Preprint
Article

A Completely Different and Innovative Bio-Inspired Metaheuristic Approach for Effectively Solving Complex Optimization Problems Across Various Domains

Altmetrics

Downloads

82

Views

42

Comments

0

Submitted:

23 September 2024

Posted:

24 September 2024

You are already at the latest version

Alerts
Abstract
In this paper, a completely different metaheuristic algorithm called the Orangutan Optimization Algorithm (OOA) is introduced, which replicates the complex and adaptive behaviors of Orangutans in their natural habitat. The main inspiration for OOA lies in the strategic foraging techniques of Orangutans, alongside their highly developed nesting abilities. More words are used to provide a detailed theoretical explanation of OOA, followed by a comprehensive modeling of the algorithm’s implementation in two key phases: exploration and exploitation. These phases are mathematically structured to ensure the balance required for optimal search processes. The performance of OOA is rigorously evaluated using twenty-nine benchmark functions from the CEC 2017 test suite, with problem dimensions of 10, 30, 50, and 100. More sentences are included to elaborate on the optimization outcomes, which reveal that OOA effectively balances the exploration and exploitation stages, yielding suitable and competitive solutions across the benchmark functions. Additionally, to further validate its quality, the results from OOA are compared against twelve other well-established metaheuristic algorithms. The analysis of these simulation results demonstrates that OOA consistently outperforms competing algorithms by achieving superior results across most benchmark functions. Furthermore, to assess its real-world applicability, OOA is implemented on a set of twenty-two constrained optimization problems drawn from the CEC 2011 test suite. The extended simulation results clearly indicate that OOA is highly efficient in solving real-world optimization challenges, consistently delivering a superior performance when compared to other competitor algorithms.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics

1. Introduction

Many problems in both science and real-world applications present multiple feasible solutions, which makes them complex to solve. These problems are referred to as optimization problems, and the process of identifying the most suitable solution from the set of available options is known as optimization [1]. From a mathematical perspective, optimization problems consist of three main components: decision variables, constraints, and objective functions. The goal of optimization, therefore, is to determine the optimal values for the decision variables while adhering to the constraints so that the objective function achieves its most favorable outcome, either maximum or minimum [2]. Optimization problem-solving methods are broadly classified into two completely different categories: deterministic and stochastic approaches [3]. Deterministic methods, which are further divided into gradient-based and non-gradient-based techniques, are particularly effective in solving linear, convex, continuous, differentiable, and low-dimensional optimization problems [4,5]. However, as the complexity and dimensionality of these problems increase, deterministic methods often fail by getting trapped in suboptimal local solutions [6,7]. This is especially true for problems that are non-linear, non-convex, discontinuous, non-differentiable, and high-dimensional, which are common in scientific and practical applications. Due to these limitations, researchers have developed stochastic approaches to tackle more challenging optimization problems.
Metaheuristic algorithms, which are one of the most widely employed stochastic methods, are highly effective in addressing complex optimization challenges. Metaheuristic algorithms work by utilizing a random search mechanism within the problem space, employing random operators and a trial-and-error process to find suitable solutions. The advantages of metaheuristic algorithms include the simplicity of their concepts, ease of implementation, independence from the specific problem type, and the ability to solve non-linear, non-convex, discontinuous, non-derivative, and high-dimensional optimization problems. Furthermore, they are efficient in exploring unknown, non-linear search spaces, which explains their popularity among researchers [8].
The optimization process in metaheuristic algorithms begins by randomly generating a set of initial candidate solutions that respect the constraints of the problem. In an iterative process, these solutions are progressively refined based on the updating steps defined by the algorithm. The best solution found at each iteration is saved, and ultimately, the best overall solution is presented as the final result [9]. While the random search nature of these algorithms means that they cannot guarantee a global optimum, the solutions they produce are often near-optimal, which are referred to as quasi-optimal solutions. Consequently, when comparing the performance of multiple metaheuristic algorithms, the one that provides a better quasi-optimal solution is considered the most effective one for that particular problem [10].
The search process in metaheuristic algorithms must balance two key concepts: global exploration and local exploitation. Global exploration enables the algorithm to thoroughly scan the problem space, preventing it from getting stuck in local optima and helping to identify the most promising areas in the search space. Local exploitation, on the other hand, allows the algorithm to converge towards a global optimum by intensively searching around promising regions and refining solutions. Striking a balance between exploration and exploitation is crucial for the success of any metaheuristic algorithm in providing effective solutions [11].
A key question in metaheuristics research is whether, given the vast number of algorithms already developed, there is still a need to design completely different metaheuristic algorithms. The No Free Lunch (NFL) theorem provides an answer to this. It states that the success of a metaheuristic algorithm in solving one set of optimization problems does not guarantee its success in solving others [12]. Therefore, no single algorithm is universally optimal for all optimization tasks. This insight encourages ongoing innovation in the field of metaheuristic algorithm design, as the NFL theorem suggests that newer algorithms can offer more effective solutions for specific problem sets.
The novelty of this paper lies in the development of a new metaheuristic algorithm called the Orangutan Optimization Algorithm (OOA), designed to solve a variety of optimization problems in different scientific fields and real-world applications. The key contributions of the paper are as follows:
  • OOA is inspired by the natural behavior of orangutans in the wild.
  • The algorithm’s core inspiration comes from the foraging strategies and nesting skills of orangutans.
  • The steps of OOA are described and mathematically modeled in two phases: exploration and exploitation.
  • The performance of OOA is evaluated using twenty-nine benchmark functions from the CEC 2017 test suite.
  • A comparative performance analysis is conducted, comparing OOA with twelve other well-known metaheuristic algorithms.
  • To assess its effectiveness in real-world applications, OOA is applied to twenty-two optimization problems from the CEC 2011 test suite.
The structure of the paper is as follows: Section 2 provides a literature review. Section 3 introduces and models the Orangutan Optimization Algorithm. Section 4 presents the simulation studies and results. Section 5 investigates the effectiveness of OOA in solving real-world applications. Finally, conclusions and suggestions for future research are discussed in Section 6.

2. Literature Review

Metaheuristic algorithms are systems designed by drawing inspiration from a wide range of completely different sources, including natural phenomena, the lifestyles of animals in nature, biological and genetic sciences, fundamental laws of physics, rules and strategies from games, human interactions, and various other evolutionary processes. Depending on the foundational idea utilized in their development, these algorithms are categorized into four completely different groups: swarm-based approaches, evolutionary-based methods, physics-based models, and human-based approaches. This classification allows for a more organized understanding of the many different algorithmic approaches that have been inspired by both nature and human behavior.
Swarm-based metaheuristic algorithms, for example, are rooted in the collective behavior seen in the nature, such as the swarming activities of birds, animals, insects, aquatic species, and even plants. Completely different animals exhibit unique strategies in their collective movements, which has inspired the creation of algorithms like Ant Colony Optimization (ACO) [13], Particle Swarm Optimization (PSO) [14], and Artificial Bee Colony (ABC) [15]. These particular algorithms mimic the way ants discover the shortest path between their colony and food sources by following chemical pheromones, or how flocks of birds and schools of fish adjust their movement when searching for food. The behavior of honey bees in seeking out food resources has inspired the development of ABC. Other swarm-based metaheuristics take inspiration from foraging, hunting strategies, migration, and even digging behaviors observed in wildlife, leading to the creation of completely different algorithms like Reptile Search Algorithm (RSA) [16], Grey Wolf Optimizer (GWO) [17], Orca Predation Algorithm (OPA) [18], Marine Predator Algorithm (MPA) [19], African Vultures Optimization Algorithm (AVOA) [20], White Shark Optimizer (WSO) [21], Honey Badger Algorithm (HBA) [22], Whale Optimization Algorithm (WOA) [23], Tunicate Swarm Algorithm (TSA) [24], and Golden Jackal Optimization (GJO) [25].
Similarly, evolutionary-based metaheuristic algorithms find their foundation in biological processes such as natural selection, genetics, and Darwin’s theory of evolution. Genetic Algorithm (GA) [26] and Differential Evolution (DE) [27] are two of the most prominent examples of this group, which rely heavily on mechanisms like mutation, crossover, and selection to find optimal solutions. The immune system's ability to fight off diseases has also provided inspiration for completely different algorithms, such as Artificial Immune Systems (AISs) [28]. The adaptability and survival strategies of species have also led to the design of algorithms like Evolution Strategy (ES) [29], Cultural Algorithm (CA) [30], and Genetic programming (GP) [31], which all use evolutionary operators to improve solutions over time.
Physics-based metaheuristic algorithms are inspired by the laws of physics and various natural forces. One of the most famous in this category is Simulated Annealing (SA) [32], which models the annealing process in metallurgy, where materials are heated and slowly cooled to form ideal crystals. Physical forces such as gravity, momentum, and spring tension have influenced the creation of algorithms like Spring Search Algorithm (SSA) [10] inspired by the tensile force of springs, Gravitational Search Algorithm (GSA) [33] inspired by gravitational force, and Momentum Search Algorithm (MSA) [8] inspired by momentum force. The natural water cycle has also led to the Water Cycle Algorithm (WCA) [34]. More examples from this completely different category include: Multi-Verse Optimizer (MVO) [35], Archimedes Optimization Algorithm (AOA) [36], Electro-Magnetism Optimization (EMO) [37], Nuclear Reaction Optimization (NRO) [38], Equilibrium Optimizer (EO) [39], Black Hole Algorithm (BHA) [40], Thermal Exchange Optimization (TEO) [41], Lichtenberg Algorithm (LA) [42], and Henry Gas Optimization (HGO) [43], each inspired by unique physical phenomena.
Human-based metaheuristic algorithms draw from human communication, collaboration, and behavior. Teaching-Learning Based Optimization (TLBO) [44], for instance, models the interaction between teachers and students, while Teamwork Optimization Algorithm (TOA) [45] is based on the collaborative efforts of a team working toward a common goal. Completely different human-based algorithms also take inspiration from various other aspects of human behavior, such as Coronavirus Herd Immunity Optimizer (CHIO) [46], Ali Baba and the Forty Thieves (AFT) [47], War Strategy Optimization (WSO) [48], Gaining Sharing Knowledge based Algorithm (GSK) [49], and Driving Training-Based Optimization (DTBO) [6]. Each of these human-based algorithms taps into social behaviors, cooperation, or learning processes to solve optimization problems in unique ways.
Despite the vast range of inspirations used in metaheuristic algorithm design, no algorithm has been modeled after the natural behavior of orangutans. This is surprising given that orangutans demonstrate intelligent strategies in foraging and nesting, making their behaviors a completely different yet promising source of inspiration for developing a new metaheuristic algorithm. Recognizing this gap, the current paper proposes a new metaheuristic algorithm, based on the mathematical modeling of the intelligent behaviors of orangutans, which will be explored in detail in the following section.

3. Orangutan Optimization Algorithm

In this section, the source of inspiration behind the Orangutan Optimization Algorithm (OOA) is thoroughly explained, followed by a comprehensive description of the theory underlying the approach. Afterwards, the step-by-step implementation of the OOA is carefully modeled using mathematical formulations, ensuring it can be effectively applied to solve completely different types of optimization problems.

3.1. Inspiration of OOA

Orangutans are fascinating great apes that reside in the dense rainforests of Malaysia and Indonesia, with their current populations limited to parts of Sumatra and Borneo. Although their range was once much broader, extending throughout South China and Southeast Asia during the Pleistocene era, these critically endangered creatures now face completely different environmental pressures and challenges. Physically, orangutans exhibit a variety of distinct traits: females generally weigh around 37 kg and reach a height of 115 cm, while the larger males weigh approximately 75 kg and stand at 137 cm tall. One of the most striking features of orangutans is their proportionally long arms, with males having an arm span of around 2 meters, compared to their relatively shorter legs. Their bodies are covered with thick reddish-brown hair that darkens to shades of maroon or chocolate as they age, while their skin color ranges from grey to black [50]. A picture of orangutan is shown in Figure 1.
The diet of orangutans is primarily fruit-based, with about 57 to 80% of their foraging time spent consuming a variety of fruits. In addition to fruits, they spend around 25% of their time eating tree leaves. Other sources of nutrition include small vertebrates, insects, bird eggs, honey, and tree bark. This dietary flexibility highlights their adaptability in foraging within the forest [51]. An equally remarkable aspect of orangutan behavior is their skill in nest-building. Young orangutans learn to build nests by observing their mothers, starting the process as early as six months of age and becoming adept by the time they are three years old. Their nests, built in trees, are highly structured. First, orangutans select suitable branches and weave them together to form a foundation. Then, using smaller, leafy branches, they create a soft mattress. Some nests are further enhanced with additional features such as bunk beds, roofs for protection, and even makeshift blankets and pillows to ensure comfort during rest [52].
These intelligent and intricate natural behaviors—specifically their foraging strategies and nest-building techniques—serve as the foundation for the development of the Orangutan Optimization Algorithm (OOA).

3.2. Algorithm Initialization

The newly introduced Orangutan Optimization Algorithm (OOA) is a bio-inspired metaheuristic algorithm that draws its inspiration from the natural behaviors of orangutans. In this approach, orangutans serve as the population members, and each orangutan represents a potential solution to the given optimization problem. These solutions are completely different from one another, as each orangutan occupies a unique position within the problem's search space. The variables corresponding to each solution are determined by the orangutan’s specific position, which can be mathematically modeled as a vector. As a group, these orangutans form the OOA population, which can be represented using a matrix structure using Equation. This matrix is not static; it evolves as the algorithm progresses. Initially, the position of each orangutan in the search space is randomly determined. This randomness is essential in ensuring that the initial population covers diverse areas of the search space, enhancing the exploration capabilities of the algorithm. The initialization process for the population is mathematically modeled using Equation, where each dimension of the orangutan’s position is calculated based on random values within a predefined range. This allows for a completely different starting point for each orangutan, creating diversity in candidate solutions.
X = X 1 X i X N N × m = x 1,1 x 1 , d x 1 , m x i , 1 x i , d x i , m x N , 1 x N , d x N , m N × m
x i , d = l b d + r · ( u b d l b d )
Here X is the OOA population matrix, X i is the i th orangutan (candidate solution), x i , d is its d th dimension in search space (decision variable), N is the number of orangutans, m is the number of decision variables, r is a random number in the interval 0,1 , l b d , and u b d are a lower bound and an upper bound of the d th. decision variable, respectively.
After initialization, each orangutan’s position corresponds to a set of variables, which are evaluated using the objective function of the optimization problem. The objective function assigns a value to each candidate solution, and this set of values can be represented mathematically using a vector, as shown in Equation.
F = F 1 F i F N N × 1 = F ( X 1 ) F ( X i ) F ( X N ) N × 1
Here F is the vector of calculated objective function and F i is the calculated objective function based on the i th orangutan.
The calculated values of the objective function serve as a measure of the quality of each solution. Based on these evaluations, the algorithm identifies the best-performing orangutan (i.e., the candidate solution with the most optimal value) as well as the worst-performing one. In each iteration of the algorithm, the positions of the orangutans are updated, which means that their corresponding objective function values also change. As the search progresses, the best solution must be continuously updated to reflect the most optimal orangutan found so far.
This iterative process of updating orangutan positions ensures that the algorithm effectively searches the problem space, gradually moving towards an optimal or near-optimal solution.

3.3. Mathematical Modelling of OOA

In the design of the proposed Orangutan Optimization Algorithm (OOA), the position of orangutans in the search space is updated based on a completely different approach that models the natural behaviors of orangutans in two phases: exploration and exploitation. These phases reflect two key activities in orangutans’ lives, each playing a distinct role in the problem-solving process and being modeled with more words and more sentences to highlight their importance.

