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Abstract: Purpose: The study aims to analyze forecast errors for various time series generated by a 3PL logistics
operator across ten distribution channels managed by the operator. Design/methodology/approach: The
research focused on ten distribution channels served by a 3PL logistics operator utilizing the Google Cloud Al
forecasting tool as part of the Google Cloud Al service. The R environment was used in the study. The research
centered on analyzing forecast error series, particularly decomposition analysis of the series, to identify trends
and seasonality in forecast errors. Findings: The analysis of forecast errors reveals diverse patterns and
characteristics of errors across individual channels. Statistical tests for various channels show significant
differences in forecast error groups in some cases, suggesting that the forecasting tool may perform more
accurately for certain channels than others. A systematic component was observed in all analyzed Household
Appliance Channels (seasonality in all channels, and no significant trend identified only in Channel 10). In
contrast, significant trends were identified in one Pharmaceutical Channel (Channel 02), while no systematic
components were detected in the remaining channels within this group. Research limitations: Logistics
operations typically depend on numerous variables, which may affect forecast accuracy. Additionally, the lack
of information on the forecasting models, mechanisms (black box), and input data limits a comprehensive
understanding of the sources of errors. Value of the paper: The study highlights the valuable insights that can
be derived from analyzing forecast errors in time series within the context of logistics operations. The findings
underscore the need for a tailored forecasting approach for each channel, the importance of enhancing the
forecasting tool, and the potential for improving forecast accuracy by focusing on trends and seasonality. This
analysis makes a significant contribution to the theory and practice of demand forecasting by logistics operators
in distribution networks. The research offers valuable contributions to ongoing efforts in demand forecasting
by logistics operators.

Keywords: time series of forecasting errors; 3PL; logistics operator; demand forecasting; distribution channels

1. Introduction

Effective supply chain management is crucial for ensuring the smooth flow of goods and services
in today’s dynamic business environment (Davis, 1993; Fawcett et al., 2008; Towill et al., 2000).
Accurate forecasting plays a pivotal role in this process, enabling organizations to make informed
decisions, optimize inventory levels, and meet customer demands effectively (Babai et al., 2022;
Abolghasemi et al., 2020; Hofmann and Rutschmann, 2018). As such, forecast accuracy is key to
enhancing operational efficiency and customer satisfaction. Currently, 3PL logistics operators play a
significant role in supply chains and distribution networks (Qureshi, 2022; Kmiecik, 2022;
Minashkina and Happonen, 2023; Baidoo-Baiden, 2022). These operators manage various channels,
each characterized by unique demand patterns and supply dynamics (Kmiecik and Wolny, 2022).
Although forecasting models are becoming increasingly advanced, their effectiveness may vary
across channels due to the inherent complexity and variability of demand and supply characteristics.
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Understanding the hidden patterns and behaviors within forecast errors for each channel is essential
to improving the predictive capabilities of these models.

The purpose of this study is to conduct a comprehensive analysis of time series forecast errors
generated by a 3PL logistics operator across ten distribution channels it manages. By identifying
similarities and differences in forecast errors across channels, the authors aim to provide practical
insights for improving forecasting models and enhancing overall operational efficiency, which can
be applied in logistics operators’ activities. This research seeks to address the gap in demand
forecasting practices by logistics operators. While prior studies have explored the potential for
integrating forecasting solutions into logistics operations (Kmiecik, 2021b; Li et al., 2022; Al. Mesfer,
2023) and the benefits of transferring forecasting functions to operators for other network participants
(Kmiecik, 2023), no prior studies have specifically examined time series forecast errors in the context
of tools used by logistics operators.

2. Theoretical Background
2.1. Demand Forecasting by Logistics Operators

One of the most common strategies for determining future demand levels is the use of
forecasting methods. Forecasts are critical inputs for decision-making in procurement, production,
delivery, and inventory management (Alam and El Saddik, 2017). They enable efficient production
and raw material planning, preventing shortages that could lead to delivery delays and increased
production costs. Accurate forecasting also facilitates cost optimization by determining the optimal
quantities of raw materials and delivery schedules, thus reducing storage costs and avoiding excess
inventory. Abolghasemi et al. (2020) agree with this view, emphasizing areas such as demand
planning, inventory replenishment, production planning, and inventory control as key domains
where forecasts support managerial decision-making. A well-constructed forecasting system ensures
the smooth flow of goods across production stages, warehouses, and sales points, enabling timely
and cost-efficient distribution. Additionally, forecasts support modern logistics concepts like mass
customization (Guo et al., 2019). They also help adapt to changing market conditions, such as shifts
in demand, raw material prices, or regulatory changes, ensuring organizations can respond swiftly
to market dynamics.

Demand forecasting should support aggregation over short-, medium-, and long-term horizons
(Kim et al., 2019). The ability to easily aggregate forecasts across time horizons, geographies, and
product lines allows for customization based on individual client requirements. The foundation of
an effective forecasting system is a well-defined strategy that includes the selection of appropriate
forecasting methods and information flow processes. Popular algorithms for demand forecasting in
logistics flows include ARIMA-based models (Abolghasemi et al., 2020), machine learning (Chen and
Lu, 2021), and neural networks (Kim et al., 2019). However, due to the frequent unavailability of high-
quality input data or challenges in automating forecasting processes, many forecasts are still created
or adjusted based on human judgment. As noted by Perera et al. (2019), the human factor plays a
critical role in forecast reliability. The most influential factors affecting forecast quality include
product history, promotional schedules (Ma et al., 2016), as well as distribution network coordination
and relationships within the network. Forecasting is increasingly being associated with logistics
operators, who are often tasked with forecasting the financial feasibility of certain initiatives (Wang
et al.,, 2018) or operational activities such as cross-docking forecasts (Grzelak et al., 2019). However,
these approaches tend to focus on specific operational aspects rather than broader network-wide
applicability.

