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Abstract: Purpose: The study aims to analyze forecast errors for various time series generated by a 3PL logistics 

operator across ten distribution channels managed by the operator. Design/methodology/approach: The 

research focused on ten distribution channels served by a 3PL logistics operator utilizing the Google Cloud AI 

forecasting tool as part of the Google Cloud AI service. The R environment was used in the study. The research 

centered on analyzing forecast error series, particularly decomposition analysis of the series, to identify trends 

and seasonality in forecast errors. Findings: The analysis of forecast errors reveals diverse patterns and 

characteristics of errors across individual channels. Statistical tests for various channels show significant 

differences in forecast error groups in some cases, suggesting that the forecasting tool may perform more 

accurately for certain channels than others. A systematic component was observed in all analyzed Household 

Appliance Channels (seasonality in all channels, and no significant trend identified only in Channel 10). In 

contrast, significant trends were identified in one Pharmaceutical Channel (Channel 02), while no systematic 

components were detected in the remaining channels within this group. Research limitations: Logistics 

operations typically depend on numerous variables, which may affect forecast accuracy. Additionally, the lack 

of information on the forecasting models, mechanisms (black box), and input data limits a comprehensive 

understanding of the sources of errors. Value of the paper: The study highlights the valuable insights that can 

be derived from analyzing forecast errors in time series within the context of logistics operations. The findings 

underscore the need for a tailored forecasting approach for each channel, the importance of enhancing the 

forecasting tool, and the potential for improving forecast accuracy by focusing on trends and seasonality. This 

analysis makes a significant contribution to the theory and practice of demand forecasting by logistics operators 

in distribution networks. The research offers valuable contributions to ongoing efforts in demand forecasting 

by logistics operators. 

Keywords: time series of forecasting errors; 3PL; logistics operator; demand forecasting; distribution channels 

 

1. Introduction 

Effective supply chain management is crucial for ensuring the smooth flow of goods and services 

in today’s dynamic business environment (Davis, 1993; Fawcett et al., 2008; Towill et al., 2000). 

Accurate forecasting plays a pivotal role in this process, enabling organizations to make informed 

decisions, optimize inventory levels, and meet customer demands effectively (Babai et al., 2022; 

Abolghasemi et al., 2020; Hofmann and Rutschmann, 2018). As such, forecast accuracy is key to 

enhancing operational efficiency and customer satisfaction. Currently, 3PL logistics operators play a 

significant role in supply chains and distribution networks (Qureshi, 2022; Kmiecik, 2022; 

Minashkina and Happonen, 2023; Baidoo-Baiden, 2022). These operators manage various channels, 

each characterized by unique demand patterns and supply dynamics (Kmiecik and Wolny, 2022). 

Although forecasting models are becoming increasingly advanced, their effectiveness may vary 

across channels due to the inherent complexity and variability of demand and supply characteristics. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Understanding the hidden patterns and behaviors within forecast errors for each channel is essential 

to improving the predictive capabilities of these models. 

The purpose of this study is to conduct a comprehensive analysis of time series forecast errors 

generated by a 3PL logistics operator across ten distribution channels it manages. By identifying 

similarities and differences in forecast errors across channels, the authors aim to provide practical 

insights for improving forecasting models and enhancing overall operational efficiency, which can 

be applied in logistics operators’ activities. This research seeks to address the gap in demand 

forecasting practices by logistics operators. While prior studies have explored the potential for 

integrating forecasting solutions into logistics operations (Kmiecik, 2021b; Li et al., 2022; Al. Mesfer, 

2023) and the benefits of transferring forecasting functions to operators for other network participants 

(Kmiecik, 2023), no prior studies have specifically examined time series forecast errors in the context 

of tools used by logistics operators. 

2. Theoretical Background 

2.1. Demand Forecasting by Logistics Operators 

One of the most common strategies for determining future demand levels is the use of 

forecasting methods. Forecasts are critical inputs for decision-making in procurement, production, 

delivery, and inventory management (Alam and El Saddik, 2017). They enable efficient production 

and raw material planning, preventing shortages that could lead to delivery delays and increased 

production costs. Accurate forecasting also facilitates cost optimization by determining the optimal 

quantities of raw materials and delivery schedules, thus reducing storage costs and avoiding excess 

inventory. Abolghasemi et al. (2020) agree with this view, emphasizing areas such as demand 

planning, inventory replenishment, production planning, and inventory control as key domains 

where forecasts support managerial decision-making. A well-constructed forecasting system ensures 

the smooth flow of goods across production stages, warehouses, and sales points, enabling timely 

and cost-efficient distribution. Additionally, forecasts support modern logistics concepts like mass 

customization (Guo et al., 2019). They also help adapt to changing market conditions, such as shifts 

in demand, raw material prices, or regulatory changes, ensuring organizations can respond swiftly 

to market dynamics. 

Demand forecasting should support aggregation over short-, medium-, and long-term horizons 

(Kim et al., 2019). The ability to easily aggregate forecasts across time horizons, geographies, and 

product lines allows for customization based on individual client requirements. The foundation of 

an effective forecasting system is a well-defined strategy that includes the selection of appropriate 

forecasting methods and information flow processes. Popular algorithms for demand forecasting in 

logistics flows include ARIMA-based models (Abolghasemi et al., 2020), machine learning (Chen and 

Lu, 2021), and neural networks (Kim et al., 2019). However, due to the frequent unavailability of high-

quality input data or challenges in automating forecasting processes, many forecasts are still created 

or adjusted based on human judgment. As noted by Perera et al. (2019), the human factor plays a 

critical role in forecast reliability. The most influential factors affecting forecast quality include 

product history, promotional schedules (Ma et al., 2016), as well as distribution network coordination 

and relationships within the network. Forecasting is increasingly being associated with logistics 

operators, who are often tasked with forecasting the financial feasibility of certain initiatives (Wang 

et al., 2018) or operational activities such as cross-docking forecasts (Grzelak et al., 2019). However, 

these approaches tend to focus on specific operational aspects rather than broader network-wide 

applicability. 

