the so-called total
stress vector, instead of the usual stress vector, should be preferred.

Optimal control problems, in general, aim to determine control inputs that optimize a given
performance criterion while ensuring that the system dynamics adhere to certain constraints. When
these systems are governed by partial differential equations (PDEs) like the Stokes equations, the
complexity of the control problems increases significantly. In particular, boundary optimal control
problems involve finding controls applied on the boundary of the domain to achieve desired outcomes
within the fluid flow.

Mixed boundary conditions, combining Dirichlet and stress (Neumann) conditions, add another
layer of complexity to these control problems. While Dirichlet conditions, which specify the value of
the function on the boundary, are well-understood and lend themselves to classical regularity results,
the introduction of stress conditions complicates the analysis. Mixed boundary conditions often lead to
a loss of regularity that poses significant challenges in both the theoretical and numerical study of these
problems. In this sense, following the approach from [1,2], they employ mixed boundary conditions,
including the homogeneous Dirichlet condition for the pressure on a portion of the boundary of the
flow domain; but at the same time, they formulate the optimal control problem without using the curl
operator and boundary conditions associated with this operator. However, in [1] they take into account
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the dependence of both the viscosity and the thermal conductivity coefficient on the temperature. This
expands the range of possible applications of the results. But, in our case, we consider a phisical model
based on the Stokes equations where the viscosity is a real positive constant and we do not consider
viscosity to be dependent on temperature. This is justified by the specific medical applications we are
focusing on, where the viscosity of blood can be considered constant. The temperature variations in
these scenarios are minimal and do not significantly affect the viscosity. Therefore, assuming constant
viscosity simplifies the model without compromising the accuracy of the results within the application
we want to study.

In this work, we analyse the boundary optimal control problem associated with the time depen-
dent Stokes equation under mixed Dirichlet and total stress boundary conditions. The boundary of
the domain is assumed to be composed of three distinct components. A fixed total-stress condition
is assumed on one part, a homogeneous Dirichlet condition on another and, finally, a Dirichlet-type
control is assumed to act on the remaining third component. This configuration is inspired by the
applications addressed in [7,14]. There, a Dirichlet control was applied at the inlet boundary, stress
conditions were considered on the outlet boundaries, whereas homogeneous Dirichlet conditions were
associated with the physical no-slip assumption. In those works, the stress boundary condition is to
be understood as a prescribed force per unit area, computed as the normal component of the Cauchy
stress tensor.

The application of the Stokes equations in cardiovascular problems is particularly noteworthy.
In modeling blood flow in microcirculation and small arteries, where the flow is typically slow and
viscosity effects are pronounced, the Stokes equations provide a more appropriate model than the full
Navier-Stokes equations. In such contexts, optimal control techniques are used to simulate and control
blood flow, aiming to improve the understanding and treatment of cardiovascular diseases.

Recent studies have applied these principles to computational blood flow modeling. For instance,
Dirichlet boundary conditions are used to model the no-slip condition on vessel walls, while stress
conditions are applied at the interfaces where blood interacts with medical devices or at the outlet
boundaries of the vascular network, see [13]. These mixed boundary conditions mimic physiological
conditions more accurately but also introduce additional analytical challenges due to the loss of
regularity.

The coupling of fluid flow with models representing the artery walls, often referred to as fluid-
structure interaction (FSI) problems, further complicates the scenario. Here, the use of total stress
boundary conditions, which account for both pressure and viscous stress, becomes crucial. These
conditions are essential for accurately modeling the interaction between blood flow and arterial walls
but require advanced mathematical techniques to handle the resulting optimal control problems.

Boundary control problems, under the stationary assumption, have long been studied by different
authors. Concerning mixed boundary conditions of Dirichlet-Neumann (stress vector) type, in [11]
a Neumann-type control problem is studied. There, the goal was the drag minimization, under
state constraints, on a two-dimensional exterior problem. Following some of those ideas, in [13], the
existence of an optimal boundary control was established under different types of cost functionals,
motivated by some of the aforementioned applications. In [23], the authors used a Lagrange multipliers
approach to address the control of the Dirichlet boundary, still in the stationary case.

Concerning time-dependent problems, Dirichlet controls have been considered in [18,21,22] for
bounded domains in 2D. In [10], the authors considered a Dirichlet control acting on an interior
boundary of an unbounded 3D domain. The case of mixed boundary conditions, particularly of the
case of Dirichlet-Total Stress remains, up to our knowledge, to be analysed.

Our work aims to provide a deeper understanding of mixed boundary optimal control problems
for the time-dependent Stokes equations, particularly in the context of cardiovascular applications. We
draw inspiration from established methods in the literature, such as those used for Dirichlet controls in
bounded domains and mixed Dirichlet-Neumann conditions. However, we extend these approaches
to handle the more complex mixed boundary conditions of Dirichlet and Total Stress. This extension is
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non-trivial and requires careful analysis to ensure the existence and regularity of solutions, addressing
the unique challenges posed by the loss of classical regularity, see [24].