The growing complexity of distribution networks, particularly with the rise of omnichannel
systems (Briel, 2018), provides further impetus for developing forecasting systems at the logistics
operator level. In this context, operators assume the role of coordinators for logistics processes
(Kramarz and Kmiecik, 2022). Centralization of forecasting within distribution networks is one
concept that expands the functions of logistics operators. Centralization can be considered in terms
of transportation, operations, or decision-making processes (Simoes et al., 2018). It is often linked to
trust and the ability to track flows (Beikverdi and Song, 2015; Lu and Hu, 2018). In this article,
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centralization is examined from the perspective of implementing processes that allow a single
network node to assume decision-making functions and the collection and analysis of information.
Key drivers for centralization include the diverse nature of activities within organizational units, the
lack of designated entities responsible for coordinating demand management with other processes,
and the vertical structure of organizations that exacerbates independent decision-making on demand
management across entities (Szozda and Swierczek, 2016). The centralization concept posits that a
logistics operator, equipped with the necessary attributes, can assume centralized forecasting
functions in a distribution network. This reduces the burden on manufacturers to create demand
forecasts and amplifies the benefits of producer specialization. The implementation of centralized
forecasting by logistics operators has been conceptually explored (Kmiecik, 2021a), and
implementation guidelines have been developed for designing and adopting forecasting models
within logistics outsourcing companies (Kmiecik, 2021b). Currently, a forecasting tool designed by
the author is being piloted by an international logistics operator.

The potential benefits of such solutions can significantly impact the entire distribution network.
In appropriate conditions, logistics operators could forecast demand as part of a broader demand
management system. This would create a foundation for actions such as sales planning, inventory
allocation, and production scheduling across the network. Operators could leverage their expertise
in flow management to coordinate these activities. Furthermore, demand forecasts play an essential
role in operational planning, such as resource allocation in warehouse management (Kmiecik and
Wolny, 2022). Whether forecasts are used to coordinate network-wide flows or support the operator's
operations, they must demonstrate a high level of accuracy. Accurate demand forecasts are vital for
effective supply chain and production management, enabling precise planning, cost optimization,
improved service quality, and enhanced customer satisfaction. Accurate forecasting helps avoid
shortages, reduces storage costs, minimizes excess inventory, and ensures business continuity. One
way to improve forecast accuracy is by analyzing the errors generated by the current forecasting
system, which in this case is based on ARIMA_PLUS models offered by Google Cloud AL
Methodological elements of the forecasting tool are presented in Figure 1.
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Figure 1. The modeling pipeline for the ARIMA_PLUS time series models. Source:
https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-time-
series [access 2024-11-06].

It is worth emphasizing that the forecasting system should be treated as a black box. While it is
possible to control certain parameters or modules of the tool, the precise identification and definition
of the models used to generate forecasts remain inaccessible. The tool’s utility lies in its proper
calibration. From this perspective, analyzing the generated errors takes on particular significance.
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2.2. Analysis of Forecasting Errors

The analysis of forecasting errors is a critical tool in the field of forecasting, enabling the
evaluation of the effectiveness of adopted models in predicting future events. This process involves
comparing the actual observed values of a studied phenomenon with the predicted values generated
by the forecasting model. By identifying discrepancies between predictions and reality, researchers
can gain a deeper understanding of how the model performs under various scenarios. The primary
goal of forecasting error analysis is to estimate the accuracy of forecasts. To achieve this, various error
evaluation metrics are employed to determine how closely the forecasting model represents actual
observations. Commonly used metrics for synthesizing forecast accuracy include averaged error
measures such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean
Squared Error (MSE), Mean Absolute Scaled Error (MASE), and Median Absolute Error (MdAE),
among others.

The logistics operator under study employs both relative and absolute error measures to assess
forecast accuracy. In this context, two primary metrics utilized by the operator are:

- MAE (Mean Absolute Error): This metric provides a straightforward measure of average
forecast error magnitude without considering directionality, making it a reliable indicator of overall
accuracy.

- MAPE (Mean Absolute Percentage Error): This metric expresses forecast errors as a percentage,
offering a relative measure of accuracy that allows for comparisons across different scales.

By employing these metrics, the study evaluates the performance of the forecasting system and
identifies areas for potential improvement, especially in the context of optimizing the tool's

calibration..
1 n
MAE == Iy, = y;| = mean(ly. - i) M)
t=1
1 n * *
MAPE = —Z Ye Vel _ mean( Yo Ve ), (2)
n Ye Ve

where n — numer of errors, y; —non-zero observed value, y; — predicted value.

Forecast error metrics play a crucial role in evaluating the quality of forecasts. They characterize
the overall level of errors produced by a forecasting model, regardless of the forecast horizon, making
them independent of how far into the future the predictions extend. These synthetic forecast error
metrics provide a foundation for comparing different forecasting models and assessing their
effectiveness. They reveal the average deviation between predicted and actual values, offering a
general perspective on forecast efficiency in a given context. For example:

- MAE indicates the average magnitude of deviation between predicted and actual values,
regardless of direction.

- MAPE expresses this deviation as a percentage of the actual value, making it particularly useful
for evaluating the significance of forecast errors relative to the phenomenon being studied.

Comparing synthetic forecast error metrics can also yield additional insights into the asymmetry
of error distributions. However, to conduct a more in-depth evaluation of forecast quality, examining
the complete distribution of errors is essential. Synthetic metrics alone may mask various aspects of
errors, such as outliers, skewness, or other irregularities. Therefore, an analysis of the error
distribution becomes indispensable.

A deeper analysis of forecast errors involves studying the time series of errors. This approach
focuses on properties inherent in the time series itself, seeking patterns that may enable
decomposition into systematic components such as seasonality or trends. Such an analysis ultimately
aims to evaluate the forecasting model and identify potential areas for correction or refinement.

