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Article

Stochastic H, Filtering of the Attitude Quaternion

Daniel Choukroun *©, Lotan Cooper ! and Nadav Berman 1

Mechanical Engineering Dept., Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel;
danielch@bgu.ac.il

Abstract: Several stochastic He, filters for estimating the attitude of a rigid body from line-of-sight
measurements and rate gyro readings are developed. The measurements are corrupted by white
noise with unknown variances. Our approach consists of estimating the quaternion while attenuating
the transmission gain from the unknown variances and initial errors to the current estimation error.
The time-varying He, gains are computed through differential and algebraic linear matrix inequalities
whose parameters are independent of the state. The case of a gyro drift is addressed, too. Extensive
Monte-Carlo simulations show that the proposed stochastic He quaternion filters perform well for
a wide range of noise variances. The actual attenuation, which improves with the noise level and
is worst in the noise-free case, is better than the guaranteed attenuation by one order of magnitude.
The proposed stochastic H, filter produces smaller biases than a standard quaternion Kalman filter
and similar standard deviations at large noise levels. An essential advantage of this He filter is that
the gains are independent of the quaternion, which makes it insensitive to modeling errors. This
desired feature is illustrated by comparing its performances against those of unmatched Kalman
filters. When provided with too high or too low noise variances the Kalman filter is outperformed by
the H filter, which essentially delivers identical error magnitudes.

Keywords: Stochastic H, filter; Attitude determination; Quaternion; Uncertain sensor variance

1. Introduction

The attitude quaternion [1][p. 758] is a very popular spacecraft attitude parametrization, whose
mathematical modeling and filtering have been ongoing topics of research for more than four
decades [2]. Numerous successful quaternion stochastic estimators have been developed in the
realm of optimal filtering, e.g. [3,4] and [5, Ch. 6] for an in-depth survey. An inherent drawback of the
optimal filtering approach consists in its sensitivity to the model noise variance. Although adapting the
filter gain computations might provide satisfactory performances in some cases, like adaptive process
noise estimation in [6] and uncompensated random biases in [7,8], the designer might prefer a less
sensitive approach: rather than trying to estimate the unknown parameters, the filter shall attenuate
their impact on the estimation error for a transmission level that should be as small as possible. This
general approach was followed in [9-11] for spacecraft attitude determination. In [9] an He, estimator
of the spacecraft quaternion and gyro biases was developed. In [10,11] extended Hc filters were
applied to spacecraft attitude determination and gyro calibration by processing space-borne telemetry
of the CBERS-2 satellite, including outputs from rate gyros, two sun sensors, and an earth’s sensor. The
filters produced estimates of Euler angles and the quaternion, respectively, along with estimates of the
gyro biases. Their performance compared favorably with those of standard extended Kalman filters.
Reference [12] presented an invariant extended Ho, filter for attitude and position estimation using
Lie groups algebra, which conveniently produces state-independent Jacobians at any linearization
point. All the above works are rooted in the deterministic He, estimation theory. In that realm, the
measurement and process noises, and the initial errors, are modeled as energy-finite disturbances,
a.k.a. £, or I signals.

In this work, stochastic He quaternion filters are developed for models with process and
measurement white noise rather than finite-energy disturbances. We assume that a time-varying
line-of-sight (LOS) signal is continuously acquired, that a triad of body-mounted gyros provides a
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measurement of the spacecraft’s angular velocity, and that both measurement processes are corrupted
by additive white noise. The case of a gyro bias is addressed through Brownian motion modeling.
All white noise variances are assumed to be unknown. A distinctive feature of our modeling and
filtering approach is that the plant equations admit white noise as inputs and that their variances
are assumed to be finite-energy perturbations. The stochastic filter aims at estimating the quaternion
while attenuating these perturbations. This article is a revised and expanded version of a paper [16]
which was presented at the AIAA Guidance Navigation and Control Conference, Toronto, Ontario,
Canada, 2010. It is here extended to include the development of an H., filter for quaternion and gyro
bias estimation, along with extensive Monte-Carlo simulations for validation. The proposed approach
is inspired by works on stochastic He filtering and control for nonlinear systems, which are grounded
in dissipativity theory [13,14].

Several filters are developed: first, the gyro noise variance is the sole unknown, then both the
gyro and the LOS noise variances are unknown, and finally the case of biased gyro measurements
is considered. The state multiplicative nature of the errors in both the process and measurement
provides a useful structure to the model. The proposed approach avoids linearization by exploiting a
pseudo-linear quaternion plant model, which was introduced in [6] and extended to continuous-time
stochastic settings in [15]. The filter implementation requires solving differential linear matrix
inequalities that do not depend on the state estimate. Extensive Monte-Carlo simulations were
run in order to evaluate the novel filter’s performances as an attitude estimator, and to compare them
with those of a quaternion multiplicative extended Kalman filter.

Section 2 presents the quaternion H, filters for the case of drift-free rate gyros. Section 3 is
concerned with the non-zero drift case. Section 4 presents the results of Monte-Carlo simulations.
Conclusions are proposed in the last section.