In this sense, our domain Ω is an idealized domain representing a partially obstructed vessel
capillary. The domain Ω is represented in Figure 1. In this case, the left side is the inlet boundary (where
we imposed the control) while the right side corresponds to outlet boundary (where we imposed
the total stress condition). The remaining boundaries represent the vessel wall where we imposed
homogeneous Dirichlet conditions.

Figure 1. Schematic representation of the model.

Moreover, this work aims to serve as a foundational study for future research in the control
of the Navier-Stokes equations and fluid-structure interaction problems. By establishing a robust
theoretical and numerical framework for the Stokes equation, we try to pave the way for addressing
these more complex and realistic problems, ultimately contributing to the advancement of optimal
control techniques in cardiovascular applications.

The plan of this paper reads as follows. In Section 2 we present an analysis of the direct problem,
i.e., the Stokes equation with mixed boundary conditions. This section provides the mathematical
setting for the analysis of the optimal control problem, which will be the subject of Section 3. In the
later, existence of solution and first order conditions are studied. In Section 4, we provide numerical
results and we finish by summarizing some conclusions and perspectives.

2. Unsteady Stokes Equation

In this section, we consider the direct problem, that is, the non-stationary Stokes equation with
mixed boundary conditions of Dirichlet and total stress types.

Despite their relevance when modeling viscous incompressible flows, the Stokes equation, en-
dowed with such type of mixed boundary conditions, have been seldom analysed from a theoretical
standpoint. An exception are the results found in [3,20], for the homogeneous case. As explained by
the authors there, one of the advantages of this configuration is the possibility of deriving an energy
inequality, contrary to the configuration based on the ubiquitously used stress (Neumann) boundary
conditions, for which no control over the energy flux can be achieved.

We can describe our problem as follows. Given functions f , g, h and the initial condition u0, we
want to solve system 

∂tu −∇ · (2νD(u)) +∇p = f (0, T)× Ω,
∇ · u = 0 (0, T)× Ω,
u = g (0, T)× Γin,
u = 0 (0, T)× Γω,(

2νD(u)− pI
)
· n = h, u × n = 0 (0, T)× Γout,

u(0, x) = u0(x) Ω

(1)

where the unknowns are the fluid velocity u and the pressure p, n is the exterior unit normal to Γout

and ∂Ω = Γin ∪ Γout ∪ Γω is the boundary of an open bounded domain Ω ⊂ RN with N = 2, 3.
Now, we provide a brief nomenclature below that defines the physical parameters and symbols

used throughout this paper. This nomenclature is try to help readers fully understand the equations
and the model presented in the study and to apply the study to the medical cases.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 September 2024 doi:10.20944/preprints202409.0631.v1

https://doi.org/10.20944/preprints202409.0631.v1


4 of 18

• ν : Kinematic viscosity of the fluid.

• D(u) =
1
2

(
∇u +∇uT

)
represents the strain rate tensor.

• f : external force term applied to the fluid.
• g: control velocity condition at the inlet Γin.
• n: unit normal vector to the boundary.
• h: boundary condition related to stress on Γout.
• u0 initial velocity.

Under the above assumptions, we can say that system (1) models an incompressible Newtonian
fluid at a constant temperature.

The non-homogeneous Dirichlet condition for the boundary Γin corresponds to what will later be
considered as the control action. Also, there is another boundary component, Γout, where we apply
a prescribed total stress condition. Finally, in the remaining part of the boundary Γω we impose a
homogeneous Dirichlet condition.

Therefore, whenever required, we denote by ΓD = Γin ∪ Γω and ΓN = Γout as a reference to
Dirichlet (essential) and Neumann (natural) boundary conditions, respectively.

2.1. Functional Spaces and Preliminary Results

In this section we introduce some functional spaces along with several properties and preliminary
results that will be required later on, for our subsequent analysis.

In the sequel, let Ω be a connected open set of RN N = 2, 3, with a locally Lipschitz boundary ∂Ω
composed by three smooth open subsets, mutually disjoint, denoted by Γin, Γω, Γout, such that:

Γin, Γω, Γout are of class C1,1

∂Ω = Γin ∪ Γω ∪ Γout.

Following the classical analysis for the Stokes equation (see [26]), let us consider:

D(Ω) = {φ ∈ C∞(Ω)2 : ∇ · φ = 0 in Ω, supp φ ∩ Γω = ∅, φ × n = 0 in Γout}

and
E (Ω) = {φ ∈ C∞(Ω)2 : ∇ · φ = 0 in Ω, supp φ ∩ ΓD = ∅, φ × n = 0 in Γout}.

For convenience, we introduce the classical space V and H for Stokes equations, but we adapt the
definitions to the boundary conditions:

V := {u ∈ H1(Ω)2 : ∇ · u = 0 in Ω, trω(u) = 0, u × n = 0 in Γout}

(or the clousure of D(Ω) in H1(Ω)2),

V := {u ∈ H1(Ω)2 : ∇ · u = 0 in Ω, trD(u) = 0, u × n = 0 in Γout}

(or the clousure of E (Ω) in H1(Ω)2)

where trK is the trace operator to a subset ΓK.
Also, we consider:

H := D(Ω)
L2

, H := E (Ω)
L2

and
W(0, T) = {u ∈ L2(0, T;V), u′(t) ∈ L2(0, T; V∗)},

W(0, T) = {u ∈ L2(0, T; V), u′(t) ∈ L2(0, T; V∗)},

where V∗ is the dual space of V and V∗ the dual of the V.
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Lemma 1. The space V is dense in H and the space V is also dense in H.

