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Article

Stochastic H∞ Filtering of the Attitude Quaternion

Daniel Choukroun 1,* , Lotan Cooper 1 and Nadav Berman 1,†

Mechanical Engineering Dept., Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel;
danielch@bgu.ac.il

Abstract: Several stochastic H∞ filters for estimating the attitude of a rigid body from line-of-sight
measurements and rate gyro readings are developed. The measurements are corrupted by white
noise with unknown variances. Our approach consists of estimating the quaternion while attenuating
the transmission gain from the unknown variances and initial errors to the current estimation error.
The time-varying H∞ gains are computed through differential and algebraic linear matrix inequalities
whose parameters are independent of the state. The case of a gyro drift is addressed, too. Extensive
Monte-Carlo simulations show that the proposed stochastic H∞ quaternion filters perform well for
a wide range of noise variances. The actual attenuation, which improves with the noise level and
is worst in the noise-free case, is better than the guaranteed attenuation by one order of magnitude.
The proposed stochastic H∞ filter produces smaller biases than a standard quaternion Kalman filter
and similar standard deviations at large noise levels. An essential advantage of this H∞ filter is that
the gains are independent of the quaternion, which makes it insensitive to modeling errors. This
desired feature is illustrated by comparing its performances against those of unmatched Kalman
filters. When provided with too high or too low noise variances the Kalman filter is outperformed by
the H∞ filter, which essentially delivers identical error magnitudes.

Keywords: Stochastic H∞ filter; Attitude determination; Quaternion; Uncertain sensor variance

1. Introduction

The attitude quaternion [1][p. 758] is a very popular spacecraft attitude parametrization, whose
mathematical modeling and filtering have been ongoing topics of research for more than four
decades [2]. Numerous successful quaternion stochastic estimators have been developed in the
realm of optimal filtering, e.g. [3,4] and [5, Ch. 6] for an in-depth survey. An inherent drawback of the
optimal filtering approach consists in its sensitivity to the model noise variance. Although adapting the
filter gain computations might provide satisfactory performances in some cases, like adaptive process
noise estimation in [6] and uncompensated random biases in [7,8], the designer might prefer a less
sensitive approach: rather than trying to estimate the unknown parameters, the filter shall attenuate
their impact on the estimation error for a transmission level that should be as small as possible. This
general approach was followed in [9–11] for spacecraft attitude determination. In [9] an H∞ estimator
of the spacecraft quaternion and gyro biases was developed. In [10,11] extended H∞ filters were
applied to spacecraft attitude determination and gyro calibration by processing space-borne telemetry
of the CBERS-2 satellite, including outputs from rate gyros, two sun sensors, and an earth’s sensor. The
filters produced estimates of Euler angles and the quaternion, respectively, along with estimates of the
gyro biases. Their performance compared favorably with those of standard extended Kalman filters.
Reference [12] presented an invariant extended H∞ filter for attitude and position estimation using
Lie groups algebra, which conveniently produces state-independent Jacobians at any linearization
point. All the above works are rooted in the deterministic H∞ estimation theory. In that realm, the
measurement and process noises, and the initial errors, are modeled as energy-finite disturbances,
a.k.a. L2 or l2 signals.

In this work, stochastic H∞ quaternion filters are developed for models with process and
measurement white noise rather than finite-energy disturbances. We assume that a time-varying
line-of-sight (LOS) signal is continuously acquired, that a triad of body-mounted gyros provides a
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measurement of the spacecraft’s angular velocity, and that both measurement processes are corrupted
by additive white noise. The case of a gyro bias is addressed through Brownian motion modeling.
All white noise variances are assumed to be unknown. A distinctive feature of our modeling and
filtering approach is that the plant equations admit white noise as inputs and that their variances
are assumed to be finite-energy perturbations. The stochastic filter aims at estimating the quaternion
while attenuating these perturbations. This article is a revised and expanded version of a paper [16]
which was presented at the AIAA Guidance Navigation and Control Conference, Toronto, Ontario,
Canada, 2010. It is here extended to include the development of an H∞ filter for quaternion and gyro
bias estimation, along with extensive Monte-Carlo simulations for validation. The proposed approach
is inspired by works on stochastic H∞ filtering and control for nonlinear systems, which are grounded
in dissipativity theory [13,14].

Several filters are developed: first, the gyro noise variance is the sole unknown, then both the
gyro and the LOS noise variances are unknown, and finally the case of biased gyro measurements
is considered. The state multiplicative nature of the errors in both the process and measurement
provides a useful structure to the model. The proposed approach avoids linearization by exploiting a
pseudo-linear quaternion plant model, which was introduced in [6] and extended to continuous-time
stochastic settings in [15]. The filter implementation requires solving differential linear matrix
inequalities that do not depend on the state estimate. Extensive Monte-Carlo simulations were
run in order to evaluate the novel filter’s performances as an attitude estimator, and to compare them
with those of a quaternion multiplicative extended Kalman filter.

Section 2 presents the quaternion H∞ filters for the case of drift-free rate gyros. Section 3 is
concerned with the non-zero drift case. Section 4 presents the results of Monte-Carlo simulations.
Conclusions are proposed in the last section.