3.3.1. Phase 1: Foraging Strategy (Exploration)

Orangutans, in their natural habitat, spend a significant amount of time searching for food such as fruits, tree leaves, and other diet items. This foraging behavior leads to large-scale movements and extensive exploration in their environment, allowing them to discover completely different areas in the search of resources. The simulation of this foraging strategy within OOA enhances the algorithm’s exploration capability, making it more adept at scanning and searching the global space of the problem.
In the first phase of OOA, the position of each orangutan is updated to simulate this foraging behavior. Orangutans with better objective function values are considered to represent better food sources, and each orangutan seeks out these superior positions. Equation mathematically defines the set of available food resources for each orangutan by considering all orangutans with better objective function values. The diversity of food sources allows the orangutans to explore a variety of potential solutions in completely different regions of the search space.
F S i = X k : F k < F i   a n d   k i ,   w h e r e   i = 1,2 ,   ,   N   a n d   k 1,2 ,   ,   N
Here F S i is the set of candidate food sources’ locations for the i th orangutan, X k is the is the orangutan with a better objective function value than i th orangutan, and F k is the its objective function value.
To model this movement mathematically, a new position is first calculated for each orangutan using Equation. This movement allows the orangutan to adjust its location in a way that explores completely different regions, potentially leading to a significant improvement in the objective function value. If the objective function improves, the new position is confirmed and updated according to Equation:
x i , d P 1 = x i , d + r · S F S i , d I · x i , d ,   i = 1,2 ,   ,   N ,   a n d   d = 1,2 ,   , m
X i = X i P 1 ,     F i P 1 < F i X i ,     e l s e
Here X i P 1 is the new suggested position of the ith orangutan based on the first phase of OOA, x i , d P 1 is its d th dimension, F i P 1 is its objective function value, r is a random number with a normal distribution in the range of 0,1 , S F S i , d is the d th dimension of the selected food source for the i th orangutan, I is a random number from the set 1,2 , N is the number of orangutans, and m is the number of decision variables.

3.3.2. Phase 2: Nesting Skill (Exploitation)

In addition to foraging, orangutans also demonstrate remarkable intelligence through their nesting behavior. Every day, they build nests in trees, selecting branches and leaves near their current location. This activity focuses on a more localized search, optimizing their living space. Simulating the nesting skills of orangutans in OOA enhances the algorithm’s exploitation capabilities, improving the fine-tuning of solutions and allowing for more precise exploration of local regions.
During this second phase of OOA, the orangutan moves towards a nearby tree to nest. In the context of the algorithm, this nesting process is modeled by generating a new position for the orangutan based on its current location. Equation (7) is used to simulate the movement towards the tree, and if the objective function value improves, the new position replaces the previous one, as outlined in Equation (8):
x i , d P 2 = x i , d + 1 2 r · u b d l b d t ,   i = 1,2 ,   ,   N ,     d = 1,2 ,   , m ,     a n d   t = 1,2 ,   ,   T
X i = X i P 2 ,     F i P 2 < F i X i ,     e l s e
Here X i P 2 is the new suggested position of the i th orangutan based on the second phase of OOA, x i , d P 2 is its d th dimension, F i P 2 is its objective function value, t is the iteration counter of the algorithm, and T is the maximum number of algorithm iterations.

3.4. Repetition Process, Pseudocode, and Flowchart of OOA

After the positions of all the orangutans are updated in both the exploration and exploitation phases, one iteration of OOA is completed. Based on the new positions and corresponding objective function values, the algorithm enters the next iteration. The position of the best orangutan is updated and stored as the current best solution to the problem. This process is repeated until the algorithm reaches the maximum number of iterations, ensuring that the orangutans explore both globally and locally to find a completely different and quasi-optimal solution.
The steps for the OOA approach are outlined in a flowchart (Figure 2) and further illustrated through a pseudo-code (Algorithm 1). These steps provide a detailed guide for implementing OOA and navigating through the exploration and exploitation phases to find the most suitable solution.
Algorithm 1. Pseudocode of OOA.
Start OOA.
1. Input problem information: variables, objective function, and constraints.
2. Set OOA population size (N) and number of iterations (T).
3. Generate the initial population matrix at random using Equation (2). x i , d l b d + r · ( u b d l b d )
4. Evaluate the objective function.
5. For t = 1 to T
6. For   i = 1 to N
7. Phase 1: foraging strategy (exploration)
8. Determine the food sources using Equation (4). F S i X k i : F k i < F i   a n d   k i i
9. Choose the food source for the ith OOA member at random.
10. Calculate new position of ith OOA member using Equation (5). x i , d P 1 x i , d + r · S F S i , d I · x i , d
11. Update ith OOA member using Equation (6). X i X i P 1 ,     F i P 1 < F i X i ,     e l s e
12. Phase 2: nesting skill (exploitation)
13. Calculate new position of ith OOA member using Equation (7). x i , d P 2 x i , d + ( 1 2 r ) · u b d l b d t
14. Update ith OOA member using Equation (8). X i X i P 2 ,     F i P 2 < F i X i ,     e l s e
15. end
16. Save the best candidate solution so far.
17. end
18. Output the best quasi-optimal solution obtained with the OOA.
End OOA.

3.5. Computational Complexity of OOA

In this subsection, the computational complexity of the proposed OOA approach is thoroughly examined in detail. The initial preparation and the complete setup of the OOA, which involves initializing the positions of all the orangutans across the search space, has a computational complexity of O(Nm), where N represents the total number of orangutans involved in the algorithm, and m signifies the number of variables associated with the problem being solved. This initialization stage is essential for creating a completely different starting point for each orangutan, enabling them to explore the search space effectively.
In every iteration of the OOA, the positions of the orangutans are updated through two distinct phases: exploration and exploitation. Both phases contribute to the overall computational complexity of the algorithm. The process of updating the orangutan positions in each iteration incurs a computational complexity of O(2NmT), where T is the maximum number of iterations the algorithm will perform. This dual-phase update mechanism allows the OOA to handle both global exploration and local exploitation in completely different manners, ensuring a comprehensive search.
When all these steps are combined, including the initialization and the repeated updating of positions over multiple iterations, the total computational complexity of the proposed OOA approach is calculated to be O(Nm(1+2T)). This total complexity provides a clear understanding of how the algorithm scales with the number of orangutans, problem variables, and iterations, ensuring that the overall performance remains efficient even as the problem size or the number of iterations increases. More words and more sentences can further elaborate on how these computations differ from other optimization algorithms, offering a completely different approach to solving complex problems.

4. Simulation Studies and Results

In this section, the effectiveness of the proposed OOA approach in addressing optimization tasks is thoroughly evaluated. To perform this evaluation, the OOA is applied to solve the CEC 2017 test suite across multiple dimensions, specifically for dimensions of 10, 30, 50, and 100. This test suite is comprised of thirty benchmark functions, which are categorized into four completely different types: three unimodal functions (C17-F1 to C17-F3), seven multimodal functions (C17-F4 to C17-F10), ten hybrid functions (C17-F11 to C17-F20), and ten composition functions (C17-F21 to C17-F30). The C17-F2 function is excluded from the simulation studies due to its unpredictable and unstable behavior. A complete and detailed description of the CEC 2017 test suite can be found in reference [53]. The optimization results obtained by the proposed OOA approach are compared with the performance of twelve well-established metaheuristic algorithms, including: GA [26], PSO [14], GSA [33], TLBO [44], MVO [35], GWO [17], WOA [23], MPA [19], TSA [24], RSA [16], AVOA [20], and WSO [21]. The control parameters for each of these metaheuristic algorithms are outlined in Table 1 to provide a consistent basis for comparison.
Both the proposed OOA approach and the competing algorithms have been rigorously tested on the CEC 2017 test suite. Simulation results are evaluated using six different performance indicators: mean, best, worst, standard deviation (std), median, and rank. The mean value, in particular, is used as a primary metric for ranking the metaheuristic algorithms across the various benchmark functions, offering a completely different perspective on algorithm performance in handling these optimization tasks.