Proof:
Thanks to the Poincaré inequality (it remains true when we have that the functional space V and

V is null on a part of boundary), we have that i1 : V ↪→ H and i2 : V ↪→ H are continuous embeddings.
Then, the conclusion follows from the classical results found in [26], Chapter 1.2.

□

Note that, from the definition of the functional spaces, and thanks to Riesz’s Theorem, we also
have the following chain of continuous injections:

V ↪→ H ↪→ V∗ V ↪→ H ↪→ V∗.

In addition, by using Lemma 1.1 (Chapter III) of [26], we can ensure that W(0, T) ↪→ C0([0, T];H)

and W(0, T) ↪→ C0([0, T]; H).
In the sequel, we consider | · | to be the usual L2(Ω) norm, and we denote by [·, ·] the inner

product in L2(Ω). Also, we consider | · |1 and | · |0 to be the norma in H1(Ω) and H1
0(Ω) respectively,

defined by
|u|1 = (|u|2L2 + |D(u)|2L2)

1
2 and |u|0 = |D(u)|L2 .

Besides, we denote by (·, ·) the usual L2(0, T; L2(Ω)) inner product. When convenient, we
represent L2(0, T; V) and L2(0, T;V) by L2(V) and L2(V), respectively, for example:

∥ f ∥L2(0,T;V) =
( ∫ T

0
|D( f )|2L2 dt

) 1
2
.

2.2. Existence and Uniqueness Result

This section is devoted to the existence of a solution for the Stokes equation (1). To this purpose,
we start by introducing the weak formulation as well as the definition of a weak solution of these
equations.

Definition 1. Given f ∈ L2((0, T)× Ω), g ∈ L2((0, T)× Γin), h ∈ L2((0, T)× Γout) and u0 ∈ H, we say
that u is a weak solution of the Stokes equation (1) if

u ∈ W(0, T),

⟨ut, v⟩L2(V∗),L2(V) + 2ν(D(u), D(v)) =

( f , v) + (h, v)L2(0,T;L2(Γout))
∀v ∈ L2(V),

u = g in L2((0, T)× Γin),

u(0) = u0 in H,

(2)

Notice that, the pressure is not appearing in the weak formulation. Nevertheless, as in the cases
with a single Dirichlet condition is considered, we can recover the pressure using De Rham’s - type
results ([26]). We could also consider a mixed weak formulation that includes pressure in the problem’s
formulation. In this case, the solution space would change and would no longer include the condition
of zero divergence. Accordingly, this equation would also be incorporated into the weak formulation
as an additional equation, allowing us to solve for the pressure as well.

Because we are going to use the Dirichlet boundary condition as a control variable, let us assume
some additional requirements for g. We recall the following result
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Lemma 2. There exists a bounded extension operator E : H1
0(Γin) 7→ V, where

H1
0(Γin) = {w ∈ L2(Γin) : ∇Γin w ∈ L2(Γin) and w = 0 in ∂Γin}

with ∇Γin w the tangential gradient.

Note that, the tangential gradient ∇Γ of f at a point x ∈ Γ is defined as the tangential component
of the gradient of the trace of f , i.e. the projection of the gradient of the trace of f onto the tangent
plane to Γ at x, that is,

∇Γ f = ∇ f̃ − (∇ f̃ · n)n = ∇ f̃ − ∂ f̃
∂n

n on Γ,

wher f̃ is the trace of f on Γ.
The proof of this lemma follows the proof of the Corollary 3.5 of [11].
In order to extend the E operator to the time domain, see that

Lemma 3. Let a real number T > 0, then, there exists a bounded extension operator ET : L2(0, T; H1
0(Γin)) 7→

L2(0, T;V), with
ET(v(t)) = E(v(t)) a.e. t ∈ [0, T].

Proof:
We use the definition of the operator ET to prove that it is bounded. Let v ∈ L2(0, T; H1

0(Γin)),

∥ET(v)∥L2(0,T;V) =
( ∫ T

0
∥E(v(t))∥2

V dt
)1/2

≤
( ∫ T

0
C2∥v(t)∥2

H1
0 (Γin)

dt
)1/2

)

where C > 0 doesn’t depend on t by the definition of bounded operator. So, we have that:

∥ET(v)∥L2(0,T;V) ≤ C∥v∥L2(0,T;H1
0 (Γin))

.

Therefore, ET is well defined and is a bounded operator.