2. Quaternion Stochastic H∞ Filtering

2.1. Problem statement

For the sake of simplicity and clarity, the case of drift-free gyroscopes is treated first. Consider
the following Itô stochastic differential equation (SDE) for the attitude quaternion, and the associated
measurement equation [15]:

dqt =
1
2
(Ωt −

3σ2
ϵ

4
I4) qt dt − 1

2
Ξ(qt)σϵ dβt; qt(0)

a.e.
= q0; t ∈ [0, T] (1)

dyt = Ht qt dt − 1
2

Ξ(qt) σb dηt (2)

where qt denotes the attitude quaternion, Ωt is the following matrix function of the measured angular
velocity ωt,

Ωt =

[
− [ωt×] ωt

−ωT
t 0

]
(3)

where ωt , which is acquired by a triad of body-mounted gyroscopes, is corrupted by an additive
standard Brownian motion, βt, with infinitesimal independent increments dβt such that E{dβtdβT

t } =

I3 dt. The parameter σϵ denotes the standard deviation of the gyro noise β
t
. The drift term in Eq. (1)

features a damping term in σϵ that ensures mean-square stability of the process qt. Equation (2) is
a continuous-time quaternion measurement equation where the measurement value is identically
zero [6]. Hence,

dyt = 0 (4)
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and the measurement matrix Ht is constructed from LOS measurements. Let bt and rt denote the
projections of a measured LOS in the spacecraft body frame axes and a reference inertial frame,
respectively, then Ht is computed as follows

st =
1
2
( bt + rt) (5)

dt =
1
2
( bt − rt) (6)

Ht =

[
− [st×] dt

−dT
t 0

]
(7)

The matrix, Ξ(qt), which appears both in the process and measurement multiplicative noises, is the
following linear matrix function of the quaternion qt = [ eT

t qt]
T :

Ξ(qt) =

[
qt I3 + [ et×]

− eT
t

]
(8)

The measurement noise is modeled as a standard Brownian motion, η
t
, multiplied by the parameter σb .

Assume that σϵ and σb are unknown, possibly time-varying random parameters, and that there is no
prior knowledge of their possible values or bounds. The filtering problem consists of estimating the
quaternion qt in the presence of unknown and random σϵ and σb and is formulated as a disturbance
attenuation problem. The following estimator is considered:

d̂qt =
1
2

Ωtq̂t dt + K(q̂t) (dyt − Htq̂t dt) (9)

q̂(0) = q̂0 (10)

The Itô correction term, 3σ2
ϵ
4 , is dropped for simplicity. It is not required for the filter development

since the dynamics of the filter estimate and estimation error, {q̂t , q̃t}, are designed to be stable in the
mean-square sense independently from that correction [13]. Let q̃t denote the additive quaternion
estimation error, i.e.,

q̃t = qt − q̂t (11)

Given a scalar γ > 0, a gain process K(q̂t) is sought such that the following H∞ criterion is satisfied:

E{
∫ T

0
∥q̃t∥2 dt} ≤ γ2 E{∥q̃0∥2 +

∫ T

0
∥vt∥2 dt} (12)

under the constraints (1)(2), and where vt denotes the augmented process of admissible disturbance
functions. Whenever Eq. (12) is true, the so-called L2 -gain property from {q̃0, vt} to q̃t , is satisfied for
0 ≤ t ≤ T. Two cases for v will be considered in the following: v = σϵ and v = {σϵ , σb} and significant
differences will be highlighted.

2.2. Augmented stochastic process

Following standard techniques, the following augmented process is defined:

qa
t

△
=

[
q̂t

q̃t

]
(13)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 September 2024                   doi:10.20944/preprints202409.1245.v1

https://doi.org/10.20944/preprints202409.1245.v1


4 of 22

The design model for the process qt obeys the following equation

dqt =
1
2

Ωt qt dt − 1
2

Ξ(qt)σϵ dβt (14)

The estimator’s equation is given by Eq. (9), i.e.

d̂qt =
1
2

Ωtq̂t dt + K̂t (dyt − Htq̂t dt)

=

[
1
2

Ωt − K̂t Ht

]
q̂t dt (15)

where K̂t denotes K(q̂t). Using Eqs. (14), (15), and (2) yields the SDE for the estimation error:

dq̃t =

[
1
2

Ωt − K̂t Ht

]
q̃t dt − 1

2
Ξσϵ dβt +

1
2

K̂t Ξ σb dηt

=

[
1
2

Ωt − K̂t Ht

]
q̃t dt − 1

2

3

∑
i=1

ΞCiσϵ dβi +
1
2

K̂t Ξ σb dηt (16)

where Ξ denotes the matrix Ξ(q), ΞCi, i = 1, 2, 3, denote the columns of the matrix Ξ, and the scalar
processes βi , i = 1, 2, 3, are the components of the vector Brownian motion β

t
. Notice that Ξ is

a function of the augmented process {q̂t , q̃t} since it is a function of the quaternion q. Ξ̂t and Ξ̃t

denote the matrices Ξ(q̂t) and Ξ(q̃t), respectively, while Ξ̂Ci and Ξ̃Ci, i = 1, 2, 3, denote their columns.
Appending Eqs. (15) and (16) yields the following augmented SDE:[

d̂qt

dq̃t

]
=

[
( 1

2 Ωt − K̂t Ht)q̂t

( 1
2 Ωt − K̂t Ht)q̃t

]
dt +

3

∑
i=1

[
O4×1

− 1
2 ΞCi

]
σϵ dβi +

[
O4×3
1
2 K̂t Ξ

]
σb dηt (17)

where Om×n denotes an m× n matrix of zeros. Equation (17) can be re-written in the following compact
form:

dqa
t = Faqa

t dt +
3

∑
i=1

gi
2(q

a
t)σϵ dβi + G(qa

t) σb dηt (18)

where Fa , gi
2(q

a
t) and G(qa

t) are effectively defined from Eq. (17).

