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Article

Area-Time Efficient High-Radix Modular Inversion
Algorithm and Hardware Implementation for ECC
over Prime Fields

Yamin Li

Computer Architecture Laboratory, Department of Computer Science, Faculty of Computer and Information
Sciences, Hosei University, Tokyo 184-8584, Japan; yamin@hosei.ac.jp

Abstract: Modular inversion on large operands is a time-consuming calculation used in elliptic curve
cryptography. Its hardware implementation requires extensive hardware resources such as lookup
tables and registers. We investigate state-of-the-art modular inversion algorithms and evaluate the
performance and cost of the algorithms and their hardware implementations. We then propose
a high-radix modular inversion algorithm aimed at short execution time and low hardware cost.
We present a detailed radix-8 hardware implementation based on 256-bit primes in Verilog HDL
and compare its cost performance with other implementations. Our implementation on the Altera
Cyclone V FPGA chip uses 1227 ALMs (Adaptive logic modules) and 1037 registers. The modular
inversion calculation takes 3.67 microseconds. The AT (Area time) factor is 8.30, outperforming
other implementations. We also present an implementation of elliptic curve cryptography using
the proposed radix-8 modular inversion algorithm. The implementation results also show that our
modular inversion algorithm is more efficient in area time than other algorithms.

Keywords: computer security; elliptic curve cryptography; modular inversion; hardware; verilog
HDL; FPGA; cost performance evaluation

1. Introduction

Modular inversion is an important computation in elliptic curve cryptography (ECC). ECC
provides a secure key agreement between two parties over an insecure network. It calculates points on
an elliptic curve over a finite field (such as a field of prime numbers) based on point addition (PA) and
point doubling (PD) computations. In affine coordinates, PA and PD must calculate the slope of a line.
Such calculations involve costly modular inversions. In projective or Jacobian coordinates, PA and PD
do not require such calculations, but a modular inversion is still required to transform the points to
affine coordinates to obtain the same key for the two parties.

Given a prime number m, the inverse r of a number a with a < m is defined as r = a−1 mod m.
There are mainly two popular methods for calculating modular inversion:

1. Extended Euclidean Algorithm (EEA) without using divisions.
2. Using Fermat’s Little Theorem am−1 = 1 mod m [1]: r = am−2 mod m = a−1 mod m.

We will see that the method using Fermat’s Little Theorem takes longer time and requires more
registers than EEA. Therefore, we will focus our design on using the EEA.

The EEA inherently needs divisions. It calculates the largest integer quotient and calculates the
remainder based on the quotient. The divisions can be replaced by addition, subtraction, and shift
operations. For simplicity, we will also refer to EEA which does not use divisions as EEA.

For calculating r = a−1 mod m, EEA first initializes u, v, x, y with a, m, 1, 0, respectively. Then EEA
repeats calculations containing only addition, subtraction, and shift operations on u, v, x, y until u = 1
or v = 1. Finally, the modular inversion result is available by adjusting x or y, corresponding to u = 1
or v = 1. A modular inversion algorithm is said to be fast if u or v reaches 1 quickly.

The widely used modular inversion algorithm is Algorithm 2.22, proposed by Hankerson,
Menezes, and Vanstone [2]. It repeatedly shifts u or v to the right when u or v is even. Correspondingly,
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x is also shifted to the right with the shift of u; y is also shifted to the right with the shift of v. Note that
when x or y is odd, m will be added before shift. This guarantees that the value to be right-shifted is
even, since the prime m is odd. Next, if u ≥ v, u and x will be replaced by u − v and x − y, respectively.
Otherwise, v and y will be replaced by v − u and y − x, respectively. Finally, the result is x mod m if
u = 1 and y mod m otherwise. Hossain and Kong [3] revised Algorithm 2.22 by adding m to x or y
if it is negative. This ensures that x and y are non-negative. Daly, Marnane, Kerins, and Popovici [4]
revised Algorithm 2.22 by dividing u − v or v − u by two because the subtraction result is even (both u
and v are odd before the subtraction). Correspondingly, x − y or y − x needs also to be divided by two:
If x − y or y − x is odd, m is added before the division. Division by two is done by shifting one bit to
the right. Mrabet, El-Mrabet, Bouallegue, Mesnager, and Machhout proposed a modular inversion
algorithm [5] with u + v. Instead of u − v or v − u, as Algorithm 2.22 does, they perform u + v for
new u or v. This operation slows down the speed at which u or v reaches 1, increasing execution
time. Chen and Qin proposed a modular inversion algorithm [6] that uses only adders. Subtractions
are performed by addition with inversion and addition by 1. Choi, Lee, Kong, and Kim proposed a
modular inversion algorithm [7] that replaces the repeated shift of u or v and the corresponding shift of
x or y in Algorithm 2.22 by a selection of u, x or 0, 0, or a selection of v, y or 0, 0, based on the even/odd
of v or u. This simplifies the circuit by replacing adders with multiplexers, reducing the circuit delay.
Also, they use −v and −y, instead of v and y, during the calculation. This merges u − v and v − u
into u + v and merges x − y and y − x into x + y, reducing the circuit cost. Mixed radix-4 modular
inversion algorithms are investigated in [7–10]. If u or v is divisible by four, u or v is shifted to the
right by two bits. Otherwise, if u or v is even (divisible by two), u or v is shifted to the right by one bit.
Otherwise (both u and v are odd), u − v or v − u is shifted to the right by one bit and assigned to u or
v. Correspondingly, x or y is adjusted by adding −m, m, or 2m and shifted to the right by two bits or
one bit. [8] proposed a radix-4 modular inversion algorithm that uses a sequential condition checking
for the calculations of u, v, x, and y. [9] implemented the SM2 ECC protocol. The iterations of the
modular inversion are controlled by the bit counter ρ, resulting in unnecessary iterations. Using u and
v to control the iterations will finish the calculation quickly. [10] gave a radix-4 version of Algorithm
2.22. Dong, Zhang, and Gao proposed a mixed radix-8 modular inversion algorithm [11] that uses
extensive hardware resources.