3. Methods
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This study employs a case study approach focusing on two distribution networks where a
logistics operator provides logistics services to a manufacturing enterprise (Figure 2).

>"'l-----f
=
—_—
POS or customer or different
' final point
Manufacturer Logistics operator
(3PL)

.-

[ POS or customer or different

final point
2o ik

Different picking Different distribution Demand forecasting
types channels tool

Figure 2. General overview on distirbution network with 3PL. Source: own work

This is a logistics company specializing in providing services related to the distribution and
warehousing of goods for various enterprises. The company offers a wide range of logistics services,
such as transportation, warehousing, supply chain management, freight forwarding services, and
inventory management. This operator continuously invests in modern technologies and trains its
employees to meet market demands and enhance its competitiveness. It operates internationally,
mainly in Europe, but also beyond.

As part of its operations, the operator uses a forecasting tool powered by data from the WMS
(Warehouse Management System). To improve its warehousing operations, the operator decided to
use the tool primarily to forecast aggregate dispatches (for all SKUs—Stock Keeping Units) for
different picking methods and sales channels. Different picking methods imply variability in the
engagement of warehouse resources in the process of fulfilling customer orders. The forecasting tool
used by the operator is powered by WMS data and utilizes, among other things, a modified
autoARIMA mechanism (Figure 1), based on the ARIMA (Autoregressive Integrated Moving
Average) model. The ARIMA model is a time series forecasting method commonly used in statistical
analysis to understand data patterns over time and predict future values based on these patterns.

The forecasting tool used by the operator leverages a commercial version of the modified
algorithm (www.cloud.google.com), which enhances the capabilities of the traditional ARIMA
model. It is designed to handle time series exhibiting complex patterns and includes features such as
automatic detection of seasonal periods, automatic outlier detection, and the ability to manage
missing values in the data. This model overcomes some of the limitations of the traditional ARIMA
model by introducing additional functionalities (Table 1).

Table 1. Example of Additional Functions in the Model Used by the Logistics Operator Compared to the
Traditional ARIMA Model.

Additional Function General Description of the Additional

Function
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Automatic Detection of Seasonal Periods The model automatically detects seasonality
periods and adjusts the forecasting algorithm

accordingly.

Outlier Detection The model includes automatic outlier
detection, identifying and removing outliers
from the data before model fitting. This helps
improve the model's accuracy by reducing the

influence of extreme values.

Handling Missing Values The model can handle missing values in the
data by filling them using linear interpolation
methods. This allows the model to utilize the
maximum amount of data, which can improve

forecast accuracy.

Nonlinear Transformation The model includes the capability to apply
nonlinear transformations to the data, such as
logarithmic or polynomial transformations.
This enables the model to capture more
complex patterns in the data that are not
represented by the linear ARIMA model.

Source: own work.

The discussed model is used in the operations of the logistics operator and has been collecting
data for approximately half a year, gathering historical data on forecasted and actual values. Forecasts
in this context were created with a 30-day horizon, with daily data updates in daily granularity. The
forecasted values were aligned with managerial requirements identified during the business needs
analysis of the operator and were based on forecasting aggregate dispatch volumes for SKUs, for
which handling during dispatch followed a similar method (forecasts for different picking methods).
The research focused on analyzing two distribution networks where the logistics operator operates
and serves manufacturers. In both cases, the forecasting tool operates under the previously described
assumptions and is oriented toward forecasting aggregate dispatch volumes for SKUs for different
picking methods.

The first case (Manufacturer 1) involves a distribution network where the manufacturer
specializes in pharmaceutical production, and the operator logistically handles two main distribution
channels: distribution to hospitals and distribution to pharmaceutical wholesalers. In both cases,
forecasts covered three types of picking: unit picking, carton picking, and shrink-wrapped bundle
picking. In the second distribution network, the logistics operator serves a manufacturer of household
appliances (Manufacturer 2), for whom forecasts are created for two main distribution channels: e-
commerce and brick-and-mortar stores, divided into four main picking methods (unit picking from
a mezzanine, unit picking from shelves, carton picking for e-commerce, and carton picking for stores).
The general characteristics of the data for each manufacturer are presented in Table 2.

Table 2. Data brief characteristic for analyzed distribution networks.

Manufactu | Distribution | Picking proces for which | Description in the Brief data
rer channel the forecasts were created paper charactersitc
Units Channel 01 182 days of
1 Hospitals Boxes Channel_02 daily forecasts
Pack Channel_03 history
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Unit Channel_04
Wholesalers | Boxes Channel_05
Pack Channel_06
Unit picking from
) Channel_07
mezzaine 96 days of daily
e-commerce
2 Unit picking from racks Channel_08 forecasts
Box picking Channel_09 history
POS Box picking Channel_10

Source: own work.

Different picking methods define varying resource consumption levels for warehouse operations
related to the dispatch of SKUs in specific contexts. Accurate forecasts, therefore, improve aspects
related to warehouse resource planning. The article analyzes the forecast error series collected by the
forecasting tool implemented by the logistics operator. Two research hypotheses were verified in the
article (Figure 3).

Logistics
»  operator » Recipient
(3PL)

Manufacturer

H2

Demand forecasting

tool J

Errors time series

Ex-post errors for
picking and
distirbution channels
forecasts

H1

Figure 3. Hypothesis. Source: own work

The formulated hypotheses are as follows:

H1. In the forecast errors for different picking systems, certain patterns can be identified,
allowing for their decomposition in terms of seasonality and trends.

H2. Analyzing the forecast error series can improve the performance of the current forecasting
tool regarding the accuracy of the forecasts it generates.