2. Quaternion Stochastic H, Filtering

2.1. Problem statement

For the sake of simplicity and clarity, the case of drift-free gyroscopes is treated first. Consider
the following It6 stochastic differential equation (SDE) for the attitude quaternion, and the associated
measurement equation [15]:

1 30?2 _ e.
dq, = 5 (==~ 1) qdt— 5E(q)edB;  q,(0)=qo; t€[0T] 1)

4
1.
dy, = Hyq, dt — E‘:‘(qt)ol;dﬂt 2)

N —

where q, denotes the attitude quaternion, (); is the following matrix function of the measured angular
velocity wy,

Q = l_ [thX] wt] (3)

—w, 0

where w,, which is acquired by a triad of body-mounted gyroscopes, is corrupted by an additive
standard Brownian motion, B,, with infinitesimal independent increments dB, such that E{dﬁtdﬁﬁ} =
L, dt. The parameter ¢ denotes the standard deviation of the gyro noise f,. The drift term in Eq. (1)
features a damping term in ¢ that ensures mean-square stability of the process q;. Equation (2) is
a continuous-time quaternion measurement equation where the measurement value is identically
zero [6]. Hence,

dy, =0 4)
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and the measurement matrix H; is constructed from LOS measurements. Let b; and r; denote the
projections of a measured LOS in the spacecraft body frame axes and a reference inertial frame,
respectively, then H; is computed as follows

S = %(bt-f— rt) (5)
d; = %(bt — 1) (6)
w0 ”

The matrix, E(q, ), which appears both in the process and measurement multiplicative noises, is the
following linear matrix function of the quaternion q, = [e} ¢,]':

[1]

(qt) = (8)

T
—e;

71+ [etx]]

The measurement noise is modeled as a standard Brownian motion, #,, multiplied by the parameter .
Assume that ¢ and g are unknown, possibly time-varying random parameters, and that there is no
prior knowledge of their possible values or bounds. The filtering problem consists of estimating the
quaternion q, in the presence of unknown and random ¢ and ¢ and is formulated as a disturbance
attenuation problem. The following estimator is considered:

1 ~ ~
dq, = 2 0q, dt + K(q,) (dy, — H:q, dt) )
q(0) = qo (10)
2

The It6 correction term, 3%, is dropped for simplicity. It is not required for the filter development
since the dynamics of the filter estimate and estimation error, {q,, q, }, are designed to be stable in the
mean-square sense independently from that correction [13]. Let ¢, denote the additive quaternion

estimation error, i.e.,
9% =9-G (11)

Given a scalar y > 0, a gain process K(q, ) is sought such that the following Ho, criterion is satisfied:

T T
E([ lla P dtt <22 E{llqoll®+ [ v, I a) (12)

under the constraints (1)(2), and where v, denotes the augmented process of admissible disturbance
functions. Whenever Eq. (12) is true, the so-called L,-gain property from {qo, v;} to q,, is satisfied for
0 <t < T. Two cases for v will be considered in the following: v = ¢ and v = {¢, g } and significant
differences will be highlighted.

2.2. Augmented stochastic process

Following standard techniques, the following augmented process is defined:

£ |4, 13
s o


https://doi.org/10.20944/preprints202409.1245.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2024

40f22
The design model for the process q, obeys the following equation
dq Qt q; dt — 5 E("It) dﬁ (14)
The estimator’s equation is given by Eq. (9), i.e.
1 = ~
dq\t = 2 Oq, dt + K, (dYt — Hiq, dt)
1 = ~
= |: 5 Qt - Kth:| q; dt (15)
where I?t denotes K(q, ). Using Egs. (14), (15), and (2) yields the SDE for the estimation error:
- 1 = - 1_ 15 _
dq, = 2 QO — K Hy| q,dt — 2 C“Zdﬁt + 2 th‘ol;dﬂt
1 1.
|: Qf — K Ht:| qt dt — E ECiQdﬁi + E K,Eﬂl;dﬂt (16)
i=1

where E denotes the matrix &(q), E¢;, i = 1, 2,3, denote the columns of the matrix &, and the scalar
processes f,, i = 1,2,3, are the components of the vector Brownian motion ﬁt. Notice that & is
a function of the augmented process {q,, q,} since it is a function of the quaternion q. E, and &,
denote the matrices Z(q,) and Z(g, ), respectively, while E¢; and E¢;, i = 1,2, 3, denote their columns.
Appending Egs. (15) and (16) yields the following augmented SDE:

O

dle‘+ 1
2

[dﬁt] _ [( 5 — K H ?1 ady, (17)

dq, (30— K H)g

4x3
K=

where Oy, denotes an m X n matrix of zeros. Equation (17) can be re-written in the following compact
form:

dq, = F'q} dt + Zgz )gdB, + G(d}) g dy, (18)

where ", g} (¢f') and G(d") are effectively defined from Eq. (17).