The AT (Area time) factor is often used for comparisons between implementations. It is defined
as the execution time in milliseconds multiplied by the required hardware resources consisting of
registers and lookup tables or ALMs (Adaptive logic modules).

In this paper, we implement and evaluate all the algorithms mentioned above. We then propose
a mixed radix-8 modular inversion algorithm aimed at short execution time and small hardware
resources. We give its detailed hardware implementation in Verilog HDL based on 256-bit primes. It
has lower hardware costs for ALMs and registers and has better performance than other algorithms.
The implementation on the Altera Cyclone V FPGA chip uses 1227 ALMs and 1037 registers and takes
3.67 microseconds for the modular inversion computation. It achieves an AT factor of 8.30, lower than
all other implementations. We also implement ECC using different modular inversion algorithms and
compare their cost performance.

The rest of the paper is organized as follows. Section 2 introduces ECC and modular inversion
algorithms. Instead of pseudocodes, all modular inversion algorithms are provided in Python code.
Section 3 proposes a mixed radix-8 modular inversion algorithm, gives its hardware implementation
in Verilog HDL, and compares its cost performance with other algorithms. Section 4 provides an
ECC implementation using the proposed algorithm and compares its cost performance with the ECC
implementations using other modular inversion algorithms. And Section 5 concludes the paper.

2. ECC and Modular Inversion Algorithms

This section briefly introduces elliptic curve cryptography and modular inversion algorithms
based on the extended Euclidean algorithm.
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2.1. Elliptic Curve Cryptography

ECC [12,13] relies on the fact that scalar point multiplication Q = dP can be computed, but it is
almost impossible to compute d given only the original point P and the point of the product Q. An
ECC over the finite field of an n-bit prime number m can use the equation:

y2 = x3 + ax + b mod m (1)

For example, Secp256k1 [14] elliptic curve used in Ethereum Blockchain uses a 256-bit m = 2256 − 232 −
29 − 28 − 27 − 26 − 24 − 1. Secp256k1 defines y2 = x3 + ax + b = x3 + 7 and gives a point P = [x, y]
on the elliptic curve as follows.

a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
x = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
y = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

The elliptic curve Diffie–Hellman (ECDH) key exchange protocol can be used by two parties,
Alice and Bob for example, to establish a shared secret key over an insecure network [14,15]. The
ECDH protocol is shown in Table 1.

Table 1. Elliptic curve Diffie–Hellman key exchange.

Expose an elliptic curve y2 = x3 + ax + b mod m and a point P on the elliptic curve to the world

Alice Bob

Generate a secret da Generate a secret db
Calculate Qa = daP Calculate Qb = dbP

Expose Qa Expose Qb

Get Qb from Bob Get Qa from Alice
Calculate Qab = daQb Calculate Qba = dbQa

Use x of Qab as the key Use x of Qba as the key

Because Qab = daQb = dadbP, Qba = dbQa = dbdaP, and dadb = dbda, we have Qba = Qab. Below
is an ECDH key exchange example using Secp256k1. We can see that the two parties, Alice and Bob,
have the same shared secret key (Qabx = Qbax).

Alice keeps da secret and exposes Qa = daP:

da = 0x0e26233af432c34fa2523e72b64ebcf5abb4f7cb07d8f25909160a50f584f461
Qax = 0x672751a7b8ec03f4610c364d3776fc5200f401aa26074b10d33c2c202fc63330
Qay = 0xdbf4a0758d81414d2ee049a07c3d8288428235dec9dbfb7fb15d6f478cb4ccf6

Bob keeps db secret and exposes Qb = dbP:

db = 0xbbb481621f91b8e9225649109919a7962cec4225c981b6b68b4f8d8a356cc6d9
Qbx = 0x09aff71612598a88d5299ae81e3161a2c9045f343315da8cfabb4dc55253041f
Qby = 0x736b118369583448c0b77eed11ac26af31450d406130d82a1bc56cc3a1835b1d

Alice obtains Qb and calculates Qab = daQb:

Qabx = 0x0f675b3195fd6a6f06c9a6960ff2a4f647f637f513c8bb7bedc8a89311f62df2
Qaby = 0x79de922da4db277fe0c674277243c1dfd0653913d037fb07e955c3cdf21e69c7

Bob obtains Qa and calculates Qba = dbQa:
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Qbax = 0x0f675b3195fd6a6f06c9a6960ff2a4f647f637f513c8bb7bedc8a89311f62df2
Qbay = 0x79de922da4db277fe0c674277243c1dfd0653913d037fb07e955c3cdf21e69c7

Now, Alice and Bob have the same secret key (Qabx= Qbax). They can use symmetric-key cryptography
for subsequent communications. A third party, Eve for example, knows y2 = x3 + ax + b mod m, P,
Qa, and Qb, but cannot calculate the same secret key.

2.2. Point Addition and Point Doubling

Scalar point multiplication Q = dP calls point addition (PA) and point doubling (PD).

2.2.1. Point Addition

Given P = [xp, yp] and Q = [xq, yq], the formulas for point addition R = [xr, yr] = P + Q on
elliptic curve y2 = x3 + ax + b mod m are shown as follows, where λ is the slope of the line through
points P and Q.


λ =

yq − yp

xq − xp
mod m

xr = (λ2 − xp − xq) mod m

yr = (λ(xp − xr)− yp) mod m

(2)

The point at infinity, denoted O, is included in the group of elliptic curves and is defined as
P + (−P) = O for Q = −P. By this definition, P +O = P. In our implementation, O is represented
as [−1,−1]. In the case of P = O, R = P + Q = O + Q = Q. In the case of Q = O, R = P + Q =

P +O = P. We give the point addition R = P + Q algorithm over the finite field of Fm in Algorithm 1.
In the case of Q = −P, R = P + Q = P + (−P) = O (line 5 in the algorithm). In the case of Q = P,
R = P + Q = P + P = 2P, we perform the point doubling R = 2P (line 6 in the algorithm).