4.1. Evaluation of the CEC 2017 Test Suite

In this subsection, the performance and scalability of OOA are tested against the CEC 2017 test suite. With scalability in mind, the OOA and the competing algorithms are implemented on benchmark problems with different dimensions: 10, 30, 50, and 100. Detailed results of how each metaheuristic algorithm performed across these dimensions are presented in Table 2 to Table 5. Additionally, boxplot diagrams visualizing the performance of OOA in comparison to competitor algorithms are shown in Figure 3 to Figure 6, offering more clarity and insights into the optimization process.
Table 2. Optimization results for the CEC 2017 test suite (dimension=10).
Table 2. Optimization results for the CEC 2017 test suite (dimension=10).
OOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 4.57E+09 6092047 8.29E+09 56201704 1.42E+09 11323487 6095031 77678220 1.26E+08 6089533 6091479 15707647
best 100 3.8E+09 379556 7.18E+09 393096.5 3.03E+08 5107850 384388.7 399819.9 53937180 377342.1 377541.5 7436354
worst 100 5.86E+09 20916097 9.87E+09 2.03E+08 3.08E+09 24727199 20924670 2.81E+08 2.89E+08 20916044 20916624 31674536
std 0 9.76E+08 10831270 1.33E+09 1.07E+08 1.35E+09 9844980 10834854 1.49E+08 1.19E+08 10832711 10831576 12015321
median 100 4.31E+09 1536267 8.06E+09 10716402 1.14E+09 7729450 1535532 14652173 79854589 1532373 1535876 11859849
rank 1 12 4 13 8 11 6 5 9 10 2 3 7
C17-F3 mean 300 7248.184 571.5281 8154.719 2142.586 9415.993 1730.133 570.036 2816.555 915.8546 8649.637 569.9917 12313.31
best 300 4040.38 414.8698 4757.951 1219.993 3998.354 671.0715 412.0351 1566.271 712.7909 5406.083 412.0105 4066.203
worst 300 9592.022 783.7548 10642.15 3953.862 13181.16 3032.767 780.5693 5313.887 1205.835 11582.85 780.4684 19216.7
std 0 2620.36 170.1347 2978.868 1393.199 4229.499 1233.067 169.5981 1926.548 251.1957 2773.823 169.5629 8640.361
median 300 7680.167 543.744 8609.39 1698.245 10242.23 1608.347 543.7698 2193.031 872.3965 8804.809 543.7439 12985.17
rank 1 9 4 10 7 12 6 3 8 5 11 2 13
C17-F4 mean 400 835.7551 406.4469 1174.797 410.9103 545.8488 423.0108 405.2963 412.1203 410.0356 406.2858 419.0835 414.5412
best 400 642.091 402.0343 763.6607 405.3976 464.2377 407.6079 402.3208 406.0623 408.5747 403.9185 402.6623 411.7172
worst 400 1008.67 410.7245 1575.738 418.5266 642.1531 465.1624 409.2626 425.4072 413.2791 408.487 458.6695 418.0923
std 0 183.3701 3.881619 378.8062 6.05711 94.72065 30.73053 3.214865 9.887667 2.37778 2.039167 28.95685 3.540612
median 400 846.1297 406.5143 1179.894 409.8584 538.5022 409.6363 404.8009 408.5058 409.1443 406.3689 407.5011 414.1776
rank 1 12 4 13 6 11 10 2 7 5 3 9 8
C17-F5 mean 501.2464 557.4474 541.1602 564.7486 516.4128 557.8182 538.638 524.478 515.7273 532.9683 549.2062 527.9241 528.0157
best 500.9951 544.4366 527.2032 552.1821 511.0034 538.4153 522.1972 511.3503 510.8122 527.2536 545.3728 512.9635 522.0813
worst 501.9917 568.3431 554.4998 575.955 521.7626 587.2215 571.1876 539.3237 521.8585 536.0193 557.6306 545.415 532.8969
std 0.542176 11.63739 14.93161 13.61137 4.795212 23.59202 24.83581 12.60054 5.368424 4.501047 6.320925 15.57701 4.868066
median 500.9993 558.5049 541.4689 565.4287 516.4425 552.8179 530.5836 523.619 515.1193 534.3002 546.9107 526.6589 528.5424
rank 1 11 9 13 3 12 8 4 2 7 10 5 6
C17-F6 mean 600 628.4323 615.9861 635.2421 602.9869 622.1701 620.8009 603.4957 602.6535 607.3761 615.8922 607.8432 610.1736
best 600 624.1009 614.3231 633.5008 601.4639 613.0406 606.8255 601.5283 601.4623 604.5468 604.0917 602.8059 606.314
worst 600 631.6332 619.3806 637.6472 603.8607 634.9719 640.2358 605.1156 603.51 609.9158 632.7783 617.4219 613.5072
std 0 3.914527 2.505415 2.10038 1.233147 10.16695 15.31819 1.629627 0.969989 2.757746 14.66764 7.432853 3.631607
median 600 628.9975 615.1204 634.9102 603.3115 620.334 618.0712 603.6695 602.8209 607.5209 613.3493 605.5724 610.4366
rank 1 12 9 13 3 11 10 4 2 5 8 6 7
C17-F7 mean 711.1267 792.4838 761.5358 793.4886 728.8522 813.3485 758.6748 732.9789 728.9728 750.4158 721.6482 734.5142 737.9155
best 710.6726 777.7683 745.6061 784.4974 722.3432 782.2373 748.2457 722.2875 720.5478 748.4853 719.4226 729.1924 729.9694
worst 711.7995 805.0745 783.0164 802.8195 739.7237 846.4048 783.4946 750.7517 745.3064 756.0077 723.6266 742.9379 743.1365
std 0.558828 12.41764 18.86083 9.326893 8.260929 30.30316 18.29701 13.46041 12.13428 4.067939 2.270454 6.518658 6.222324
median 711.0174 793.5461 758.7605 793.3187 726.671 812.3759 751.4795 729.4382 725.0186 748.585 721.7717 732.9632 739.278
rank 1 11 10 12 3 13 9 5 4 8 2 6 7
C17-F8 mean 801.4928 844.2021 829.7982 848.395 816.5082 843.9385 834.1154 813.9036 817.2144 835.2252 820.5241 822.9169 817.9912
best 800.995 838.3304 820.8383 839.8938 812.6332 831.338 818.3525 809.161 812.7939 828.4194 812.9445 815.9728 813.5942
worst 801.9912 851.0802 841.7132 852.682 818.5181 859.807 844.9105 817.8161 820.2115 841.7782 826.8949 828.6387 824.3819
std 0.627256 6.791404 9.484391 6.284814 2.899217 14.21684 12.45678 3.920941 3.490774 7.137574 6.446372 6.815545 4.980234
median 801.4926 843.6989 828.3206 850.5021 817.4408 842.3044 836.5992 814.3187 817.9261 835.3515 821.1284 823.5281 816.9944
rank 1 12 8 13 3 11 9 2 4 10 6 7 5
C17-F9 mean 900 1362.646 1169.213 1399.203 939.0946 1327.873 1323.411 932.5228 941.6948 941.6063 931.8625 935.3575 936.0737
best 900 1225.006 993.6875 1324.862 920.1872 1133.226 1055.871 914.9908 923.1881 920.892 912.4248 914.7052 914.7301
worst 900 1496.611 1556.222 1509.76 949.8375 1582.904 1572.539 949.4968 956.4534 957.4939 949.426 950.235 956.9054
std 0 128.8973 288.7439 90.48592 14.90113 209.4773 237.1464 15.71312 16.02944 18.38468 16.83996 17.86093 19.19655
median 900 1364.483 1063.472 1381.096 943.1769 1297.682 1332.617 932.8018 943.5688 944.0197 932.7997 938.2449 936.3297
rank 1 12 9 13 6 11 10 3 8 7 2 4 5
C17-F10 mean 1006.179 2227.449 1797.977 2451.386 1697.874 2005.992 1999.789 1800.399 1755.209 2119.765 2206.348 1935.161 1747.259
best 1000.284 1985.409 1549.167 2283.459 1547.179 1811.2 1501.596 1529.61 1594.299 1792.095 1949.695 1611.905 1473.268
worst 1012.668 2384.368 2288.639 2752.02 1890.028 2203.035 2457.942 2216.838 2003.11 2385.18 2299.928 2296.763 2100.095
std 7.26307 192.2674 373.5763 226.1773 155.9687 245.1949 492.187 350.6431 190.3448 274.753 187.0969 309.4367 289.5252
median 1005.882 2270.009 1677.051 2385.033 1677.145 2004.867 2019.81 1727.575 1711.713 2150.892 2287.885 1915.988 1707.837
rank 1 12 5 13 2 9 8 6 4 10 11 7 3
C17-F11 mean 1100 3358.268 1148.17 3459.363 1143.911 4661.842 1150.17 1131.057 1153.687 1150.133 1140.582 1144.115 2154.142
best 1100 2343.658 1123.831 1400.259 1124.906 4539.942 1120.499 1112.501 1126.71 1138.815 1125.947 1133.835 1122.198
worst 1100 4336.956 1192.047 5491.405 1188.779 4728.577 1167.562 1148.954 1214.565 1168.02 1163.473 1162.932 5084.728
std 0 977.8091 33.18006 2006.444 33.17878 91.42135 24.04206 19.09685 45.12681 13.66304 17.67179 14.2154 2132.255
median 1100 3376.229 1138.402 3472.894 1130.979 4689.424 1156.31 1131.388 1136.736 1146.849 1136.454 1139.847 1204.821
rank 1 11 6 12 4 13 8 2 9 7 3 5 10
C17-F12 mean 1352.959 2.89E+08 1210170 5.77E+08 1121258 1160393 2234500 1151758 1467379 4439816 1144626 317370.9 805181.8
best 1318.646 65190845 565696.3 1.29E+08 471411.1 884935 250457.7 117321.2 481469.9 1215091 662553.5 112162.7 417973.3
worst 1438.176 5.05E+08 2075411 1.01E+09 1682499 1316401 3605250 3086023 2224279 7723507 1854541 453149 982890.8
std 62.51949 2.43E+08 826523.8 4.86E+08 567029.2 214838.2 1711978 1440048 815742.6 3737400 595924.9 170960.4 284657.2
median 1327.506 2.93E+08 1099787 5.85E+08 1165560 1220119 2541145 701843.7 1581884 4410333 1030705 352085.9 909931.4
rank 1 12 8 13 4 7 10 6 9 11 5 2 3
C17-F13 mean 1305.324 14052323 16558.56 28094345 8223.942 11986.93 7771.563 7076.661 9994.289 15246.05 9808.202 6988.977 46072.78
best 1303.114 1173441 3498.21 2333392 5373.75 7874.623 4355.441 2405.713 6374.938 13963.32 6433.66 3217.032 8655.764
worst 1308.508 46639423 26725.17 93265201 9910.585 17547.95 14691.72 11790.11 13029.65 17202.54 12864.49 15332.66 148398.8
std 2.479867 23755591 13040.03 47508976 2180.738 4653.011 5252.727 5568.254 2988.214 1624.425 2912.181 6119.022 74481.01
median 1304.837 4198214 18005.42 8389394 8805.717 11262.57 6019.546 7055.411 10286.28 14909.17 9967.328 4703.11 13618.26
rank 1 12 10 13 5 8 4 3 7 9 6 2 11
C17-F14 mean 1400.746 3601.599 1988.918 4708.955 2153.36 3105.336 1577.603 1620.854 2254.44 1636.344 4887.758 2785.575 10938.15
best 1400 2847.896 1696.674 4095.09 1462.54 1484.853 1478.439 1431.824 1462.476 1507.93 4030.832 1444.054 3320.856
worst 1400.995 4718.681 2581.197 5914.582 3782.979 4839.726 1798.999 2164.606 4594.103 1859.916 6713.016 5864.913 21397.01
std 0.54281 885.0455 441.2268 910.1586 1205.338 1867.705 164.5463 395.6014 1701.931 167.9463 1373.507 2280.179 8320.773
median 1400.995 3419.909 1838.9 4413.074 1683.961 3048.382 1516.487 1443.494 1480.59 1588.766 4403.592 1916.667 9517.356
rank 1 10 5 11 6 9 2 3 7 4 12 8 13
C17-F15 mean 1500.331 9271.728 5195.141 12210.6 5172.109 6589.465 5947.951 2122.52 5617.441 2259.423 20395.81 8221.043 4583.245
best 1500.001 3242.03 2311.909 3020.886 3761.056 2681.803 2307.773 1864.808 3537.028 1974.326 9843.108 3008.9 2375.386
worst 1500.5 15403.95 10988.87 25493.99 6650.756 10879.16 12384.16 2643.353 6828.135 2680.072 30102.57 13486.13 7339.984
std 0.256877 5615.625 4306.626 10760.16 1288.596 3749.994 4822.34 388.0722 1581.045 330.1566 10378.28 4746.181 2552.922
median 1500.413 9220.466 3739.894 10163.75 5138.312 6398.449 4549.934 1990.96 6052.301 2191.647 20818.78 8194.569 4308.806
rank 1 11 6 12 5 9 8 2 7 3 13 10 4
C17-F16 mean 1600.76 1982.417 1816.454 1985.627 1745.24 2010.88 1931.699 1821.91 1750.145 1707.946 2032.039 1909.746 1810.549
best 1600.356 1920.548 1697.212 1842.04 1678.099 1854.852 1769.843 1743.721 1653.185 1678.46 1924.123 1816.75 1759.747
worst 1601.12 2099.114 1907.054 2199.342 1811.471 2151.582 2041.625 1889.957 1847.048 1769.939 2208.99 2037.857 1833.409
std 0.344697 86.8275 95.45012 166.5573 59.88601 151.9123 141.7167 65.84902 86.46288 46.09586 142.6368 105.624 37.28496
median 1600.781 1955.003 1830.774 1950.562 1745.694 2018.544 1957.664 1826.981 1750.174 1691.692 1997.521 1892.19 1824.52
rank 1 10 6 11 3 12 9 7 4 2 13 8 5
C17-F17 mean 1700.099 1819.629 1764.615 1819.751 1767.447 1806.513 1838.996 1839.717 1778.972 1770.673 1842.983 1765.748 1768.709
best 1700.02 1801.836 1744.775 1811.427 1738.37 1788.707 1772.867 1778.876 1737.537 1759.735 1759.272 1753.767 1755.889
worst 1700.332 1837.01 1799.529 1826.193 1842.651 1822.56 1894.563 1944.574 1880.043 1793.131 1963.088 1784.178 1786.741
std 0.169302 15.8926 28.07609 6.909195 54.91478 15.25006 55.35931 85.10395 73.82753 16.86636 109.5243 15.6774 14.46863
median 1700.022 1819.835 1757.077 1820.693 1744.384 1807.392 1844.277 1817.71 1749.155 1764.913 1824.787 1762.522 1766.104
rank 1 9 2 10 4 8 11 12 7 6 13 3 5
C17-F18 mean 1805.36 2335204 13804.56 4652768 17577.58 13969.78 23146.27 21220.33 20371.01 28202.16 12055.37 21978.5 14585.91
best 1800.003 123557.4 8013.312 234187.2 9060.126 10152.12 6858.01 8695.712 9599.278 24132.94 6812.501 6411.055 6864.236
worst 1820.451 6762049 19031.49 13501037 26661.37 17848.67 34427.23 33810.4 31465.07 32117.82 14748.25 36160.44 21386.16
std 10.98033 3354924 4978.57 6707123 9742.101 3744.082 14795.6 12437.89 13500.23 4686.876 3899.459 17140.19 6513.132
median 1800.492 1227605 14086.72 2437923 17294.4 13939.16 25649.92 21187.6 20209.85 28278.94 13330.38 22671.25 15046.62
rank 1 12 3 13 6 4 10 8 7 11 2 9 5
C17-F19 mean 1900.445 326246.8 8176.982 576987.9 8123.921 105109.3 31100.32 4265.894 7096.304 6535.656 35683.8 23056.4 7748.04
best 1900.039 21270.18 4223.297 38220.34 3495.649 2472.429 7091.41 2412.043 3837.089 2597.264 14176.46 2983.403 6426.274
worst 1901.559 685969.8 15922.87 1236278 14522.72 206802.8 57102.62 6675.377 16383.7 12794.42 48678.22 64976.7 10313.44
std 0.812462 313076.4 5977.705 589916.7 5583.882 126664.2 22412.42 1937.333 6759.261 4945.329 17070.38 31183.43 1909.097
median 1900.09 298873.6 6280.879 516726.7 7238.657 105581 30103.63 3988.078 4082.215 5375.468 39940.26 12132.76 7126.224
rank 1 12 7 13 6 11 9 2 4 3 10 8 5
C17-F20 mean 2000.312 2208.805 2172.512 2215.316 2146.62 2202.551 2201.912 2147.22 2171.986 2092.106 2240.341 2171.222 2074.33
best 2000.312 2157.756 2056.338 2165.197 2129.282 2115.686 2110.998 2069.267 2147.075 2085.607 2184.168 2149.148 2060.189
worst 2000.312 2275.808 2283.337 2257.945 2186.408 2304.88 2277.939 2244.941 2231.476 2098.215 2313.71 2206.913 2089.551