2.3. Hamilton-Jacobi-Bellman inequality
The desired L-gain property will be satisfied if and only if the augmented system (18) is
dissipative with respect to the supply rate S(v(t), ¢*) = 7*||v(t)||* — ||q, ||, for a given positive scalar
7 [13]. Thus a non-negative scalar-valued function, V(¢ t), is sought that satisfies the fundamental
property [14]:
t
E{V(di,t)} < E{V(dss) +/S {7 IV~ llgclPdry YO<s<t<T (19)
E{V(d 0)} <7 E{llgol*} (20)

for all ¢ and for all admissible v(t). When Eq. (19) is satisfied, the function V is called a storage function
for the supply rate S. A sufficient condition for Eq. (19) is:

E{aV(d, 1)} <E{y* [Iv(t)|I* - llq,*} YO<t<T (21)

for all " and for all admissible v(t), where dV is the Itd differential of the function V. Notice that
the processes {();} and { H;} are observed and thus belong to the information pattern. Let Z! denote
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the information pattern at time t, which includes the observations of the angular velocity and of the
LOS until £, i.e. T = {{w}{, { b}}}. In the development of the sufficiency conditions, one can use the
following property of the expectation operator to write (21) as follows:

E{E{dV(q",t) — V*|lvell* + [|Ge)1* | T7}} <0 (22)
for all " and ¢. Then a sufficient condition for (22) is
a 2 2 <~ 112 | Tt
E{dV(q",t) = v"[lve]” + la:]I* | Z°} < 0 (23)

for all q” and t. Given the conditioning on Z! in (23), the functions (); and H; can be
considered deterministic functions. Using the It6 differentiation rule [17, p. 112] and dropping
the expectation operator on both sides of Eq. (21) yields the following sufficient condition, i.e. the
Hamilton-Jacobi-Bellman (HJB) inequality for V (¢, f):

3 2

v V - TPV, 1, T2V ) )
A T < _
Vs ufocTi i ] L8 5 < IV lal 9

forall0 < t < T, ', and for all admissible v(t), where G and g} are functions of ’. Dropping
the integral and the expectation operators is a standard procedure in stochastic He, estimation and
control [13] or in stochastic optimal control [18, p. 321].

2.3.1. Case where v = {¢, q }

Assume both ¢ and ¢, are perturbations. Bringing all terms to the left-hand-side (LHS) of Eq. (24)
yields

oV . o2V 3TV
§+—Fq‘l+cf ch+[ {GGTaqaz} 72} l Zgz aqazgz <0 (25

where L denotes the following 8 x 8 matrix

Os Oy

2
0y L (26)

and I; denotes the four-dimensional identity matrix. For a solution to exist for all ql and for all
admissible {¢, g } the coefficients multiplying the arbitrary disturbance functions, ¢ and ¢, in Eq. (25)
must be negative, which yields the following conditions:

St {GG aqﬂ}—y <0 (27)
1 TPV
2 L8 587 <0 (28)

forall0 <t < T, ¢. Thus, according to Eq. (25), any non-zero disturbance will only add a negative
term to the LHS, increasing the system’s dissipativity for the chosen supply rate. Henceforth, the
worst-case scenario consists in vanishing disturbances e.g.,

-

=0 (29)
=0 (30)

wq

Some interpretation of Egs. (29),(30) is required. It might appear at first sight counter-intuitive
that the worst-case scenario for an estimator consists of vanishing noise variances. However, the
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proposed solution follows the attenuation He, criterion (12), not a minimum error condition. Henceforth
performance is measured via the ratio between the (£, norms of the) estimation error and the noise
variance, not via the estimation error itself. It is thus not surprising that the proposed estimator will
perform better, i.e. attenuate better in the presence of high variances than in the presence of low
variances.

Summary:

Using Egs. (29) and (30) in Eq. (25) yields the following sufficient conditions. For all ' and
0<t<T,

§+—F“q“+<f L' <0 (31)
2
% r{GGT;q:;}—'yZSO (32)
1S TV
2 L8 58— 1 <0 (33)
i=1

2.3.2. Case wherev = ¢

Consider the case where ¢ is the sole perturbation. In this case, the HJB inequality evaluated at
the worst-case yields the following sufficient conditions: forall " and 0 < ¢t < T,

1% %

T —Fq" +¢ Le + {GGTanZ} <0 (34)
1 3 iTE)ZV i 2

5 2.8 2381 <0 (35)

In Eq. (34), the parameter g is a known deterministic parameter.

2.4. Storage function V

A standard approach to circumvent the formidable task of solving the partial differential inequality
for V [Eq. (24)] consists of guessing the solution in a parameterized form and developing sufficient
conditions for its parameters. The classical quadratic form for V will be used here:

V(d,t)=q Bq (36)

where F is assumed to be symmetric, positive, and block diagonal, i.e.,

B 0
P = - 37
= lo, 7 )
2.5. Sufficient conditions on the matrices K, D, P
Using Egs. (36),(37) in Eq. (31), straightforward computations yield the following identity:
dB T ~
ot O4 t+FTPt+PtF + Iy q9;
where F, is defined as follows:
~ 1 ~
F = 2 O — K, H; (39)


https://doi.org/10.20944/preprints202409.1245.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2024