□

The existence of such extension operators allows us to define the following set:

G =
{

g = tr(0,T)×Γin
(gext), gext ∈ ET(L2(0, T; H1

0(Γin))) ∩W(0, T),∫
Γin

gext n dx +
∫

Γout
gext n dx = 0

}
which characterizes the Dirichlet boundary conditions that we are going to consider.
At this point, we can state the following existence result

Theorem 1. Let Ω ⊂ Rd, d = 2, 3 be an open boundary set with a locally Lipschitz boundary, g ∈ G,
h ∈ L2((0, T)× Γout), f ∈ L2((0, T)× Ω) and u0 ∈ H with u0 − gext(0) ∈ H. Then, there exists a unique
weak solution u ∈ W(0, T) of the Stokes system (2), satisfying:

sup
t∈[0,T]

|u(t)|V + ∥u∥L2(V) ≤ C
(
∥ f ∥L2(0,T;Ω) + ∥h∥L2(0,T;L2(Γout))

+∥(gext)t∥L2(V∗) + ∥gext∥L2(V) + |u0|+ |gext(0)|
)

for a constant C > 0.
(3)

Proof:
We start by remarking that there exists a function gext ∈ ET(L2(0, T; H1

0(Γin))) ∩W(0, T) with
g = tr(0,T)×Γin

(gext) and u0 ∈ H with u0 − gext(0) ∈ H.
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Then, gext(0) ∈ H and for all ψ ∈ L2(V) we have that

⟨(gext)t, ψ⟩L2(V∗),L2(V) + 2ν(D(gext), D(ψ)) ∈ L2(V∗).

Next, consider the following homogeneous problem:

ũ ∈ W(0, T),

⟨ũt, v⟩L2(V∗),L2(V) + 2ν(D(ũ), D(v)) = ( f , v) + (h, v)L2(0,T;L2(Γout))
−

−⟨(gext)t, v⟩L2(V∗),L2(V) − 2ν(D(gext), D(v)) ∀v ∈ L2(V),

ũ = 0 (0, T)× Γin,

ũ(0) = u0 − gext(0) ∈ H Ω.

We use the compacity method and Galerkin approximation to prove the existence of the solution,
as in Theorem 1.1 of Chapter III of [26].

So, we can ensure that

sup
t∈[0,T]

|ũ(t)|+ ∥ũ∥L2(V) ≤ C
(
∥ f ∥L2(0,T;Ω) + ∥h∥L2(0,T;L2(Γout))

+∥(gext)t∥L2(V∗) + ∥gext∥L2(V) + |u0 − gext(0)|
)

for a constant C > 0.

Therefore, taking u = ũ + gext, by linearity, u is the unique solution of (1) and satifies:

sup
t∈[0,T]

|u(t)|V + ∥u∥L2(V) ≤ C
(
∥ f ∥L2(0,T;Ω) + ∥h∥L2(0,T;L2(Γout))

+∥(gext)t∥L2(V∗) + ∥gext∥L2(V) + |u0|+ |gext(0)|
)

for a constant C > 0.
(4)

□

Note that, the solution u ∈ W(0, T) then u is equal a.e. to a continuous function [0, T] 7→ H, see
[26]. This fully clarifies the initial condition in time.

Consequently, these results indicate that mathematically, there is a unique weak solution, which
physically implies that the proposed problem is well-posed and can be solved. In other words, for any
desired initial data, the Stokes equation can be used to approximate blood flow.

3. Optimal Control Problem

This section is devoted to the study of the optimal control problem associated to the Stokes
equation (2).

3.1. Existence of an Optimal Pair

Consider the quadratic functional defined by:

J(g, u) :=
α1

2

∫∫
(0,T)×Ω

|u − ud|2 dx dt +
α2

2

∫
Ω
|u(T)− ũd|2 dx

+
α3

2

∫∫
(0,T)×Γin

|g|2 dx dt +
α4

2

∫∫
(0,T)×Γin

|∇Γin g|2 dx dt,
(5)

where α1, α2, α3, α4 are positive given constants and ud ∈ L2((0, T) × Ω), ũd ∈ L2(Ω) are given
functions and ∇Γin g is the tangential gradient in Γin.
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Consider also the admissible control set:

Gad := {g ∈ G, gext(0) ∈ H} ⊂ L2(0, T; H1/2(∂Ω))

and the feasible set

Fad := {(g, u) ∈ Gad ×W(0, T) : u is the weak solution of (2) associated to g}.

The problem that we intend to solve in this section is the following:

Find (ĝ, û) ∈ Fad such that

J(ĝ, û) ≤ J(g, u), ∀(g, u) ∈ Fad (6)

The existence of an optimal control (ĝ, û) can then be ensured as follows.

Theorem 2. Let Ω ⊂ Rd, d = 2, 3, be an open boundary set with a locally Lipschitz boundary, h ∈
L2((0, T)× Γout), f ∈ L2((0, T)× Ω) and u0 ∈ H. Then, there exists a pair (ĝ, û) ∈ Fad solution of (6).

Proof:
Firstly, notice that if we consider for instance g ∈ Gad to be null, thanks to Theorem 1, we can

immediately see that the feasible set Fad is non-empty. Since J(g, u) ≥ 0 for all (g, u) ∈ Fad, which is
non-empty, there exists a minimizing sequence (gn, un) ⊂ Fad such that

lim
n→∞

J(gn, un) = J̄ = inf
(g,u)∈Fad

J(g, u).

Also,
lim

n→∞
J(gn, un) ≥ ∥gn∥L2(0,T,H1

0 (Γin))
.

Therefore, gn is uniformly bounded in L2(0, T; H1
0(Γin)).