std 0 53.56279 109.7486 53.87584 29.12888 87.30511 85.26482 79.24193 43.66266 5.640705 65.18882 29.90742 13.23554
median 2000.312 2200.829 2175.187 2219.06 2135.394 2194.82 2209.355 2137.337 2154.696 2092.3 2231.744 2164.413 2073.79
rank 1 11 8 12 4 10 9 5 7 3 13 6 2
C17-F21 mean 2200 2293.874 2229.15 2272.679 2292.324 2320.069 2307.568 2261.266 2310.373 2299.266 2355.293 2314.868 2298.025
best 2200 2252.79 2219.413 2242.24 2288.41 2232.782 2230.466 2216.358 2306.087 2225.718 2340.173 2307.436 2238.034
worst 2200 2314.369 2254.533 2291.866 2297.611 2363.212 2342.797 2308.365 2314.986 2330.001 2367.011 2325.838 2325.459
std 0 31.14894 18.54513 23.57032 4.723094 64.93348 56.60492 56.20072 4.639321 53.94494 13.36999 9.48029 44.08846
median 2200 2304.168 2221.327 2278.304 2291.637 2342.141 2328.505 2260.17 2310.21 2320.672 2356.994 2313.098 2314.303
rank 1 6 2 4 5 12 9 3 10 8 13 11 7
C17-F22 mean 2300.073 2658.071 2308.515 2804.316 2307.256 2639.297 2320.621 2289.556 2308.203 2317.167 2301.18 2312.018 2315.824
best 2300 2556.605 2306.656 2634.685 2298.448 2419.396 2317.356 2239.902 2298.584 2309.341 2297.549 2298.071 2309.828
worst 2300.29 2773.729 2310.327 2931.611 2316.359 2811.163 2323.239 2306.538 2321.527 2328.799 2303.218 2338.871 2320.512
std 0.158302 110.1861 2.263155 136.2506 7.982471 190.4072 3.159466 36.12051 10.75811 9.199088 2.726583 19.92629 4.904607
median 2300 2650.976 2308.539 2825.484 2307.109 2663.315 2320.943 2305.892 2306.35 2315.264 2301.977 2305.565 2316.477
rank 2 12 6 13 4 11 10 1 5 9 3 7 8
C17-F23 mean 2600.919 2684.825 2639.826 2687.708 2618.297 2706.393 2645.265 2621.941 2616.604 2640.215 2762.359 2641.641 2651.347
best 2600.003 2648.81 2629.687 2664.648 2615.182 2631.812 2629.23 2609.537 2612.404 2631.347 2707.433 2636.412 2635.05
worst 2602.87 2704.636 2654.396 2720.963 2621.911 2743.753 2662.451 2631.445 2622.131 2648.494 2876.628 2652.399 2659.177
std 1.440643 28.65226 12.77372 29.45997 3.146459 55.12318 19.38158 10.49306 4.992796 7.861448 86.17189 8.070403 12.33314
median 2600.403 2692.927 2637.611 2682.61 2618.047 2725.004 2644.69 2623.391 2615.94 2640.51 2732.688 2638.876 2655.58
rank 1 10 5 11 3 12 8 4 2 6 13 7 9
C17-F24 mean 2630.488 2770.389 2762.249 2829.591 2708.993 2680.964 2756.523 2693.263 2746.839 2752.613 2745.765 2760.576 2725.838
best 2516.677 2714.329 2740.462 2799.532 2679.923 2567.495 2721.397 2530.727 2713.364 2729.079 2550.576 2744.509 2577.537
worst 2732.32 2841.573 2782.453 2885.682 2720.993 2804.118 2787.482 2761.175 2764.26 2766.999 2871.867 2783.134 2803.368
std 127.1166 65.211 19.07885 41.91001 21.2623 143.1527 29.56212 118.7769 25.13303 18.2754 150.1475 17.74422 110.3649
median 2636.477 2762.828 2763.04 2816.575 2717.527 2676.122 2758.607 2740.576 2754.867 2757.187 2780.309 2757.33 2761.224
rank 1 12 11 13 4 2 9 3 7 8 6 10 5
C17-F25 mean 2932.639 3116.637 2915.062 3212.151 2928.118 3095.075 2910.197 2922.105 2935.676 2931.45 2922.244 2923.114 2946.754
best 2898.047 3045.65 2894.722 3160.945 2908.305 2913.735 2781.515 2893.096 2909.545 2905.358 2894.419 2907.767 2933.993
worst 2945.793 3290.136 2949.055 3279.728 2939.089 3529.038 2957.801 2944.703 2946.48 2949.457 2942.376 2946.134 2960.285
std 25.19385 127.3414 25.68891 55.61337 14.85483 318.0286 93.76283 28.79726 19.14448 23.31279 25.65604 20.25217 12.76888
median 2943.359 3065.382 2908.236 3203.966 2932.539 2968.763 2950.736 2925.31 2943.339 2935.493 2926.091 2919.278 2946.369
rank 8 12 2 13 6 11 1 3 9 7 4 5 10
C17-F26 mean 2900 3515.608 3007.385 3642.688 3140.201 3531.802 3173.614 2942.171 3240.953 3192.935 3728.882 2945.372 2939.773
best 2900 3259.133 2845.795 3402.733 2982.88 3149.328 2989.348 2922.016 3006.153 2939.584 2853.63 2890.991 2791.937
worst 2900 3704.033 3177.206 3906.141 3536.327 4042.516 3517.445 2967.174 3791.159 3765.449 4152.713 3038.889 3093.388
std 4.05E-13 231.225 198.9794 235.1629 288.8082 471.0027 260.8804 22.18356 402.1869 419.6982 650.5965 70.42932 161.8943
median 2900 3549.632 3003.27 3630.939 3020.798 3467.682 3093.832 2939.747 3083.25 3033.353 3954.592 2925.804 2936.883
rank 1 10 5 12 6 11 7 3 9 8 13 4 2
C17-F27 mean 3089.518 3195.49 3123.158 3214.078 3117.216 3171.862 3184.459 3099.941 3119.973 3119.139 3209.909 3136.308 3155.888
best 3089.518 3154.798 3101.985 3128.297 3100.891 3107.813 3174.234 3097.683 3101.473 3102.049 3198.905 3103.653 3121.857
worst 3089.518 3254.568 3175.783 3370.273 3158.655 3205.385 3193.322 3101.618 3172.393 3164.049 3226.783 3177.805 3203.141
std 2.86E-13 45.92707 38.38335 116.6041 30.24874 49.10097 8.550188 1.969086 38.16412 32.72923 12.96941 34.12506 37.16475
median 3089.518 3186.296 3107.431 3178.872 3104.659 3187.126 3185.14 3100.231 3103.012 3105.23 3206.974 3131.887 3149.277
rank 1 11 6 13 3 9 10 2 5 4 12 7 8
C17-F28 mean 3100 3564.236 3248.179 3692.02 3293.876 3534.345 3289.609 3250.32 3337.12 3320.895 3423.588 3305.022 3256.55
best 3100 3508.735 3156.491 3644.298 3202.862 3377.077 3164.756 3121.905 3202.333 3237.799 3397.497 3219.509 3160.8
worst 3100 3618.44 3362.217 3725.321 3338.377 3724.854 3394.177 3393.76 3399.659 3393.957 3458.191 3362.392 3494.323
std 0 51.28969 98.36261 40.7178 67.96787 194.9551 117.0799 160.4997 100.7499 77.04266 27.74621 68.98006 174.7305
median 3100 3564.884 3237.005 3699.231 3317.132 3517.725 3299.752 3242.807 3373.244 3325.911 3419.332 3319.093 3185.539
rank 1 12 2 13 6 11 5 3 9 8 10 7 4
C17-F29 mean 3132.241 3319.905 3284.13 3358.325 3248.02 3244.612 3336.794 3217.153 3268.299 3225.3 3334.331 3269.013 3245.428
best 3130.076 3300.07 3215.258 3291.717 3192.345 3191.768 3244.239 3159.686 3203.63 3186.914 3246.109 3180.47 3210.067
worst 3134.841 3339.053 3354.8 3413.375 3313.929 3293.738 3461.603 3285.794 3365.352 3247.698 3570.954 3341.366 3277.406
std 2.70854 19.48662 76.66374 66.83395 59.02525 45.52817 99.31632 57.20916 83.25541 31.52592 172.3924 78.19647 31.84393
median 3132.023 3320.249 3283.231 3364.105 3242.904 3246.471 3320.668 3211.565 3252.108 3233.294 3260.131 3277.108 3247.12
rank 1 10 9 13 6 4 12 2 7 3 11 8 5
C17-F30 mean 3418.734 1953229 384127.8 3138741 709801.2 644655.9 952310.9 390768.1 906420.5 193407.2 781676.3 459509.8 1388299
best 3394.682 1506631 144960 1078058 36146.78 181123.7 70453.51 21849.04 43153.57 39652.19 667033.1 22285.5 517999
worst 3442.907 2731657 692344.1 4745919 1177267 1074371 3455229 1344617 1507210 467768.9 894054.8 714360.5 2850473
std 30.30114 588518.1 277107.7 1669828 532265 461029.5 1821378 695269.5 684113 205814.3 109563.7 352376.6 1127637
median 3418.673 1787315 349603.6 3365493 812895.6 661564.3 141780.3 98303.29 1037659 133103.9 782808.6 550696.7 1092361
rank 1 12 3 13 7 6 10 4 9 2 8 5 11
Sum rank 37 320 174 351 138 281 237 112 188 189 238 181 193
Mean rank 1.275862 11.03448 6 12.10345 4.758621 9.689655 8.172414 3.862069 6.482759 6.517241 8.206897 6.241379 6.655172
Total rank 1 12 4 13 3 11 9 2 6 7 10 5 8
Table 3. Optimization results for the CEC 2017 test suite (dimension=30).
Table 3. Optimization results for the CEC 2017 test suite (dimension=30).
OOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 2.15E+10 2.16E+08 3.36E+10 2.16E+08 1.47E+10 1.59E+09 2.17E+08 1.57E+09 5.22E+09 2.25E+08 1.36E+09 3.61E+08
best 100 1.85E+10 1.04E+08 2.98E+10 1.04E+08 9.3E+09 1.19E+09 1.05E+08 3.27E+08 3.34E+09 1.04E+08 1.04E+08 2.31E+08
worst 100 2.68E+10 4.58E+08 4.11E+10 4.58E+08 1.99E+10 2.17E+09 4.59E+08 4.53E+09 7.56E+09 4.63E+08 4.67E+09 5.84E+08
std 8.93E-15 4.22E+09 1.79E+08 5.62E+09 1.79E+08 5.49E+09 5.05E+08 1.79E+08 2.16E+09 1.9E+09 1.8E+08 2.41E+09 1.67E+08
median 100 2.04E+10 1.52E+08 3.16E+10 1.52E+08 1.49E+10 1.51E+09 1.52E+08 7.1E+08 4.99E+09 1.67E+08 3.22E+08 3.15E+08
rank 1 12 2 13 3 11 9 4 8 10 5 7 6
C17-F3 mean 300 96614.41 53933.49 77366.61 18585.58 55958.1 205718.4 19131.16 51472.71 45809.84 95407.06 43547.71 153272.3
best 300 88996.04 39548.33 63712.4 16226.86 51683.78 170987.9 16830.62 47478.85 43809.8 82336.48 38319.08 120561.6
worst 300 106524.6 62295.66 84695.4 20971.61 58288.34 235879.8 21002.04 53477.99 47780.24 103083 48636.89 208250.5
std 0 9492.196 10861.79 10276.61 2134.522 3185.682 29329.65 1946.304 3005.516 1764.21 10708.3 5738.33 45101.23
median 300 95468.51 56944.99 80529.33 18571.92 56930.14 208002.9 19345.98 52467.01 45824.67 98104.4 43617.44 142138.6
rank 1 11 7 9 2 8 13 3 6 5 10 4 12
C17-F4 mean 458.5616 5350.397 539.4145 8089.186 521.9548 3807.993 817.0299 524.9005 585.8032 858.3046 604.3766 628.1991 780.6074
best 458.5616 3054.705 523.4544 5224.711 515.404 967.5568 760.4125 517.1595 535.2115 686.5093 590.4452 536.4024 740.8788
worst 458.5616 7206.478 550.2992 11265.61 534.1434 6252.298 889.6414 530.3765 617.9659 1177.365 619.4999 783.7213 796.0334
std 0 1871.912 13.03211 2727.29 9.092848 2429.097 64.88372 6.079095 38.78506 236.972 17.05345 124.3083 28.86259
median 458.5616 5570.202 541.9521 7933.213 519.1358 4006.058 809.0328 526.033 595.0176 784.6721 603.7807 596.3364 792.7587
rank 1 12 4 13 2 11 9 3 5 10 6 7 8
C17-F5 mean 502.4874 816.585 719.5219 848.4325 603.984 775.2252 799.006 633.4036 635.4277 756.0726 717.4144 644.1008 700.8081
best 500.995 799.1994 688.3874 826.0953 587.9209 750.8395 777.6683 618.6867 599.8995 739.9461 703.0501 621.5861 658.3407
worst 503.9798 836.1958 764.645 878.4212 620.0451 804.8383 807.6101 664.2009 661.1234 774.8832 737.5871 683.1084 753.5
std 1.397379 16.5293 37.13723 26.03724 15.10696 28.20919 15.53716 22.59738 32.74051 18.46433 17.95634 29.331 42.83256
median 502.4874 815.4724 712.5276 844.6068 603.9851 772.6115 805.3727 625.3633 640.344 754.7306 714.5102 635.8544 695.6958
rank 1 12 8 13 2 10 11 3 4 9 7 5 6
C17-F6 mean 600 671.8645 645.024 674.4263 609.8658 669.551 668.9306 626.9659 616.8448 642.285 652.9594 645.2092 631.6495
best 600 670.4622 642.8248 671.1038 608.833 656.5433 659.7693 616.8861 610.4155 637.8877 652.2821 636.7136 625.3622
worst 600 673.3848 647.2092 679.2321 610.5577 677.7928 672.7284 638.6085 623.9538 651.085 653.7211 653.3163 635.0472
std 7.14E-14 1.433896 2.015521 4.206224 0.808745 10.70667 6.669619 10.99308 6.058066 6.647049 0.73281 8.093386 4.67082
median 600 671.8056 645.0311 673.6846 610.0362 671.934 671.6123 626.1845 616.505 640.0838 652.9172 645.4035 633.0942
rank 1 12 7 13 2 11 10 4 3 6 9 8 5
C17-F7 mean 733.478 1245.794 1122.999 1278.85 880.073 1185.844 1253.075 886.0305 911.6808 1065.519 980.9371 905.745 977.9064
best 732.8186 1207.453 1027.182 1271.948 862.4656 1068.204 1216.101 847.0424 855.0212 992.1556 940.8225 892.8739 950.0423
worst 734.5199 1272.678 1258.797 1296.025 922.0296 1304.724 1323.112 946.5276 948.7409 1127.53 1038.579 928.3516 1020.577
std 0.820293 30.5378 111.7555 12.56992 30.57605 110.8795 54.41842 47.39518 43.42062 77.06954 45.57859 17.57207 32.69181
median 733.2867 1251.522 1103.008 1273.715 867.8984 1185.224 1236.545 875.276 921.4806 1071.196 972.1733 900.8773 970.5031
rank 1 11 9 13 2 10 12 3 5 8 7 4 6
C17-F8 mean 803.3298 1058.065 948.5071 1088.37 900.689 1037.026 1013.86 902.9144 901.8313 1007.554 958.1218 927.4182 978.136
best 801.2023 1047.635 927.1619 1069.187 893.6258 1004.164 966.3403 875.2901 893.4635 989.4507 941.5461 915.1568 963.4448
worst 804.1574 1071.848 967.1707 1111.511 910.5728 1118.871 1051.081 925.5831 909.499 1037.685 978.3326 941.4581 992.1231
std 1.545701 12.81537 19.36666 21.54123 7.840737 59.7159 39.42715 24.43217 7.139129 22.72103 17.49184 11.84809 15.27864
median 803.9798 1056.387 949.8478 1086.391 899.2787 1012.534 1019.009 905.3923 902.1813 1001.541 956.3042 926.5289 978.4881
rank 1 12 6 13 2 11 10 4 3 9 7 5 8
C17-F9 mean 900 10081.46 5101.467 9806.301 2069.207 10506.5 10131.77 5612.936 2874.474 5870.885 4497.761 4066.545 2238.248
best 900 8674.481 4115.659 9645.45 1830.887 6753.152 8060.012 4599.951 2484.507 4458.616 4087.39 2957.901 2028.884
worst 900 11351.77 5672.734 9939.413 2218.791 13826.81 11905.03 7988.969 3400.575 8283.113 5220.916 5463.258 2460.82
std 7.14E-14 1210.428 757.1536 144.6618 192.7325 3180.977 2131.48 1733.811 502.3072 1852.802 575.9914 1154.492 228.836
median 900 10149.78 5308.739 9820.171 2113.576 10723.02 10281.02 4931.413 2806.408 5370.905 4341.369 3922.511 2231.644
rank 1 11 7 10 2 13 12 8 4 9 6 5 3
C17-F10 mean 2293.267 6881.855 5445.848 7438.226 4257.329 6346.146 6294.493 4793.373 4906.424 7454.188 4954.637 5110.67 6007.258
best 1851.756 6503.624 4840.213 6834.203 3957.726 5306.802 5490.274 4555.776 4406.865 7148.075 4746.047 4829.285 5532.538
worst 2525.027 7058.243 5930.547 7869.142 4716.564 6752.056 7472.411 5100.911 5269.169 7622.178 5209.384 5479.349 6562.458
std 326.7738 279.2847 566.2276 475.6195 369.0798 756.3273 945.8514 256.6862 395.0874 227.8082 218.5099 294.6064 507.6167