7 of 22
Exploiting the following property of the matrix Z [5, Eq. (8.20b)],
E8" =q/q, L—q.q/ (40)
yields the following identities
1S 1%V, ¢[1, ~ ~
s s S g=al | (el ) )
1 1V Tf1 PTH R PTH R
St {GG 6%1“2} —a'{; [tr(Kt BRI, — K’ Pth} q (42)

2.5.1. Convexity condition with respect to ¢

Using Eq. (41) in Eq. (33) [Eq. (35)], and noting that the inequality must be verified for all q, yields
the following condition on B:

L. 5 5 2

E(trPtLl—Pt)—'y I, <0 (43)
This condition must be satisfied in both cases, whether ¢ is known or is an unknown perturbation.
The latter condition can be easily reformulated in terms of the characteristic values of the symmetric

positive matrix D. Let 7\1,, i = 1,2,3,4, denote the four positive eigenvalues of 13, then Eq. (43) is
equivalent to the following condition:

max{/~\2+7\3+/~\4, A +A + A, A+ A, +A,, 7\1+X2+7xs} < (44)

I

2.5.2. Case where v = {¢, g}

Using Eq. (42) in Eq. (32), and noting that the inequality must be verified for all q,, yields the
following condition on B and K:

1 PPN PSP
4 [(RIAR )L~ RTRR, | — 721 <0 (45)
Using Eq. (38) in Eq. (31) yields two uncoupled differential matrix inequalities for B and B, respectively:

dR

— THRA+RE <0 (46)
dB S~
7; +FB+BRE+1,<0 (47)

Assuming that the matrices B and B are identical for the sake of simplicity allows dropping Eq. (46).
Combining Egs. (43), (45), and (47) yields the inequalities to be solved for Kand P.

dp S~
7; +FB+BR+1,<0 (48)

~(rBI, - B) —9*1, <0 (49)

(trM¢ I, — My) — %1, <0 (50)

[T R
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where
1 ~
F = 3 O — KH; (51)
M; = KTBK (52)

Notice that the left-hand sides (LHS) of the above inequalities are independent of the quaternion
estimate; thus, the filter gain K is also independent of §,. It will be denoted by K; in the following.

Sufficient conditions in the form of Linear Matrix Inequalities:

Since the above inequalities are not linear with respect to P and K, some manipulations are
required in order to bring them to a Linear Matrix Inequality (LMI) structure. The bilinear dependence
with respect to P and K is readily coped with via a standard parametrization approach. Let Y, denote
the following four-dimensional matrix:

Y, = BK; (53)
then, using Eq. (53) in Eq. (48) yields
b | 1, 15 = TUT | v
E—i— E(Qtpt‘l-PtQt)—(Ht Y +Y,H)+ I, <0 (54)

To circumvent the difficulty arising from the quadratic structure of M; with respect to B and K, a
symmetric positive definite matrix W; is sought such that

M; =Wy =YY, -W; <0 (55)

Notice that B! exists since B is assumed to be positive definite. Then, the following bounds on the
LHS of Eq. (50) are used:

1 1
(trMy I, — My) — %1, < (4 trM: -1, < (4 trWe 91, <0 (56)

-

and Eq. (50) is replaced with the following sufficient condition on W:

trW; — 9% <0 (57)

I

where W, Y, and P satisfy Eq. (55), which by the Schur complement can be written as the following
LMI :

-
~ 21 <0 58
YrT _B] — ( )

Notice that the successive bounds in Eq. (56) yield a sufficient condition for the attenuation filtering
problem.
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2.5.3. Case wherev = ¢

Using Eq. (42) and the definition of ¢’ yields the following identity:
1 2, 1V rf T prh
2 4w 66 S = Z[tr(Kt BRI~ KTBK | b q,
I
— g7 &T| |4
-la’ ] [14

Using Egs. (38) and (59) in Eq. (34) yields

a? PN e
{Z [tr(KtTPth)Ll—KtTBKt} [14 I,

—_
1
<)

—_

—_

a1

\O

N

~

{AT ~T} 4 | FTH + BE, +%2 [tthL;—A?It] % [trM I4—M} ?lt] Iy
v %[ ML — M| W+ R+ BE + % [ab - 0, + 1| %]
(60)

forall (q,,q,,t), where M, = 12{121@ Assuming that P = P as in the previous case yields the following
matrix differential inequality

2 2
B+ FTR+BE+ 4 [(eM)L, - M) $ [(emy1 - m] S0 @
o2 ~ o 2 hS
§ [(emy1g - M) D+ FTR+AF+ L+ [(eM)L, - M]
forall0 <t < T, where
_ % O — K:H (62)
M = K[ BK; (63)

Thus, when ¢ is a known parameter, Egs. (61)-(63), and Eq. (43) are the sufficient conditions for P and
K.
Sufficient conditions in the form of LMI:

Introducing a matrix variable W; that satisfies Egs. (53), (55), and using the same upper bounds
sequence as in Eq. (56) yields the following differential LMI for this case:

. _ _ 2 2
dT (QTPt + PtQt) (HtTYtT + Yth) + %( tI'Wt)I4 %( tI'Wt)L;