2.3. Hamilton-Jacobi-Bellman inequality

The desired L2-gain property will be satisfied if and only if the augmented system (18) is
dissipative with respect to the supply rate S(v(t), qa

t) = γ2∥v(t)∥2 − ∥q̃t∥2, for a given positive scalar
γ [13]. Thus a non-negative scalar-valued function, V(qa, t), is sought that satisfies the fundamental
property [14]:

E{V(qa
t, t)} ≤ E{V(qa

s, s) +
∫ t

s
{γ2 ∥v(τ)∥2 − ∥q̃τ∥2dτ} ∀ 0 ≤ s ≤ t ≤ T (19)

E{V(qa
0, 0)} ≤ γ2 E{∥q̃0∥2} (20)

for all qa and for all admissible v(t). When Eq. (19) is satisfied, the function V is called a storage function
for the supply rate S. A sufficient condition for Eq. (19) is:

E{dV(qa, t)} ≤ E{γ2 ∥v(t)∥2 − ∥q̃t∥2} ∀ 0 ≤ t ≤ T (21)

for all qa and for all admissible v(t), where dV is the Itô differential of the function V. Notice that
the processes {Ωt} and {Ht} are observed and thus belong to the information pattern. Let I t denote
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the information pattern at time t, which includes the observations of the angular velocity and of the
LOS until t, i.e. I t = {{ω}t

0, { b}t
0}. In the development of the sufficiency conditions, one can use the

following property of the expectation operator to write (21) as follows:

E{E{dV(qa, t)− γ2∥vt∥2 + ∥q̃t∥2 | I t}} ≤ 0 (22)

for all qa and t. Then a sufficient condition for (22) is

E{dV(qa, t)− γ2∥vt∥2 + ∥q̃t∥2 | I t} ≤ 0 (23)

for all qa and t. Given the conditioning on I t in (23), the functions Ωt and Ht can be
considered deterministic functions. Using the Itô differentiation rule [17, p. 112] and dropping
the expectation operator on both sides of Eq. (21) yields the following sufficient condition, i.e. the
Hamilton-Jacobi-Bellman (HJB) inequality for V(qa, t):

∂V
∂t

+
∂V
∂qa Faqa +

1
2

σ2
b

tr
{

GGT ∂2V
∂qa2

}
+

1
2

σ2
ϵ

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 ≤ γ2∥v∥2 − ∥q̃∥2 (24)

for all 0 ≤ t ≤ T, qa, and for all admissible v(t), where G and gi
2 are functions of qa. Dropping

the integral and the expectation operators is a standard procedure in stochastic H∞ estimation and
control [13] or in stochastic optimal control [18, p. 321].

2.3.1. Case where v = {σϵ , σb}

Assume both σϵ and σb are perturbations. Bringing all terms to the left-hand-side (LHS) of Eq. (24)
yields

∂V
∂t

+
∂V
∂qa Faqa + qaT Lqa +

[
1
2

tr
{

GGT ∂2V
∂qa2

}
− γ2

]
σ2

b
+

[
1
2

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 − γ2

]
σ2
ϵ

≤ 0 (25)

where L denotes the following 8 × 8 matrix

L =

[
O4 O4

O4 I4

]
(26)

and I4 denotes the four-dimensional identity matrix. For a solution to exist for all qa and for all
admissible {σϵ , σb} the coefficients multiplying the arbitrary disturbance functions, σϵ and σb , in Eq. (25)
must be negative, which yields the following conditions:

1
2

tr
{

GGT ∂2V
∂qa2

}
− γ2 ≤ 0 (27)

1
2

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 − γ2 ≤ 0 (28)

for all 0 ≤ t ≤ T, qa. Thus, according to Eq. (25), any non-zero disturbance will only add a negative
term to the LHS, increasing the system’s dissipativity for the chosen supply rate. Henceforth, the
worst-case scenario consists in vanishing disturbances e.g.,

σ∗
ϵ

= 0 (29)

σ∗
b
= 0 (30)

Some interpretation of Eqs. (29),(30) is required. It might appear at first sight counter-intuitive
that the worst-case scenario for an estimator consists of vanishing noise variances. However, the
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proposed solution follows the attenuation H∞ criterion (12), not a minimum error condition. Henceforth
performance is measured via the ratio between the (L2 norms of the) estimation error and the noise
variance, not via the estimation error itself. It is thus not surprising that the proposed estimator will
perform better, i.e. attenuate better in the presence of high variances than in the presence of low
variances.

Summary:

Using Eqs. (29) and (30) in Eq. (25) yields the following sufficient conditions. For all qa and
0 ≤ t ≤ T,

∂V
∂t

+
∂V
∂qa Faqa + qaT Lqa ≤ 0 (31)

1
2

tr
{

GGT ∂2V
∂qa2

}
− γ2 ≤ 0 (32)

1
2

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 − γ2 ≤ 0 (33)

2.3.2. Case where v = σϵ

Consider the case where σϵ is the sole perturbation. In this case, the HJB inequality evaluated at
the worst-case yields the following sufficient conditions: for all qa and 0 ≤ t ≤ T,

∂V
∂t

+
∂V
∂qa Fqa + qaT Lqa +

1
2

σ2
b

tr
{

GGT ∂2V
∂qa2

}
≤ 0 (34)

1
2

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 − γ2 ≤ 0 (35)

In Eq. (34), the parameter σb is a known deterministic parameter.

2.4. Storage function V

A standard approach to circumvent the formidable task of solving the partial differential inequality
for V [Eq. (24)] consists of guessing the solution in a parameterized form and developing sufficient
conditions for its parameters. The classical quadratic form for V will be used here:

V(qa, t) = qaT Ptqa (36)

where Pt is assumed to be symmetric, positive, and block diagonal, i.e.,

Pt =

[
P̂t O4

O4 P̃t

]
(37)

2.5. Sufficient conditions on the matrices K̂, P̃, P̂

Using Eqs. (36),(37) in Eq. (31), straightforward computations yield the following identity:

∂V
∂t

+
∂V
∂qa Faqa + qaT Lqa =

[
q̂T

t q̃T
t

] [
dP̂t
dt + F̂T

t P̂t + P̂t F̂t O4

O4
dP̃t
dt + F̂T

t P̃t + P̃t F̂t + I4

] [
q̂t

q̃t

]
(38)

where F̂t is defined as follows:

F̂t =
1
2

Ωt − K̂t Ht (39)
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Exploiting the following property of the matrix Ξ [5, Eq. (8.20b)],