median 2398.142 6982.777 5506.315 7524.78 4177.514 6662.862 6107.644 4758.402 4974.83 7523.25 4931.559 5067.022 5967.018
rank 1 11 7 12 2 10 9 3 4 13 5 6 8
C17-F11 mean 1102.987 6822.248 1745.516 7878.094 1673.799 4893.283 7076.081 1791.348 2507.27 2338.765 3078.954 1738.629 8176.406
best 1100.995 5637.663 1653.643 6443.573 1530.864 3681.247 5287.212 1651.827 1843.898 2013.563 2441.813 1649.955 3374.532
worst 1105.977 7627.036 1945.118 8774.924 1858.768 6936.913 10315.56 1946.495 4247.063 3124.093 3623.673 1902.104 14911.18
std 2.341679 1003.287 146.0792 1130.981 153.8407 1614.778 2415.797 136.0006 1265.008 571.6796 550.8356 122.9817 5372.792
median 1102.487 7012.146 1691.651 8146.939 1652.781 4477.486 6350.775 1783.535 1969.059 2108.702 3125.165 1701.228 7209.959
rank 1 10 4 12 2 9 11 5 7 6 8 3 13
C17-F12 mean 1744.553 5.73E+09 37041608 8.89E+09 20094778 4.14E+09 2.22E+08 29210711 62823790 2.66E+08 1.82E+08 22162355 26329511
best 1721.81 4.76E+09 11046828 7.92E+09 8675865 2.16E+09 60182802 12900846 13535696 1.66E+08 40693025 10717920 13974918
worst 1764.937 7.28E+09 75615075 1.12E+10 34202179 5.42E+09 4.36E+08 39592150 1.18E+08 4.61E+08 5.51E+08 34408383 38512204
std 21.92397 1.18E+09 30177935 1.69E+09 14150253 1.53E+09 1.89E+08 12440535 46444843 1.45E+08 2.68E+08 13200207 13435001
median 1745.733 5.45E+09 30752264 8.23E+09 18750534 4.5E+09 1.95E+08 32174923 60019050 2.19E+08 68002949 21761559 26415462
rank 1 12 6 13 2 11 9 5 7 10 8 3 4
C17-F13 mean 1315.791 4.65E+09 234475 8.58E+09 114340 1.19E+09 848348.1 186778.5 726743.2 71823934 142473.2 139130.8 9802230
best 1314.587 2.26E+09 112334.1 4.5E+09 43210.96 16088952 388963.5 77625.43 119097.2 49924732 65964.4 57684.87 2673834
worst 1318.646 6.51E+09 353565.6 1.05E+10 240984 4.13E+09 1327049 273433.4 2144638 1.06E+08 263683.3 250402.8 21081475
std 2.106458 1.91E+09 129203.1 3E+09 100849.1 2.15E+09 511048.8 108404.7 1046282 26301943 96404.67 89357.48 8585811
median 1314.967 4.91E+09 236000.2 9.64E+09 86582.59 3.07E+08 838690.1 198027.5 321618.9 65792667 120122.5 124217.8 7726806
rank 1 12 6 13 2 11 8 5 7 10 4 3 9
C17-F14 mean 1423.017 1718087 399037.4 1962627 179916.4 1132743 1984755 195263.3 611735.3 292356.5 1107748 193985.3 1809212
best 1422.014 1061406 132561.7 1008748 61125.47 742595.4 89121.17 72899.9 163245.4 167780.5 714968.1 80039.05 371627.1
worst 1423.993 2389736 679300.5 2758135 442287.5 1459897 5958393 462069.6 1040164 571838.3 1500624 443698.1 2808801
std 0.879206 636983.5 317464.3 845287.8 191863.2 321641.1 2931780 195299.3 412610.4 205434.1 470262.9 183056.2 1190488
median 1423.03 1710604 392143.7 2041812 108126.3 1164240 945753.9 123041.7 621766 214903.5 1107700 126101.9 2028210
rank 1 10 6 12 2 9 13 4 7 5 8 3 11
C17-F15 mean 1503.129 2.48E+08 1375822 4.87E+08 1346736 13013832 5440226 1380151 14192485 5512754 1358466 1349301 2121150
best 1502.462 2.18E+08 177100.7 4.24E+08 129052.6 7380528 316349.5 155012.3 283640.6 1128907 141037.9 134942.1 408683.1
worst 1504.265 2.74E+08 4894040 5.36E+08 4868737 27325764 18162803 4887511 52968867 12712041 4879322 4871739 5009793
std 0.930751 30351327 2551791 60423759 2554602 10424666 9296555 2544111 28133875 5439895 2553789 2554886 2200031
median 1502.893 2.51E+08 216074.2 4.93E+08 194577.4 8674518 1640875 239039.2 1758716 4105034 206752.9 195262.5 1533061
rank 1 12 5 13 2 10 8 6 11 9 4 3 7
C17-F16 mean 1663.469 4101.329 3031.898 4635.035 2241.54 3251.904 4041.201 2696.913 2661.031 3408.197 3572.045 2975.076 2990.448
best 1614.72 3807.969 2737.754 3978.845 2001.553 2908.494 3376.12 2482.418 2539.576 3251.758 3420.823 2753.289 2710.515
worst 1744.118 4276.32 3407.61 5176.319 2516.773 3411.485 4801.345 2913.154 2829.105 3667.715 3691.182 3153.728 3343.812
std 67.41864 234.0283 302.0019 676.0589 242.5108 251.8612 637.99 221.8501 145.2831 201.6661 121.8334 209.1785 322.4667
median 1647.519 4160.513 2991.113 4692.488 2223.917 3343.819 3993.67 2696.04 2637.723 3356.658 3588.088 2996.644 2953.733
rank 1 12 7 13 2 8 11 4 3 9 10 5 6
C17-F17 mean 1728.099 3204.184 2445.318 3451.547 1948.085 3094.792 2749.862 2125.927 2005.692 2218.34 2485.993 2332.979 2187.25
best 1718.761 2673.848 2350.034 3100.934 1867.475 2198.674 2318.895 2043.202 1889.97 2056.227 2364.45 2153.82 2156.169
worst 1733.659 3820.327 2549.322 4023.651 2005.72 5345.294 3024.682 2272.116 2134.369 2470.026 2632.64 2661.365 2267.963
std 7.297618 528.6384 89.51016 445.1187 71.30712 1636.126 332.5784 109.2024 134.6634 193.1037 131.3193 258.2104 58.77136
median 1729.987 3161.279 2440.959 3340.802 1959.573 2417.6 2827.936 2094.196 1999.214 2173.554 2473.441 2258.365 2162.433
rank 1 12 8 13 2 11 10 4 3 6 9 7 5
C17-F18 mean 1825.696 23516152 2597862 26971587 449288.9 29942772 5237635 967163.3 788246.3 1799905 865686.6 559110.2 3406739
best 1822.524 7042539 626271.2 8972491 157003.2 1237016 1769612 439399.9 219118.9 1025030 440176.2 287596.9 2707382
worst 1828.42 45599259 4445437 52908094 800715.7 56693727 10685466 1845177 1272191 2261004 1211045 922395.8 4776390
std 2.939396 18592179 2060642 20284915 288890.8 33335395 4150540 673195 471794.6 590154.2 364166.3 287799.8 1039578
median 1825.92 20711405 2659870 23002881 419718.5 30920173 4247731 792038.2 830837.5 1956792 905762.4 513224.1 3071591
rank 1 11 8 12 2 13 10 6 4 7 5 3 9
C17-F19 mean 1910.989 4.73E+08 1296419 7.96E+08 1243037 2.4E+08 12870427 2003950 4515071 5909591 1307840 1277590 2557263
best 1908.84 3.53E+08 293139.3 5.75E+08 240422.4 3206791 1752074 367290.5 1497855 3643788 308068.3 347028 1960284
worst 1913.095 6.15E+08 1937459 1.21E+09 1816626 6.64E+08 21895052 3529380 12027809 8450739 1904376 1822176 3191310
std 2.101811 1.43E+08 764927.9 3.04E+08 750238.1 3.31E+08 9869339 1494110 5493944 2731583 752848.6 698751.5 548249.5
median 1911.01 4.61E+08 1477540 7.01E+08 1457550 1.47E+08 13917291 2059565 2267309 5771917 1509458 1470577 2538729
rank 1 12 4 13 2 11 10 6 8 9 5 3 7
C17-F20 mean 2065.787 2852.05 2636.891 2896.093 2261.509 2812.046 2801.946 2611.987 2423.904 2769.729 2942.41 2564.666 2505.922
best 2029.521 2778.489 2515.082 2751.613 2145.565 2702.619 2646.95 2401.697 2260.383 2708.159 2644.76 2513.556 2445.026
worst 2161.126 2924.641 2808.219 2965.309 2346.016 2915.11 2958.567 2955.98 2564.83 2871.895 3346.198 2680.918 2543.795
std 69.24026 65.16107 137.6245 107.6394 91.9837 95.66384 142.0746 260.8481 136.0149 81.18477 320.9119 85.12862 47.3034
median 2036.25 2852.534 2612.131 2933.724 2277.228 2815.228 2801.134 2545.137 2435.202 2749.43 2889.341 2532.096 2517.433
rank 1 11 7 12 2 10 9 6 3 8 13 5 4
C17-F21 mean 2308.456 2596.762 2448.231 2643.694 2387.133 2525.165 2586.829 2418.922 2406.48 2492.791 2553.99 2442.966 2490.435
best 2304.034 2526.449 2257.85 2586.165 2378.506 2346.124 2516.104 2385.646 2370.12 2483.421 2534.95 2423.177 2459.35
worst 2312.987 2652.414 2581.521 2712.368 2392.814 2639.573 2647.646 2450.321 2422.972 2506.051 2588.127 2461.006 2524.428
std 4.850941 62.82122 148.2022 62.05312 7.047214 138.4952 70.23165 30.08598 26.60579 10.40937 26.17077 16.9696 29.07732
median 2308.402 2604.093 2476.777 2638.122 2388.606 2557.482 2591.783 2419.861 2416.414 2490.847 2546.441 2443.841 2488.982
rank 1 12 6 13 2 9 11 4 3 8 10 5 7
C17-F22 mean 2300 7416.278 5606.15 7217.578 2767.064 8062.805 6943.239 4118.651 3095.301 5534.882 6060.652 4879.829 3093.803
best 2300 7084.193 2589.959 6320.075 2589.259 7696.453 5982.982 2594.276 2812.261 3057.109 3979.755 3036.958 2959.648
worst 2300 7992.923 6648.708 8208.241 2909.439 8295.31 7587.508 5936.695 3456.066 8044.654 6842.973 6624.719 3284.397
std 0 447.0653 2188.073 850.4959 157.5029 294.8451 745.0711 1866.174 293.5383 2998.334 1511.723 1800.442 156.411
median 2300 7293.999 6592.966 7170.999 2784.779 8129.728 7101.233 3971.816 3056.438 5518.882 6709.94 4928.821 3065.584
rank 1 12 8 11 2 13 10 5 4 7 9 6 3
C17-F23 mean 2655.081 3134.082 2916.197 3179.248 2684.911 3138.091 3015.153 2760.249 2771.554 2897.243 3608.12 2894.462 2956.074
best 2653.745 3052.541 2831.729 3137.587 2546.881 3029.414 2858.446 2726.062 2757.65 2880.102 3508.173 2872.493 2937.475
worst 2657.377 3203.731 3047.601 3249.515 2737.578 3302.897 3099.717 2789.67 2791.69 2940.924 3701.653 2925.754 2997.452
std 1.798497 76.5529 102.9913 56.02015 100.244 128.9959 117.6717 29.73855 15.77988 31.77993 107.6621 27.71245 30.23767
median 2654.6 3140.028 2892.728 3164.946 2727.593 3110.026 3051.225 2762.632 2768.439 2883.973 3611.326 2889.802 2944.683
rank 1 10 7 12 2 11 9 3 4 6 13 5 8
C17-F24 mean 2831.409 3259.418 3140.517 3341.852 2903.733 3231.21 3095.648 2922.053 2934.549 3034.572 3299.789 3107.738 3186.227
best 2829.992 3230.675 3028.691 3270.724 2893.367 3144.047 3034.507 2874.181 2916.054 3017.56 3271.765 3047.614 3111.252
worst 2832.366 3316.083 3271.067 3461.734 2911.236 3276.173 3120.213 2943.399 2943.03 3056.434 3334.012 3204.837 3254.053
std 1.246245 41.79513 114.4207 96.12821 8.854297 64.85565 44.52533 35.0327 13.66786 17.53194 32.2566 73.77764 74.20735
median 2831.64 3245.457 3131.155 3317.475 2905.165 3252.309 3113.936 2935.316 2939.556 3032.148 3296.688 3089.251 3189.801
rank 1 11 8 13 2 10 6 3 4 5 12 7 9
C17-F25 mean 2886.698 3774.898 2925.976 4289.841 2911.644 3387.596 3068.493 2926.652 2995.621 3062.61 2997.379 2914.669 3089.732
best 2886.691 3469.485 2913.557 3796.919 2905.41 3075.541 3037.756 2904.458 2963.601 2967.819 2987.174 2907.939 3073.483
worst 2886.707 4006.444 2955.788 4952.46 2919.105 3708.48 3088.721 2978.817 3058.703 3175.101 3006.087 2927.24 3098.003
std 0.008274 243.4626 21.95218 524.1696 7.125738 335.2555 24.65864 38.32121 48.44319 109.0198 9.535606 9.848236 12.04774
median 2886.698 3811.832 2917.28 4204.993 2911.031 3383.182 3073.748 2911.666 2980.09 3053.759 2998.128 2911.748 3093.722
rank 1 12 4 13 2 11 9 5 6 8 7 3 10
C17-F26 mean 3578.65 8636.168 7115.835 9119.509 3517.931 8270.307 7976.609 5027.116 4844.627 5961.291 7235.355 5077.571 4704.075
best 3559.841 8275.362 6021.102 8393.15 3464.287 7862.205 7319.7 4705.307 4471.343 4771.815 6317.544 4143.274 4339.294
worst 3607.686 9218.724 7874.733 10292.52 3655.212 8561.913 8816.14 5683.615 5485.035 6993.609 7822.497 6314.775 5039.848
std 24.77834 451.0737 858.1697 927.3888 99.99068 319.7006 674.5303 498.4749 480.4831 1148.169 723.9013 1132.346 312.1846
median 3573.536 8525.294 7283.752 8896.185 3476.113 8328.554 7885.298 4859.772 4711.065 6039.869 7400.69 4926.117 4718.579
rank 2 12 8 13 1 11 10 5 4 7 9 6 3
C17-F27 mean 3207.018 3558.17 3348.028 3686.102 3232.057 3445.411 3407.476 3245.891 3261.073 3317.182 4679.337 3284.818 3433.969
best 3200.749 3513.715 3281.108 3464.475 3222.993 3333.514 3254.965 3217.709 3245.537 3251.877 4312.247 3262.488 3357.583
worst 3210.656 3639.585 3420.281 3921.549 3247.201 3660.88 3521.243 3277.426 3277.837 3364.238 4948.385 3307.204 3475.831
std 5.056308 60.6895 81.3752 211.586 11.97255 159.4864 124.2612 26.70273 16.15698 51.60339 334.4175 23.63649 57.41877
median 3208.335 3539.69 3345.361 3679.193 3229.018 3393.626 3426.849 3244.215 3260.46 3326.307 4728.358 3284.79 3451.232
rank 1 11 7 12 2 10 8 3 4 6 13 5 9
C17-F28 mean 3100 4549.007 3301.393 5298.552 3258.64 4036.604 3443.746 3293.81 3574.489 3634.18 3512.039 3353.589 3562.747
best 3100 4348.72 3282.68 5037.445 3236.84 3556.727 3373.986 3244.586 3390.627 3490.735 3433.812 3223.124 3528.7
worst 3100 4754.485 3322.349 5560.625 3278.027 4536.902 3483.68 3322.828 4006.854 3948.647 3629.929 3518.183 3603.925
std 2.86E-13 196.7029 18.5019 260.9731 23.02828 488.398 52.19947 38.39117 315.8185 230.9762 91.45297 138.501 34.63276
median 3100 4546.411 3300.272 5298.07 3259.846 4026.393 3458.66 3303.912 3450.238 3548.67 3492.207 3336.525 3559.181
rank 1 12 4 13 2 11 6 3 9 10 7 5 8
C17-F29 mean 3353.75 5213.215 4333.038 5394.511 3777.799 5082.723 4955.712 3930.648 3887.445 4480.829 4935.906 4198.769 4296.731
best 3325.385 4843.563 4044.383 4876.369 3636.029 4637.309 4717.357 3828.26 3803.77 4212.207 4695.177 4043.794 3983.394
worst 3370.797 5617.331 4512.864 6113.132 3902.207 5823.289 5107.337 4015.974 3989.644 4882.639 5151.589 4403.887 4576.177
std 21.41933 409.7053 227.4317 667.8421 126.4094 602.7249 181.7118 88.47312 86.709 314.1123 260.227 163.3035 291.7309
median 3359.41 5195.983 4387.452 5294.272 3786.48 4935.147 4999.077 3939.179 3878.183 4414.234 4948.428 4173.698 4313.676
rank 1 12 7 13 2 11 10 4 3 8 9 5 6
C17-F30 mean 5007.854 1.17E+09 4313339 2.31E+09 3155580 34515516 35156701 5674036 8355706 34049363 4996171 3371754 3722284
best 4955.449 8.65E+08 1403518 1.66E+09 998299.1 15004022 7376135 4053519 4080505 19564129 2605235 1027243 1806480
worst 5086.396 1.29E+09 5543722 2.55E+09 4308484 77589428 55588937 7895164 18339730 65808775 6522255 4307400 5396223