Algorithm 1 PA (P, Q, m, a) (Point Addition in Affine Coordinates).

inputs: Points P = [Px, Py] and Q = [Qx, Qy]; m and a in y2 = x3 + ax + b mod m
output: R = P + Q = [Rx, Ry] = [xr, yr]
begin

1 xp = Px, yp = Py, xq = Qx, yq = Qy, O = [−1,−1]
2 if P = O return Q /* O + Q = Q */
3 if Q = O return P /* P +O = P */
4 if xp = xq
5 if (yp + yq) mod m = 0 return O /* P + (−P) = O */
6 else return PD (P, m, a) /* P + P = 2P */
7 λ = ((yq − yp)/(xq − xp)) mod m
8 xr = (λ2 − xp − xq) mod m
9 yr = (λ(xp − xr)− yp) mod m

10 return [xr, yr] /* R = P + Q */
end

An example of point addition R = P + Q on the Secp256k1 curve is shown below where [Px, Py] =

P, [Qx, Qy] = Q, and [Rx, Ry] = R in affine coordinates.

Px = 0xfc7dafb820a20da1a73c36465f2fe37bfd98ce4ef3a10a5df110abda03b20a3d
Py = 0xa442a2d1b8bde4a09e45725add5daae89e726b56f0e8fe6609dacaf5279b2564
Qx = 0xe106c069450b2663febb83e29b67fa93c4c48a45d5fbe7ce4ddb8ceb601fcc1d
Qy = 0xc9da9bd440909c8862c06a44d432d2dd45284636b7049b9bf4695f9e4018d2f2
Rx = 0xfd52a0334e16f8cf45a6b0820887a9e8b1b180516a76c8adfef95df98aeef376
Ry = 0xb0fe3f04cc4c64fd66a133b8c97b4905771238f8ba89631efb85a8059e969a49
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2.2.2. Point Doubling

Given P = [xp, yp], the formulas for point doubling R = [xr, yr] = 2P on elliptic curve y2 =

x3 + ax + b mod m are shown as follows, where λ is the slope of the tangent line of the elliptic curve at
point P. 

λ =
3x2

p + a
2yp

mod m

xr = (λ2 − 2xp) mod m

yr = (λ(xp − xr)− yp) mod m

(3)

We give the point doubling R = 2P algorithm over the finite field of Fm in Algorithm 2. In the
case of Py = 0 (vertical tangent line), R = 2P = O (line 2 in the algorithm).

Algorithm 2 PD (P, m, a) (Point Doubling in Affine Coordinates).

inputs: Point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: R = 2P = [Rx, Ry] = [xr, yr]
begin
1 xp = Px, yp = Py, O = [−1,−1]
2 if yp = 0 return O /* vertical tangent */
3 λ = ((3x2

p + a)/(2yp)) mod m
4 xr = (λ2 − 2xp) mod m
5 yr = (λ(xp − xr)− yp) mod m
6 return [xr, yr] /* R = 2P */
end

An example of point doubling R = 2P on the Secp256k1 curve is shown below where [Px, Py] = P
and [Rx, Ry] = R in affine coordinates.

Px = 0x6034b56424fb31ea6ec5483b52ae5d07d6f3ef80264d769ae2714abb83fb279a
Py = 0xfe4cde1ff7546a87f906f50ab1002fda7811828ea6fc467a44d1c6c11aa65a37
Rx = 0x5491ee8b73a4ed9713ed32e467de5100b80861babf8ffd09fd595ab457d042c9
Ry = 0xf91e6a4e132a1bdf4f5c846559431ec7373de8872b719f188b5902932f0a2b30

The computation of λ in PA and PD requires modular division, which can be realized by a
modular inversion algorithm based on the extended Euclidean algorithm.

2.3. Modular Inversion Algorithms

Given a prime number m, the inverse r of a number a with a < m is defined as

r = a−1 mod m (4)

That is, ra = 1 mod m. The Python code below implements the modular inversion calculation using
Fermat’s Little Theorem. When executed, it outputs 4 4 4. The first output value is calculated by the
code, and the rest are for checking. This calculation consists of costly modular multiply and modular
squaring, very similar to RSA exponentiation [16].

# Fermat's Little Theorem, a^{-1} = a^{m-2} mod m
def modinv (a, m): # fermat.py: return a^{-1} mod m

k = m - 2; x = 1; y = a
while k != 0:

if k & 1 == 1:
x = x * y % m # modular multiply
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y = y * y % m # modular squaring
k = k >> 1

return x
a = 3; m = 11;
print(modinv(a, m), pow(a, -1, m), pow(a, m-2, m))

The extended Euclidean algorithm can be used for the modular inversion calculation. Below is
the fundamental extended Euclidean algorithm given in Python code (modinv_algo_1.py), where q is
the integer quotient of u divided by v.

def modinv (b, a, m): # modinv_algo_1.py: return b * a^{-1} mod m
u, v = a, m
x, y = b, 0
while v != 0:

q = u // v
u, v = v, u - q * v
x, y = y, x - q * y

if u == 1: return x % m
else: return 0; # a is not invertible.

print(modinv(1, 3, 11))

Considering b = 1. u and x are initialized with a and 1, respectively. At each iteration, u and x are
modified with similar calculations. Therefore, when u reaches 1 from a, x reaches the reciprocal of a
from 1. If m is a prime number, the greatest common divisor of a and m is guaranteed to be 1, and we
can always get the inverse result of a. With the initialization of x with b, the algorithm performs the
modular division r = ba−1 mod m.

An example of running modinv_algo_1.py using modinv(1, 3, 11) is shown in Table 2 (b = 1,
a = 3, and m = 11). The calculation finishes when v = 0. Because u = 1, the result a−1 mod m =

x mod m = 4 mod 11 = 4. We can check the correctness as follows: ra mod m = 4 × 3 mod 11 =

12 mod 11 = 1 mod 11.