The growing complexity of distribution networks, particularly with the rise of omnichannel 

systems (Briel, 2018), provides further impetus for developing forecasting systems at the logistics 

operator level. In this context, operators assume the role of coordinators for logistics processes 

(Kramarz and Kmiecik, 2022). Centralization of forecasting within distribution networks is one 

concept that expands the functions of logistics operators. Centralization can be considered in terms 

of transportation, operations, or decision-making processes (Simoes et al., 2018). It is often linked to 

trust and the ability to track flows (Beikverdi and Song, 2015; Lu and Hu, 2018). In this article, 
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centralization is examined from the perspective of implementing processes that allow a single 

network node to assume decision-making functions and the collection and analysis of information. 

Key drivers for centralization include the diverse nature of activities within organizational units, the 

lack of designated entities responsible for coordinating demand management with other processes, 

and the vertical structure of organizations that exacerbates independent decision-making on demand 

management across entities (Szozda and Świerczek, 2016). The centralization concept posits that a 

logistics operator, equipped with the necessary attributes, can assume centralized forecasting 

functions in a distribution network. This reduces the burden on manufacturers to create demand 

forecasts and amplifies the benefits of producer specialization. The implementation of centralized 

forecasting by logistics operators has been conceptually explored (Kmiecik, 2021a), and 

implementation guidelines have been developed for designing and adopting forecasting models 

within logistics outsourcing companies (Kmiecik, 2021b). Currently, a forecasting tool designed by 

the author is being piloted by an international logistics operator. 

The potential benefits of such solutions can significantly impact the entire distribution network. 

In appropriate conditions, logistics operators could forecast demand as part of a broader demand 

management system. This would create a foundation for actions such as sales planning, inventory 

allocation, and production scheduling across the network. Operators could leverage their expertise 

in flow management to coordinate these activities. Furthermore, demand forecasts play an essential 

role in operational planning, such as resource allocation in warehouse management (Kmiecik and 

Wolny, 2022). Whether forecasts are used to coordinate network-wide flows or support the operator's 

operations, they must demonstrate a high level of accuracy. Accurate demand forecasts are vital for 

effective supply chain and production management, enabling precise planning, cost optimization, 

improved service quality, and enhanced customer satisfaction. Accurate forecasting helps avoid 

shortages, reduces storage costs, minimizes excess inventory, and ensures business continuity. One 

way to improve forecast accuracy is by analyzing the errors generated by the current forecasting 

system, which in this case is based on ARIMA_PLUS models offered by Google Cloud AI. 

Methodological elements of the forecasting tool are presented in Figure 1. 

 

Figure 1. The modeling pipeline for the ARIMA_PLUS time series models. Source: 

https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-time-

series [access 2024-11-06]. 

It is worth emphasizing that the forecasting system should be treated as a black box. While it is 

possible to control certain parameters or modules of the tool, the precise identification and definition 

of the models used to generate forecasts remain inaccessible. The tool’s utility lies in its proper 

calibration. From this perspective, analyzing the generated errors takes on particular significance. 
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2.2. Analysis of Forecasting Errors 

The analysis of forecasting errors is a critical tool in the field of forecasting, enabling the 

evaluation of the effectiveness of adopted models in predicting future events. This process involves 

comparing the actual observed values of a studied phenomenon with the predicted values generated 

by the forecasting model. By identifying discrepancies between predictions and reality, researchers 

can gain a deeper understanding of how the model performs under various scenarios. The primary 

goal of forecasting error analysis is to estimate the accuracy of forecasts. To achieve this, various error 

evaluation metrics are employed to determine how closely the forecasting model represents actual 

observations. Commonly used metrics for synthesizing forecast accuracy include averaged error 

measures such as Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean 

Squared Error (MSE), Mean Absolute Scaled Error (MASE), and Median Absolute Error (MdAE), 

among others. 

The logistics operator under study employs both relative and absolute error measures to assess 

forecast accuracy. In this context, two primary metrics utilized by the operator are: 

- MAE (Mean Absolute Error): This metric provides a straightforward measure of average 

forecast error magnitude without considering directionality, making it a reliable indicator of overall 

accuracy. 

- MAPE (Mean Absolute Percentage Error): This metric expresses forecast errors as a percentage, 

offering a relative measure of accuracy that allows for comparisons across different scales. 

By employing these metrics, the study evaluates the performance of the forecasting system and 

identifies areas for potential improvement, especially in the context of optimizing the tool's 

calibration.. 

𝑀𝐴𝐸 =
1

𝑛
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where n – numer of errors, 𝑦𝑡 – non-zero observed value, 𝑦𝑡
∗ – predicted value.  

Forecast error metrics play a crucial role in evaluating the quality of forecasts. They characterize 

the overall level of errors produced by a forecasting model, regardless of the forecast horizon, making 

them independent of how far into the future the predictions extend. These synthetic forecast error 

metrics provide a foundation for comparing different forecasting models and assessing their 

effectiveness. They reveal the average deviation between predicted and actual values, offering a 

general perspective on forecast efficiency in a given context. For example:  

- MAE indicates the average magnitude of deviation between predicted and actual values, 

regardless of direction.  

- MAPE expresses this deviation as a percentage of the actual value, making it particularly useful 

for evaluating the significance of forecast errors relative to the phenomenon being studied. 

Comparing synthetic forecast error metrics can also yield additional insights into the asymmetry 

of error distributions. However, to conduct a more in-depth evaluation of forecast quality, examining 

the complete distribution of errors is essential. Synthetic metrics alone may mask various aspects of 

errors, such as outliers, skewness, or other irregularities. Therefore, an analysis of the error 

distribution becomes indispensable. 

A deeper analysis of forecast errors involves studying the time series of errors. This approach 

focuses on properties inherent in the time series itself, seeking patterns that may enable 

decomposition into systematic components such as seasonality or trends. Such an analysis ultimately 

aims to evaluate the forecasting model and identify potential areas for correction or refinement. 