The first hypothesis concerns an attempt to detect patterns, such as seasonality or deterministic
components, in the forecast error series for different picking methods. Verifying this hypothesis will
address whether patterns in forecast errors can be identified within the forecasting tool's operation.
The second hypothesis aims to verify whether the conducted analysis can influence the tool's
functionality and improve the accuracy of the forecasts it generates.

The R environment (R Core Team, 2022), specifically the "forecast" package (Hyndman et al.,
2023), was used for analyzing the error series. A significance level of 0.05 was adopted for statistical
inference. The "randtests" package (Caeiro F., Mateus A., 2022) was employed to examine the
randomness of the error series. The "funtimes" package (Lyubchich V., Gel Y., Vishwakarma S., 2023)
was used to test hypotheses regarding the presence of trends. The "seastest" package (Ollech D., 2021)
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was applied to analyze seasonality. Additionally, the procedure proposed in Wolny (2023) was used
to verify hypothesis H1. Systematic components, such as seasonality and trend, were identified using
STL decomposition (Cleveland et al.,, 1990). The strength of seasonality and trend in errors was
assessed using the following metrics (Wang et al., 2006):

Ao Var(R;)

7 = max (0, 1- m), 3
B Var(R.)

F¢ = max <0, 1-— m). 4)

where T: is the smoothed trend component, S: is the seasonal component and R: is a remainder
component.

Equation (3) defines the strength of the trend component, while equation (4) specifies the
seasonal component. The main functionalities of the R package used for error analysis are presented
in Table 3. Detailed assumptions regarding the applied functions are outlined in the column
"Functions Used." For other parameters not explicitly listed, the default values for the respective
functions were used.

Table 3. Main methods and functions from R used in the forecasts errors analysis.

Functionality Functions Used

Randomness testing of forecast errors bartels.rank.test(), runs.test(), cox.stuart.test(),

difference.sign.test()

Stationarity testing adf.test() (Trapletti, Hornik, 2023)
Autocorrelation testing acf(), Box.test()
STL decomposition of the time series stiiwindow = length(number_of_errors), s.window =

length(number_of_errors))

Trend occurrence testing notrend_test(tests = 't'), notrend_test(tests = 'MK),
notrend_test(tests ="WAVK') (Lyubchich V. et al. 2023)
Component occurrence testing combined_test(), as(), fried(), kwp(), seasdumy(), welch()

Source: own work.

4. Results

In the first step of the analysis, a visual assessment of the forecast error series was conducted.
The visual analysis of time series forecast errors involves plotting these errors on a timeline. Such
plots can reveal existing patterns, such as cyclicality, seasonality, or trends, which might not be
evident in the analysis of the forecasted values alone. For example, if regular fluctuations are
observed in the forecast error series over specific time periods, it may indicate that the forecasting
model struggles to predict certain seasonal patterns. The progression of the analyzed time series is
presented in Figure 4.
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Figure 4. Time series of forecasting errors for the considered channels. Source: own work

The visual analysis of time series forecast errors is a crucial phase in examining forecasting

models. By thoroughly understanding the patterns and properties of error series, researchers and
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analysts can identify significant relationships and aspects that merit further, more detailed
investigation. This approach enables a deeper understanding of the dynamics of forecast errors and
potential issues within the models. Following the visual analysis, it becomes possible to conduct more
advanced statistical analyses. Calculating basic distribution parameters of forecast errors, such as the
mean, standard deviation, or skewness, can provide insights into the characteristics and asymmetry
of the errors. Furthermore, STL decomposition (Seasonal and Trend decomposition using Loess)
allows for the extraction of trend, seasonality, and remainder components, which can help identify
the primary sources of errors in forecasts. Statistical hypothesis testing also plays a critical role in the
analysis. Determining p-values for tests under the null hypothesis of no trend or seasonality helps
establish whether statistically significant deviations from these assumptions exist. The basic
numerical characteristics of the analyzed forecast error time series are presented in Table 4..

Table 4. Basic parameters of forecast error distributions for the examined channels.

Chan | Chan | Chan | Chan | Chan | Chan | Chan | Chan | Chan | Chan
nel 0 | nel 0 | nel 0 | nel 0 | nel 0 | nel 0 | nel 0 | nel 0 | nel 0 | nel_1
1 2 3 4 5 6 7 8 9 0
Mean 176 245 0 574 126 25| -1387 -706 | -1583 -228
Std.De
v 1095 2268 174 5665 1017 52 2822 1602 2969 420
Min -3249 | -13376 -786 | -18267 | -3160 -118 | -7773 | -4455 | -9193 | -1388
Q1 -581 -752 97 | -2221 -416 -3 | -2806 | -1981 | -4357 -532
Media
n 172 507 15,5 297 149 29,5 -687 -175 -732 -147
Q3 916 1419 84 3571 765 57 629 545 863 21
Max 3868 8508 740 | 22774 3151 202 2901 2436 2918 681
MAD 1103 1559 145 4340 859 45 2423 1634 2950 397
1171,2
IQR 1476 2117 | 179,5 5653 5 59 3435 2526 5220 553
cv 6,212 | 9,272 -1 9876 | 8,040 | 2,079 | -2,034 | -2,268 | -1,875| -1,843
Skewn
ess 0,037 | -1,606 | -0,201 | 0,279 | -0,278 | -0,161 | -0,715 | -0,354 | -0,531 | -0,288
SE.Ske
wness 0229 | 0219| 0219| 0222 | 0235| 0219 | 0245| 0,245| 0,245| 0,245
Kurtos
is 0954 | 11,280 | 4,387 | 2270 | 1,330 | 0567 | -0487 | -0,774| -0,726 | -0,354
N.Vali
d 111 122 122 119 106 122 97 97 97 97

Source: own work.