ΞΞT = qT
t qt I4 − qt q

T
t (40)

yields the following identities

1
2

3

∑
i=1

gi
2

T ∂2V
∂qa2 gi

2 = qT
t

[
1
4
( trP̃t I4 − P̃t)

]
qt (41)

1
2

tr
{

GGT ∂2V
∂qa2

}
= qT

t

{
1
4

[
tr(K̂T

t P̃tK̂t)I4 − K̂T
t P̃tK̂t

]}
qt (42)

2.5.1. Convexity condition with respect to σϵ

Using Eq. (41) in Eq. (33) [Eq. (35)], and noting that the inequality must be verified for all qt yields
the following condition on P̃t:

1
4
( trP̃t I4 − P̃t)− γ2 I4 ≤ 0 (43)

This condition must be satisfied in both cases, whether σb is known or is an unknown perturbation.
The latter condition can be easily reformulated in terms of the characteristic values of the symmetric
positive matrix P̃. Let λ̃i , i = 1, 2, 3, 4, denote the four positive eigenvalues of P̃, then Eq. (43) is
equivalent to the following condition:

1
4

max
{

λ̃2 + λ̃3 + λ̃4 , λ̃1 + λ̃3 + λ̃4 , λ̃1 + λ̃2 + λ̃4 , λ̃1 + λ̃2 + λ̃3

}
≤ γ2 (44)

2.5.2. Case where v = {σϵ , σb}

Using Eq. (42) in Eq. (32), and noting that the inequality must be verified for all qt , yields the
following condition on P̃t and K̂:

1
4

[
tr(K̂T

t P̃tK̂t)I4 − K̂T
t P̃tK̂t

]
− γ2 I4 ≤ 0 (45)

Using Eq. (38) in Eq. (31) yields two uncoupled differential matrix inequalities for P̂t and P̃t, respectively:

dP̂t

dt
+ FT

t P̂t + P̂tFt ≤ 0 (46)

dP̃t

dt
+ FT

t P̃t + P̃tFt + I4 ≤ 0 (47)

Assuming that the matrices P̂t and P̃t are identical for the sake of simplicity allows dropping Eq. (46).
Combining Eqs. (43), (45), and (47) yields the inequalities to be solved for K̂ and P̃.

dP̃t

dt
+ FT

t P̃t + P̃tFt + I4 ≤ 0 (48)

1
4
( trP̃t I4 − P̃t)− γ2 I4 ≤ 0 (49)

1
4
( trMt I4 − Mt)− γ2 I4 ≤ 0 (50)
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where

Ft =
1
2

Ωt − K̂Ht (51)

Mt = K̂T P̃tK̂ (52)

Notice that the left-hand sides (LHS) of the above inequalities are independent of the quaternion
estimate; thus, the filter gain K̂ is also independent of q̂t . It will be denoted by Kt in the following.

Sufficient conditions in the form of Linear Matrix Inequalities:

Since the above inequalities are not linear with respect to P̃ and K, some manipulations are
required in order to bring them to a Linear Matrix Inequality (LMI) structure. The bilinear dependence
with respect to P̃ and K is readily coped with via a standard parametrization approach. Let Ỹt denote
the following four-dimensional matrix:

Ỹt = P̃tKt (53)

then, using Eq. (53) in Eq. (48) yields

dP̃t

dt
+

1
2
(ΩT

t P̃t + P̃tΩt)− (HT
t ỸT

t + Ỹt Ht) + I4 ≤ 0 (54)

To circumvent the difficulty arising from the quadratic structure of Mt with respect to P̃t and K, a
symmetric positive definite matrix Wt is sought such that

Mt − Wt = ỸT
t P̃−1

t Ỹt − Wt ≤ 0 (55)

Notice that P̃−1
t exists since P̃t is assumed to be positive definite. Then, the following bounds on the

LHS of Eq. (50) are used:

1
4
( trMt I4 − Mt)− γ2 I4 ≤ (

1
4

trMt − γ2) I4 ≤ (
1
4

trWt − γ2) I4 ≤ 0 (56)

and Eq. (50) is replaced with the following sufficient condition on W:

1
4

trWt − γ2 ≤ 0 (57)

where W, Ỹ, and P̃ satisfy Eq. (55), which by the Schur complement can be written as the following
LMI : [

−Wt −Ỹt

−ỸT
t −P̃t

]
≤ 0 (58)

Notice that the successive bounds in Eq. (56) yield a sufficient condition for the attenuation filtering
problem.
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2.5.3. Case where v = σϵ

Using Eq. (42) and the definition of qa yields the following identity:

1
2

σ2
b

tr
{

GGT ∂2V
∂qa2

}
= qT

t

{
σ2

b

4

[
tr(K̂T

t P̃tK̂t)I4 − K̂T
t P̃tK̂t

]}
qt

=
[
q̂T

t q̃T
t

] [
I4

I4

]{
σ2

b

4

[
tr(K̂T

t P̃tK̂t)I4 − K̂T
t P̃tK̂t

]} [
I4 I4

] [
q̂t

q̃t

]
(59)

Using Eqs. (38) and (59) in Eq. (34) yields

[
q̂T

t q̃T
t

]  dP̂t
dt + F̂T

t P̂t + P̂t F̂t +
σ2
b
4

[
trM̂t I4 − M̂t

] σ2
b
4

[
trM̂t I4 − M̂t

]
σ2
b
4

[
trM̂t I4 − M̂t

]
dP̃t
dt + F̂T

t P̃t + P̃t F̂t +
σ2
b
4

[
trM̂t I4 − M̂t

]
+ I4

 [
q̂t

q̃t

]
≤ 0

(60)

for all (q̂t , q̃t , t), where M̂t = K̂T
t P̃tK̂t . Assuming that P̂ = P̃ as in the previous case yields the following

matrix differential inequality dP̃t
dt + FT P̃t + P̃tF +

σ2
b
4

[
( trM)I4 − M

] σ2
b
4

[
( trM)I4 − M

]
σ2
b
4

[
( trM)I4 − M

]
dP̃t
dt + FT P̃t + P̃tF + I4 +

σ2
b
4

[
( trM)I4 − M

]
 ≤ 0 (61)

for all 0 ≤ t ≤ T, where

F =
1
2

Ωt − KtHt (62)

M = KT
t P̃tKt (63)

Thus, when σb is a known parameter, Eqs. (61)-(63), and Eq. (43) are the sufficient conditions for P̃ and
K.