3. Methods 
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This study employs a case study approach focusing on two distribution networks where a 

logistics operator provides logistics services to a manufacturing enterprise (Figure 2). 

 

Figure 2. General overview on distirbution network with 3PL. Source: own work 

This is a logistics company specializing in providing services related to the distribution and 

warehousing of goods for various enterprises. The company offers a wide range of logistics services, 

such as transportation, warehousing, supply chain management, freight forwarding services, and 

inventory management. This operator continuously invests in modern technologies and trains its 

employees to meet market demands and enhance its competitiveness. It operates internationally, 

mainly in Europe, but also beyond.  

As part of its operations, the operator uses a forecasting tool powered by data from the WMS 

(Warehouse Management System). To improve its warehousing operations, the operator decided to 

use the tool primarily to forecast aggregate dispatches (for all SKUs—Stock Keeping Units) for 

different picking methods and sales channels. Different picking methods imply variability in the 

engagement of warehouse resources in the process of fulfilling customer orders. The forecasting tool 

used by the operator is powered by WMS data and utilizes, among other things, a modified 

autoARIMA mechanism (Figure 1), based on the ARIMA (Autoregressive Integrated Moving 

Average) model. The ARIMA model is a time series forecasting method commonly used in statistical 

analysis to understand data patterns over time and predict future values based on these patterns.  

The forecasting tool used by the operator leverages a commercial version of the modified 

algorithm (www.cloud.google.com), which enhances the capabilities of the traditional ARIMA 

model. It is designed to handle time series exhibiting complex patterns and includes features such as 

automatic detection of seasonal periods, automatic outlier detection, and the ability to manage 

missing values in the data. This model overcomes some of the limitations of the traditional ARIMA 

model by introducing additional functionalities (Table 1). 

Table 1. Example of Additional Functions in the Model Used by the Logistics Operator Compared to the 

Traditional ARIMA Model. 

Additional Function General Description of the Additional 

Function 
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Automatic Detection of Seasonal Periods The model automatically detects seasonality 

periods and adjusts the forecasting algorithm 

accordingly. 

Outlier Detection The model includes automatic outlier 

detection, identifying and removing outliers 

from the data before model fitting. This helps 

improve the model's accuracy by reducing the 

influence of extreme values. 

Handling Missing Values The model can handle missing values in the 

data by filling them using linear interpolation 

methods. This allows the model to utilize the 

maximum amount of data, which can improve 

forecast accuracy. 

Nonlinear Transformation The model includes the capability to apply 

nonlinear transformations to the data, such as 

logarithmic or polynomial transformations. 

This enables the model to capture more 

complex patterns in the data that are not 

represented by the linear ARIMA model. 

Source: own work. 

The discussed model is used in the operations of the logistics operator and has been collecting 

data for approximately half a year, gathering historical data on forecasted and actual values. Forecasts 

in this context were created with a 30-day horizon, with daily data updates in daily granularity. The 

forecasted values were aligned with managerial requirements identified during the business needs 

analysis of the operator and were based on forecasting aggregate dispatch volumes for SKUs, for 

which handling during dispatch followed a similar method (forecasts for different picking methods). 

The research focused on analyzing two distribution networks where the logistics operator operates 

and serves manufacturers. In both cases, the forecasting tool operates under the previously described 

assumptions and is oriented toward forecasting aggregate dispatch volumes for SKUs for different 

picking methods.  

The first case (Manufacturer 1) involves a distribution network where the manufacturer 

specializes in pharmaceutical production, and the operator logistically handles two main distribution 

channels: distribution to hospitals and distribution to pharmaceutical wholesalers. In both cases, 

forecasts covered three types of picking: unit picking, carton picking, and shrink-wrapped bundle 

picking. In the second distribution network, the logistics operator serves a manufacturer of household 

appliances (Manufacturer 2), for whom forecasts are created for two main distribution channels: e-

commerce and brick-and-mortar stores, divided into four main picking methods (unit picking from 

a mezzanine, unit picking from shelves, carton picking for e-commerce, and carton picking for stores). 

The general characteristics of the data for each manufacturer are presented in Table 2. 

Table 2. Data brief characteristic for analyzed distribution networks. 

Manufactu

rer 

Distribution 

channel 

Picking proces for which 

the forecasts were created 

Description in the 

paper 

Brief data 

charactersitc 

1 Hospitals 

Units Channel_01 182 days of 

daily forecasts 

history  

Boxes Channel_02 

Pack Channel_03 
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Wholesalers 

Unit Channel_04 

Boxes Channel_05 

Pack Channel_06 

2 
e-commerce 

Unit picking from 

mezzaine 
Channel_07 

96 days of daily 

forecasts 

history 

Unit picking from racks Channel_08 

Box picking Channel_09 

POS Box picking Channel_10 

Source: own work. 

Different picking methods define varying resource consumption levels for warehouse operations 

related to the dispatch of SKUs in specific contexts. Accurate forecasts, therefore, improve aspects 

related to warehouse resource planning. The article analyzes the forecast error series collected by the 

forecasting tool implemented by the logistics operator. Two research hypotheses were verified in the 

article (Figure 3). 

 

Figure 3. Hypothesis. Source: own work 

The formulated hypotheses are as follows:  

H1. In the forecast errors for different picking systems, certain patterns can be identified, 

allowing for their decomposition in terms of seasonality and trends.  

H2. Analyzing the forecast error series can improve the performance of the current forecasting 

tool regarding the accuracy of the forecasts it generates.  

The first hypothesis concerns an attempt to detect patterns, such as seasonality or deterministic 

components, in the forecast error series for different picking methods. Verifying this hypothesis will 

address whether patterns in forecast errors can be identified within the forecasting tool's operation. 

The second hypothesis aims to verify whether the conducted analysis can influence the tool's 

functionality and improve the accuracy of the forecasts it generates.  