The time series analysis of forecast errors for different channels revealed diverse patterns and
characteristics of errors in these channels. Some channels tend to overestimate, while others tend to
underestimate forecasted values. Differences in standard deviation, coefficient of variation, skewness,
and kurtosis indicate the diversity of error variability. For each channel, analyzing these parameters
can provide valuable insights for further optimization and improvement of forecasting models. For
Channel_01, the mean error is 176, and the median is 172, which suggests that most errors are below
the mean value. However, the skewness coefficient indicates weak asymmetry in the error
distribution. Nevertheless, the large standard deviation (1095) and high coefficient of variation (CV =
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6.212) indicate significant error variability. For Channel_02, the mean error is 245, and the median is
507, which suggests that the models tend to underestimate predicted values. High values of standard
deviation (2268) and kurtosis (11.280) indicate significant variability in the error distribution. In the
case of Channel 03, the mean error is close to zero, but the low median (15.5) and large standard
deviation (174) suggest that the errors have diverse characteristics. Skewness is close to zero, while
kurtosis (4.387) indicates a higher concentration of values than in a normal distribution (kurtosis = 0).
For Channel 04, the mean error is 574, and the median is 297, which indicates underestimation of
predicted values. High values of standard deviation (5665) and kurtosis (2.270) indicate significant
error variability and some degree of dispersion of the analyzed values. The distribution is positively
skewed. The mean error in Channel 05 is 126, and the median is 149, which suggests slight
underestimation of values. High values of standard deviation (1017) and coefficient of variation (CV
= 8.040) indicate significant variability. The error distribution is negatively skewed. For Channel_06,
the mean error is 25, and the median is 29.5, which suggests slight underestimation of values. Low
standard deviation (52) and kurtosis (0.567) indicate relatively low variability and closeness to
normality in the distribution. The error distribution is negatively skewed. The mean error for
Channel_07 is negative (-1387), and the median is also negative (-687), which indicates a tendency to
overestimate predicted values. High values of standard deviation (2822) and kurtosis (-0.487) indicate
significant error variability and platykurtosis of the distribution. The distribution is negatively
skewed. Channel_08 is characterized by a mean error of -706 and a median of -175, which suggests
overestimation of predicted values. High values of standard deviation (1602) and kurtosis (-0.774)
indicate some variability in errors and platykurtosis of the distribution. The distribution is negatively
skewed. In the case of Channel_09, the mean error is negative (-1583), and the median is also negative
(-732), which suggests overestimation of predicted values. High values of standard deviation (2969)
and kurtosis (-0.726) indicate significant error variability and platykurtosis of the distribution. The
distribution is negatively skewed. For Channel_10, the mean error is -228, and the median is -147,
which suggests overestimation of predicted values. High values of standard deviation (420) and
kurtosis (-0.354) indicate variability in errors. The distribution is negatively skewed. In general, the
coefficient of variation (CV = Std.Dev / Mean) indicates high variability in the distributions of the
analyzed errors.

In the next step of the analysis, the randomness of forecast errors was examined. The results are
presented in Table 5..

Table 5. Randomness (alternative hypothesis: nonrandomness).

Channel bartels.rank.test | runs.test | cox.stuart.test | difference.sign.test
Channel_01 0,887 0,716 0,798 0,274
Channel_02 0,037 0,029 <0,001 0,274
Channel_03 0,545 0,716 0,443 0,530
Channel_04 0,964 0,064 0,435 0,343
Channel_05 0,227 0,172 0,583 0,402
Channel_06 0,270 0,338 >0,999 0,513
Channel_07 0,026 0,412 0,312 <0,001
Channel_08 0,664 1,000 0,059 0,080
Channel_09 0,117 0,218 0,006 0,162
Channel_10 0,009 0,305 0,029 0,726

Source: own work.

The analysis of the randomness of forecast errors indicates that each of the analyzed series can
be considered random (in the sense of one of the applied tests and with alpha = 0.05). However, low
p-value values for Channel_02, Channel_07, Channel_09, and Channel_10 in some tests may suggest
the presence of certain patterns in the error progression. The stationarity analysis of the considered

d0i:10.20944/preprints202409.1003.v2
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error series using the ADF (Augmented Dickey-Fuller test) indicates that the series can be considered
stationary (p-value <= 0.01 for each series). The results of the autocorrelation analysis of the examined
series are not uniform and may indicate the presence of autocorrelation. Detailed values of
coefficients and critical significance levels (p-values) for the first seven lags are presented in Table 6.
The analysis utilized ACF coefficients and the Ljung-Box test.

Table 6. ACF coefficient values along with their critical significance levels and p-values for the Ljung-Box test.

The values pertain to the first seven lags.

Channel ACEF (coefficient) ACF (p-value) Ljung-Box test (p-value)

-0.175, -0.235, 0.153, 0.053, 0.01, 0.091, 0.376,|0.050, 0.005, 0.003, 0.006,
Channel_01 |-0.080, 0.054, -0.166, 0.057 0.548, 0.067, 0.529 0.011, 0.005, 0.008

0.088, 0.118, 0.21, 0.139,|0.33, 0.193, 0.021, 0.126,]0.324, 0.256, 0.04, 0.029,
Channel_02 |0.235, 0.086, 0.157 0.009, 0.341, 0.083 0.003, 0.004, 0.002

-0.109, -0.243, 0.096, 0.229, 0.007, 0.287, 0.087,|0.223, 0.012, 0.018, 0.01,
Channel_03 |-0.155,-0.097, 0.019, -0.026 | 0.286, 0.83, 0.776 0.013, 0.025, 0.043

-0.001, -0.257, -0.006, -0.009, | 0.988, 0.005, 0.945, 0.921,]0.988, 0.017, 0.044, 0.087,
Channel_04 | 0.126, 0.047, 0.013 0.168, 0.607, 0.89 0.071, 0.108, 0.165