5 . S 2 <0 (64)
% % (W) Iy a4 1(QFB +BOy) — (HIYT + Y,Hy) + L+ & (W) I,

2.6. Quaternion stochastic He, filters summary

Given gy, choose P(0) such that Eq. (20) is satisfied. Solve the following set of (differential) LMIs
forB =BT >0eRYY, e RY, and W, = W] >0 e R:
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2.6.1. Case where v = {¢, q }
B L QTR+ B — (HIYT Y H) + 1, <0 65
T T3 (U R+ RO = (HY, + Y H) + I, < (65)
-Wy Y,
~ <0 66
_YtT -B| - (66)
1, - ~
Z(trBI4—B)—'yZI4§O (67)
1
1 Wy —2* <0 (68)
2.6.2. Case where v = ¢
2 2
dn 41 (QTPt—f—PtQt) —(HIYT+YH) + F(ewnL S (aw)L <0 ©9)
- ~ ~ 2 =
(trWt)I4 i 1(OFB + BO:) — (HIYT + Y Hy) + L+ 5 (W) Iy
<0 70
[ o B (70)
1
1 trBI —B) - YL, <0 (71)
For any pair of matrices (Y,, B), compute the gain K; using
K =B, (72)
and compute the estimated quaternion via the estimator differential equation
A 1 ~
q, = {2 Q — Kth} q, (73)

Remark 1: The estimator equation, (73), is not designed to preserve the quaternion unit-norm
property. For that purpose, a normalization stage of the estimate is performed along the estimation
process [4,15]

‘&)

(74)

)
|

=

Remark 2: A key feature of the above filters lies in the fact that the gain computations are independent
of the estimated process. As a result, the gain values are insensitive to the initial estimation errors,
which are often causes of divergence in linearization-based filtering techniques, like the extended
Kalman filter. An additional essential by-product is that the estimate differential equation Eq. (73) can
be integrated as an ordinary differential equation.

Remark 3: The above algorithms are solved using standard primal-dual interior-point methods, as
implemented in SeDuMi [19,20]. The method formulates a minimization problem over 7 subject to
the constraints described in Egs. (65)-(68). For the solver SeDuMi, an assessment of the computational
complexity is O(n*) for the 2n? + n decision variables, where n = 4. Compared to the standard
computational complexity of a Kalman filter, i.e. O(n3), this yields a ratio of 4.
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Remark 4: Inspired by [21], discrete approximations of the differential LMIs are developed via
finite-difference formulas. For example, Eq. (65) is implemented as follows:

Py — D 1 ~ ~ ~ ~
HT T3 (O 1 Pei1 + Pey1Qpen) — (HE Yy + Ve Hes) + 1, <0 (75)

where At denotes the time increment, and k = 0,1,..., N = T/ At.

3. Quaternion and Gyro Drift Estimation

3.1. Statement of the problem

Assuming that the rate gyro error consists of white noise and a bias, we consider the following
stochastic dynamical system in It6 form:

dq, = %Q(wt —c)q di— 1 E(q)g(H)dp;  q(0) L aqy  tE[0T] 76)
d, = ¢(H)dv,; <(0) % o @7)
dy, = Hyq, dt — 5 3(a,) (1), 79

where ¢, denotes the additive drift, modeled as a random walk process with mean ¢y and variance
parameter ¢ (t). In Eq. (77), v, denotes a standard Brownian motion that is independent of g and 7,.
Equations (76), (77) stem from a straightforward extension of the quaternion SDE of section 2.

The filtering problem consists of estimating the quaternion q, and the gyro drift ¢, from the LOS
measurements in the presence of unknown noise standard deviations ¢(t), ¢ (), and ¢(t). Assuming
that ¢(t), g (t), and ¢ (t) are stochastic non-anticipative processes with finite second-order moments,
we consider the following estimator:

dqt = %Q(wt _at)gh dt+Kq (dYt _Qt dt) (79)
('El =K (dYt - q\t dt) (80)
q(0) = qo, €(0) =< (81)

Let q, and ¢, denote the additive quaternion and biases estimation error, i.e.,

9 =9; — Qt (82)
¢, =c —C¢ (83)

Given a scalar v > 0, we seek the gains K, K. such that the following He criterion is satisfied:

T T
EC[ (a2 + &)t} < 2E{llaol® + &0l + [ Ivi[2dt} (84)

under the constraints (76)-(78), and where v, denotes the augmented process of admissible disturbance
functions, i.e., v = {¢(t), g (t), ¢(t)}. Whenever Eq. (84) is true, it is said that the L,-gain property is
satisfied from {qp, €, v¢} to {q,, ¢}, for0 <t < T.