Sufficient conditions in the form of LMI:

Introducing a matrix variable Wt that satisfies Eqs. (53), (55), and using the same upper bounds
sequence as in Eq. (56) yields the following differential LMI for this case: dP̃t

dt +
1
2 (Ω

T
t P̃t + P̃tΩt)− (HT

t ỸT
t + Ỹt Ht) +

σ2
b
4 ( trWt)I4

σ2
b
4 ( trWt)I4

σ2
b
4 ( trWt)I4

dP̃t
dt +

1
2 (Ω

T
t P̃t + P̃tΩt)− (HT

t ỸT
t + Ỹt Ht) + I4 +

σ2
b
4 ( trWt)I4

 ≤ 0 (64)

2.6. Quaternion stochastic H∞ filters summary

Given q̂0, choose P̃(0) such that Eq. (20) is satisfied. Solve the following set of (differential) LMIs
for P̃t = P̃T

t > 0 ∈ R4, Ỹt ∈ R4, and Wt = WT
t > 0 ∈ R4:
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2.6.1. Case where v = {σϵ , σb}

dP̃t

dt
+

1
2
(ΩT

t P̃t + P̃tΩt)− (HT
t ỸT

t + Ỹt Ht) + I4 ≤ 0 (65)[
−Wt −Ỹt

−ỸT
t −P̃t

]
≤ 0 (66)

1
4
( trP̃t I4 − P̃t)− γ2 I4 ≤ 0 (67)

1
4

trWt − γ2 ≤ 0 (68)

2.6.2. Case where v = σϵ

 dP̃t
dt +

1
2 (Ω

T
t P̃t + P̃tΩt)− (HT

t ỸT
t + Ỹt Ht) +

σ2
b
4 ( trWt)I4

σ2
b
4 ( trWt)I4

σ2
b
4 ( trWt)I4

dP̃t
dt +

1
2 (Ω

T
t P̃t + P̃tΩt)− (HT

t ỸT
t + Ỹt Ht) + I4 +

σ2
b
4 ( trWt)I4

 ≤ 0 (69)

[
−Wt −Ỹt

−ỸT
t −P̃t

]
≤ 0 (70)

1
4
( trP̃t I4 − P̃t)− γ2 I4 ≤ 0 (71)

For any pair of matrices (Ỹt , P̃t), compute the gain Kt using

Kt = P̃−1
t Ỹt (72)

and compute the estimated quaternion via the estimator differential equation

˙̂q
t
=

[
1
2

Ωt − KtHt

]
q̂t (73)

Remark 1: The estimator equation, (73), is not designed to preserve the quaternion unit-norm
property. For that purpose, a normalization stage of the estimate is performed along the estimation
process [4,15]

q̂ =
q̂

∥q̂∥ (74)

Remark 2: A key feature of the above filters lies in the fact that the gain computations are independent
of the estimated process. As a result, the gain values are insensitive to the initial estimation errors,
which are often causes of divergence in linearization-based filtering techniques, like the extended
Kalman filter. An additional essential by-product is that the estimate differential equation Eq. (73) can
be integrated as an ordinary differential equation.
Remark 3: The above algorithms are solved using standard primal-dual interior-point methods, as

implemented in SeDuMi [19,20]. The method formulates a minimization problem over γ subject to
the constraints described in Eqs. (65)-(68). For the solver SeDuMi, an assessment of the computational
complexity is O(n4) for the 2n2 + n decision variables, where n = 4. Compared to the standard
computational complexity of a Kalman filter, i.e. O(n3), this yields a ratio of 4.
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Remark 4: Inspired by [21], discrete approximations of the differential LMIs are developed via
finite-difference formulas. For example, Eq. (65) is implemented as follows:

P̃k+1 − P̃k
∆t

+
1
2
(ΩT

k+1P̃k+1 + P̃k+1Ωk+1)− (HT
k+1ỸT

k+1 + Ỹk+1Hk+1) + I4 ≤ 0 (75)

where ∆t denotes the time increment, and k = 0, 1, ..., N = T/ ∆t.

3. Quaternion and Gyro Drift Estimation

3.1. Statement of the problem

Assuming that the rate gyro error consists of white noise and a bias, we consider the following
stochastic dynamical system in Itô form:

dqt =
1
2

Ω(ωt − ct) qt dt − 1
2

Ξ(qt)σϵ(t)dβt; q(0) a.e.
= q0; t ∈ [0, T] (76)

dct = σc(t)dνt ; c(0) a.e.
= c0 (77)

dyt = Ht qt dt − 1
2

Ξ(qt) σb(t)dηt (78)

where ct denotes the additive drift, modeled as a random walk process with mean c0 and variance
parameter σc(t). In Eq. (77), νt denotes a standard Brownian motion that is independent of β

t
and η

t
.