The R environment (R Core Team, 2022), specifically the "forecast" package (Hyndman et al., 

2023), was used for analyzing the error series. A significance level of 0.05 was adopted for statistical 

inference. The "randtests" package (Caeiro F., Mateus A., 2022) was employed to examine the 

randomness of the error series. The "funtimes" package (Lyubchich V., Gel Y., Vishwakarma S., 2023) 

was used to test hypotheses regarding the presence of trends. The "seastest" package (Ollech D., 2021) 
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was applied to analyze seasonality. Additionally, the procedure proposed in Wolny (2023) was used 

to verify hypothesis H1. Systematic components, such as seasonality and trend, were identified using 

STL decomposition (Cleveland et al., 1990). The strength of seasonality and trend in errors was 

assessed using the following metrics (Wang et al., 2006): 

𝐹𝑇 = max (0, 1 − 
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑇𝑡 + 𝑅𝑡)
), (3) 

𝐹𝑆 = max (0, 1 − 
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑆𝑡 + 𝑅𝑡)
), (4) 

where Tt is the smoothed trend component, St is the seasonal component and Rt is a remainder 

component.  

Equation (3) defines the strength of the trend component, while equation (4) specifies the 

seasonal component. The main functionalities of the R package used for error analysis are presented 

in Table 3. Detailed assumptions regarding the applied functions are outlined in the column 

"Functions Used." For other parameters not explicitly listed, the default values for the respective 

functions were used. 

Table 3. Main methods and functions from R used in the forecasts errors analysis. 

Functionality Functions Used 

Randomness testing of forecast errors bartels.rank.test(), runs.test(), cox.stuart.test(), 

difference.sign.test() 

Stationarity testing adf.test() (Trapletti, Hornik, 2023) 

Autocorrelation testing acf(), Box.test() 

STL decomposition of the time series stl(window = length(number_of_errors), s.window = 

length(number_of_errors)) 

Trend occurrence testing notrend_test(tests = 't'), notrend_test(tests = 'MK'), 

notrend_test(tests = 'WAVK') (Lyubchich V. et al. 2023) 

Component occurrence testing combined_test(), as(), fried(), kwp(), seasdum(), welch() 

Source: own work. 

4. Results 

In the first step of the analysis, a visual assessment of the forecast error series was conducted. 

The visual analysis of time series forecast errors involves plotting these errors on a timeline. Such 

plots can reveal existing patterns, such as cyclicality, seasonality, or trends, which might not be 

evident in the analysis of the forecasted values alone. For example, if regular fluctuations are 

observed in the forecast error series over specific time periods, it may indicate that the forecasting 

model struggles to predict certain seasonal patterns. The progression of the analyzed time series is 

presented in Figure 4. 
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Figure 4. Time series of forecasting errors for the considered channels. Source: own work 

The visual analysis of time series forecast errors is a crucial phase in examining forecasting 

models. By thoroughly understanding the patterns and properties of error series, researchers and 
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analysts can identify significant relationships and aspects that merit further, more detailed 

investigation. This approach enables a deeper understanding of the dynamics of forecast errors and 

potential issues within the models. Following the visual analysis, it becomes possible to conduct more 

advanced statistical analyses. Calculating basic distribution parameters of forecast errors, such as the 

mean, standard deviation, or skewness, can provide insights into the characteristics and asymmetry 

of the errors. Furthermore, STL decomposition (Seasonal and Trend decomposition using Loess) 

allows for the extraction of trend, seasonality, and remainder components, which can help identify 

the primary sources of errors in forecasts. Statistical hypothesis testing also plays a critical role in the 

analysis. Determining p-values for tests under the null hypothesis of no trend or seasonality helps 

establish whether statistically significant deviations from these assumptions exist. The basic 

numerical characteristics of the analyzed forecast error time series are presented in Table 4.. 

Table 4. Basic parameters of forecast error distributions for the examined channels. 

  

Chan

nel_0

1 

Chan

nel_0

2 

Chan

nel_0

3 

Chan

nel_0

4 

Chan

nel_0

5 

Chan

nel_0

6 

Chan

nel_0

7 

Chan

nel_0

8 

Chan

nel_0

9 

Chan

nel_1

0 

Mean 176 245 0 574 126 25 -1387 -706 -1583 -228 

Std.De

v 1095 2268 174 5665 1017 52 2822 1602 2969 420 

Min -3249 -13376 -786 -18267 -3160 -118 -7773 -4455 -9193 -1388 

Q1 -581 -752 -97 -2221 -416 -3 -2806 -1981 -4357 -532 

Media

n 172 507 15,5 297 149 29,5 -687 -175 -732 -147 

Q3 916 1419 84 3571 765 57 629 545 863 21 

Max 3868 8508 740 22774 3151 202 2901 2436 2918 681 

MAD 1103 1559 145 4340 859 45 2423 1634 2950 397 

IQR 1476 2117 179,5 5653 

1171,2

5 59 3435 2526 5220 553 

CV 6,212 9,272 - 9,876 8,040 2,079 -2,034 -2,268 -1,875 -1,843 

Skewn

ess 0,037 -1,606 -0,201 0,279 -0,278 -0,161 -0,715 -0,354 -0,531 -0,288 

SE.Ske

wness 0,229 0,219 0,219 0,222 0,235 0,219 0,245 0,245 0,245 0,245 

Kurtos

is 0,954 11,280 4,387 2,270 1,330 0,567 -0,487 -0,774 -0,726 -0,354 

N.Vali

d 111 122 122 119 106 122 97 97 97 97 

Source: own work. 