3.2. Design model development

The SDE of the quaternion-drift system is compactly rewritten as follows:
dq, | _ ¢, O
¢t

—33(q,) Ouxs| |q 5
O, q(t) I,

O3 I

3

%Q( w, — Ct)qt

dt +
O3><l

dﬂt] (85)
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and the estimator is rewritten as follows:
dg | _ |[30(w, =€) — KgHi]|
l&t = K.H, q,dt (86)
Qt (0) = qo; Et(O):/C\O
The augmented process {q,,¢,, q, ¢} is governed by the following SDE
dé\lt % QO — Kth - % E(Qt) ) ) | q\t
de, | —K.H; O O O c, it
dg, (@] @) 7O —KgHy — % E(q,) q
&, O O —K.H; o | |&
Ou4x3 O4x3 Osxs |
O3 O3 O4><3
| B | et + e+ | T2 | q(dy (57)
- %‘:‘(qt) ! O4><3 ¢ qu‘:‘(qt) ’ !
O3 I K. 1 E(q,)

where second-order terms with respect to the noises g, v,, 17, and to the estimation errors g, ¢ have
been neglected. Equation (87) may be re-written in the following compact form:

df; = F'idt + Gi(dq))q(t)dB, + Ga(d) (t)dv, + G(df) g (1) dy; (88)
The remainder of the filter development is straightforward and is omitted for the sake of brevity.

4. Numerical Simulation

This section is concerned with the numerical validation of the proposed approach in the drift-free
case.

4.1. Description

Consider a spacecraft rotating around its center of mass with the following time-varying inertial
angular velocity vector, w’(t):

W°(t) = [1, =1, 1]T sin(27t/150) [deg/sec] (89)
The measured angular velocity is computed according to
w(t) = @’(t) +qe(t) (90)

where e(t) is a standard zero-mean white Gaussian noise, e.g., E{ e(t) e(7)T} = L(t — 7). Typical
values of low-grade gyros are used, i.e., ¢ € [107%,10°] [rad/\/sec]. A time-varying line-of-sight
measurement, by, is assumed to be acquired. It is computed via the classical vector measurement
model:

b; = Alq,] 1t + g ob; 1)

where r(t) is randomly generated using a zero-mean standard multivariate normal distribution and
the attitude matrix A(q;) is expressed as follows:

A(q,) = (97 — e e) 5+ 2eref —2q [erx] (92)
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4.2. Attenuation of gyro ¢

In this section, the numerical study focuses on the impact of the gyro perturbation ¢ on the
attenuation performance of the QHF. For that purpose, the parameter ¢ is set to various known values
while ¢ is kept equal to 107 radian. Table 1 presents the values of Monte-Carlo (MC) averages over
500 runs lasting 500 seconds each of J; = max; ||q; — §:|| and of the ratio gf/%, where At = 0.1s1is
the gyro sampling time. The former is a measure of attitude estimation accuracy while the latter is a
measure of attenuation performance. It can be seen that the QHF always converges, that the estimation
accuracy is satisfying despite the extreme values of ¢, albeit degraded as ¢ increases, and that the
attenuation performance improves with g.

Table 1. QHF performance. Maxima of MC-means of J; and of %q for various g. 500 sec, 500 runs.

T | &%] 104 1073 102 107! 100
8 25x107° 22x10°% 17x10% 12x102 6.2x 1072
5q
ey 0.79 0.69 0.53 0.37 0.18

Additional MC simulations (500 runs) were performed while varying the parameters ¢ and ¢.
Table 2 depicts the ratios of the time averages (over 6000 seconds) of the angular error, é¢, of the QHF
over the QKF. The error J¢ is extracted from the rotational quaternion error’s fourth component. The
magnitude of §¢ in the QHF appears in parenthesis (in degree) above the ratios. For a given ¢, the
values of 6¢ and the ratios increase with ¢ because the attenuation quality is impaired. It turns out
that the ratios are smaller than one in almost all test cases, i.e. the QHF produces a smaller bias than
the QKF. The above results suggest that the QHF is advantageous when using low-grade gyros (high
¢) with fine LOS sensors (low q).

Table 2. Ratios of the 6¢ MC-means of the QHF over the QKEF for various ¢ and ¢. (Time-average of
the 6¢ MC-mean in the QHF in degree). 500 runs, 6000 sec.

rad

é[fﬂ] 104 10-3 102 10! 10°
(1.4x107%) (1.8x1072) (6.6x1072) (72x1071) (3:4x10%)
1075 0.51 0.15 0.08 0.02 0.01
(6.4x107%) (52x1072) (27x1071) (95x107") (6.1x10%)
10-* 0.65 0.52 0.18 0.07 0.02
(1.9x1072) (8.6x1072) (5.1x1071) (1.6x10%) (6:4x10")
1073 1.18 0.63 0.49 0.17 0.09

4.3. Attenuation of ¢ and g

Next, we test the performances of the QHF when both ¢ and g, are unknown. For that purpose,
we evaluate the actual attenuation ratio AR(T) which is defined as follows:

_ Bl lamPan )
- ~ T
E{a(0)]2 + o (g2 + o) dt}

R(T)

where the final time T is 500 sec, the integrals are numerically computed using a time step At = 0.1
sec, and the expectations are computed as MC averages over 500 runs. Table 3 shows the values of
AR(500) for various ¢ and ¢. It also features the steady-state MC means of the best-guaranteed level
of attenuation, 'yé - Which is calculated within the QHFE.
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Table 3. Attenuation Ratios AR(500) (500 MC runs) as defined in Eq. (93) for various values of the
parameters {q, g }. (Value of the steady-state MC-mean of ’yzQ 17p» @s computed in the filter)