Equations (76), (77) stem from a straightforward extension of the quaternion SDE of section 2.
The filtering problem consists of estimating the quaternion qt and the gyro drift ct from the LOS

measurements in the presence of unknown noise standard deviations σϵ(t), σb(t), and σc(t). Assuming
that σϵ(t), σb(t), and σc(t) are stochastic non-anticipative processes with finite second-order moments,
we consider the following estimator:

d̂qt =
1
2

Ω(ωt − ĉt)q̂t dt + Kq (dyt − q̂t dt) (79)

d̂ct = Kc (dyt − q̂t dt) (80)

q̂(0) = q̂0, ĉ(0) = ĉ0 (81)

Let q̃t and c̃t denote the additive quaternion and biases estimation error, i.e.,

q̃t = qt − q̂t (82)

c̃t = ct − ĉt (83)

Given a scalar γ > 0, we seek the gains Kq, Kc such that the following H∞ criterion is satisfied:

E{
∫ T

0
(∥q̃t∥2 + ∥c̃t∥2) dt} ≤ γ2E{∥q̃0∥2 + ∥c̃0∥2 +

∫ T

0
∥vt∥2 dt} (84)

under the constraints (76)-(78), and where vt denotes the augmented process of admissible disturbance
functions, i.e., vt = {σϵ(t), σb(t), σc(t)}. Whenever Eq. (84) is true, it is said that the L2 -gain property is
satisfied from {q̃0, c̃0, vt} to {q̃t , c̃t}, for 0 ≤ t ≤ T.

3.2. Design model development

The SDE of the quaternion-drift system is compactly rewritten as follows:[
dqt

dct

]
=

[
1
2 Ω(ωt − ct)qt

O3×1

]
dt +

[
− 1

2 Ξ(qt) O4×3

O3 I3

] [
σϵ(t) I3 O3

O3 σc(t) I3

] [
dβt
dνt

]
(85)
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and the estimator is rewritten as follows:[
d̂qt

d̂ct

]
=

[
[ 1

2 Ω(ωt − ĉt)− KqHt]

−Kc Ht

]
q̂t dt (86)

q̂t(0) = q̂0; ĉt(0)=ĉ0

The augmented process {q̂t , ĉt , q̃, c̃} is governed by the following SDE
d̂qt

d̂ct

dq̃t

dc̃t

 =


1
2 Ωt − KqHt − 1

2 Ξ(q̂t) O O
−Kc Ht O O O

O O 1
2 Ωt − Kq Ht − 1

2 Ξ(q̂t)

O O −Kc Ht O




q̂t

ĉt

q̃t

c̃t

 dt

+


O4×3

O3

− 1
2 Ξ(q̂t)

O3

 σϵ(t)dβt +


O4×3

O3

O4×3

I3

 σc(t)dνt +


O4×3

O4×3

Kq
1
2 Ξ(q̂t)

Kc
1
2 Ξ(q̂t)

 σb(t)dηt (87)

where second-order terms with respect to the noises β
t
, νt , η

t
and to the estimation errors q̃, c̃ have

been neglected. Equation (87) may be re-written in the following compact form:

dqa
t = Faqa

t dt + G1(qa
t)σϵ(t)dβt + G2(qa

t) σc(t)dνt + G(qa
t) σb(t)dηt (88)

The remainder of the filter development is straightforward and is omitted for the sake of brevity.

4. Numerical Simulation

This section is concerned with the numerical validation of the proposed approach in the drift-free
case.

4.1. Description

Consider a spacecraft rotating around its center of mass with the following time-varying inertial
angular velocity vector, ωo(t):

ωo(t) = [1, −1, 1]T sin(2πt/150) [deg/sec] (89)

The measured angular velocity is computed according to

ω(t) = ωo(t) + σϵ ϵ(t) (90)

where ϵ(t) is a standard zero-mean white Gaussian noise, e.g., E{ ϵ(t) ϵ(τ)T} = I3 δ(t − τ). Typical
values of low-grade gyros are used, i.e., σϵ ∈ [10−4, 100] [rad/

√
sec]. A time-varying line-of-sight

measurement, bt, is assumed to be acquired. It is computed via the classical vector measurement
model:

bt = A[qt ] rt + σb δbt (91)

where r(t) is randomly generated using a zero-mean standard multivariate normal distribution and
the attitude matrix A(qt) is expressed as follows:

A(qt) = (q2
t − eT

t et)I3 + 2 et eT
t − 2q [ et×] (92)
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4.2. Attenuation of gyro σϵ

In this section, the numerical study focuses on the impact of the gyro perturbation σϵ on the
attenuation performance of the QHF. For that purpose, the parameter σb is set to various known values
while σb is kept equal to 10−6 radian. Table 1 presents the values of Monte-Carlo (MC) averages over
500 runs lasting 500 seconds each of δq = maxt ∥qt − q̂t∥ and of the ratio δq

σϵ
√

∆t
, where ∆t = 0.1 s is

the gyro sampling time. The former is a measure of attitude estimation accuracy while the latter is a
measure of attenuation performance. It can be seen that the QHF always converges, that the estimation
accuracy is satisfying despite the extreme values of σϵ , albeit degraded as σϵ increases, and that the
attenuation performance improves with σϵ .

Table 1. QHF performance. Maxima of MC-means of δq and of δq
σϵ

for various σϵ . 500 sec, 500 runs.

σϵ [ rad√
sec ] 10−4 10−3 10−2 10−1 100

δq 2.5 × 10−5 2.2 × 10−4 1.7 × 10−3 1.2 × 10−2 6.2 × 10−2

δq
σϵ
√

∆t
0.79 0.69 0.53 0.37 0.18

Additional MC simulations (500 runs) were performed while varying the parameters σϵ and σb .
Table 2 depicts the ratios of the time averages (over 6000 seconds) of the angular error, δϕ, of the QHF
over the QKF. The error δϕ is extracted from the rotational quaternion error’s fourth component. The
magnitude of δϕ in the QHF appears in parenthesis (in degree) above the ratios. For a given σϵ , the
values of δϕ and the ratios increase with σb because the attenuation quality is impaired. It turns out
that the ratios are smaller than one in almost all test cases, i.e. the QHF produces a smaller bias than
the QKF. The above results suggest that the QHF is advantageous when using low-grade gyros (high
σϵ ) with fine LOS sensors (low σb ).