Table 2. Execution example of modinv_algo_1.py: print(modinv(1, 3, 11)). It calculates r = 3−1 mod 11.
The result is x mod 11 = 4.

i u v x y q

0 3 = a 11 = m 1 = b 0 q = u/v

0 u = v v = u − q ∗ v x = y y = x − q ∗ y

1 0 = 3/11

1 11 = v 3 = 3 − 0 ∗ 11 0 = y 1 = 1 − 0 ∗ 0

2 3 = 11/3

2 3 = v 2 = 11 − 3 ∗ 3 1 = y −3 = 0 − 3 ∗ 1

3 1 = 3/2

3 2 = v 1 = 3 − 1 ∗ 2 −3 = y 4 = 1 − 1 ∗ (−3)

4 2 = 2/1

4 1 = v 0 = 2 − 2 ∗ 1 4 = y −11 = (−3)− 2 ∗ 4

End u = 1 v = 0 x = 4

The algorithm requires division, which is expensive. We can remove division by setting the
quotient to 0 or 1, as shown below (modinv_algo_2.py).
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def modinv (b, a, m): # modinv_algo_2.py: return b * a^{-1} mod m
u, v = a, m
x, y = b, 0
while v != 0:

q = 0 if u < v else 1
u, v = v, u - q * v
x, y = y, x - q * y

if u == 1: return x % m
else: return 0; # a is not invertible.

The algorithm yields a quotient of 0 or 1 based on the comparison of u and v. If the quotient is a
1, a subtraction is performed. Otherwise, no calculation is performed, resulting in a slow calculation
speed. The calculation of modinv (1, 3, 11) will require 9 iterations. We can modify the algorithm as
follows (modinv_algo_3.py). This reduces the number of iterations by about half.

def modinv (b, a, m): # modinv_algo_3.py: return b * a^{-1} mod m
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

if u < v: v, y = v - u, y - x
else: u, x = u - v, x - y

if u == 1: return x % m
else: return y % m

We can check u first before the subtractions. If it is even, we can shift it to the right by one bit
(the least significant bit 0 is shifted out). Correspondingly, x must also be shifted. To ensure that the
value to be right-shifted is even, m will be added to x before the shift if x is odd. Note that m is odd
because it is a prime number. This shift of u and x can be performed repeatedly until u becomes an
odd number. Similar actions can be applied to v and y. Then we can have an algorithm as follows
(modinv_algo_4.py). In fact, this is Algorithm 2.22 provided in [2] and implemented in Verilog HDL
in [17].

def modinv (b, a, m): # modinv_algo_4.py: return b * a^{-1} mod m
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

while u & 1 == 0:
u = u // 2
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

while v & 1 == 0:
v = v // 2
if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

if u < v: v, y = v - u, y - x
else: u, x = u - v, x - y

if u == 1: return x % m
else: return y % m

When the two inner while loops finish, u and v are both odd numbers. Therefore u − v or v − u is
even. Then we can shift it to the right by one bit. Correspondingly, x − y or y − x must also be shifted.
If x − y or y − x is odd, m must be added before the shift so that the bit being shifted out is 0. The
algorithm is shown below (modinv_algo_5.py).

def modinv (b, a, m): # modinv_algo_5.py: return b * a^{-1} mod m
u, v = a, m
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x, y = b, 0
while u != 1 and v != 1:

while u & 1 == 0:
u = u // 2
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

while v & 1 == 0:
v = v // 2
if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

if u < v:
v, y = (v - u) // 2, y - x
if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

else:
u, x = (u - v) // 2, x - y
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

if u == 1: return x % m
else: return y % m

The two inner while loops can be replaced by assigning u, x, v, y, or 0 to the temporary variables
tu, tx, tv, and ty. The following assignments make tu − tv even, so we can shift it to the right by one
bit: (1) If both u and v are odd, those temporary variables are assigned with u, x, v, y, respectively.
(2) If u is even and v is odd, those temporary variables are assigned with u, x, 0, 0, respectively. (3)
If u is odd and v is even, those temporary variables are assigned with 0, 0, v, y, respectively. Such
replacements reduce the latency from the carry propagate adder to the multiplexer and speed up the
calculation. The algorithm is shown below (modinv_algo_6.py).

def modinv (b, a, m): # modinv_algo_6.py: return b * a^{-1} mod m
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu - tv, tx - ty
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else: xy = (txy + m) // 2
if uv < 0: v, y = -uv, -xy
else: u, x = uv, xy

if u == 1: return x % m
else: return y % m

The algorithm above requires calculations of tu − tv, tv − tu, tx − ty, and ty − tx. We can
unify these calculations with negative assignments −v and −y to v and y, respectively. That is,
u = u − v = u + (−v) becomes u = u + v, and x = x − y = x + (−y) becomes x = x + y with the
negative assignments to v and y. Similarly, v = −(u − v) becomes v = u + v, and y = −(x − y)
becomes y = x + y with the negative assignments to v and y. Therefore, u + v and x + y are sufficient
for the calculation. The algorithm is given below (modinv_algo_7.py). Because of the negative
assignments to v and y, v is initialized with −m and y is initialized with −0 = 0. Note that x is never
greater than or equal to m. Therefore, no adjustment of x = x − m or x = x mod m is required.

def modinv (b, a, m): # modinv_algo_7.py: return b * a^{-1} mod m
u, v = a, -m
x, y = b, 0
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while u != 1:
if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if tx < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

A modular inversion algorithm is said to be good when u reaches 1 quickly (high performance)
and the algorithm uses a small number of adders and subtractors (low cost).