Besides, there exists (gext)n ⊂ ET(L2(0, T; H1
0(Γin)))∩W(0, T) with ET(gn) = (gext)n the bounded

extension operator defined in Lemma 3. Since gn −→ g weakly in L2((0, T)× Γin) and ∇Γin gn −→
∇Γin g weakly in L2((0, T)× Γin), then (gext)n in uniformly bounded in L2(0, T,V).

Taking into account that un are the corresponding solutions of the weak Stokes equation, by using
the estimates, we conclude that un is an uniformly bounded sequence in L2(0, T;V) ∩ C0([0, T];H).

Hence, we can extract at least a subsequence, still renamed as (gn, un), which weakly converges
to a certain pair (g, u).

Moreover, there exists a pair (g, u) such that, at least for a subsequence,

gn −→ g weakly in L2((0, T)× Γin),
un −→ u weakly in L2(0, T;V),
un −→ u weakly − ∗ in L∞(0, T;H),
un(0) → u0 in H,
un(T) → u(T) in H.

Inserting (un) into (2) we obtain:
⟨(un)t, v⟩L2(V∗),L2(V) + 2ν(D(un), D(v)) = ( f , v) + (h, v)L2(0,T;L2(Γout))

∀v ∈ L2(V),

un = gn in L2((0, T)× Γin),

un(0) = u0 in H.
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We can, therefore, conclude that (g, u) belongs to Fad. Finally, as J is coercive and lower semicon-
tinuous with respect to the weak convergence, we conclude that

J̄ = lim
n→∞

J(gn, un) ≥ J(g, u) ≥ J̄

and (g, u) is a minimizer.

□

3.2. Differentiability and Characterisation Results

Differentiability is an important issue in the study of optimal control problems, as it allows the
derivation of the first order optimality conditions which provide further characterisation of the optimal
pair.

With this aim, we will follow an approach that is inspired in [21], for the case of a single boundary
condition.

We start by introducing two auxiliary systems which are related, respectively, to the linearized
and the adjoint state equations which will later be used for the optimality conditions:

(w1)t −∇ · (2νD(w1)) +∇q1 = f1 Ω × (0, T),
∇ · w1 = 0 Ω × (0, T),
w1 = g1 Γin × (0, T),
w1 = 0 Γω × (0, T)(

2νD(w1)− q1 I
)
· n = 0 Γout × (0, T),

w1(0, x) = 0 Ω

(7)

and 

−(w2)t −∇ · (2νD(w2)) +∇q2 = f2 Ω × (0, T),
∇ · w2 = 0 Ω × (0, T),
w2 = 0 Γin × (0, T),
w2 = 0 Γω × (0, T)(

2νD(w2)− q2 I
)
· n = 0 Γout × (0, T),

w2(T, x) = d2 Ω.

(8)

We can give the following regularity result:

Proposition 1. Let u ∈ W, f1 ∈ L2(0, T; V∗), f2 ∈ L2(0, T; V∗), g1 ∈ Gad and d2 ∈ H. Then, the linear
system (7) admits a unique weak solution w1 ∈ W(0, T) and the system (8) has a unique weak solution
w2 ∈ L2(0, T; V).

The weak formulations of (7) and (8), although associated to linear problems, include transport
type terms that can be recast into the frame of Theorem 1.

Let us now write problem (6) as:

min J(uL + w, (uL + w)(T), g)
subject to: e(uL, w, g) = 0

where e : W(0, T)× Gad 7→ L2(V∗)×H.
In this case, e = (e1, e2) with

⟨e1(ũ, gext), v⟩ = ⟨ũt, v⟩L2(V∗),L2(V) + 2ν(D(ũ), D(v))− ( f , v)

−(h, v)L2(0,T;L2(Γout))
+ ⟨(gext)t, v⟩L2(V∗),L2(V) + 2ν(D(gext), D(v))
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e2(ũ, gext) = ũ(0)− u0 + gext(0),

with u = ũ + gext and g = tr(0,T)×Γin
gext.

Proposition 2. The mapping e := (e1, e2) is twice continuously Fréchet differentiable with local Lipschitz
continuous second derivative.

Note that, the differentiability of the linear operators e1, e2 is immediate. So, we can then conclude
that the application e1 and e2 are continuous and twice continuously Fréchet differentiable, and the
second derivative is Lipschitz continuous.

We are now in conditions to provide a necessary condition that characterizes the optimal solution,
known to exist thanks to Theorem (2).

In the sequel, we denote by (A) the list of assumptions:

(A) :=



Ω ⊂ Rd, d = 2, 3, be an open boundary set of class C1,
g ∈ G with g = tr(0,T)×Γin

(gext),
h ∈ L2((0, T)× Γout),
f ∈ L2((0, T)× Ω)

u0 ∈ H with u0 − g̃(0) ∈ H.