Table 2. Ratios of the δϕ MC-means of the QHF over the QKF for various σϵ and σb . (Time-average of
the δϕ MC-mean in the QHF in degree). 500 runs, 6000 sec.

σϵ [
rad√
sec ]

σb [rad] 10−4 10−3 10−2 10−1 100

10−5
(1.4×10−3)

0.51
(1.8×10−2)

0.15
(6.6×10−2)

0.08
(7.2×10−1)

0.02
(3.4×100)

0.01

10−4
(6.4×10−3)

0.65
(5.2×10−2)

0.52
(2.7×10−1)

0.18
(9.5×10−1)

0.07
(6.1×100)

0.02

10−3
(1.9×10−2)

1.18
(8.6×10−2)

0.63
(5.1×10−1)

0.49
(1.6×100)

0.17
(6.4×100)

0.09

4.3. Attenuation of σϵ and σb

Next, we test the performances of the QHF when both σϵ and σb are unknown. For that purpose,
we evaluate the actual attenuation ratio AR(T) which is defined as follows:

AR(T) =
E{

∫ T
0 ∥q̃(t)∥2 dt}

E{∥q̃(0)∥2 +
∫ T

0 (σ2
ϵ
+ σ2

b
) dt}

(93)

where the final time T is 500 sec, the integrals are numerically computed using a time step ∆t = 0.1
sec, and the expectations are computed as MC averages over 500 runs. Table 3 shows the values of
AR(500) for various σϵ and σb . It also features the steady-state MC means of the best-guaranteed level
of attenuation, γ2

QHF, which is calculated within the QHF.
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Table 3. Attenuation Ratios AR(500) (500 MC runs) as defined in Eq. (93) for various values of the
parameters {σϵ , σb}. (Value of the steady-state MC-mean of γ2

QHF, as computed in the filter)

σϵ [
rad√
sec ]

σb [rad] 0 10−3 10−2 2 × 10−2 5 × 10−2 10−1

0
(2.89)
0.45

(2.89)
0.45

(2.79)
0.44

(2.56)
0.21

(2.43)
0.13

(2.32)
0.10

10−3
(2.89)
0.45

(2.65)
0.45

(2.60)
0.44

(2.53)
0.21

(2.40)
0.11

(2.32)
0.09

10−2
(2.78)
0.44

(2.53)
0.43

(2.46)
0.41

(2.42)
0.18

(2.36)
0.10

(2.31)
0.09

5 × 10−2
(2.55)
0.31

(2.44)
0.30

(2.40)
0.28

(2.39)
0.16

(2.33)
0.10

(2.31)
0.09

10−1
(2.41)
0.16

(2.40)
0.15

(2.39)
0.15

(2.35)
0.10

(2.28)
0.09

(2.25)
0.06

In a nutshell, the performance index AR(500) is not sensitive to variations in σϵ , σb below a
threshold of 10−2, above which it decreases rapidly, showing thus improved performance in terms of
disturbance attenuation. A similar lack of sensitivity is observed for the parameter γ2

QHF over the full
ranges of σϵ and σb , with a small but consistent improvement towards large values. Strikingly, the values
of AR(500) are significantly lower than those of γ2

QHF. In more detail, the gap is about six-fold lower
in the case of vanishing variances, and about 30 times lower for very large variances, when the pair
(σϵ , σb) is equal to (0.1, 0.1). That is consistent with the H∞ filtering theory, i.e. vanishing disturbances
are the worst case in terms of disturbance attenuation. The time variations of the MC averages of AR(t)
and γ2

QHF(t), are depicted in Fig. 1, for 0 ≤ t ≤ 2000 sec, showing that the gap between them is already
large from the start. The properties of the filter are further investigated in Figures 2 and 3 that depict
the time variations of AR for various initial estimates of the quaternion, q̂(0), and various initial values
of the matrix P̃(0), respectively. This is done for the case (σϵ , σb) = (0.1, 0.1), where the disturbance
attenuation performance is best. It appears that the transient of AR is strongly shortened when q̂(0)
is close to the true quaternion. On the other hand, the steady states are relatively close. Figure 3
further shows the lack of sensitivity of AR to P̃(0). These properties stem from the independence of
the estimator’s gain computations from the state and are analogous to the convergence properties of
covariances in Kalman filters for linear systems.
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Figure 1. Time histories of the attenuation ratio AR (black line) and the best guaranteed bound γ2
QHF

(blue line). 500 MC runs. (σϵ , σb ) = (0.1, 0.1).
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Figure 2. Time histories of the MC-mean of the Attenuation Ratios for various initial quaternion
estimates. 50 MC runs. (σϵ , σb ) = (0.1, 0.1).
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Figure 3. Time histories of the MC-mean of the Attenuation Ratios for various initial matrix P̃(0). 50
MC runs. (σϵ , σb ) = (0.1, 0.1).

Figure 4 depicts the MC-means and the MC-standard deviations of the four components of the
quaternion estimation error for σϵ = 0.001 rad√

sec and σb = 0.1 rad. The means are close to zero and the
standard deviations show satisfying estimation performances, around 3mrad. Figure 5 presents the
time histories of the MC-mean and MC-standard deviation envelop of the angular estimation error,
δϕ. Albeit oscillating with an amplitude of 0.06 [deg] around 0.08 [deg], δϕ shows good performances
given the measurement noise level σb of about 5 degrees.
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Figure 4. Time histories of the quaternion estimation error MC-means (blue) and MC-standard
deviations (red). 50 MC runs. (σϵ , σb ) = (0.001, 0.1).
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Figure 5. Time histories of the angular estimation error MC-mean (blue) and of the ± MC-σ envelope
(red). 50 MC runs. (σϵ , σb ) = (0.001, 0.1).