3. Proposed Radix-8 Modular Inversion Algorithm and its Performance

The proposed mixed radix-8 modular inversion algorithm is shown below (modinv_radix_8.py).
To calculate r = a−1 mod m, we initialize u = a and v = −m with the negative assignment to v and y.
The temporary variable tu is assigned with u or 0 and the temporary variable tv is assigned with v or 0
so that tuv = tu + tv is even. If the three least significant bits of tuv are 000, it is shifted to the right by
three bits (radix-8). Otherwise, if the two least significant bits of tuv are 00, it is shifted to the right by
two bits (radix-4). Otherwise, it is shifted to the right by one bit (radix-2), because tuv is even.

def modinv (b, a, m): # modinv_radix_8.py: return b * a^{-1} mod m
u, v = a, -m;
x, y = b, 0
while u != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty # tuv is even
if tuv & 6 == 0: # radix 8:

uv = tuv // 8
if txy & 1 == 0:

if txy & 2 == 0:
if txy & 4 == 0: xy = txy // 8
else: xy = (txy + 4 * m) // 8

else:
if txy & 4 == (m*2 & 4): xy = (txy - 2 * m) // 8
else: xy = (txy + 2 * m) // 8

else:
if txy & 6 == m & 6: xy = (txy - m) // 8
else:

if txy & 2 == m & 2: xy = (txy + 3 * m) // 8
else:

if txy & 4 != m & 4: xy = (txy + m) // 8
else: xy = (txy - 3 * m) // 8

else:
if tuv & 2 == 0: # radix 4:

uv = tuv // 4
if txy & 1 == 0:

if txy & 2 == 0: xy = txy // 4
else: xy = (txy + 2 * m) // 4

else:
if txy & 3 == m & 3: xy = (txy - m) // 4
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else: xy = (txy + m) // 4
else: # radix 2:

uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if tx < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

Correspondingly, tx and ty are arranged and txy = tx + ty is also shifted to the right by three bits,
two bits, or one bit. The bits being shifted out must be 0. Therefore, we need to adjust txy using the
prime number m before shifting. Table 3 lists such adjustments based on the three least significant bits
of txy and the three least significant bits of m for the radix-8 operations, where x represents a don’t
care. The three least significant bits of the adjusted value are 000, as shown in the comment column of
the table.

Table 3. XY adjustment for shift right by three-bit in the proposed modular inversion algorithm.

txy m 2m 3m 4m xy Comment

000 xx1 txy // 8 0 + 0 = 0
100 xx1 100 (txy + 4m) // 8 4 + 4 = 8

010 x01 010 (txy − 2m) // 8 2 − 2 = 0
110 x11 110 (txy − 2m) // 8 6 − 6 = 0

010 x11 110 (txy + 2m) // 8 2 + 6 = 8
110 x01 010 (txy + 2m) // 8 6 + 2 = 8

001 001 (txy − m) // 8 1 − 1 = 0
011 011 (txy − m) // 8 3 − 3 = 0
101 101 (txy − m) // 8 5 − 5 = 0
111 111 (txy − m) // 8 7 − 7 = 0

001 101 010 111 (txy + 3m) // 8 1 + 7 = 8
011 111 110 101 (txy + 3m) // 8 3 + 5 = 8
101 001 010 011 (txy + 3m) // 8 5 + 3 = 8
111 011 110 001 (txy + 3m) // 8 7 + 1 = 8

001 111 (txy + m) // 8 1 + 7 = 8
011 101 (txy + m) // 8 3 + 5 = 8
101 011 (txy + m) // 8 5 + 3 = 8
111 001 (txy + m) // 8 7 + 1 = 8

001 011 110 001 (txy − 3m) // 8 1 − 1 = 0
011 001 010 011 (txy − 3m) // 8 3 − 3 = 0
101 111 110 101 (txy − 3m) // 8 5 − 5 = 0
111 101 010 111 (txy − 3m) // 8 7 − 7 = 0

Similarly, Table 4 lists the adjustments based on the two least significant bits of txy and the two
least significant bits of m for the radix-4 operations. The two least significant bits of the adjusted value
are 00, as shown in the comment column of the table.
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Table 4. XY adjustment for shift right by two-bit in the proposed modular inversion algorithm.

txy m 2m xy Comment

00 x1 txy // 4 0 + 0 = 0
10 x1 10 (txy + 2m) // 4 2 + 2 = 4

01 01 (txy − m) // 4 1 − 1 = 0
11 11 (txy − m) // 4 3 − 3 = 0

01 11 (txy + m) // 4 1 + 3 = 4
11 01 (txy + m) // 4 3 + 1 = 4

An example of c = b × a−1 mod m is shown below. The modinv_radix_8 algorithm takes 206
iterations to reach u = 1 and v = −1. In contrast, the modinv_radix_4 and modinv_radix_2 algorithms
require 243 and 356 iterations, respectively.

b = 0x9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85
a = 0xd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
c = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e

To reduce the number of adders, we use multiplexers to select an appropriate value and assign
it to the temporary variable tz. And then we perform txy = tx + ty + tz. Based on the three least
significant bits of tuv, we assign txy ≫ 1, txy ≫ 2, or txy ≫ 3 (shift right) to xy. Figure 1 shows the
block diagram of the proposed mixed radix-8 modular inversion circuit. Because we perform addition
for txy = tx + ty + tz, −2m and −3m are replaced by +6m and +5m, respectively. Also, for the
addition, we prepare −m that can be obtained by inverting all the bits of m and setting the right-most
bit to 1 because m is odd. The registers u, v, x, and y are shown with red rectangles. The multiplexers
are drawn with green rectangles. The blue rectangles are adders. The Verilog HDL implementation
uses continuous assignment to compute uv and xy and writes them to the corresponding registers on
the rising edge of the clock signal. Note that we have to use adders for generating 3m, 5m, and 6m,
which are not shown in the figure.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2024 doi:10.20944/preprints202409.0891.v2

https://doi.org/10.20944/preprints202409.0891.v2


12 of 21

+

mux

muxmux

yx

0 0

tx ty

+

mux

muxmux

vu

0 0

≫ 1 ≫ 2 ≫ 3

tu tv tz

0 m −m2m 3m 4m 5m 6m

mux

xyuv

≫ 1 ≫ 2 ≫ 3

txytuv

mux

a

mux

−m

mux

b

mux

0

+

m

mux

c

c = b × a−1 mod m

Detailed implementation can be found in modinv_r8.v

Figure 1. Block diagram of the proposed mixed radix-8 modular inversion circuit.