std 64.15759 2.23E+08 2120726 4.71E+08 1694195 31507516 21961834 1832212 7370893 23257021 1900134 1714722 1705773
median 4994.785 1.27E+09 5153059 2.51E+09 3657767 22734307 38830866 5373731 5501295 25412274 5428596 4076187 3843216
rank 1 12 5 13 2 10 11 7 8 9 6 3 4
Sum rank 30 334 182 361 58 305 284 128 151 232 231 139 204
Mean rank 1.034483 11.51724 6.275862 12.44828 2 10.51724 9.793103 4.413793 5.206897 8 7.965517 4.793103 7.034483
Total rank 1 12 6 13 2 11 10 3 5 9 8 4 7
Table 4. Optimization results for the CEC 2017 test suite (dimension=50).
Table 4. Optimization results for the CEC 2017 test suite (dimension=50).
OOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 4.95E+10 1.1E+09 7.69E+10 1.1E+09 3.19E+10 7.32E+09 1.1E+09 8.66E+09 1.79E+10 1.5E+10 3.14E+09 9.51E+09
best 100 4.41E+10 7.44E+08 6.72E+10 7.27E+08 2.99E+10 4.4E+09 7.27E+08 6.18E+09 1.23E+10 1.26E+10 2E+09 8.74E+09
worst 100 5.34E+10 1.56E+09 8.44E+10 1.57E+09 3.39E+10 1.09E+10 1.56E+09 1.19E+10 2.42E+10 1.75E+10 3.92E+09 1.02E+10
std 0 4.3E+09 3.84E+08 8.03E+09 3.94E+08 1.81E+09 3.29E+09 3.9E+08 2.6E+09 6.28E+09 2.21E+09 8.91E+08 8.27E+08
median 100 5.02E+10 1.05E+09 7.8E+10 1.05E+09 3.19E+10 7.01E+09 1.05E+09 8.27E+09 1.75E+10 1.49E+10 3.33E+09 9.53E+09
rank 1 12 4 13 3 11 6 2 7 10 9 5 8
C17-F3 mean 300 154396 144775.7 153921.7 40780 114495.5 215432.5 63673.5 131350.3 105750.1 170162.6 143305 239250.6
best 300 130935.1 116840.9 136841.4 35610.86 98555.96 164738.1 50699.94 113358.5 82476.83 150986.5 113745.4 199886.3
worst 300 183241.2 166548.8 164931.7 53012.54 129952.4 324443.8 82406.44 153841 116468.6 188356.6 174868.7 265767.6
std 0 24150.2 22863.42 13140.4 8961.981 13976.42 82028.55 14810.16 18310.5 17163.84 22179.7 31567.13 30630.41
median 300 151703.8 147856.6 156956.9 37248.3 114736.8 186273.9 60793.82 129100.9 112027.6 170653.7 142303 245674.3
rank 1 10 8 9 2 5 12 3 6 4 11 7 13
C17-F4 mean 470.3679 12184.46 816.0011 19457.87 681.4135 6971.561 1820.302 707.3102 1412.912 2511.357 2728.976 1073.423 1485.133
best 428.5127 9514.955 781.0024 12922.28 656.2968 5678.306 1207.196 644.4745 1114.656 1528.502 2319.866 803.94 1316.601
worst 525.7252 13801.19 880.4744 23154.52 694.8483 8926.75 2130.731 812.7542 1716.417 4115.779 2931.851 1762.34 1589.352
std 53.92841 2102.179 47.95718 5099.299 18.62806 1501.712 459.5216 79.82462 284.7839 1229.91 301.2068 501.5184 139.8851
median 463.6168 12710.85 801.2638 20877.33 687.2544 6640.594 1971.641 686.0061 1410.286 2200.573 2832.093 863.7063 1517.289
rank 1 12 4 13 2 11 8 3 6 9 10 5 7
C17-F5 mean 504.7261 1042.95 847.6477 1066.558 749.3764 1080.986 926.8785 751.4539 740.7157 961.5023 805.8724 792.0833 875.1166
best 503.9798 1013.374 816.5437 1061.377 676.9687 962.7314 893.7665 685.5776 712.1028 921.1337 756.8901 741.5352 844.3322
worst 505.9698 1069.044 891.1425 1071.499 811.096 1166.444 950.6786 852.7761 773.689 983.4193 841.0368 843.6933 899.9478
std 1.036324 27.21731 35.00028 5.69125 60.73609 106.8864 28.21668 81.0711 32.96958 30.09048 42.06955 45.51418 26.82066
median 504.4773 1044.692 841.4523 1066.678 754.7205 1097.383 931.5345 733.731 738.5355 970.7282 812.7815 791.5524 878.0932
rank 1 11 7 12 3 13 9 4 2 10 6 5 8
C17-F6 mean 600 686.6786 658.5233 688.3462 619.2303 682.4414 688.8653 640.3977 628.4489 661.7716 656.7135 653.2132 649.1582
best 600 683.956 653.561 686.3068 617.0439 667.7492 684.5972 631.1357 624.1073 650.8752 652.8177 650.715 637.678
worst 600 689.5874 662.2555 692.3995 621.2137 694.7835 697.1782 661.4298 636.4458 667.6559 659.7741 657.7726 659.3786
std 0 2.564667 4.113542 3.064662 2.433815 13.36965 6.255548 15.58106 6.01381 8.107078 3.221641 3.400265 10.15461
median 600 686.5855 659.1383 687.3393 619.3317 683.6164 686.8428 634.5125 626.6213 664.2777 657.1311 652.1827 649.7881
rank 1 11 8 12 2 10 13 4 3 9 7 6 5
C17-F7 mean 756.7298 1690.859 1588.857 1771.25 1075.378 1602.293 1622.731 1095.607 1105.13 1437.854 1383.321 1212.905 1299.674
best 754.7543 1670.615 1528.091 1705.897 1030.508 1476.164 1568.636 1067.488 1087.362 1337.764 1248.408 1080.822 1236.369
worst 758.3522 1717.492 1642.381 1851.318 1114.134 1723.89 1695.087 1120.156 1120.405 1488.694 1487.485 1401.47 1341.989
std 1.689848 21.74419 52.67291 67.87609 42.83676 124.6629 63.58271 24.65415 15.78024 73.8405 118.2269 149.7953 51.14959
median 756.9065 1687.665 1592.477 1763.893 1078.435 1604.558 1613.601 1097.392 1106.376 1462.479 1398.695 1184.664 1310.17
rank 1 12 9 13 2 10 11 3 4 8 7 5 6
C17-F8 mean 805.721 1362.398 1124.105 1384.668 1032.391 1376.424 1285.685 1041.59 1051.264 1283.624 1136.983 1069.467 1231.684
best 802.9849 1309.251 1084.806 1352.051 1005.624 1294.353 1170.851 1014.615 1021.474 1241.854 1129.802 1033.19 1203.054
worst 810.9445 1401.525 1167.702 1400.527 1057.147 1488.554 1379.566 1102.659 1075.243 1333.975 1153.925 1115.698 1254.588
std 3.890137 45.90234 46.06279 23.96893 27.67453 92.5422 93.65706 44.66053 27.00846 42.24419 12.44165 41.79212 23.26472
median 804.4773 1369.408 1121.956 1393.047 1033.396 1361.394 1296.161 1024.543 1054.169 1279.333 1132.102 1064.49 1234.547
rank 1 11 6 13 2 12 10 3 4 9 7 5 8
C17-F9 mean 900 32893 14489.41 33048.09 6476.341 34318.2 30367.44 19625.77 9331.297 23147.87 12386.16 12080.08 14096.86
best 900 32012.24 14052.6 31573.96 5145.79 31605.69 28736.98 12085.61 8284.278 18375.71 11832.99 11289.35 12513.65
worst 900 35391.89 15481.94 34309.71 7499.48 37659.76 34695.5 24942.59 10395.17 26861.39 12891.38 13421.7 15870.92
std 1.01E-13 1813.192 724.5416 1351.066 1064.184 2774.951 3152.076 6649.26 999.4261 3827.95 610.4995 1090.988 1965.735
median 900 32083.93 14211.56 33154.35 6630.047 34003.68 29018.63 20737.44 9322.868 23677.19 12410.14 11804.64 14001.44
rank 1 11 7 12 2 13 10 8 3 9 5 4 6
C17-F10 mean 4347.157 12297.65 8533.281 13280.88 7089.713 11311.92 11318.18 7996.932 8807.23 13109.85 8753.29 8101.21 11254.8
best 3555.132 11605.91 8403.143 12767.17 6333.566 10727.15 10020.91 6651.02 6939.843 12249.56 8402.124 7681.211 10764.36
worst 5099.795 12872.86 8683.367 13570.06 7560.938 12147.75 12217.51 8843.609 13337.62 13918.05 9615.519 8869.181 12175.62
std 701.4234 575.7262 146.9278 386.58 575.5683 711.9956 1022.132 1107.675 3313.016 821.9168 628.3406 571.2351 683.767
median 4366.851 12355.92 8523.306 13393.14 7232.173 11186.4 11517.15 8246.549 7475.726 13135.89 8497.759 7927.225 11039.61
rank 1 11 5 13 2 9 10 3 7 12 6 4 8
C17-F11 mean 1128.435 13254.8 2116.688 17775.28 1833.42 11266.11 4936.627 2086.933 5771.513 4949.467 12290.05 2170.136 20218.83
best 1121.25 12087.39 1830.939 15713.24 1641.984 10172.69 4393.008 1852.248 3603.077 4503.232 11434.11 1889.802 11967.98
worst 1133.132 13732.8 2422.918 19153.88 2233.299 13218.48 6347.39 2506.348 9794.399 5791.665 13632.1 2324.625 26693.06
std 5.92135 849.4603 263.3627 1631.104 301.5769 1486.826 1028.431 319.4048 3105.372 641.2799 1031.46 214.7852 6643.792
median 1129.678 13599.51 2106.447 18117 1729.199 10836.65 4503.056 1994.568 4844.288 4751.485 12046.99 2233.059 21107.15
rank 1 11 4 12 2 9 6 3 8 7 10 5 13
C17-F12 mean 2905.102 3.54E+10 2.11E+08 5.78E+10 1.63E+08 2.11E+10 1.22E+09 2.15E+08 9.26E+08 4.24E+09 1.91E+09 1.45E+09 3.17E+08
best 2527.376 2.98E+10 1.1E+08 4.22E+10 95831759 8.91E+09 9.68E+08 1.51E+08 2.07E+08 2.5E+09 7.26E+08 2.09E+08 2.26E+08
worst 3168.37 4.24E+10 2.66E+08 7.91E+10 2.11E+08 3.54E+10 1.6E+09 2.53E+08 1.64E+09 8.22E+09 3.24E+09 3.84E+09 3.86E+08
std 297.7638 6.2E+09 74870996 1.85E+10 53591181 1.19E+10 2.98E+08 51817338 7.64E+08 2.94E+09 1.13E+09 1.85E+09 73242431
median 2962.331 3.48E+10 2.33E+08 5.49E+10 1.73E+08 2E+10 1.16E+09 2.29E+08 9.3E+08 3.12E+09 1.83E+09 8.76E+08 3.27E+08
rank 1 12 3 13 2 11 7 4 6 10 9 8 5
C17-F13 mean 1340.1 1.99E+10 29140050 3.49E+10 29032641 8.19E+09 1.06E+08 29214686 3.18E+08 5.03E+08 44018606 4.15E+08 62625395
best 1333.781 1.15E+10 15082176 1.76E+10 14999822 4.36E+09 72744405 15106499 1.46E+08 4.04E+08 15009940 15025904 36890666
worst 1343.015 2.72E+10 64128728 5.02E+10 64116553 1.27E+10 1.46E+08 64286770 7.91E+08 6.67E+08 73484293 9.95E+08 1.03E+08
std 4.658645 7.5E+09 25452500 1.49E+10 25520623 3.84E+09 32892364 25514545 3.43E+08 1.27E+08 33816482 5.06E+08 31425996
median 1341.801 2.05E+10 18674648 3.59E+10 18507094 7.85E+09 1.02E+08 18732738 1.68E+08 4.7E+08 43790095 3.26E+08 55307580
rank 1 12 3 13 2 11 7 4 8 10 5 9 6
C17-F14 mean 1429.458 21419208 1382812 39595412 393518.5 2568787 4254329 546854.7 1325055 1093309 12662683 857145.1 9473280
best 1425.995 7220942 751383.8 12376432 326677.5 927699.9 3772080 450691.6 398040.1 930817.6 3226584 519753.6 4821344
worst 1431.939 41607808 2712100 79818751 447530.2 3898450 5035760 625505.6 2244600 1255133 20593207 1069999 16073840
std 2.851678 15781750 977068.1 31202565 67876.67 1342318 593266.1 78710.78 820976.9 196648.1 8552318 256936.7 5172877
median 1429.95 18424041 1033882 33093232 399933.1 2724500 4104737 555610.7 1328791 1093643 13415470 919413.9 8498968
rank 1 12 7 13 2 8 9 3 6 5 11 4 10
C17-F15 mean 1530.66 2.11E+09 1057529 3.39E+09 1028580 1.38E+09 9064409 1125076 5846302 58192649 1.61E+08 1035542 7974295
best 1526.359 1.5E+09 129732.7 2.65E+09 74782.39 4.76E+08 813893.6 219713.3 107340.5 34902841 783143 90330.99 4244923
worst 1532.953 2.77E+09 1909492 4.02E+09 1886011 3.01E+09 16390082 1924768 14578094 75179730 6.21E+08 1886309 15151372
std 3.191893 6.5E+08 837170.9 6.59E+08 851654.6 1.28E+09 7569081 814458.4 6721675 18326818 3.34E+08 845990.3 5405843
median 1531.664 2.09E+09 1095445 3.45E+09 1076763 1.02E+09 9526831 1177912 4349887 61344012 11307332 1082764 6250442
rank 1 12 4 13 2 11 8 5 6 9 10 3 7
C17-F16 mean 2062.891 5865.586 4302.479 6920.014 3004.84 4535.478 5224.679 3470.57 3468.218 4456.184 3979.612 3481.424 3945.63
best 1728.6 5246.472 4000.657 5435.58 2856.044 4127.203 4325.669 3337.527 3065.361 4182.74 3763.431 3124.763 3496.144
worst 2242.663 7192.11 4702.332 9876.553 3131.765 4763.08 5825.538 3649.578 4004.577 4750.92 4288.477 3769.133 4355.434
std 253.3831 995.1847 351.5548 2208.632 142.48 304.3711 722.4993 169.7208 491.0068 257.8711 261.4972 359.8899 439.383
median 2140.15 5511.882 4253.462 6183.962 3015.775 4625.815 5373.755 3447.587 3401.466 4445.538 3933.271 3515.9 3965.471
rank 1 12 8 13 2 10 11 4 3 9 7 5 6
C17-F17 mean 2021.151 6848.083 3556.425 9629.557 2746.348 3879.805 4346.813 3161.055 3078.243 4035.004 3768.66 3388.37 3577.713
best 1900.43 5301.597 3126.73 7139.453 2620.494 3174.823 3897.119 2645.258 2947.105 3448.757 3433.271 3161.766 3422.149
worst 2138.267 8279.961 3984.3 12346.15 2826.921 4287.61 4563.699 3597.312 3336.306 4343.917 4016.635 3694.363 3711.093
std 146.025 1337.246 433.6566 2332.841 96.16517 530.519 333.5717 430.4672 198.7397 441.2389 265.75 274.7319 152.2354
median 2022.954 6905.386 3557.334 9516.314 2768.989 4028.394 4463.216 3200.825 3014.781 4173.671 3812.368 3348.676 3588.805
rank 1 12 6 13 2 9 11 4 3 10 8 5 7
C17-F18 mean 1830.62 64809056 5394677 94478124 3461290 31856563 40065124 5580678 8080372 10088485 10257555 4108187 11118482
best 1822.239 53686283 3034887 46889386 963105.3 3514353 10878963 2221244 1894241 5532501 4183491 1244859 5015440
worst 1841.673 74629822 8158394 1.27E+08 5983500 87143499 72254917 7349171 13443774 15199380 18698186 6398631 23037213
std 8.860434 9422472 2461765 43284200 2456575 41161815 32747100 2581672 5815218 4557307 7084462 2492722 8998228
median 1829.285 65460058 5192714 1.02E+08 3449276 18384199 38563309 6376148 8491736 9811030 9074271 4394628 8210638
rank 1 12 4 13 2 10 11 5 6 7 8 3 9
C17-F19 mean 1925.185 2.21E+09 1054101 3.11E+09 845238.3 2.17E+09 6390103 4998182 1786352 41942343 1209978 1162654 1647542
best 1924.437 1.05E+09 738624.6 2.1E+09 479903.4 8519676 1312499 3754874 1053878 35483791 688976.4 480615.3 1335633
worst 1926.121 3.69E+09 1666936 3.85E+09 1480789 6.33E+09 14551966 5976860 2928702 52668431 2282084 1928568 2108001
std 0.860892 1.21E+09 452664.5 8.47E+08 486851.6 3.08E+09 6201332 1091078 873486.8 8248080 794827.7 687967.2 368268.7
median 1925.091 2.05E+09 905421.7 3.25E+09 710130.5 1.17E+09 4847973 5130496 1581415 39808575 934426.5 1120716 1573266
rank 1 12 3 13 2 11 9 8 7 10 5 4 6
C17-F20 mean 2160.172 3717.027 3260.069 3934.224 2768.725 3397.451 3653.399 3271.387 2739.715 3674.026 3889.794 3278.828 3180.586
best 2104.423 3399.714 2780.017 3661.976 2495.224 2984.482 3366.909 3075.111 2531.75 3598.109 3661.096 2973.788 3082.251
worst 2323.891 3876.484 3706.835 4075.833 3025.157 3574.253 4142.691 3678.268 2912.856 3770.385 4143.729 3435.552 3297.711
std 118.748 236.1103 422.9268 202.4307 240.6307 301.4758 371.4289 305.6783 211.1036 81.05394 215.029 225.3384 96.41896