[md]

-~

v 0 1073 1072 2x1072 5x1072 107!
b

(2.89) (2.89) (2.79) (2.56) (243) (2.32)

0 0.45 0.45 0.44 0.21 0.13 0.10

(2.89) (2.65) (2.60) (2.53) (2.40) (2.32)

10°° 0.45 0.45 0.44 0.21 0.1 0.09

(2.78) (2.53) (2.46) (2.42) (2.36) (2.31)

1072 0.44 043 0.41 0.18 0.10 0.09

(2.55) (2.44) (2.40) (2.39) (2.33) (2.31)

5x1072 031 0.30 0.28 0.16 0.10 0.09

(2.41) (2.40) (2.39) (2.35) (2.28) (2.25)

107! 0.16 0.15 0.15 0.10 0.09 0.06

In a nutshell, the performance index AR(500) is not sensitive to variations in ¢, g below a
threshold of 1072, above which it decreases rapidly, showing thus improved performance in terms of
disturbance attenuation. A similar lack of sensitivity is observed for the parameter ’yzQ Hr over the full
ranges of ¢ and ¢, with a small but consistent improvement towards large values. Strikingly, the values
of AR(500) are significantly lower than those of q/é mp- In more detail, the gap is about six-fold lower
in the case of vanishing variances, and about 30 times lower for very large variances, when the pair
(g, q) is equal to (0.1,0.1). That is consistent with the H, filtering theory, i.e. vanishing disturbances
are the worst case in terms of disturbance attenuation. The time variations of the MC averages of AR(t)
and 'yzQ p (), are depicted in Fig. 1, for 0 < t < 2000 sec, showing that the gap between them is already
large from the start. The properties of the filter are further investigated in Figures 2 and 3 that depict
the time variations of AR for various initial estimates of the quaternion, q(0), and various initial values
of the matrix P(0), respectively. This is done for the case (¢, ¢) = (0.1,0.1), where the disturbance
attenuation performance is best. It appears that the transient of AR is strongly shortened when q(0)
is close to the true quaternion. On the other hand, the steady states are relatively close. Figure 3
further shows the lack of sensitivity of AR to P(0). These properties stem from the independence of
the estimator’s gain computations from the state and are analogous to the convergence properties of
covariances in Kalman filters for linear systems.
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Steps x 10*

Figure 1. Time histories of the attenuation ratio AR (black line) and the best guaranteed bound 'yé HE
(blue line). 500 MC runs. (¢, g) = (0.1,0.1).

0.45¢ ‘ ‘ ‘ 172
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0.3[}°
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0.2
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Time [sec]

Figure 2. Time histories of the MC-mean of the Attenuation Ratios for various initial quaternion
estimates. 50 MC runs. (¢, ¢) = (0.1,0.1).
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Figure 3. Time histories of the MC-mean of the Attenuation Ratios for various initial matrix P(0). 50
MC runs. (g, ) = (0.1,0.1).

Figure 4 depicts the MC-means and the MC-standard deviations of the four components of the
quaternion estimation error for ¢ = 0.001 22~ and g = 0.1rad. The means are close to zero and the

\/sec

standard deviations show satisfying estimation performances, around 3mrad. Figure 5 presents the
time histories of the MC-mean and MC-standard deviation envelop of the angular estimation error,
6¢. Albeit oscillating with an amplitude of 0.06 [deg] around 0.08 [deg], d¢ shows good performances
given the measurement noise level ¢ of about 5 degrees.

x107°

— L L ] L L L ] L L \‘
50 50 100 150 200 250 300 350 400 450 500
Time [sec]

b A bl
Wk iy TP

m i 4
TR MTY

1 1 i 1 1 1 1 1 )
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Time [sec]

] 1 1 ) 1 1 1 1 1 1 )
(6] 50 100 150 200 250 300 350 400 450 500

Time [sec]

_ i 1 1 1 1 1 1
6] 50 100 150 200 250 300 350 400 450 500

Time [sec]
Figure 4. Time histories of the quaternion estimation error MC-means (blue) and MC-standard
deviations (red). 50 MC runs. (g, g) = (0.001,0.1).
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Figure 5. Time histories of the angular estimation error MC-mean (blue) and of the = MC-o envelope
(red). 50 MC runs. (¢, g) = (0.001,0.1).