The time series analysis of forecast errors for different channels revealed diverse patterns and 

characteristics of errors in these channels. Some channels tend to overestimate, while others tend to 

underestimate forecasted values. Differences in standard deviation, coefficient of variation, skewness, 

and kurtosis indicate the diversity of error variability. For each channel, analyzing these parameters 

can provide valuable insights for further optimization and improvement of forecasting models. For 

Channel_01, the mean error is 176, and the median is 172, which suggests that most errors are below 

the mean value. However, the skewness coefficient indicates weak asymmetry in the error 

distribution. Nevertheless, the large standard deviation (1095) and high coefficient of variation (CV = 
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6.212) indicate significant error variability. For Channel_02, the mean error is 245, and the median is 

507, which suggests that the models tend to underestimate predicted values. High values of standard 

deviation (2268) and kurtosis (11.280) indicate significant variability in the error distribution. In the 

case of Channel_03, the mean error is close to zero, but the low median (15.5) and large standard 

deviation (174) suggest that the errors have diverse characteristics. Skewness is close to zero, while 

kurtosis (4.387) indicates a higher concentration of values than in a normal distribution (kurtosis = 0). 

For Channel_04, the mean error is 574, and the median is 297, which indicates underestimation of 

predicted values. High values of standard deviation (5665) and kurtosis (2.270) indicate significant 

error variability and some degree of dispersion of the analyzed values. The distribution is positively 

skewed. The mean error in Channel_05 is 126, and the median is 149, which suggests slight 

underestimation of values. High values of standard deviation (1017) and coefficient of variation (CV 

= 8.040) indicate significant variability. The error distribution is negatively skewed. For Channel_06, 

the mean error is 25, and the median is 29.5, which suggests slight underestimation of values. Low 

standard deviation (52) and kurtosis (0.567) indicate relatively low variability and closeness to 

normality in the distribution. The error distribution is negatively skewed. The mean error for 

Channel_07 is negative (-1387), and the median is also negative (-687), which indicates a tendency to 

overestimate predicted values. High values of standard deviation (2822) and kurtosis (-0.487) indicate 

significant error variability and platykurtosis of the distribution. The distribution is negatively 

skewed. Channel_08 is characterized by a mean error of -706 and a median of -175, which suggests 

overestimation of predicted values. High values of standard deviation (1602) and kurtosis (-0.774) 

indicate some variability in errors and platykurtosis of the distribution. The distribution is negatively 

skewed. In the case of Channel_09, the mean error is negative (-1583), and the median is also negative 

(-732), which suggests overestimation of predicted values. High values of standard deviation (2969) 

and kurtosis (-0.726) indicate significant error variability and platykurtosis of the distribution. The 

distribution is negatively skewed. For Channel_10, the mean error is -228, and the median is -147, 

which suggests overestimation of predicted values. High values of standard deviation (420) and 

kurtosis (-0.354) indicate variability in errors. The distribution is negatively skewed. In general, the 

coefficient of variation (CV = Std.Dev / Mean) indicates high variability in the distributions of the 

analyzed errors.  

In the next step of the analysis, the randomness of forecast errors was examined. The results are 

presented in Table 5..  

Table 5. Randomness (alternative hypothesis: nonrandomness). 

Channel bartels.rank.test runs.test cox.stuart.test difference.sign.test 

Channel_01 0,887 0,716 0,798 0,274 

Channel_02 0,037 0,029 <0,001 0,274 

Channel_03 0,545 0,716 0,443 0,530 

Channel_04 0,964 0,064 0,435 0,343 

Channel_05 0,227 0,172 0,583 0,402 

Channel_06 0,270 0,338 >0,999 0,513 

Channel_07 0,026 0,412 0,312 <0,001 

Channel_08 0,664 1,000 0,059 0,080 

Channel_09 0,117 0,218 0,006 0,162 

Channel_10 0,009 0,305 0,029 0,726 

Source: own work. 

The analysis of the randomness of forecast errors indicates that each of the analyzed series can 

be considered random (in the sense of one of the applied tests and with alpha = 0.05). However, low 

p-value values for Channel_02, Channel_07, Channel_09, and Channel_10 in some tests may suggest 

the presence of certain patterns in the error progression. The stationarity analysis of the considered 
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error series using the ADF (Augmented Dickey–Fuller test) indicates that the series can be considered 

stationary (p-value <= 0.01 for each series). The results of the autocorrelation analysis of the examined 

series are not uniform and may indicate the presence of autocorrelation. Detailed values of 

coefficients and critical significance levels (p-values) for the first seven lags are presented in Table 6. 

The analysis utilized ACF coefficients and the Ljung-Box test. 

Table 6. ACF coefficient values along with their critical significance levels and p-values for the Ljung-Box test. 

The values pertain to the first seven lags. 

Channel ACF (coefficient) ACF (p-value) Ljung-Box test (p-value) 