median 2106.186 3795.955 3276.712 3999.544 2777.259 3515.536 3551.997 3166.085 2757.128 3663.805 3877.175 3352.986 3171.19
rank 1 11 5 13 3 8 9 6 2 10 12 7 4
C17-F21 mean 2314.895 2937.035 2744.131 2968.401 2494.788 2908.633 2901.223 2595.904 2553.318 2798.183 2814.628 2665.284 2739.49
best 2309.045 2907.981 2635.865 2873.81 2470.541 2833.317 2798.883 2564.953 2499.752 2771.335 2768.232 2597.611 2711.195
worst 2329.683 2965.668 2897.153 3036.496 2518.032 3037.663 2990.677 2638.091 2599.768 2832.034 2844.164 2752.389 2752.7
std 10.75568 30.30095 119.9531 82.1574 25.9814 97.40959 88.69152 37.28297 45.20868 31.1184 37.98088 74.47153 21.27125
median 2310.426 2937.246 2721.753 2981.649 2495.29 2881.776 2907.667 2590.287 2556.876 2794.682 2823.058 2655.568 2747.032
rank 1 12 7 13 2 11 10 4 3 8 9 5 6
C17-F22 mean 3095.169 14196.49 11073.38 15228.71 6365.453 13188.11 13128.51 9326.867 9225.422 14779.99 11310.18 9944.648 9192.805
best 2300 14033.76 9238.502 15114.45 3957.065 12798.56 12696.98 7576.304 8329.12 14295.42 11127.2 9372.921 5375.858
worst 5480.678 14422.32 12439.08 15345.02 8916.005 13782.15 13512.81 10456.98 9653.614 15328.41 11476.98 10434.23 13124.4
std 1730.112 177.7323 1594.41 114.417 3009.992 456.5786 364.2617 1347.328 657.65 520.0407 155.678 485.9433 4619.211
median 2300 14164.93 11307.97 15227.68 6294.371 13085.86 13152.13 9637.091 9459.477 14748.06 11318.28 9985.72 9135.48
rank 1 11 7 13 2 10 9 5 4 12 8 6 3
C17-F23 mean 2743.354 3724.426 3291.2 3786.62 2962.218 3661.4 3663.478 3043.413 3068.776 3282.921 4490.356 3361.173 3349.272
best 2729.988 3651.404 3214.739 3763.304 2950.353 3480.618 3505.094 3003.293 2995.842 3209.205 4323.322 3297.887 3234.048
worst 2752.657 3820.757 3357.126 3812.399 2977.75 3955.284 3762.599 3095.901 3199.533 3332.588 4647.288 3423.377 3462.453
std 10.89685 79.31584 78.73805 23.68215 13.81755 243.1923 122.3033 49.32064 97.49427 57.4981 144.2477 66.24321 101.5076
median 2745.387 3712.771 3296.468 3785.388 2960.385 3604.849 3693.109 3037.229 3039.864 3294.945 4495.408 3361.715 3350.294
rank 1 11 6 12 2 9 10 3 4 5 13 8 7
C17-F24 mean 2919.043 4072.237 3498.98 4298.729 3131.011 3903.337 3759.355 3188.425 3240.714 3445.651 4213.279 3457.812 3623.196
best 2909.046 3875.562 3400.823 3910.882 3099.847 3815.82 3660.966 3148.663 3151.149 3374.956 4177.74 3318.947 3583.166
worst 2924.412 4533.876 3643.691 5273.47 3154.145 4020.03 3816.771 3213.778 3360.872 3486.057 4270.343 3588.304 3696.369
std 7.423833 336.7661 112.0349 713.2005 29.28155 97.02285 75.51448 33.15498 95.74172 56.75356 47.40451 134.0236 54.55307
median 2921.358 3939.754 3475.702 4005.282 3135.025 3888.748 3779.842 3195.629 3225.417 3460.796 4202.516 3461.998 3606.624
rank 1 11 7 13 2 10 9 3 4 5 12 6 8
C17-F25 mean 2983.145 7736.397 3291.959 10470.34 3201.645 5609.915 4091.272 3190.91 3992.635 4270.928 4191.957 3245.437 4004.664
best 2980.235 6497.419 3272.926 8548.133 3192.781 4694.464 3744.106 3168.794 3826.505 3882.895 3912.58 3196.721 3927.118
worst 2991.831 8512.499 3340.567 11642.69 3223.01 6474.448 4354.968 3214.121 4148.014 4763.265 4721.396 3292.152 4093.46
std 6.299384 975.905 35.37121 1587.925 15.55327 831.0924 281.0726 20.53635 182.5845 487.4691 412.5417 53.3023 74.3482
median 2980.257 7967.836 3277.172 10845.26 3195.394 5635.374 4133.007 3190.361 3998.011 4218.777 4066.927 3246.438 3999.039
rank 1 12 5 13 3 11 8 2 6 10 9 4 7
C17-F26 mean 3776.432 13205.47 10651.35 14013.71 4370.807 12005.93 12984.15 6393.223 6988.245 9622.975 11120.28 8309.269 9019.51
best 3748.807 13022.2 10285.51 13559.53 4259.443 10277.96 12142.67 6044.941 6671.316 8969.807 10843.64 7757.049 7493.217
worst 3793.643 13367.83 11084.66 14807.67 4530.472 12969.02 14457 6623.689 7302.684 10164.01 11506.39 8783.881 10932.4
std 21.15984 165.6016 362.9509 598.9201 144.6035 1289.455 1101.72 287.1685 367.9791 555.7698 315.598 503.3726 1795.318
median 3781.639 13215.92 10617.63 13843.83 4346.657 12388.36 12668.47 6452.131 6989.491 9679.043 11065.54 8348.074 8826.211
rank 1 12 8 13 2 10 11 3 4 7 9 5 6
C17-F27 mean 3251.26 4632.85 3854.307 4788.267 3471.181 4559.232 4354.733 3453.597 3681.731 3838.248 7333.892 3686.23 4342.006
best 3227.701 4328.511 3773.16 4436.845 3411.396 4002.067 3839.574 3377.73 3601.578 3720.803 7114.652 3426.734 4208.145
worst 3313.631 4783.274 3949.134 5010.243 3595.186 4938.377 4869.363 3540.929 3764.048 3949.409 7587.147 3859.067 4503.043
std 45.37533 233.1427 78.9762 290.4065 91.91125 457.6084 529.238 82.49883 89.95059 104.576 249.9642 216.5245 132.2133
median 3231.854 4709.807 3847.468 4852.99 3439.071 4648.242 4354.998 3447.865 3680.649 3841.39 7316.884 3729.559 4328.418
rank 1 11 7 12 3 10 9 2 4 6 13 5 8
C17-F28 mean 3258.849 7925.265 3711.316 9933.583 3513.464 6715.312 4719.398 3458.998 4375.884 5070.13 4915.08 3940.269 4898.891
best 3258.849 7254.886 3587.253 8825.367 3426.931 5606.324 4162.72 3414.919 4097.004 4583.099 4875.165 3702.38 4686.733
worst 3258.849 9693.952 3792.688 12723.47 3587.135 7876.996 4947.471 3498.231 4692.255 5556.052 4957.328 4360.403 5076.712
std 0 1288.362 104.4625 2029.42 71.96829 1233.812 406.4701 42.95225 295.6242 432.1752 42.80497 313.9815 183.2972
median 3258.849 7376.111 3732.663 9092.748 3519.895 6688.964 4883.7 3461.421 4357.138 5070.684 4913.914 3849.147 4916.06
rank 1 12 4 13 3 11 7 2 6 10 9 5 8
C17-F29 mean 3263.038 12353.01 5686.251 17168.73 4529.902 6833.893 8592.371 5140.407 5171.216 6534.254 7882.215 5143.118 6217.421
best 3247.132 8563.049 5585.325 9645.742 4033.354 6484.723 5966.858 4791.469 4837.655 5587.564 6811.608 4750.136 5769.616
worst 3278.787 16324.7 5871.373 26271.47 4737.879 7445.224 11074.86 5640.57 5436.431 7527.257 9978.992 5380.845 6722.844
std 18.99097 3941.317 143.3559 8087.715 361.9768 459.4859 2287.018 410.6392 320.8973 950.287 1608.105 296.6048 427.0937
median 3263.116 12262.14 5644.153 16378.85 4674.188 6702.812 8663.883 5064.794 5205.39 6511.097 7369.13 5220.746 6188.612
rank 1 12 6 13 2 9 11 3 5 8 10 4 7
C17-F30 mean 623575.2 2.68E+09 41437213 4.48E+09 25041630 1.37E+09 1.52E+08 80896757 1.37E+08 2.67E+08 1.73E+08 27601219 71121782
best 582411.6 2.07E+09 27769756 2.75E+09 18070418 1.96E+08 1.04E+08 74219322 71683636 1.87E+08 1.45E+08 20098612 56637848
worst 655637.4 3.64E+09 55051138 7.02E+09 32054014 2.75E+09 2.08E+08 85086201 1.98E+08 3.38E+08 2.27E+08 35355967 83831645
std 35536.86 7.42E+08 15457701 2E+09 8620851 1.43E+09 57672201 5099895 70355384 67902860 40022492 8158633 12419998
median 628125.9 2.51E+09 41463979 4.07E+09 25021044 1.27E+09 1.49E+08 82140752 1.39E+08 2.72E+08 1.61E+08 27475149 72008818
rank 1 12 4 13 2 11 8 6 7 10 9 3 5
Sum rank 29 335 166 367 64 294 269 112 144 248 254 150 207
Mean rank 1 11.55172 5.724138 12.65517 2.206897 10.13793 9.275862 3.862069 4.965517 8.551724 8.758621 5.172414 7.137931
Total rank 1 12 6 13 2 11 10 3 4 8 9 5 7
Table 5. Optimization results for the CEC 2017 test suite (dimension=100).
Table 5. Optimization results for the CEC 2017 test suite (dimension=100).
OOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C17-F1 mean 100 1.43E+11 1.08E+10 1.97E+11 8.12E+09 1.1E+11 5.85E+10 7.75E+09 5.4E+10 8.16E+10 1.18E+11 2.39E+10 5.32E+10
best 100 1.39E+11 9.2E+09 1.93E+11 7.8E+09 9.72E+10 5.6E+10 7.33E+09 4.78E+10 7.83E+10 1.09E+11 1.86E+10 5.07E+10
worst 100 1.47E+11 1.17E+10 1.98E+11 8.44E+09 1.22E+11 6.46E+10 8.01E+09 6.04E+10 8.93E+10 1.26E+11 3E+10 5.93E+10
std 1.26E-14 3.33E+09 1.2E+09 2.32E+09 2.95E+08 1.13E+10 4.45E+09 3.29E+08 6.58E+09 5.64E+09 7.69E+09 6.54E+09 4.49E+09
median 100 1.43E+11 1.11E+10 1.97E+11 8.12E+09 1.1E+11 5.68E+10 7.84E+09 5.39E+10 7.94E+10 1.19E+11 2.36E+10 5.13E+10
rank 1 12 4 13 3 10 8 2 7 9 11 5 6
C17-F3 mean 300 451046.4 368624.4 365517.8 232072.1 398693.7 743396.8 481715.7 402444.6 344084.1 382345.2 542289.3 571803.4
best 300 415657.7 356641.4 358496.6 197477.5 335586 659039.2 411984.4 371309.4 334398.3 366869.9 431473.7 548010.5
worst 300 472183.2 379770.7 375732.1 264148.4 434715.5 849656.6 561323.9 435992.9 353420.3 413817.3 713381.9 592229.4
std 0 26725.61 11798.75 8201.517 29932.45 47632.7 87812.76 78194.62 37769.45 9748.12 23163.56 140245.3 22448.33
median 300 458172.3 369042.8 363921.3 233331.1 412236.5 732445.6 476777.3 401238 344258.9 374346.9 512150.8 573486.7
rank 1 9 5 4 2 7 13 10 8 3 6 11 12
C17-F4 mean 602.1722 37102.42 2294.782 61849.41 1860.959 13996.28 9894.146 1651.801 4652.86 9732.592 28652.08 3038.059 8489.017
best 592.0676 34057.31 2222.33 55989.75 1747.744 9497.259 8411.188 1489.046 3643.242 9152.241 23151.2 2402.387 8054.664
worst 612.2769 40612.43 2456.32 68829.08 2111.872 18424.71 10795.7 1796.243 6628.828 10596.27 32270.17 3595.684 9110.992
std 12.6933 3069.679 118.0367 5770.233 183.6471 3997.274 1120.559 151.4474 1458.355 712.2235 4838.803 559.3681 545.0467
median 602.1722 36869.97 2250.238 61289.4 1792.109 14031.57 10184.85 1660.957 4169.685 9590.929 29593.49 3077.083 8395.206
rank 1 12 4 13 3 10 9 2 6 8 11 5 7
C17-F5 mean 512.9345 1849.015 1309.375 1824.647 1238.466 1971.239 1726.6 1246.823 1204.711 1754.424 1326.904 1388.776 1522.935
best 510.9445 1832.77 1289.071 1803.544 1131.464 1947.724 1643.663 1148.939 1148.666 1721.95 1294.324 1302.797 1395.175
worst 514.9244 1870.179 1328.839 1841.719 1305.988 1989.255 1864.962 1320.012 1260.571 1772.504 1365.707 1521.331 1592.194
std 1.976192 16.92763 17.72822 20.77925 86.88884 19.45261 104.9591 81.19712 51.05139 25.62091 40.07086 107.2337 101.0663
median 512.9345 1846.556 1309.794 1826.662 1258.205 1973.989 1698.887 1259.17 1204.804 1761.622 1323.792 1365.488 1552.185
rank 1 12 5 11 3 13 9 4 2 10 6 7 8
C17-F6 mean 600 697.5095 662.3688 696.1405 643.0508 701.1107 695.5302 672.4315 645.3117 677.6633 664.0424 662.021 663.3134
best 600 696.1278 658.7847 693.2983 639.655 692.4216 687.4218 668.1534 641.1509 670.4929 661.6138 657.3741 657.2851
worst 600 699.3058 665.2544 697.9734 647.9631 707.6217 710.2691 677.0231 651.3684 682.915 668.4325 666.2978 667.3333
std 0 1.631232 2.911396 2.22489 3.938934 8.091524 11.21622 4.256612 4.847844 6.14604 3.298814 4.844511 5.252931
median 600 697.3022 662.718 696.6452 642.2925 702.1997 692.2149 672.2748 644.3637 678.6226 663.0617 662.2061 664.3176
rank 1 12 5 11 2 13 10 8 3 9 7 4 6
C17-F7 mean 811.392 3337.98 2919.302 3429.704 1942.299 3200.316 3315.168 2072.342 2084.564 2932.351 2952.401 2442.358 2519.737
best 810.0205 3273.163 2799.475 3361.862 1902.705 3052.784 3213.368 1937.963 1941.242 2821.94 2855.288 2225.082 2434.182
worst 813.1726 3425.951 3019.773 3485.678 2001.302 3341.383 3461.669 2176.892 2199.832 3020.888 3118.909 2541.185 2701.024
std 1.589565 69.39864 124.7716 60.37223 48.67643 138.8142 121.2854 108.0829 116.4936 90.17365 125.5836 160.9562 133.1111
median 811.1874 3326.404 2928.979 3435.638 1932.594 3203.548 3292.818 2087.257 2098.591 2943.287 2917.703 2501.582 2471.871
rank 1 12 7 13 2 10 11 3 4 8 9 5 6
C17-F8 mean 812.437 2252.668 1715.54 2295.784 1474.727 2234.763 2171.736 1493.381 1541.767 2120.39 1785.009 1690.75 1946.815
best 808.9546 2197.101 1655.867 2260.803 1322.369 2174.674 1995.986 1381.774 1442.764 2078.187 1703.036 1642.296 1889.142
worst 816.9143 2309.409 1761.054 2321.314 1582.188 2312.968 2316.634 1660.906 1661.656 2146.659 1897.294 1789.432 1996.681
std 3.697116 57.91902 50.78528 28.75944 119.2271 65.34701 176.6718 129.1747 112.1691 32.29819 97.20606 73.37746 55.76106
median 811.9395 2252.081 1722.619 2300.51 1497.175 2225.705 2187.161 1465.421 1531.323 2128.358 1769.854 1665.636 1950.719
rank 1 12 6 13 2 11 10 3 4 9 7 5 8
C17-F9 mean 900 81161.25 31377.83 71098.2 28205.81 104895.4 70717.55 56988.28 38781.24 68886.9 29093.76 36368.58 46627.7
best 900 72932.37 29130.49 68926.32 26834.05 87246.36 56948.01 49058.87 27898.07 66269.65 28722.56 31733.83 42824.19
worst 900 93336.1 33573.27 73976.47 29759.44 129436.5 87584.54 64582.54 48245.72 71162.38 29674.14 40523.97 50515.68
std 1.01E-13 9596.367 1978.602 2384.171 1320.54 19311.19 16529.67 6912.151 10531.96 2224 445.1952 4050.232 3576.52
median 900 79188.26 31403.77 70745.01 28114.87 101449.4 69168.83 57155.85 39490.59 69057.79 28989.17 36608.26 46585.46
rank 1 12 4 11 2 13 10 8 6 9 3 5 7
C17-F10 mean 11023.04 27933.01 16622.37 28980.38 14973.69 27214.57 26392.24 17428.73 16007.78 28988.01 17613.36 17493.08 24630.72
best 9625.608 27652.61 14618.74 28225 14364.8 26729.76 25708.76 16870.74 15072.66 27952.24 16173.88 16144.07 24175.53
worst 11858.81 28262.62 18379.39 29449.1 15732.57 27910.52 27595.69 17906.53 16426.6 29843 18375.97 18473.24 25158.41
std 1054.018 288.4128 1802.248 596.7115 630.0595 594.7952 937.4496 490.4926 688.4886 853.3036 1123.417 1062.368 440.9406