Below we give the hardware implementation code in Verilog HDL for the proposed mixed radix-8
modular inversion algorithm (modinv_r8.v). The signals start and ready indicate the start of the
modular inversion calculation and the availability of the calculation result, respectively. Because we
use Secp256k1 elliptic curve, the input and output signals b, a, m, and c are 256 bits. During the
calculations, we use 260 bits for the internal signals.

`timescale 1ns/1ns // proposed radix-8 implementation for c = b * a^{-1} mod m
module modinv_r8 (clk, rst_n, start, b, a, m, c, ready, busy, ready0);

input clk, rst_n;
input start;
input [255:0] b, a, m;
output [255:0] c;
output ready, ready0;
output reg busy;
reg ready0, ready1;
assign ready = ready0 ^ ready1;
reg [259:0] u, v, x, y; // registers
wire [259:0] p = {4'h0,m}; // p = m
wire [259:0] mm = {4'hf,~m[255:1],1'b1}; // mm = -m
wire [259:0] tu = v[0] ? u : 0;
wire [259:0] tx = v[0] ? x : 0;
wire [259:0] tv = u[0] ? v : 0;
wire [259:0] ty = u[0] ? y : 0;
wire [259:0] tuv = tu + tv; // adder for uv
wire [259:0] uv2 = {tuv[259],tuv[259:1]}; // tuv // 2
wire [259:0] uv4 = {{2{tuv[259]}},tuv[259:2]}; // tuv // 4
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wire [259:0] uv8 = {{3{tuv[259]}},tuv[259:3]}; // tuv // 8
wire [259:0] uv = tuv[1] ? uv2 : tuv[2] ? uv4 : uv8; // uv
wire [2:0] t3 = tx[2:0] + ty[2:0]; // t3 & 7
wire equ = t3[1:0] == p[1:0]; // t3 & 3 == m & 3
wire [259:0] m2 = {p[258:0],1'b0}; // 2m
wire [259:0] m4 = {p[257:0],2'b0}; // 4m
wire [259:0] m3 = m2 + p; // 3m adder
wire [259:0] m5 = m4 + p; // 5m adder
wire [259:0] m6 = m4 + m2; // 6m adder
wire [259:0] tz2 = t3[0] ? tx[259] ? p : mm : 260'h0; // z2
wire [259:0] tz4 = t3[0] ? equ ? mm : p : // z4

t3[1] ? m2 : 260'h0;
wire [259:0] tz8 = t3[0] ? t3[2:1] == p[2:1] ? // z8

mm : t3[1] == p[1] ? m3 : t3[2] != p[2] ?
m : m5 : t3[1] ? t3[2] == p[1] ?
m6 : m2 : t3[2] ? m4 : 260'h0;

wire [259:0] tz = tuv[1] ? tz2 : tuv[2] ? tz4 : tz8; // tz
wire [259:0] txy = tx + ty + tz; // adder for xy
wire [259:0] txy2= {txy[259],txy[259:1]}; // txy // 2
wire [259:0] txy4= {{2{txy[259]}},txy[259:2]}; // txy // 4
wire [259:0] txy8= {{3{txy[259]}},txy[259:3]}; // txy // 8
wire [259:0] xy = tuv[1] ? txy2 : tuv[2] ? txy4 : txy8; // xy
wire [259:0] xpp = x + p; // x + m
wire [259:0] r = x[259] ? xpp : x; // x + m ? x ?
assign c = r[255:0]; // result c
always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin // reset
ready0 <= 0;
ready1 <= 0;
busy <= 0;

end else begin
ready1 <= ready0;
if (start) begin // load

u <= {4'b0,a}; // u <= a
v <= mm; // v <= -m
x <= {4'b0,b}; // x <= b
y <= {260'b0}; // y <= 0
ready0 <= 0;
ready1 <= 0;
busy <= 1;

end else begin
if (u == 1) begin // if u == 1

ready0 <= 1; // ready0 = 1
busy <= 0; // busy = 0

end else begin // else
if (uv[259]) begin // if uv < 0

v <= uv; // v = uv
y <= xy; // y = xy

end else begin // else
u <= uv; // u = uv
x <= xy; // x = xy

end
end

end
end

end
endmodule

Below is the testbench Verilog HDL code used to simulate modinv_r8.v.

`timescale 1ns/1ns
module modinv_r8_tb;

reg clk, rst_n, start;
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reg [255:0] b, a, m;
wire [255:0] c;
wire ready, busy, ready0;
modinv_r8 inst (clk, rst_n, start, b, a, m, c, ready, busy, ready0);
initial begin

clk = 1;
rst_n = 0;
start = 0;
b = 256'h9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85;
a = 256'hd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8;
m = 256'hfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f;
#1 rst_n = 1;
#0 start = 1;
#2 start = 0;
wait(ready); // 416ns
#40 $stop;

end
always #1 clk = !clk;

endmodule

Figure 2 shows the functional simulation waveform, generated with ModelSim. The result c is
available at 416ns. That is, the calculation takes 208 clock cycles.

Figure 2. Waveform of modular inversion that calculates c = ba−1 mod m.

We have implemented the modular inversion algorithms on the Altera Cyclone V
5CGXFC9E7F35C8 FPGA chip. Table 5 lists the cost performance of the modular inversion algorithms.
The column of Cycles shows the required number of clock cycles when executing the modular inversion
algorithm. The column of Freq.(MHz) shows the clock frequency in MHz at which the circuit can work.
The column of Latency(µs) shows the execution time in microseconds calculated by dividing the clock
cycles by the clock frequency. The column of ALMs shows the required number of adaptive logic
modules. The column of Registers shows the required number of flip-flops. The flip-flops are mainly
used to store u, v, x, and y. Their contents are updated on every clock cycle. The last column shows
the AT factor, which is the product of the Latency in milliseconds and the sum of ALMs and Registers.