Channel_01 

-0.175, -0.235, 0.153,   

-0.080, 0.054, -0.166, 0.057 

0.053, 0.01, 0.091, 0.376, 

0.548, 0.067, 0.529 

0.050, 0.005, 0.003, 0.006, 

0.011, 0.005, 0.008 

Channel_02 

0.088, 0.118, 0.21, 0.139, 

0.235, 0.086, 0.157 

0.33, 0.193, 0.021, 0.126, 

0.009, 0.341, 0.083 

0.324, 0.256, 0.04, 0.029, 

0.003, 0.004, 0.002 

Channel_03 

-0.109, -0.243, 0.096,  

-0.155, -0.097, 0.019, -0.026 

0.229, 0.007, 0.287, 0.087, 

0.286, 0.83, 0.776 

0.223, 0.012, 0.018, 0.01, 

0.013, 0.025, 0.043 

Channel_04 

-0.001, -0.257, -0.006, -0.009, 

0.126, 0.047, 0.013 

0.988, 0.005, 0.945, 0.921, 

0.168, 0.607, 0.89 

0.988, 0.017, 0.044, 0.087, 

0.071, 0.108, 0.165 

Channel_05 

0.087, -0.201, -0.011, 0.051, 

0.059, -0.069, -0.143 

0.369, 0.039, 0.909, 0.602, 

0.545, 0.474, 0.141 

0.362, 0.072, 0.153, 0.234, 

0.311, 0.369, 0.262 

Channel_06 

0.099, -0.314, -0.116, 0.109, 

0.05, -0.107, -0.004 

0.297, 0.001, 0.223, 0.253, 

0.599, 0.261, 0.967 

0.29, 0.002, 0.003, 0.004, 

0.008, 0.009, 0.017 

Channel_07 

0.273, -0.009, -0.147, -0.128, -

0.062, 0.131, 0.4 

0.007, 0.932, 0.147, 0.208, 

0.538, 0.197, 0, 0.11 

0.006, 0.024, 0.021, 0.022, 

0.038, 0.034, <0.001 

Channel_08 

0.011, 0.023, -0.01, -0.066, -

0.084, 0.203, 0.375 

0.914, 0.821, 0.921, 0.514, 

0.407, 0.045, 0, 0.321 

0.912, 0.968, 0.995, 0.971, 

0.938, 0.466, 0.004 

Channel_09 

0.132, -0.055, 0.037, 0.07, 

0.219, 0.071, 0.245 

0.193, 0.587, 0.715, 0.488, 

0.031, 0.487, 0.016 

0.187, 0.358, 0.533, 0.608, 

0.173, 0.221, 0.041 

Channel_10 

0.275, -0.155, -0.041, -0.086, -

0.107, 0.131, 0.444 

0.007, 0.126, 0.684, 0.395, 

0.292, 0.197, 0, 0.766 

0.006, 0.007, 0.017, 0.027, 

0.033, 0.031 

Source: own work. 

Preliminary analyses indicate that patterns may be present in each of the considered series. In 

each case, autocorrelation can be observed for the first seven lags. The summary of the analysis results 

for the examined forecast error time series is presented in Tables 7–9. 

Table 7. Results of the analysis of the examined forecast error series in terms of STL decomposition. 

Channel 

Trend

_stl 

Season_s

tl MAE_error MAPE_error 

Remainder_MAE_s

tl 

Iloraz_st

l 

Channel_03  0,007  0,021  125  0,593  124  0,994  

Channel_02  0,158  0,030  46  0,608  36  0,775  

Channel_06  0,006  0,037  861  29,518  816  0,947  

Channel_01  0,000  0,045  1500  0,425  1433  0,955  

Channel_04  0,029  0,049  4129  5,095  4009  0,971  

Channel_05  0,010  0,053  768  16,901  735  0,957  

Channel_09  0,145  0,128  109  0,455  90  0,828  
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Channel_07  0,099  0,230  1010  0,341  779  0,771  

Channel_08  0,130  0,276  1363  0,279  984  0,722  

Channel_10  0,092  0,380  366  0,268  226  0,617 

Source: own work. 

In Table 7, the individual columns present the following information:  

- “Trend_stl” – Value calculated using formula (3), indicating the strength of the trend 

component in STL decomposition (the closer the value is to 1, the more significant the trend 

component in the error).  

- “Season_stl” – Value calculated using formula (4), indicating the strength of the seasonal 

component in STL decomposition (similarly, the closer the value is to 1, the more significant the 

seasonal component in the error series).  

- “MAE_error” – The MAE error value (1) for a given product.  

- “MAPE_error” – The MAPE error value (2) for a given product.  

- “Remainder_MAE_stl” – The “non-systematic” error, understood as the MAE value of the error 

series calculated for the remainder component in STL decomposition (the mean of the absolute values 

of the remainder component of the error series), indicating the MAE error excluding systematic 

components of the error series.  

- “Iloraz_stl” – The relative “non-systematic” error, calculated as the ratio of 

“Remainder_MAE_stl” to “MAE_error”, indicating what portion of the total MAE error is 

represented by the MAE calculated solely for the remainder component of STL decomposition.  

The data in the table is arranged in non-decreasing order of the value of measure (4), which 

determines the strength of the seasonal component in the error series. In STL decomposition, a 

frequency of 7 was adopted for each analyzed series, as the operator works 7 days a week, and the 

data pertains to daily volumes. The results presented in Table 7 do not reveal direct, strong, and 

unambiguous relationships between the listed quantities. Only the following correlations (Pearson's, 

alpha = 0.05) can be considered significant:  

1. Between the strength of the trend component (Trend_stl) and the strength of the seasonal 

component (Season_stl), r = 0.59 (t = 2.426, p = 0.034). The more significant the trend component, the 

more significant the seasonal component.  

2. Between the strength of the trend component (Trend_stl) and the relative “non-systematic” 

error (Iloraz_stl), r = -0.69 (t = -3.163, p = 0.009). The more significant the trend component in errors, 

the smaller the error associated with excluding this component.  

3. Between the strength of the seasonal component (Season_stl) and the relative “non-

systematic” error (Iloraz_stl), r = -0.70 (t = -3.251, p = 0.007). The more significant the seasonal 

component, the smaller the “non-systematic” error.  

4. Between the “non-systematic” error (Remainder_MAE_stl) and the MAE error (MAE_error), 

r = 0.88 (t = 6.185, p < 0.001). The greater the absolute error, the greater the absolute “non-systematic” 

error. This relationship can generally be considered obvious.  

Regarding the first point, it should be noted that in the analyzed series, the maximum value of 

indicator (3) is 0.158, generally indicating a weak trend component in the analyzed error series. Only 

in two cases is the strength of the trend component greater than the strength of the seasonal 

component (Channel_02, Channel_09). In the considered problem, the seasonal component of the 

error series is of greater importance. Particular emphasis should be placed on the numerical aspects 

of the method for extracting systematic components using STL. The identified trend is generally non-

linear, and changes to decomposition parameters can control trend variability. At the same time, this 

is closely related to the seasonal component, with practically no influence on the remainder 

component. From this perspective, systematic components should be considered together. For 

predefined decomposition parameters, correlations between systematic components naturally occur. 