Theorem 3. Let (A) be satisfied and (ĝ, û) a minimum provided by Theorem 2, then there exists an adjoint
state φ̂ and an adjoint pressure q̂ such that (ĝ, û, φ̂, q̂) verify:

û ∈ W(0, T),

⟨ût, v⟩L2(V∗),L2(V) + 2ν(D(û), D(v)) =

( f , v) + (h, v)L2(0,T;L2(Γout))
∀v ∈ L2(V),

û = ĝ in L2((0, T)× Γin),

û(0) = u0 in H,

(9a)

and 

φ̂ ∈ W(0, T),

−⟨φ̂t, v⟩L2(V∗),L2(V) + 2ν(D(φ̂), D(v))

= α1

∫∫
(0,T)×Ω

(û − ud)v dxdt ∀v ∈ L2(V),

φ̂(T) = α2(û(T)− ũd),

(9b)

and

α3

(
ĝ, g̃

)
+ α4

(
∇Γin ĝ,∇Γin g̃

)
= −

(
((−2νD(φ̂) + q̂I)n), g̃

)
∀g̃ ∈ L2(0, T; H1

0(Γin)) (9c)

Proof:
Note that, as we have a unique solution each control g, we can identify the reduced cost functional,

i.e, we can write that

J(g) = J(g, u) =
α1

2

∫∫
(0,T)×Ω

|u − ud|2 dx dt +
α2

2

∫
Ω
|u(T)− ũd|2 dx
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+
α3

2

∫∫
(0,T)×Γin

|g|2 dx dt +
α4

2

∫∫
(0,T)×Γin

|∇Γin g|2 dx dt.

Remark that the above reasoning is possible because we have a uniqueness result for the Stokes
equations. In case of not having a uniqueness of solution, as in the 3D case of Navier-Stokes equations,
this classical reasoning could not be used and we would have to resort to more advanced techniques
to the proof. Specifically, we could try to follow the reasoning already used in other works, such as
[5,6], in which a uniqueness of solution was not assumed.

It is easy to check that J is Gâteaux differentiable, J′(g) : Gad 7→ L2((0, T)× Γin) and

〈
J′(g), g̃

〉
L2(0,T;H1/2(∂Ω)) = lim

ε→0

J(g + εg̃)− J(g)
ε

= α1

∫∫
(0,T)×Ω

(u − ud)v dx dt + α2

∫
Ω
(u(T)− ũd)v(T) dx

+α3

∫∫
(0,T)×Γin

gg̃ dx dt + α4

∫∫
(0,T)×Γin

∇Γin g∇Γin g̃ dx dt,

with v solution of: 

v ∈ W(0, T),

⟨vt, v1⟩L2(V∗),L2(V) + 2ν(D(v), D(v1)) = 0 ∀v1 ∈ L2(V),

v = g̃ in L2((0, T)× Γin),

v(0) = 0.

Therefore, integrating by parts we obtain:

〈
J′(g), g̃

〉
L2(0,T;H1

0 (Γin))
=
∫∫

(0,T)×Γin

(((−2νD(φ) + qI)n + α3g)g̃ + α4∇Γin g∇Γin g̃) dx dt

for all g̃ ∈ L2(0, T; H1
0(Γin)) with φ the adjoint state associated (9b) to the weak solution to Stokes

equations (9a) with ĝ = g.
Note that our problem satisfies the conditions of Theorem 9.6 of [24]:

• J and e are Fréchet differentiable, thanks to Proposition 2.
• For each g ∈ Gad, the state equation e(u, g) = 0 defines a unique control-to-state map g 7→ u(g),

that is e(u(g), g) = 0 for any g ∈ Gad, thanks to the uniqueness result proved in Theorem 1.
Moreover, the control-to-state map is Gateaux differentiable, thanks to Proposition 2.

• The partial derivative e∗u(u(g), g) is a continuous isomorphism. In fact, thanks to Proposition 2,
eu(u(g), g) : W(0, T) 7→ L2(V∗)×H where euv = ((e1)uv, (e2)uv) with

⟨(e1)uv, v1⟩ = ⟨ṽt, v1⟩L2(V∗),L2(V) + 2ν(D(ṽ), D(v1))

⟨(gext)t, v1⟩L2(V∗),L2(V) + 2ν(D(gext), D(v1)),

(e2)uv = ṽ(0) + gext(0),

with v = ṽ + gext and g = tr(0,T)×Γin
gext.

As a consequence of Proposition 1, the mapping eu(u(g), g) : W(0, T) 7→ L2(V∗) × H is a
homeomorphism. Hence by Proposition 2 and the Implicit Function Theorem the first derivative
u′(g)g̃ at g̃ ∈ G can be expressed as

u′(g)g̃ = −e−1
u (u(g), g)eg(u(g), g)g̃ ∈ W(0, T).
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Hence, in view of that result, we can ensure that, if ĝ is a minimum control provided by Theorem
2 associated to the state u, then there exists an adjoint pair of state and pressure variables satisfying
the optimality system.