Extensive simulations were run to compare the performances of the QHF with those of a
quaternion multiplicative EKF (MEKF). In the MEKE, the (quadratic in q,) measurement equation
model is linearized, and the filter statistics are matched to the true noise levels. Table 4 shows the
time averages, computed on single runs of 2000 seconds, of the quaternion additive estimation error
norm in the MEKF (left) and in the QHF (right). These values provide sensible measures of the
estimation biases. In addition, the values of the time standard deviations are provided for both filters
(in parenthesis). The QHF consistently provides smaller biases than the MEKEF. This is explained by
the linearization effects impairing the MEKF, whereas the QHF is free of linearization. On the other
hand, the MEKF provides smaller standard deviations than the QHEF, as expected since the MEKF
is a (approximate) minimum variance estimator. Yet, for a given value of ¢, the gap between them
decreases as ¢ increases and becomes negligible for large ¢. Table 4 further shows the low sensitivity
of the QHF standard deviations with respect to the parameters ¢ and ¢g. This property is partially
explained by the H, approach since the gain computations are 1ndependent of g and ¢ per se. Yet
they do show some dependence on the level of the noises because the data itself is r101sy.
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Table 4. Time-averages (and time-standard deviations) of the quaternion estimation errors in the QHF

(right) and in the MEKEF (left) for various values of the standard deviations {¢, g }. Single run. Time

span of 2000 seconds
q [rad) 1073 1072 101
ol \7;%] MEKF | QHF MEKF | QHF MEKF | QHF
(12x107°]1.4x1073) (1.0x107* | 1.4x107%) (0.015 | 0.080)
1077 3x107%]2x107° 0.003|0.003 0.020]0.017
(12x107%]1.4x1073) (8.0x1075[1.3x107%) (0.015 | 0.080)
107° 8x107°|2x107° 0.005 | 0.003 0.020 | 0.014
(2.1x107%|1.4x10°3) (9.0x1074 [1.4x1072) (0.015 | 0.080)
107> 51x107°|1.3x107° 0.008 | 0.007 0.020]0.016
(62x107*]1.4x1073) (20x1072 [21%x107%) (0.015]0.082)
1074 1.5 x1075]1.3 x 107 0.0003 | 0.0001 0.020]0.015
(12x1073]1.4x1073) (37x1072 [ 1.2x1072) (0.015]0.081)
103 7.9 x1075]2.0 x 1075 0.0096 | 0.0008 0.020 | 0.002
(1.6x107°[2.0x1073) (0.0120 | 0.0124) (0.019 | 0.080)
1072 1.3 x1075]1.2 x 107 0.0028 | 0.0014 0.020 | 0.0084
(1.6x1072[1.6x1072) (0.0172]0.0192) (0.116 ] 0.084)
107! 48x107°|33x107° 0.0004 | 0.0001 0.026 | 0.0068

Both filters were tested in cases where the true noise variances were unknown. This might occur
as a result of undetected sensor failures or jamming. In Case A, the ¢ in the MEKF was set to ten
times its true value. In Case B, it was lowered to one-tenth of the true value. The results are shown
in Figures 6 and 7, respectively. In case A, the MEKEF is very slow to converge while, in case B, it
converges quicker but to a noisier steady state. The QHEF, on the other hand, provides essentially the
same performances in both cases, with slight variations due to the data noisiness. In both cases, the
QHF outperforms the unmatched MEKF.
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Figure 6. Time histories of the MC-means of the quaternion estimation errors in QHF (dashed blue)
and in unmatched MEKEF (full red). Case A. 50 MC runs. (g, ;) = (0.001,0.1).
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Figure 7. Time histories of the MC-means of the quaternion estimation errors in QHF (dashed blue)
and in unmatched MEKEF (full red). Case B. 50 MC runs. (¢, g) = (0.001,0.1).

5. Conclusion

In this work, stochastic He, filtering was applied to the development of novel quaternion attitude
estimators from rate gyro and line-of-sight (LOS) measurements. A key assumption is that the variance
of the noise affecting the various measurements is unknown and modeled as a disturbance. The
estimators compute the quaternion while attenuating the transmission from the noise variance to the
estimation error. The Ho, filters involve the solution of a set of differential and algebraic linear matrix
inequalities. A remarkable property of the resulting gains computations is that they are independent of
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the estimated quaternion, in the case of measurement white noise. Extensive Monte-Carlo simulations
were run showing that the proposed filter performs well from the standpoint of attitude estimation
per se in a wide range of gyro and LOS noise variances. The guaranteed disturbance attenuation level
seems to be slightly dependent on these variances since the gain depends on the measurements. The
actual disturbance attenuation level seen in the simulations is better than the guaranteed one, by up
to one order of magnitude. It improves when the noise level increases and is the worst for (ideal)
noise-free sensors. This fact is in agreement with the theory and illustrates the conservative nature
of the He approach. When ¢ is the sole unknown the He, filter produces lower MC-means than a
standard quaternion multiplicative Kalman filter. When both ¢ and ¢, are unknown, the He filter
shows similar MC-means as a multiplicative Kalman filter. When matched the MEKF shows lower
MC-standard deviations of the estimation errors than the H, filter. The higher the level of the noise,
the less obvious the advantage of the Kalman filter. Furthermore, the H, filter gain is less sensitive to
perturbations than the MEKF gains, in particular to initial estimation errors. This attractive feature
is emphasized by comparing the H filter’s performances with those of unmatched Kalman filters.
When provided with too high or too low noise variances, the MEKF was outperformed by the He,
filter, which essentially delivers identical performances within a wide range of noise variances.
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