Therefore, the correlations presented in points two and three should be treated as natural. Despite 

the generally weak trend component, the results of trend detection using Student's t-test, Mann–
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Kendall test, and WAVK test (Lyubchich V. et al. 2023) indicate significant trends in most of the 

analyzed series. Detailed results are presented in Table 8. 

Table 8. P-values in tests for the null hypothesis of no trend. 

Channel 

Test t-

Studenta 

(linear 

trend) 

Test Mann–Kendall 

(monotonic trend) 

WAVK test (possibly non-

monotonic trend) 

Channel_01 0,927 0,690 0,052 

Channel_02 <0,001 <0,001 <0,001 

Channel_03 0,426 0,415 0,041 

Channel_04 0,042 0,067 0,498 

Channel_05 0,357 0,340 0,578 

Channel_06 0,396 0,524 0,257 

Channel_07 0,023 0,025 0,071 

Channel_08 0,006 0,001 0,729 

Channel_09 <0,001 <0,001 0,020 

Channel_10 0,119 0,090 0,600 

Source: own work. 

The results presented in Table 8 indicate the presence of a trend in forecast errors for channel_02, 

channel_07, channel_08, and channel_09. However, based on visual assessment of the phenomenon 

over time, a distinct trend cannot be confirmed. To examine the presence of a significant seasonal 

component in the analyzed time series, the following tests were used: combined.kwr - Ollech and 

Webel's combined seasonality test (Ollech, D., Webel, K., 2020), test QS (qs.p), Friedman Rank test 

(fried.p), Kruskal-Wallis test (kw.p), F-Test on seasonal dummies (seasdum.p), Welch seasonality test 

(welch.p).  

Table 9. P-value in tests for the Null Hypothesis of no seasonality. 

Channel combined.kwr qs.p fried.p kw.p seasdum.p welch.p 

Channel_01 0,293 >0,999 0,098 0,106 0,504 0,179 

Channel_02 0,422 >0,999 0,905 0,729 0,760 0,723 

Channel_03 0,943 >0,999 0,976 0,969 0,874 0,829 

Channel_04 0,649 >0,999 0,848 0,546 0,466 0,368 

Channel_05 0,570 >0,999 0,187 0,307 0,500 0,173 

Channel_06 0,672 >0,999 0,638 0,553 0,684 0,629 

Channel_07 <0,001 <0,001 <0,001 <0,001 0,001 <0,001 

Channel_08 <0,001 0,026 0,003 0,001 <0,001 <0,001 

Channel_09 0,052 >0,999 0,058 0,013 0,055 0,025 

Channel_10 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 

Source: own work. 

The results of the conducted tests indicate a clear presence of seasonality in the error series for 

channel_10, channel_07, and channel_08. For channel_09, low p-value values also suggest the 

possibility of significant seasonality. These results are consistent with those obtained in the analysis 

of the strength of the seasonal component (4). Figures 5 and 6 present visualizations of the conducted 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2024 doi:10.20944/preprints202409.1003.v2

https://doi.org/10.20944/preprints202409.1003.v2


 15 

 

decompositions for two extreme examples. Figure 5 shows the decomposition of errors for 

channel_03, which has the smallest proportion of systematic components in the total error. Figure 6, 

on the other hand, presents the decomposition of errors for channel_10, which has the largest 

proportion of systematic components. 

 

Figure 5. The decomposition of channel_03 errors time series. Source: own work. 

 

Figure 6. The decomposition of channel_10 errors time series. Source: own work. 

The primary difference in the strength of systematic components can be attributed to the scale 

of errors. In the case of channel_03, the trend component ranges from approximately -30 to 10, the 

seasonal component from approximately -56 to 23, while the range of total error variation is from -

786 to 740. For channel_10, the trend component ranges from approximately -340 to -23, the seasonal 

component from approximately -457 to 253, and the range of total error variation is from -1388 to 681. 

Thus, the visualization of error decomposition can also be used to assess the strength and significance 

of systematic error components. It should be noted that the range of changes in individual 

components can serve as a key indicator in this context. 

In summary, the obtained results highlight that significant systematic components in error series 

were identified in all examined channels of the household equipment manufacturer—significant 
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seasonality in all channels and the absence of a significant trend only in channel 10. Regarding the 

distribution channels for pharmaceutical products, a significant systematic component (trend) was 

identified only in channel 2. 

5. Discussion 

5.1. Verification of Research Hypotheses 

The article positively verified the first hypothesis (H1: Certain patterns can be identified in the 

forecast errors for different picking systems, allowing for their decomposition in terms of seasonality 

and trends). The analysis of forecast errors indicates that various patterns and characteristics of errors 

exist for individual channels. High values for the mean, standard deviation, coefficient of variation, 

and skewness suggest variability of errors relative to the mean. For some channels, distinct seasonal 

components and certain trends can be observed. The correlation values between the trend component 

and seasonality also suggest certain dependencies between these components. The applied analytical 

methods indicate consistency in the obtained results. The randomness analysis of errors showed that 

channels 02, 07, 09, and 10 might exhibit certain systematic patterns. The analysis of the strength of 

individual components in the decomposed error series also pointed to the significant importance of 

systematic patterns (trend or seasonality) for channel_09. In decomposition, the seasonal and trend 

components should be treated together, as STL decomposition largely depends on decomposition 

parameters (e.g., smoothing windows for trend and seasonality). The decomposition of the error 

series can form the basis for more in-depth analyses. In cases where significant systematic error 

components are present, questions arise about the causes of these patterns. Is the forecasting model 

failing to account for the characteristics of changes in the analyzed phenomenon, or is the systematic 

nature a result of some qualitative factors? Alternatively, it could prompt the search for and inclusion 

of an appropriate regressor previously omitted in the forecasting model. 

The second hypothesis (H2: Analyzing the error series can improve the performance of the 

current forecasting tool in terms of forecast accuracy) was not positively verified. However, the 

authors suggest that there would be a high chance of its verification if detailed insights into the 

models used for forecasts were available or if the tool's parameters could be calibrated through 

simulation. The statistical test results for different channels show significant differences between 

groups of forecast errors in some cases (e.g., Channel_07, Channel_08, Channel_09, and Channel_10). 