□

If we want to consider strong solution, then the optimality system is:

∂tû −∇ · (2νD(û)) +∇ p̂ = f (0, T)× Ω,

∇ · û = 0 (0, T)× Ω,

û = ĝ (0, T)× Γin,

û = 0 (0, T)× Γω,(
2νD(û)− p̂I

)
· n = h (0, T)× Γout,

û(0, x) = u0(x) Ω

(10a)

and 

−∂t φ̂ −∇ · (2νD(φ̂)) +∇q̂ = α1(û − ud) (0, T)× Ω,

∇ · φ̂ = 0 (0, T)× Ω,

φ̂ = 0 (0, T)× Γin,

φ̂ = 0 (0, T)× Γω,(
2νD(φ̂)− q̂I

)
· n = 0 (0, T)× Γout,

φ̂(T, x) = α2(û(T)− ũd) Ω

(10b)

and

α3 ĝ − α4∇Γin(∇Γin ĝ) = −((−2νD(φ̂) + q̂I)n)|(0,T)×Γin . (10c)

These results allow us to conclude that the boundary control problem has a unique solution and
we can compute it by using the optimallity system. From an application perspective, this means that
for any desired data, it is possible to control the blood flow by adjusting only the fluid inlet profile,
thereby directing the flow to achieve a desired and optimal movement for proper functioning.

4. Algorithm and Numerical Simulations

In the previous sections, we have conducted a theoretical study that has allowed us to characterize
the optimal control. In particular, we have obtained an adjoint variable that enables us to calculate the
gradient of the reduced cost. The gradient calculation is the main ingredient of the so-called descent
methods. Thus, classic descent algorithms such as the gradient method will be proposed.

ALG: Optimal Step Gradient Method

(a) Choose g0 ∈ L2((0, T)× Γin) and u0 ∈ L2(0, T;V).
(b) Then, for given n ≥ 0 and gn ∈ L2((0, T)× Γin), compute the solution (un+1, pn+1) to (11)



∂tun+1 −∇ · (2νD(un+1)) +∇pn+1 = f n+1 (0, T)× Ω,
∇ · un+1 = 0 (0, T)× Ω,
un+1 = gn (0, T)× Γin,
un+1 = 0 (0, T)× Γω,(

2νD(un+1)− pn+1 I
)
· n = hn+1 (0, T)× Γout,

un+1(0, x) = u0(x) Ω

(11)
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and the solution (φn+1, qn+1) to (12)



−∂t φn+1 −∇ · (2νD(φn+1)) +∇qn+1 = α1(un+1 − ud) (0, T)× Ω,
∇ · φn+1 = 0 (0, T)× Ω,
φn+1 = 0 (0, T)× Γin,
φn+1 = 0 (0, T)× Γω,(

2νD(φn+1)− qn+1 I
)
· n = 0 (0, T)× Γout,

φn+1(T, x) = α2(un+1(T)− ũd) Ω

(12)

and set

gn+1 = gn − ρndn+1, (13)

where
dn+1 = (−2νD(φn+1) + qn+1 I)

∣∣∣
(0,T)×Γin

+ α3gn − α4∂2
yygn (14)

and
ρn = arg

(
min
ρ>0

J(gn − ρdn+1)
)

. (15)

Note that, we are considering that ∇Γin is ∂y due to our Γin is a vertical line.
Let us now provide further details on the numerical approximation used to solve (11) and (12).

We start by introducing the variational form of the equations and then, we discretize our systems in
time, by using the backward implicit Euler finite difference. Finally, we use the finite element method
to discretize in space. Consequently, the discrete problems solved at each iteration are:



[uk+1
h − uk

h
dt

, v
]
+ 4ν

[
D(uk+1

h ), D(v)
]
−

[
pk+1

h ,∇ · v
]
=

[
f k+1, v

]
+

∫
Γout

hk+1v dx[
∇ · uk+1

h , pp
]
= 0

uk+1
h = gn(tk+1, xh) xh ∈ Γin,

uk+1
h = 0 xh ∈ Γω

u0
h = u0(xh) xh ∈ Ω,

with v, pp the corresponding test functions and uk+1
h = u(tk+1, xh), pk+1

h = p(tk+1, xh) (being u, p the
n + 1 iterate of the algorithm) for k = 0, 1, . . . , N − 1. Similarly, we have:

−
[ φk+1

h − φk
h

dt
, v
]
+ 2ν

[
D(φk

h), D(v)
]
−

[
qk

h,∇ · v
]
= α1

[
uk

h − uid(tk, xh), v
]

[
∇ · φk

h, pp
]
= 0

φk
h = 0 xh ∈ ∂Ω

φN
h = α2(uk+1

h − ũd(xh)) xh ∈ Ω.

On the other hand, in the numerical experiment, we use an explicit approximation formula to
compute the optimal step ρ. For a given search direction d, we introduce the linearization of the
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mapping ρ 7→ u(g − ρd) = u(g)− ρu′(g)d. And the optimal step is given by the expression I′(ρ) = 0
with I(ρ) = J(u(g)− ρu′(g)d, g − ρd). So the unique root of the I′(ρ) is given by:

ρ∗ :=
(J′(g), d)

α1

∫∫
(0,T)×Ω

|v|2 + α2

∫
Ω
|v(T)|2 + α3

∫∫
(0,T)×Γin

|d|2 + α4

∫∫
(0,T)×Γin

|∂yd|2
,

where v is the solution to the homogeneous Stokes system with v(0) = 0.