0.087, -0.201, -0.011, 0.051,|0.369, 0.039, 0.909, 0.602,|0.362, 0.072, 0.153, 0.234,
Channel_05 | 0.059, -0.069, -0.143 0.545, 0.474, 0.141 0.311, 0.369, 0.262

0.099, -0.314, -0.116, 0.109,|0.297, 0.001, 0.223, 0.253,]0.29, 0.002, 0.003, 0.004,
Channel_06 | 0.05, -0.107, -0.004 0.599, 0.261, 0.967 0.008, 0.009, 0.017

0.273, -0.009, -0.147, -0.128, - | 0.007, 0.932, 0.147, 0.208,|0.006, 0.024, 0.021, 0.022,
Channel_07 |0.062, 0.131, 0.4 0.538,0.197, 0, 0.11 0.038, 0.034, <0.001

0.011, 0.023, -0.01, -0.066, -|0.914, 0.821, 0.921, 0.514,|0.912, 0.968, 0.995, 0.971,
Channel_08 | 0.084, 0.203, 0.375 0.407, 0.045, 0, 0.321 0.938, 0.466, 0.004

0.132, -0.055, 0.037, 0.07,|0.193, 0.587, 0.715, 0.488,|0.187, 0.358, 0.533, 0.608,
Channel_09 |0.219, 0.071, 0.245 0.031, 0.487, 0.016 0.173, 0.221, 0.041

0.275, -0.155, -0.041, -0.086, - | 0.007, 0.126, 0.684, 0.395,|0.006, 0.007, 0.017, 0.027,
Channel_10 | 0.107, 0.131, 0.444 0.292,0.197, 0, 0.766 0.033, 0.031

Source: own work.

Preliminary analyses indicate that patterns may be present in each of the considered series. In
each case, autocorrelation can be observed for the first seven lags. The summary of the analysis results
for the examined forecast error time series is presented in Tables 7-9.

Table 7. Results of the analysis of the examined forecast error series in terms of STL decomposition.

Trend | Season_s Remainder MAE_s | Iloraz_st
Channel _stl tl MAE_error | MAPE_error tl 1

Channel_03 0,007 0,021 125 0,593 124 0,994
Channel_02 0,158 0,030 46 0,608 36 0,775
Channel_06 0,006 0,037 861 29,518 816 0,947
Channel_01 0,000 0,045 1500 0,425 1433 0,955
Channel_04 0,029 0,049 4129 5,095 4009 0,971
Channel_05 0,010 0,053 768 16,901 735 0,957
Channel_09 0,145 0,128 109 0,455 90 0,828
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Channel_07 0,099 0,230 1010 0,341 779 0,771
Channel_08 0,130 0,276 1363 0,279 984 0,722
Channel_10 0,092 0,380 366 0,268 226 0,617

Source: own work.

In Table 7, the individual columns present the following information:

- “Trend_stl” — Value calculated using formula (3), indicating the strength of the trend
component in STL decomposition (the closer the value is to 1, the more significant the trend
component in the error).

- “Season_stl” — Value calculated using formula (4), indicating the strength of the seasonal
component in STL decomposition (similarly, the closer the value is to 1, the more significant the
seasonal component in the error series).

- “MAE_error” — The MAE error value (1) for a given product.

- “MAPE_error” — The MAPE error value (2) for a given product.

- “Remainder_MAE_stl” — The “non-systematic” error, understood as the MAE value of the error
series calculated for the remainder component in STL decomposition (the mean of the absolute values
of the remainder component of the error series), indicating the MAE error excluding systematic
components of the error series.

- “lloraz_stl” — The relative “non-systematic” error, calculated as the ratio of
“Remainder_MAE_stl” to “MAE_error”, indicating what portion of the total MAE error is
represented by the MAE calculated solely for the remainder component of STL decomposition.

The data in the table is arranged in non-decreasing order of the value of measure (4), which
determines the strength of the seasonal component in the error series. In STL decomposition, a
frequency of 7 was adopted for each analyzed series, as the operator works 7 days a week, and the
data pertains to daily volumes. The results presented in Table 7 do not reveal direct, strong, and
unambiguous relationships between the listed quantities. Only the following correlations (Pearson's,
alpha = 0.05) can be considered significant:

1. Between the strength of the trend component (Trend_stl) and the strength of the seasonal
component (Season_stl), r = 0.59 (t = 2.426, p = 0.034). The more significant the trend component, the
more significant the seasonal component.

2. Between the strength of the trend component (Trend_stl) and the relative “non-systematic”
error (Iloraz_stl), r =-0.69 (t = -3.163, p = 0.009). The more significant the trend component in errors,
the smaller the error associated with excluding this component.

3. Between the strength of the seasonal component (Season_stl) and the relative “non-
systematic” error (lloraz_stl), r = -0.70 (t = -3.251, p = 0.007). The more significant the seasonal
component, the smaller the “non-systematic” error.

4. Between the “non-systematic” error (Remainder_ MAE_stl) and the MAE error (MAE_error),
r=0.88 (t=6.185, p <0.001). The greater the absolute error, the greater the absolute “non-systematic”
error. This relationship can generally be considered obvious.

Regarding the first point, it should be noted that in the analyzed series, the maximum value of
indicator (3) is 0.158, generally indicating a weak trend component in the analyzed error series. Only
in two cases is the strength of the trend component greater than the strength of the seasonal
component (Channel_02, Channel_09). In the considered problem, the seasonal component of the
error series is of greater importance. Particular emphasis should be placed on the numerical aspects
of the method for extracting systematic components using STL. The identified trend is generally non-
linear, and changes to decomposition parameters can control trend variability. At the same time, this
is closely related to the seasonal component, with practically no influence on the remainder
component. From this perspective, systematic components should be considered together. For
predefined decomposition parameters, correlations between systematic components naturally occur.
Therefore, the correlations presented in points two and three should be treated as natural. Despite
the generally weak trend component, the results of trend detection using Student's t-test, Mann—
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Kendall test, and WAVK test (Lyubchich V. et al. 2023) indicate significant trends in most of the
analyzed series. Detailed results are presented in Table 8.