The row of [1] in the table shows the performance and cost of modular inversion using Fermat’s
Little Theorem r = am−2 mod m = a−1 mod m. It consists of costly modular multiply and modular
squaring, very similar to RSA exponentiation [16]. Its AT factor is much higher than others. The
remaining rows show the performance and cost of the EEA-based modular inversion algorithms. The
number of registers used by [2], [3], [8], and [10] is larger than others. This is because extra registers
are used to adjust the value of x or y so that the modular inversion result is within the range of 0
and m. Our algorithm implementation achieves an execution time of 3.67µs and an AT factor of
8.30, outperforming all other implementations. Figure 3 shows an intuitive view of latency and AT
histograms.
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Table 5. Comparison of modular inversion algorithms (on Altera Cyclone V FPGA chip).

Algorithm Cycles Freq.(MHz) Latency(µs) ALMs Registers AT

[1] 66264 57.54 1151.63 2004 2775 5503.66

[2] 534 54.66 9.77 2619 1302 38.31

[3] 535 54.52 9.81 3735 1303 49.42

[4] 358 39.73 9.01 2474 1038 31.64

[5] 1205 64.55 18.67 1596 1043 49.26

[6] 723 72.21 10.01 1968 1042 30.13

[7] 358 63.60 5.63 959 1037 11.24

[8] 423 59.56 7.10 3475 1303 33.92

[9] 356 60.43 5.89 3950 1057 29.50

[10] 423 54.99 7.69 3644 1303 38.05

[11] 334 56.93 5.87 5276 1057 37.15

Ours 208 56.71 3.67 1227 1037 8.30
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Figure 3. Latency and AT comparison of modular inversion algorithms.

4. ECC Implementation with Proposed Modular Inversion Algorithm

ECC relies on scalar point multiplication. Suppose P = [xp, yp] is a point on the curve, the scalar
point multiplication Q = dP gets the Q = [xq, yq] that is also on the curve, where d = ⟨dn−1 · · · d1d0⟩
is an n-bit scalar. Scalar point multiplication can be conducted with point addition (adding two points)
and point doubling, as shown in Algorithm 3.

The algorithm calls point addition PA (P, Q, m, a) and point doubling PD (P, m, a). Table 6 gives
an example to show the calculation steps of the scalar point multiplication. For a 5-bit d = 101012 = 21,
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Algorithm 3 ScaMul (d, P, m, a) (Scalar Point Multiplication in Affine Coordinates).

inputs: d = ⟨dn−1 · · · d1d0⟩ and point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: Q = dP
begin
1 Q = O, R = P, k = d /* Q = O and R = P */
2 while k ̸= 0 to
3 if k & 1 = 1
4 Q = PA (Q, R, m, a) /* Q = Q + R (Algorithm 1) */
5 R = PD (R, m, a) /* R = 2R (Algorithm 2) */
6 k = k ≫ 1
7 endwhile
8 return Q /* Q = dP */
end

we calculate Q = dP in 5 steps to obtain Q = 21P. We can see that the algorithm is similar to RSA
exponentiation [16].

Table 6. Execution example of Q = dP with d = 101012 = 21.

Weight Point addition Point doubling

Initial Q = O R = P

d0 = 1 1 Q = Q + R = O + P = P R = 2R = 2P

d1 = 0 2 R = 2R = 4P

d2 = 1 4 Q = Q + R = P + 4P = 5P R = 2R = 8P

d3 = 0 8 R = 2R = 16P

d4 = 1 16 Q = Q + R = 5P + 16P = 21P R = 2R = 32P

The ECDH algorithm is shown below in Python code that invokes scalar point multiplication four
times. The code is hardware oriented. For code integrity, we listed our radix-8 code again but here
+6m and +5m are used instead of −2m and −3m, respectively.

from random import SystemRandom # random number generator
rand = SystemRandom () # strong random number generator
def modadd (a, b, m): # return (a + b) % m; a, b < m

s = a + b
if s > m:

s = s - m
return s

def modsub (a, b, m): # return (a - b) % m; a, b < m
s = a - b
if s < 0:

s = s + m
return s

def modmul (a, b, m): # return (a * b) % m; a, b < m # shift-sub (SSMM)
u, v, s = a, b, 0
while v != 0:

if v & 1 == 1:
s = s + u
if s > m:

s = s - m
v = v >> 1
u = u << 1
if u > m:

u = u - m
return s

def modinv (b, a, m): # return (b * a^{-1}) mod m # proposed radix-8 modinv
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u, v = a, -m;
x, y = b, 0
while u != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty # tuv is even
if tuv & 6 == 0: # radix 8:

uv = tuv // 8
if txy & 1 == 0:

if txy & 2 == 0:
if txy & 4 == 0: xy = txy // 8
else: xy = (txy + 4 * m) // 8

else:
if txy & 4 == (m*2 & 4): xy = (txy + 6 * m) // 8 # -2m
else: xy = (txy + 2 * m) // 8

else:
if txy & 6 == m & 6: xy = (txy - m) // 8
else:

if txy & 2 == m & 2: xy = (txy + 3 * m) // 8
else:

if txy & 4 != m & 4: xy = (txy + m) // 8
else: xy = (txy + 5 * m) // 8 # -3m

else:
if tuv & 2 == 0: # radix 4:

uv = tuv // 4
if txy & 1 == 0:

if txy & 2 == 0: xy = txy // 4
else: xy = (txy + 2 * m) // 4

else:
if txy & 3 == m & 3: xy = (txy - m) // 4
else: xy = (txy + m) // 4

else: # radix 2:
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if tx < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

def point_addition (P, Q, m, a): # point addition R = P + Q
x1, y1 = P
x2, y2 = Q
if x1 == -1 and y1 == -1: return Q # O + Q
if x2 == -1 and y2 == -1: return P # P + O
if x1 == x2:

if modadd (y1, y2, m) == 0: return [-1, -1] # Point O
else: return point_doubling (P, m, a) # 2P