Test: 2D stenotic vessel capillary with noise data

Our test addressed an idealized domain representing a partially obstructed vessel capillary, and
we aimed to approximate the solution to a noisy solution in order to simulate the noise obtained from
medical tests

The domain Ω is represented in Figure 2. In this case, the left side is the inlet boundary (where
we imposed the control) while the right side corresponds to outlet boundary (where we imposed
the total stress condition). The remaining boundaries represent the vessel wall where we imposed
homogeneous Dirichlet conditions.

Figure 2. The domain Ω and the mesh; ∂Ω is composed of Γin (the left side), Γout (the right side) and
Γω (the remaining of boundary).

In order to solve numerically the systems appearing in ALG , we had to fix a mesh, the finite
element approximation spaces, and a time step. For the space discretization, we used a mixed finite
element formulation with continuous piece-wise P2 and P1 functions for the velocity field and the
pressure, respectively. For details, see [12]. The simulations for the current test, as well as for the
following ones, have been performed with the FreeFem++ package (see [19]).

We take T = 1, dt = 0.1, f = 0, considering stationary total stress h = (2x − 40, 10 − 2y). We
want to drive the solution close to desired states, ud(t, x) and ũd(x) = ud(x, T), where ud is a noisy
perturbation of the solution Ud of (16), and T = 1:

∂tu −∇ · (2νD(u)) +∇p = 0 (0, T)× Ω,
∇ · u = 0 (0, T)× Ω,
u = (1.5t · y · (2 − y), 0) (0, T)× Γin,
u = 0 (0, T)× Γω,(

2νD(u)− pI
)
· n = (0, 0) (0, T)× Γout,

u(0, x) = (0, 0) Ω

(16)

We considered, as intial guess for the control,

g0 = 1.5 sin(
π

2
t) · y · (2 − y).

We will now present relative error for different experiments in which we have varied the Reynolds
number and the noise rate of the data. It is important to note that in this case, we have chosen small
Reynolds numbers (on the order of 10−2 and 10−3) because these correspond to the Reynolds number
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of blood in capillaries, which is where these equations can be applied. In the following table, see Figure
3, the relative errors between the calculated solution and the desired noiseless solution will be shown:

∥u − Ud∥L2((0,T)×Ω)

∥Ud∥L2((0,T)×Ω)
.

Figure 3. Relative errors for α2 = 1, α3 = 1 and α4 = 1.

As can be observed in Figure 3, the algorithm performs quite well and successfully approximates
the solution even when the noise levels in the data exceed 50%. It is also notable that, as expected,
when we decrease the value of α1, the relative errors increase, although they remain small. All of this
suggests that the algorithm works efficiently and quickly converges to a solution that is very close to
the desired one.

Next, we will present the solution obtained for a specific case at three different times throughout
the interval [0, 1], see Figures 4–6.

(a) Desired Solution (b) Computed Solu-
tion

(c) Noise Data

Figure 4. The velocity fields for T = 0.1 and Re = 0.0055, α1 = 100, α2 = 1, α3 = 1 and α4 = 1, with a
noise rate of 60%.
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(a) Desired Solution (b) Computed Solu-
tion

(c) Noise Data

Figure 5. The velocity fields for T = 0.5 and Re = 0.0055, α1 = 100, α2 = 1, α3 = 1 and α4 = 1, with a
noise rate of 60%.

(a) Desired Solution (b) Computed Solu-
tion

(c) Noise Data

Figure 6. The velocity fields for the final time T = 1 and Re = 0.0055, α1 = 100, α2 = 1, α3 = 1 and
α4 = 1, with a noise rate of 60%.

As can be seen in the images, see Figures 4–6, the solution obtained with the algorithm is very
close to the desired noiseless solution, even when we have high levels of noise in the data, as is the
case here. Specifically, it should be noted that the noise is introduced into the Stokes equation due to
the adjoint state, but as we can see, the algorithm is able to suppress that noise and find the noiseless
solution. This aspect is very important from the perspective of application and the use of medical data,
as data obtained from medical tests often have a high noise rate. Therefore, it is a very positive aspect
that the algorithm is capable of overcoming this problem.

5. Conclusions

In this work, we have provided necessary conditions for a boundary control problem associated
with the time-dependent Stokes equations, under boundary conditions of mixed type. In a certain
sense, it can be seen as an extension of the work performed in [13], to the the time-dependent case
under mixed boundary conditions. We could see that an initial guess, associated with a noise can be
improved until decreasing the relative fitting error to less than 5%. This is the case, even when high
noise rate are considered, as well as nonphysical data.

One of the major contributions of this work is to lay the groundwork for extending it to the
time dependent case. It is important to note that this extension is by no means trivial, and we are
currently working on it. One of the key aspects to consider, if we want to extend the work to the
Navier-Stokes equations in the two-dimensional case us that we don’t have a linarity equation so
we have to use another technique to get the results. Moreover, in the three-dimensional case, we do
not have uniqueness of solution nor good regularity even with Dirichlet-type conditions. Therefore,
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in the three-dimensional case, it will be necessary to work under the assumption that a unique
solution exists and assuming sufficient regularity to dprove similar results to those presented in this
work. Additionally, since gradient-type algorithms are known to become computationally expensive,
parameterized approaches are now being considered for 3D simulations. Future extensions may
consider with Navier-Stokes equations, as well as multiple boundary controls.
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