Table 8. P-values in tests for the null hypothesis of no trend.

Test t-
Studenta
(linear Test Mann-Kendall WAVK test (possibly non-
Channel trend) (monotonic trend) monotonic trend)

Channel_01 0,927 0,690 0,052
Channel_02 <0,001 <0,001 <0,001
Channel_03 0,426 0,415 0,041
Channel_04 0,042 0,067 0,498
Channel_05 0,357 0,340 0,578
Channel_06 0,396 0,524 0,257
Channel_07 0,023 0,025 0,071
Channel_08 0,006 0,001 0,729
Channel_09 <0,001 <0,001 0,020
Channel_10 0,119 0,090 0,600

Source: own work.

The results presented in Table 8 indicate the presence of a trend in forecast errors for channel_02,
channel_07, channel_08, and channel_09. However, based on visual assessment of the phenomenon
over time, a distinct trend cannot be confirmed. To examine the presence of a significant seasonal
component in the analyzed time series, the following tests were used: combined.kwr - Ollech and
Webel's combined seasonality test (Ollech, D., Webel, K., 2020), test QS (gs.p), Friedman Rank test
(fried.p), Kruskal-Wallis test (kw.p), F-Test on seasonal dummies (seasdum.p), Welch seasonality test

(welch.p).
Table 9. P-value in tests for the Null Hypothesis of no seasonality.

Channel combined.kwr gs.p fried.p kw.p seasdum.p welch.p

Channel_01 0,293 | >0,999 0,098 0,106 0,504 0,179
Channel_02 0,422 | >0,999 0,905 0,729 0,760 0,723
Channel_03 0,943 | >0,999 0,976 0,969 0,874 0,829
Channel_04 0,649 | >0,999 0,848 0,546 0,466 0,368
Channel_05 0,570 | >0,999 0,187 0,307 0,500 0,173
Channel_06 0,672 | >0,999 0,638 0,553 0,684 0,629
Channel_07 <0,001 | <0,001 <0,001 | <0,001 0,001 <0,001
Channel_08 <0,001 0,026 0,003 0,001 <0,001 <0,001
Channel_09 0,052 | >0,999 0,058 0,013 0,055 0,025
Channel_10 <0,001 | <0,001 <0,001 | <0,001 <0,001 <0,001

Source: own work.

The results of the conducted tests indicate a clear presence of seasonality in the error series for
channel_10, channel 07, and channel 08. For channel_09, low p-value values also suggest the
possibility of significant seasonality. These results are consistent with those obtained in the analysis
of the strength of the seasonal component (4). Figures 5 and 6 present visualizations of the conducted
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decompositions for two extreme examples. Figure 5 shows the decomposition of errors for
channel_03, which has the smallest proportion of systematic components in the total error. Figure 6,
on the other hand, presents the decomposition of errors for channel 10, which has the largest
proportion of systematic components.
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Figure 6. The decomposition of channel_10 errors time series. Source: own work.

The primary difference in the strength of systematic components can be attributed to the scale
of errors. In the case of channel 03, the trend component ranges from approximately -30 to 10, the
seasonal component from approximately -56 to 23, while the range of total error variation is from -
786 to 740. For channel_10, the trend component ranges from approximately -340 to -23, the seasonal
component from approximately -457 to 253, and the range of total error variation is from -1388 to 681.
Thus, the visualization of error decomposition can also be used to assess the strength and significance
of systematic error components. It should be noted that the range of changes in individual
components can serve as a key indicator in this context.

In summary, the obtained results highlight that significant systematic components in error series
were identified in all examined channels of the household equipment manufacturer —significant
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seasonality in all channels and the absence of a significant trend only in channel 10. Regarding the
distribution channels for pharmaceutical products, a significant systematic component (trend) was
identified only in channel 2.

5. Discussion
5.1. Verification of Research Hypotheses

The article positively verified the first hypothesis (H1: Certain patterns can be identified in the
forecast errors for different picking systems, allowing for their decomposition in terms of seasonality
and trends). The analysis of forecast errors indicates that various patterns and characteristics of errors
exist for individual channels. High values for the mean, standard deviation, coefficient of variation,
and skewness suggest variability of errors relative to the mean. For some channels, distinct seasonal
components and certain trends can be observed. The correlation values between the trend component
and seasonality also suggest certain dependencies between these components. The applied analytical
methods indicate consistency in the obtained results. The randomness analysis of errors showed that
channels 02, 07, 09, and 10 might exhibit certain systematic patterns. The analysis of the strength of
individual components in the decomposed error series also pointed to the significant importance of
systematic patterns (trend or seasonality) for channel_09. In decomposition, the seasonal and trend
components should be treated together, as STL decomposition largely depends on decomposition
parameters (e.g., smoothing windows for trend and seasonality). The decomposition of the error
series can form the basis for more in-depth analyses. In cases where significant systematic error
components are present, questions arise about the causes of these patterns. Is the forecasting model
failing to account for the characteristics of changes in the analyzed phenomenon, or is the systematic
nature a result of some qualitative factors? Alternatively, it could prompt the search for and inclusion
of an appropriate regressor previously omitted in the forecasting model.