# s = ((y1 - y2) / (x1 - x2)) % m
s = modinv (modsub (y1, y2, m), modsub (x1, x2, m), m)
# rx = (s * s - x1 - x2) % m
rx = modsub (modmul (s, s, m), modadd (x1, x2, m), m)
# ry = (s * (x1 - rx) - y1) % m
ry = modsub (modmul (s, modsub (x1, rx, m), m), y1, m)
return [int (rx), int (ry)]

def point_doubling (P, m, a): # point doubling R = 2P
x, y = P
if y == 0: return [-1, -1] # Point O
# s = ((3 * x * x + a) / (2 * y)) % m
s = modinv (modadd(a, modmul(modmul(x, x, m), 3, m), m), modadd(y, y, m), m)
# rx = (s * s - 2 * x) % m
rx = modsub (modmul (s, s, m), modmul (2, x, m), m)
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# ry = (s * (x - rx) - y) % m
ry = modsub (modmul (s, modsub (x, rx, m), m), y, m)
return [int (rx), int (ry)]

def scalar_point_multiplication (P, d, m, a): # scalar point multiplication
if d == 0: return [-1, -1] # Point O
k = d
Q = [-1, -1] # Point O
R = P
while k != 0:

if k & 1:
Q = point_addition (R, Q, m, a) # PA

R = point_doubling (R, m, a) # PD
k >>= 1

return Q
a = int (0x0000000000000000000000000000000000000000000000000000000000000000)
b = int (0x0000000000000000000000000000000000000000000000000000000000000007)
m = int (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f)
x = int (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)
y = int (0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
P = [x, y] # Elliptic curve Diffie-Hellman (ECDH) key agreement:
da = rand.getrandbits (256) % m # Alice's private key
db = rand.getrandbits (256) % m # Bob's private key
Qa = scalar_point_multiplication ( P, da, m, a) # Alice's public key
Qb = scalar_point_multiplication ( P, db, m, a) # Bob's public key
Qab = scalar_point_multiplication (Qb, da, m, a) # Alice calculates shared key
Qba = scalar_point_multiplication (Qa, db, m, a) # Bob calculates shared key
assert (Qa [1] * Qa [1]) % m == (Qa [0] * Qa [0] * Qa [0] + a * Qa [0] + b) % m
assert (Qb [1] * Qb [1]) % m == (Qb [0] * Qb [0] * Qb [0] + a * Qb [0] + b) % m
assert (Qab[1] * Qab[1]) % m == (Qab[0] * Qab[0] * Qab[0] + a * Qab[0] + b) % m
assert (Qba[1] * Qba[1]) % m == (Qba[0] * Qba[0] * Qba[0] + a * Qba[0] + b) % m
print ('da = 0x{:064x}'.format(da), end=' ')
print ('db = 0x{:064x}'.format(db))
print ('Qax = 0x{:064x}'.format(Qa[0]), end=' ')
print ('Qay = 0x{:064x}'.format(Qa[1]))
print ('Qbx = 0x{:064x}'.format(Qb[0]), end=' ')
print ('Qby = 0x{:064x}'.format(Qb[1]), '\n')
print ('Qabx = 0x{:064x}'.format(Qab[0]), end=' ')
print ('Qaby = 0x{:064x}'.format(Qab[1]))
print ('Qbax = 0x{:064x}'.format(Qba[0]), end=' ')
print ('Qbay = 0x{:064x}'.format(Qba[1]))
assert Qab == Qba

Based on the above Python code, we implemented ECC using our radix-8 modular inversion
algorithm for calculating λ in PA and PD. Figure 4 shows the functional simulation waveform of scalar
point multiplication Q = dP with P = [x, y] and Q = [qx, qy]. The result is available at 635362ns. That
is, the calculation takes 317681 clock cycles.

The ECC cost performance comparison is given in Table 7 when implementing on the Altera
Cyclone V 5CGXFC9E7F35C8 FPGA chip. All ECC implementations use the same circuit except for
the modular inversion part. Figure 5 shows the latency and AT histogram. The ECC latency using
our proposed radix-8 modular inversion algorithm is 0.02007 second and its AT factor is 401237.93.
From the table and histogram, we can see that our ECC implementation achieves a lower latency and a
lower AT factor than all others.
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Figure 4. Waveform of scalar point multiplication Q = dP with P = [x, y] and Q = [qx, qy].

Table 7. ECC comparison using modular inversion algorithms (on Altera Cyclone V FPGA chip).

Algorithm Cycles Freq.(MHz) Latency(ms) ALMs Registers AT

[2] 402145 15.94 25.23 15043 8355 590300.42

[3] 402400 15.58 25.83 17585 8355 669977.92

[4] 357262 16.06 22.25 14975 7821 507107.38

[5] 570142 16.07 35.48 13292 7834 749522.08

[6] 455425 16.15 28.20 14211 7831 621577.58

[7] 356878 16.01 22.29 12114 7820 444347.67

[8] 372127 15.98 23.29 17292 8353 597196.30

[9] 352761 15.72 22.44 17841 7860 576737.31

[10] 372127 16.08 23.14 18548 8355 622595.32

[11] 346194 15.88 21.80 20716 7859 622952.99

Ours 317681 15.82 20.08 12157 7824 401237.93
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Figure 5. ECC Latency and AT comparison of modular inversion algorithms.

5. Conclusions

In this paper, we proposed a mixed radix-8 modular inversion algorithm and hardware
implementation based on 256-bit primes in Verilog HDL and compared its cost performance with
other implementations on the Altera Cyclone V FPGA chip. The algorithm and its hardware
implementation are area-time efficient with an AT factor of 8.30, which outperforms other algorithms
and implementations. We also presented the cost performance of an elliptic curve cryptography
implementation using the proposed modular inversion algorithm. Implementation results also show
that our algorithm reduces execution time and requires fewer hardware resources than all other
investigated algorithms.

Future research could include shortening the critical path and using carry-select adders and
carry-save adders to speed up additions of large operands. Also, using a fixed prime m, Secp256k1
for example, we can simplify the circuit by considering only the case where the lower three bits are
equal to 111 and using precomputations of 3m, 5m, and 6m to speed up the radix-8 modular inversion
calculations.
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