This suggests that the forecasting tool may be more accurate for some channels than others. The 

presence of these differences points to the potential for improving the forecasting tool for these 

channels. Furthermore, the analysis of parameters such as standard deviation, coefficient of variation, 

or skewness helps understand how effectively the tool operates in specific cases. This could 

encourage a more detailed review and enhancement of the forecasting model for these specific 

channels. However, this was not empirically verified due to the lack of access to detailed models used 

for forecasting and the sensitivity of forecasted values to changes in the tool's calibration parameters.  

5.2. Impact of Time Series Error Analysis on the Forecasting Tool 

The logistics operator uses forecasting tools to generate predictions (Kmiecik, 2021). Time series 

error analysis provides essential information about the quality of these forecasts. The error values, 

their variability, and distribution characteristics indicate that the forecasts exhibit varying levels of 

accuracy and are prone to overestimation or underestimation. The forecasting tool used by the 

operator often generates forecasts that exceed or underestimate actual values. This suggests a need 

for further optimization and tuning of forecasting models to reduce forecast errors. Unfortunately, 

practical business tools often limit deeper analysis or modifications of their functionality. The issue 

of insufficient knowledge and the inability to modify such tools is frequently discussed in the 

literature, for example, by Voulgaris (2019) and Rahman et al. (2018). The analysis of forecast errors 

highlights specific areas where models encounter difficulties. Managers can focus on further refining 

these models by adjusting parameters, incorporating additional variables, or using more advanced 

forecasting techniques. Based on the analysis, a strategy for improving forecast quality can be 

developed. This may include designing more advanced forecasting methods, improving data 
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collection and input management for models, and applying machine learning techniques that can 

better account for non-linear patterns (Ryo and Rilling, 2017; Ghosh et al., 2019).  

5.3. Possibilities for Improving the Logistics Operator's Operations  

The analysis of forecast error time series is critical for logistics operations. By understanding 

error patterns, the operator can adjust actions to better respond to forecast errors and minimize their 

impact on logistics activities. For example, in the case of forecast underestimations, the operator can 

plan for larger reserves. This is particularly important when the operator is aware that a specific 

algorithm does not perform well or when the data is so unpredictable or volatile that accurate 

forecasting becomes impossible. Understanding the characteristics of forecast errors allows for 

adjustments in operational strategies. For instance, when forecasting models often overestimate 

values, flexibility can be introduced in resource planning or storage to handle sudden demand spikes.  

The analysis of different channels and error characteristics helps identify areas that are more 

prone to errors. Managers can implement risk management strategies, such as resource reserves or 

production flexibility, to minimize the negative impact of incorrect forecasts on operations. The 

impact of accurate forecasts on risk management by logistics operators has been described in the 

literature, for example, by Yoon et al. (2016) and Ben-Daya and Akram (2013). However, these authors 

did not consider the possibilities offered by statistical analysis of errors generated by forecasting 

tools. The analysis of forecast error time series is not a one-time activity. Managers should 

continuously monitor error characteristics, adjusting strategies as new data and experiences are 

gained. This allows the company to adapt its operations to changing conditions.  

5.4. Main Limitations and Directions for Future Research  

The analysis of forecasting errors is significant but may be limited in understanding the deeper 

causes of these errors. Logistics operations usually rely on many variables, which can affect forecast 

quality. Additionally, the lack of information about the forecasting models, calibration parameters, 

and input data can limit the full understanding of error sources. This lack of knowledge about models 

is caused by the so-called black-box effect (Rudin, 2019; Papernot et al., 2017). Efforts should therefore 

be made to improve the integration of the logistics operator with the provider of the forecasting 

software to gain a deeper understanding of its functionality. Analyzing the causes of overestimation 

or underestimation of forecasts can help identify specific sources of errors. Research on the impact of 

different forecasting models or data analysis techniques on forecast quality could lead to improved 

predictive results. Forecast error analysis can inspire further research on specific channels, product 

types, or seasonality. Innovative approaches to modeling and forecasting can improve forecast 

quality and enable companies to plan more precisely. 

6. Conclusions 

In this article, the authors conducted a comprehensive analysis of time series forecast errors 

generated by a 3PL logistics operator for ten different channels. The primary goal was to discover 

patterns and characteristics in forecast errors and draw conclusions aimed at improving the 

predictive capabilities of the current forecasting tool. The analysis included both visual examination 

and statistical testing of forecast error series. The visual analysis of time series forecast errors revealed 

various patterns and behaviors within individual channels. Some channels exhibited tendencies 

toward overestimation, while others showed tendencies toward underestimation of predicted values. 

Variations in standard deviation, coefficient of variation, skewness, and kurtosis further highlighted 

the diversity of forecast errors. These findings emphasized the importance of in-depth exploration 

and refinement of forecasting models for each channel. 

Statistical tests were applied to verify the research hypotheses and highlight similarities and 

differences between the distributions of forecast errors. Observations of trend and seasonality 

components in forecast errors indicated the presence of hidden patterns in the data. The correlation 

between the strength of the trend component and the strength of the seasonal component confirmed 

the interrelations between these components, potentially opening avenues for improving forecast 
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accuracy by focusing on deterministic components of the error series. The results of the forecast error 

analysis clearly demonstrated the critical role of error analysis in improving forecasting models. The 

analysis highlighted the strengths and weaknesses of the current forecasting tool, providing a basis 

for its improvement. 

The research conducted in the article highlighted valuable insights that can be gained from 

analyzing time series forecast errors in the context of logistics operations. The findings underscored 

the need for a tailored forecasting approach for each channel, the importance of improving the 

forecasting tool, and the potential for optimizing forecast accuracy by focusing on trends and 

seasonality. The analysis, therefore, represents a significant contribution to the theory and practice of 

demand forecasting by logistics operators in distribution networks. 
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