The second hypothesis (H2: Analyzing the error series can improve the performance of the
current forecasting tool in terms of forecast accuracy) was not positively verified. However, the
authors suggest that there would be a high chance of its verification if detailed insights into the
models used for forecasts were available or if the tool's parameters could be calibrated through
simulation. The statistical test results for different channels show significant differences between
groups of forecast errors in some cases (e.g., Channel_07, Channel_08, Channel_09, and Channel_10).
This suggests that the forecasting tool may be more accurate for some channels than others. The
presence of these differences points to the potential for improving the forecasting tool for these
channels. Furthermore, the analysis of parameters such as standard deviation, coefficient of variation,
or skewness helps understand how effectively the tool operates in specific cases. This could
encourage a more detailed review and enhancement of the forecasting model for these specific
channels. However, this was not empirically verified due to the lack of access to detailed models used
for forecasting and the sensitivity of forecasted values to changes in the tool's calibration parameters.

5.2. Impact of Time Series Error Analysis on the Forecasting Tool

The logistics operator uses forecasting tools to generate predictions (Kmiecik, 2021). Time series
error analysis provides essential information about the quality of these forecasts. The error values,
their variability, and distribution characteristics indicate that the forecasts exhibit varying levels of
accuracy and are prone to overestimation or underestimation. The forecasting tool used by the
operator often generates forecasts that exceed or underestimate actual values. This suggests a need
for further optimization and tuning of forecasting models to reduce forecast errors. Unfortunately,
practical business tools often limit deeper analysis or modifications of their functionality. The issue
of insufficient knowledge and the inability to modify such tools is frequently discussed in the
literature, for example, by Voulgaris (2019) and Rahman et al. (2018). The analysis of forecast errors
highlights specific areas where models encounter difficulties. Managers can focus on further refining
these models by adjusting parameters, incorporating additional variables, or using more advanced
forecasting techniques. Based on the analysis, a strategy for improving forecast quality can be
developed. This may include designing more advanced forecasting methods, improving data
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collection and input management for models, and applying machine learning techniques that can
better account for non-linear patterns (Ryo and Rilling, 2017; Ghosh et al., 2019).

5.3. Possibilities for Improving the Logistics Operator’s Operations

The analysis of forecast error time series is critical for logistics operations. By understanding
error patterns, the operator can adjust actions to better respond to forecast errors and minimize their
impact on logistics activities. For example, in the case of forecast underestimations, the operator can
plan for larger reserves. This is particularly important when the operator is aware that a specific
algorithm does not perform well or when the data is so unpredictable or volatile that accurate
forecasting becomes impossible. Understanding the characteristics of forecast errors allows for
adjustments in operational strategies. For instance, when forecasting models often overestimate
values, flexibility can be introduced in resource planning or storage to handle sudden demand spikes.

The analysis of different channels and error characteristics helps identify areas that are more
prone to errors. Managers can implement risk management strategies, such as resource reserves or
production flexibility, to minimize the negative impact of incorrect forecasts on operations. The
impact of accurate forecasts on risk management by logistics operators has been described in the
literature, for example, by Yoon et al. (2016) and Ben-Daya and Akram (2013). However, these authors
did not consider the possibilities offered by statistical analysis of errors generated by forecasting
tools. The analysis of forecast error time series is not a one-time activity. Managers should
continuously monitor error characteristics, adjusting strategies as new data and experiences are
gained. This allows the company to adapt its operations to changing conditions.

5.4. Main Limitations and Directions for Future Research

The analysis of forecasting errors is significant but may be limited in understanding the deeper
causes of these errors. Logistics operations usually rely on many variables, which can affect forecast
quality. Additionally, the lack of information about the forecasting models, calibration parameters,
and input data can limit the full understanding of error sources. This lack of knowledge about models
is caused by the so-called black-box effect (Rudin, 2019; Papernot et al., 2017). Efforts should therefore
be made to improve the integration of the logistics operator with the provider of the forecasting
software to gain a deeper understanding of its functionality. Analyzing the causes of overestimation
or underestimation of forecasts can help identify specific sources of errors. Research on the impact of
different forecasting models or data analysis techniques on forecast quality could lead to improved
predictive results. Forecast error analysis can inspire further research on specific channels, product
types, or seasonality. Innovative approaches to modeling and forecasting can improve forecast
quality and enable companies to plan more precisely.

6. Conclusions

In this article, the authors conducted a comprehensive analysis of time series forecast errors
generated by a 3PL logistics operator for ten different channels. The primary goal was to discover
patterns and characteristics in forecast errors and draw conclusions aimed at improving the
predictive capabilities of the current forecasting tool. The analysis included both visual examination
and statistical testing of forecast error series. The visual analysis of time series forecast errors revealed
various patterns and behaviors within individual channels. Some channels exhibited tendencies
toward overestimation, while others showed tendencies toward underestimation of predicted values.
Variations in standard deviation, coefficient of variation, skewness, and kurtosis further highlighted
the diversity of forecast errors. These findings emphasized the importance of in-depth exploration
and refinement of forecasting models for each channel.

Statistical tests were applied to verify the research hypotheses and highlight similarities and
differences between the distributions of forecast errors. Observations of trend and seasonality
components in forecast errors indicated the presence of hidden patterns in the data. The correlation
between the strength of the trend component and the strength of the seasonal component confirmed
the interrelations between these components, potentially opening avenues for improving forecast
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accuracy by focusing on deterministic components of the error series. The results of the forecast error
analysis clearly demonstrated the critical role of error analysis in improving forecasting models. The
analysis highlighted the strengths and weaknesses of the current forecasting tool, providing a basis
for its improvement.

The research conducted in the article highlighted valuable insights that can be gained from
analyzing time series forecast errors in the context of logistics operations. The findings underscored
the need for a tailored forecasting approach for each channel, the importance of improving the
forecasting tool, and the potential for optimizing forecast accuracy by focusing on trends and
seasonality. The analysis, therefore, represents a significant contribution to the theory and practice of
demand forecasting by logistics operators in distribution networks.
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