Extensive simulations were run to compare the performances of the QHF with those of a
quaternion multiplicative EKF (MEKF). In the MEKF, the (quadratic in qt ) measurement equation
model is linearized, and the filter statistics are matched to the true noise levels. Table 4 shows the
time averages, computed on single runs of 2000 seconds, of the quaternion additive estimation error
norm in the MEKF (left) and in the QHF (right). These values provide sensible measures of the
estimation biases. In addition, the values of the time standard deviations are provided for both filters
(in parenthesis). The QHF consistently provides smaller biases than the MEKF. This is explained by
the linearization effects impairing the MEKF, whereas the QHF is free of linearization. On the other
hand, the MEKF provides smaller standard deviations than the QHF, as expected since the MEKF
is a (approximate) minimum variance estimator. Yet, for a given value of σb , the gap between them
decreases as σϵ increases and becomes negligible for large σϵ . Table 4 further shows the low sensitivity
of the QHF standard deviations with respect to the parameters σϵ and σb . This property is partially
explained by the H∞ approach since the gain computations are independent of σb and σϵ per se. Yet
they do show some dependence on the level of the noises because the data itself is noisy.
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Table 4. Time-averages (and time-standard deviations) of the quaternion estimation errors in the QHF
(right) and in the MEKF (left) for various values of the standard deviations {σϵ , σb}. Single run. Time
span of 2000 seconds

σb [rad] 10−3 10−2 10−1

σϵ [
rad√

sec ] MEKF | QHF MEKF | QHF MEKF | QHF

10−7
(1.2×10−5 | 1.4×10−3)

3 × 10−5 | 2 × 10−5
(1.0×10−4 | 1.4×10−3)

0.003 | 0.003
(0.015 | 0.080)
0.020 | 0.017

10−6
(1.2×10−4 | 1.4×10−3)

8 × 10−5 | 2 × 10−5
(8.0×10−5 | 1.3×10−3)

0.005 | 0.003
(0.015 | 0.080)
0.020 | 0.014

10−5
(2.1×10−4 |1.4×10−3)

5.1 × 10−5 | 1.3 × 10−5
(9.0×10−4 |1.4×10−3)

0.008 | 0.007
(0.015 | 0.080)
0.020 | 0.016

10−4
(6.2×10−4 | 1.4×10−3)

1.5 × 10−5 | 1.3 × 10−5
(2.0×10−3 | 2.1×10−3)

0.0003 | 0.0001
(0.015 | 0.082)
0.020 | 0.015

10−3
(1.2×10−3 | 1.4×10−3)

7.9 × 10−5 | 2.0 × 10−5
(3.7×10−3 | 1.2×10−2)

0.0096 | 0.0008
(0.015 | 0.081)
0.020 | 0.002

10−2
(1.6×10−3 | 2.0×10−3)

1.3 × 10−5 | 1.2 × 10−5
(0.0120 | 0.0124)

0.0028 | 0.0014
(0.019 | 0.080)

0.020 | 0.0084

10−1
(1.6×10−2 | 1.6×10−2)

4.8 × 10−5 | 3.3 × 10−5
(0.0172 | 0.0192)

0.0004 | 0.0001
(0.116 | 0.084)

0.026 | 0.0068

Both filters were tested in cases where the true noise variances were unknown. This might occur
as a result of undetected sensor failures or jamming. In Case A, the σb in the MEKF was set to ten
times its true value. In Case B, it was lowered to one-tenth of the true value. The results are shown
in Figures 6 and 7, respectively. In case A, the MEKF is very slow to converge while, in case B, it
converges quicker but to a noisier steady state. The QHF, on the other hand, provides essentially the
same performances in both cases, with slight variations due to the data noisiness. In both cases, the
QHF outperforms the unmatched MEKF.
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Figure 6. Time histories of the MC-means of the quaternion estimation errors in QHF (dashed blue)
and in unmatched MEKF (full red). Case A. 50 MC runs. (σϵ , σb ) = (0.001, 0.1).
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Figure 7. Time histories of the MC-means of the quaternion estimation errors in QHF (dashed blue)
and in unmatched MEKF (full red). Case B. 50 MC runs. (σϵ , σb ) = (0.001, 0.1).

5. Conclusion

In this work, stochastic H∞ filtering was applied to the development of novel quaternion attitude
estimators from rate gyro and line-of-sight (LOS) measurements. A key assumption is that the variance
of the noise affecting the various measurements is unknown and modeled as a disturbance. The
estimators compute the quaternion while attenuating the transmission from the noise variance to the
estimation error. The H∞ filters involve the solution of a set of differential and algebraic linear matrix
inequalities. A remarkable property of the resulting gains computations is that they are independent of
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the estimated quaternion, in the case of measurement white noise. Extensive Monte-Carlo simulations
were run showing that the proposed filter performs well from the standpoint of attitude estimation
per se in a wide range of gyro and LOS noise variances. The guaranteed disturbance attenuation level
seems to be slightly dependent on these variances since the gain depends on the measurements. The
actual disturbance attenuation level seen in the simulations is better than the guaranteed one, by up
to one order of magnitude. It improves when the noise level increases and is the worst for (ideal)
noise-free sensors. This fact is in agreement with the theory and illustrates the conservative nature
of the H∞ approach. When σϵ is the sole unknown the H∞ filter produces lower MC-means than a
standard quaternion multiplicative Kalman filter. When both σϵ and σb are unknown, the H∞ filter
shows similar MC-means as a multiplicative Kalman filter. When matched the MEKF shows lower
MC-standard deviations of the estimation errors than the H∞ filter. The higher the level of the noise,
the less obvious the advantage of the Kalman filter. Furthermore, the H∞ filter gain is less sensitive to
perturbations than the MEKF gains, in particular to initial estimation errors. This attractive feature
is emphasized by comparing the H∞ filter’s performances with those of unmatched Kalman filters.
When provided with too high or too low noise variances, the MEKF was outperformed by the H∞

filter, which essentially delivers identical performances within a wide range of noise variances.
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