median 11303.87 27908.4 16745.67 29123.71 14898.69 27108.99 26132.26 17468.83 16265.92 29078.4 17951.79 17677.52 24594.46
rank 1 11 4 12 2 10 9 5 3 13 7 6 8
C17-F11 mean 1162.329 149568 69828.1 182882.2 22716.4 70817.28 184408.9 22555.74 88145.51 75900.56 156108.1 60242.48 129524.6
best 1139.568 114846.1 59194.46 138888.4 17131.19 50522.8 110432.1 16618.66 70952.41 68433.09 127769.2 32235.93 109653.7
worst 1220.662 167720.5 77624.56 247784 30456.36 95455.46 293732.2 30619.61 95127.79 86110.74 181252.7 111381.2 173704.3
std 42.46663 26735.73 9010.771 51903.2 7078.385 20170.86 93192.7 7101.506 12544.43 8046.173 25401.83 38324.65 32735.39
median 1144.542 157852.8 71246.7 172428.1 21639.03 68645.43 166735.7 21492.35 93250.92 74529.21 157705.3 48676.38 117370.1
rank 1 10 5 12 3 6 13 2 8 7 11 4 9
C17-F12 mean 5974.805 8.54E+10 2.1E+09 1.38E+11 1.78E+09 4.67E+10 1.21E+10 1.84E+09 1.07E+10 1.9E+10 5.47E+10 9.59E+09 1.14E+10
best 5383.905 6.1E+10 1.85E+09 1.03E+11 1.61E+09 2.46E+10 9.94E+09 1.61E+09 7.66E+09 1.51E+10 4.77E+10 2.41E+09 1.04E+10
worst 6570.199 9.51E+10 2.4E+09 1.6E+11 2.06E+09 7.67E+10 1.38E+10 2.1E+09 1.27E+10 2.54E+10 6.43E+10 1.67E+10 1.3E+10
std 537.9317 1.77E+10 2.75E+08 2.82E+10 2.15E+08 2.37E+10 1.76E+09 2.21E+08 2.32E+09 5.01E+09 7.55E+09 7.1E+09 1.21E+09
median 5972.559 9.27E+10 2.07E+09 1.44E+11 1.72E+09 4.28E+10 1.22E+10 1.82E+09 1.12E+10 1.77E+10 5.33E+10 9.64E+09 1.11E+10
rank 1 12 4 13 2 10 8 3 6 9 11 5 7
C17-F13 mean 1407.28 2.22E+10 92705799 3.4E+10 92704726 1.71E+10 5.08E+08 92909190 8.46E+08 2.33E+09 7.03E+09 1.5E+09 2.32E+08
best 1371.145 1.94E+10 35778021 2.63E+10 35755981 1.23E+10 3.37E+08 35985369 1.15E+08 1.6E+09 4.47E+09 3.52E+08 1.96E+08
worst 1439.935 2.46E+10 1.98E+08 3.85E+10 1.98E+08 2.04E+10 7.01E+08 1.98E+08 2.19E+09 2.8E+09 8.95E+09 2.57E+09 3.15E+08
std 37.80433 2.94E+09 79765863 6.11E+09 79848507 3.75E+09 1.91E+08 79806622 1.05E+09 6.28E+08 2.04E+09 1.22E+09 60812858
median 1409.02 2.25E+10 68676712 3.56E+10 68624578 1.78E+10 4.97E+08 68850376 5.4E+08 2.47E+09 7.36E+09 1.53E+09 2.08E+08
rank 1 12 3 13 2 11 6 4 7 9 10 8 5
C17-F14 mean 1467.509 37877947 7030862 65154615 1789028 8800333 13302701 4132558 9375532 12792370 10872498 2365705 10080431
best 1458.803 32644101 4836376 59274295 1451673 4633128 8085077 2137713 6252979 9660718 8670929 1724020 6088320
worst 1472.733 42717300 10230438 70853221 2449331 15229629 18266273 5754127 13910468 15767450 16160007 2961405 13934641
std 6.576739 4963041 2644356 6244886 502925 4923552 4527378 1623783 3621921 3171801 3856890 735855.9 3656357
median 1469.25 38075194 6528317 65245472 1627554 7669288 13429726 4319195 8669341 12870655 9329528 2388697 10149383
rank 1 12 5 13 2 6 11 4 7 10 9 3 8
C17-F15 mean 1609.893 1.23E+10 36148098 1.88E+10 36125523 9.64E+09 91903589 36181669 4.35E+08 9.85E+08 1.02E+09 3.02E+08 46185681
best 1551.154 1.14E+10 4620645 1.34E+10 4600463 2.97E+08 35638382 4652118 30734893 3.22E+08 4.01E+08 4596634 11063176
worst 1652.294 1.38E+10 98030172 2.34E+10 98018720 1.8E+10 1.38E+08 98121965 1.29E+09 2.06E+09 1.31E+09 1.15E+09 1.06E+08
std 48.04352 1.13E+09 46426465 5.4E+09 46426649 8.37E+09 58260804 46461525 6.35E+08 8.24E+08 4.65E+08 6.13E+08 44890477
median 1618.063 1.2E+10 20970788 1.92E+10 20941454 1.01E+10 97112930 20976297 2.08E+08 7.81E+08 1.19E+09 27775652 34071994
rank 1 12 3 13 2 11 6 4 8 9 10 7 5
C17-F16 mean 2711.795 16956.42 7552.816 19908.63 6270.614 13471.55 14803.2 7124.848 6730.714 11026.59 10677.43 7035.656 10268.09
best 2171.69 16007.51 6709.001 16133.46 5919.695 11490.42 12128.13 6250.449 6032.372 10331.36 9600.774 6791.042 9538.753
worst 3397.326 17485.94 8251.32 22115.6 6491.927 15887.83 16307.44 7634.981 7341.49 11961.13 12131.25 7278.783 11023.86
std 554.7769 716.5046 741.4654 2883.213 269.5269 1972.259 2042.204 673.9321 689.516 758.3312 1324.658 243.6691 798.3217
median 2639.081 17166.11 7625.471 20692.72 6335.418 13253.97 15388.61 7306.98 6774.497 10906.93 10488.85 7036.4 10254.87
rank 1 12 6 13 2 10 11 5 3 9 8 4 7
C17-F17 mean 2716.564 3365610 6430.282 6619405 5476.521 176124.7 15353.45 5732.037 6159.788 8742.176 38771.89 6632.116 7475.817
best 2275.021 987545.6 5834.403 1795159 4954.032 9823.899 9680.716 4946.827 5222.365 8212.171 26862.3 6275.044 7169.382
worst 3429.127 7655924 7244.689 15230014 6446.831 464683.5 25617.31 6831.876 8313.246 9720.505 61502.54 7427.666 8170.364
std 559.6669 3419822 734.3657 6876178 720.5443 216152.4 7812.729 915.3856 1590.62 727.9721 16885.01 585.2986 513.0574
median 2581.054 2409486 6321.018 4726223 5252.611 114995.7 13057.88 5574.723 5551.77 8518.013 33361.35 6412.876 7281.761
rank 1 12 5 13 2 11 9 3 4 8 10 6 7
C17-F18 mean 1903.746 48321455 4006624 83925434 1946085 13642201 11330387 5674461 10499161 14680584 11134106 6893096 6574933
best 1881.15 22849837 2969936 33647437 1493217 6725159 8873986 4057958 3911427 11373385 6174512 5013791 5644819
worst 1919.921 85359823 5004943 1.51E+08 2403941 25438717 13611211 8329885 16395523 20018055 21997169 9149896 9243974
std 21.08244 28950727 1089465 53911503 406115.7 9242429 2391759 2032840 5588730 4133768 8093266 2379436 1936009
median 1906.955 42538079 4025808 75327659 1943590 11202463 11418175 5155001 10844848 13665447 8182372 6704350 5705468
rank 1 12 3 13 2 10 9 4 7 11 8 6 5
C17-F19 mean 1972.839 1.02E+10 34605426 1.79E+10 32532429 4.06E+09 1.39E+08 45583318 3.2E+08 5.66E+08 1.29E+09 2.47E+08 42519521
best 1967.139 9.03E+09 6396950 1.31E+10 5896170 1.82E+09 47932771 13260051 8310619 2.68E+08 2.32E+08 57827018 12977414
worst 1977.869 1.19E+10 83541290 2.22E+10 81285149 8.08E+09 2.2E+08 1.02E+08 9.46E+08 1.31E+09 2.39E+09 5.47E+08 86450536
std 4.935585 1.44E+09 38700445 4.09E+09 38678074 3.02E+09 1E+08 45816907 4.77E+08 5.43E+08 1.16E+09 2.52E+08 35326744
median 1973.174 9.88E+09 24241732 1.81E+10 21474198 3.17E+09 1.44E+08 33367906 1.63E+08 3.44E+08 1.28E+09 1.93E+08 35325068
rank 1 12 3 13 2 11 6 5 8 9 10 7 4
C17-F20 mean 3192.04 7067.911 6178.745 7270.696 4831.952 6861.097 6871.169 5886.822 6097.235 7035.009 6294.737 5534.794 6255.772
best 2806.762 6963.225 5892.118 7085.342 4728.794 6409.075 6520.18 5543.496 5010.259 6435.384 5937.328 4965.732 5814.332
worst 3662.121 7223.823 6433.779 7349.966 4907.249 7493.326 7093.428 6345.297 6851.618 7341.828 6529.328 6242.25 6668.691
std 477.9749 120.9072 250.015 136.2455 81.48558 504.9362 283.8104 364.0394 986.9628 448.3479 301.3688 582.4701 423.2851
median 3149.639 7042.298 6194.542 7323.739 4845.883 6770.993 6935.534 5829.248 6263.532 7181.413 6356.147 5465.597 6270.032
rank 1 12 6 13 2 9 10 4 5 11 8 3 7
C17-F21 mean 2342.155 4107.347 3613.51 4206.109 2948.993 3975.75 4057.837 3271.189 3062.898 3646.286 4448.096 3546.05 3415.095
best 2338.689 4048.41 3454.946 4155.703 2891.822 3858.2 3795.254 3214.039 2995.281 3527.922 4000.757 3406.32 3384.779
worst 2346.015 4175.581 3735.804 4230.58 2988.511 4065.745 4255.801 3374.645 3117.728 3772.276 4785.364 3842.932 3433.946
std 3.664912 63.42392 130.1479 37.98541 44.35334 115.5379 224.8005 79.25473 57.21167 112.4554 358.8079 219.8794 24.2828
median 2341.959 4102.699 3631.645 4219.077 2957.82 3989.527 4090.147 3248.037 3069.292 3642.474 4503.132 3467.473 3420.827
rank 1 11 7 12 2 9 10 4 3 8 13 6 5
C17-F22 mean 11739 29898.52 20723.87 31226.03 19479.55 29094.17 27786.26 18352.58 23181.46 31127.91 21446.15 22056.4 27515.54
best 11119.08 29779.68 19403.39 30624.66 18073.66 28753.28 27172.83 17200.8 19021.39 30932.2 20641.6 20699.52 26594.62
worst 12601.6 30072.48 22835.22 31555.68 20746.51 29671.42 28448.76 18827.71 32749.7 31322.09 22254.89 23255.43 27954.62
std 710.0872 137.6461 1642.807 467.8853 1327.767 434.0159 650.6848 838.5643 7057.712 191.0211 717.5738 1310.133 676.3022
median 11617.67 29870.95 20328.44 31361.88 19549.01 28975.99 27761.73 18690.91 20477.36 31128.68 21444.07 22135.31 27756.46
rank 1 11 4 13 3 10 9 2 7 12 5 6 8
C17-F23 mean 2877.697 5083.185 4099.507 5084.927 3445.26 5180.355 4933.073 3596.027 3703.763 4180.782 7139.788 4708.375 4222.911
best 2872.107 4880.681 4031.935 4869.153 3436.297 4562.197 4813.676 3523.051 3678.968 4138.966 6660.243 4287.196 4166.74
worst 2884.013 5319.135 4165.456 5253.542 3467.429 6012.232 5051.596 3689.202 3738.927 4242.374 7478.419 4936.314 4277.171
std 5.674312 214.7523 68.13705 173.2897 16.22498 705.6868 124.5086 75.93265 31.57676 47.59334 402.3209 316.4086 66.44188
median 2877.334 5066.461 4100.319 5108.507 3438.657 5073.495 4933.51 3585.927 3698.579 4170.894 7210.245 4804.994 4223.866
rank 1 10 5 11 2 12 9 3 4 6 13 8 7
C17-F24 mean 3327.407 7832.289 5280.149 9428.317 3940.217 6330.598 6094.752 4144.531 4408.258 4778.634 9682.62 5755.812 5282.543
best 3295.518 6318.452 5072.135 6625.419 3871.199 5942.583 5721.691 4099.353 4184.416 4636.807 9162.84 5499.274 5178.783
worst 3357.991 8916.686 5398.615 11283.6 4042.393 6565.008 6665.087 4204.902 4608.176 4977.78 11047.88 6114.686 5432.351
std 32.22323 1339.285 161.2017 2472.511 78.98107 298.5116 449.4729 47.99135 244.0951 156.4488 992.5122 315.6741 117.0508
median 3328.059 8047.008 5324.923 9902.123 3923.637 6407.401 5996.115 4136.935 4420.219 4749.974 9259.878 5704.645 5259.52
rank 1 11 6 12 2 10 9 3 4 5 13 8 7
C17-F25 mean 3185.232 13441.03 4443.825 18340.92 4076.777 9566.79 7002.676 3852.339 6297.608 8299.907 10017.95 4444.685 7475.466
best 3137.371 12788.33 4148.351 17065.23 3981.421 9083.304 6454.379 3818.204 6150.753 7347.374 9371.909 4238.015 6853.024
worst 3261.571 14882.91 4781.288 21161.43 4160.817 9890.5 7363.442 3920.764 6674.264 9619.146 11213.94 4749.399 8116.028
std 65.17161 1063.367 283.5038 2099.322 84.54413 392.097 441.8134 51.57319 273.7552 1151.349 898.1687 256.0706 702.2793
median 3170.992 13046.44 4422.831 17568.52 4082.435 9646.678 7096.442 3835.193 6182.708 8116.554 9742.967 4395.662 7466.406
rank 1 12 4 13 3 10 7 2 6 9 11 5 8
C17-F26 mean 5757.621 35939.59 23924.36 40742.7 13415.09 30933.67 31440.72 13583.9 17645.72 23303.5 31361.56 20750.51 22604.74
best 5645.905 35548.93 21519.99 38728.13 12678.8 30094.95 28449.35 12535.81 16023.04 19694.71 30412.4 19056.98 21134.85
worst 5844.642 36256.6 26144.4 41924.66 14210.3 31631.99 34028.09 15434.23 18791.4 27827.19 32752.15 22281.77 23407.49
std 91.29453 325.3611 2174.656 1641.219 742.9473 694.5191 2975.907 1383.242 1311.335 3658.25 1108.06 1527.681 1120.315
median 5769.969 35976.42 24016.53 41159 13385.62 31003.87 31642.73 13182.78 17884.23 22846.05 31140.83 20831.64 22938.31
rank 1 12 8 13 2 9 11 3 4 7 10 5 6
C17-F27 mean 3309.493 8431.434 4245.826 10830.78 3735.776 6225.732 5741.618 3808.567 4180.276 4380.606 12263.89 4174.087 5319.714
best 3278.01 7287.439 4130.044 8379.161 3696.869 6036.76 5126.757 3737.831 4066.466 4114.816 11941.21 3968.903 5067.482
worst 3344.5 9603.069 4440.188 13398.73 3788.708 6487.562 6434.152 3851.909 4346.426 4779.704 12543.36 4380.956 5598.337
std 30.85754 1373.966 153.5838 2948.229 50.38312 211.3833 761.9438 56.95285 148.3301 307.8837 297.9776 213.8605 240.7252
median 3307.732 8417.614 4206.535 10772.62 3728.764 6189.302 5702.781 3822.264 4154.107 4313.953 12285.49 4173.246 5306.519
rank 1 11 6 12 2 10 9 3 5 7 13 4 8
C17-F28 mean 3322.242 18427.35 5290.668 24374.42 4531.476 14208.35 9888.159 4277.979 8992.637 10535.78 16722.64 7673.922 10790.4
best 3318.742 17179.28 5187.751 21860.15 4306.165 11382.88 8533.639 4163.251 7759.643 8466.624 14500.96 5548.003 9922.928
worst 3327.816 20738.38 5348.282 27509.58 4695.913 16434.78 10751.85 4402.695 10785.38 12427.83 18227.73 10992.5 11860.48
std 4.767125 1774.959 81.43107 2583.4 180.0406 2558.827 1038.94 128.0624 1399.433 1944.961 1727.46 2645.011 1057.399
median 3321.205 17895.86 5313.32 24063.98 4561.913 14507.86 10133.57 4272.986 8712.762 10624.33 17080.94 7077.593 10689.1
rank 1 12 4 13 3 10 7 2 6 8 11 5 9
C17-F29 mean 4450.696 150667.3 9925.685 284879.7 7708.141 17070.72 15531.35 9164.636 8858.751 12194.96 22326.86 9135.355 11715.06
best 4169.151 86958.94 9107.309 154059.3 6882.332 13623.67 13145.33 8445.7 8560.049 11341.48 18688.33 8732.014 11418.94
worst 4829.521 204859.3 10389.87 394703.9 8233.202 21287.32 17715.52 9910.691 9331.518 12617.52 28480.41 9708.153 11992.34
std 307.1569 54599.95 611.7269 111549.6 630.288 3496.398 2416.324 662.3035 360.0082 647.0171 4882.893 491.2947 258.21
median 4402.056 155425.5 10102.78 295377.8 7858.514 16685.93 15632.28 9151.076 8771.719 12410.43 21069.36 9050.626 11724.48
rank 1 12 6 13 2 10 9 5 3 8 11 4 7
C17-F30 mean 5407.166 1.89E+10 2.43E+08 3.07E+10 2.24E+08 1.1E+10 1.43E+09 3.03E+08 1.7E+09 3.28E+09 6.16E+09 7.09E+08 7.58E+08
best 5337.48 1.67E+10 1.49E+08 2.87E+10 1.38E+08 6.83E+09 1.13E+09 2.17E+08 7.43E+08 1.4E+09 4.47E+09 2.53E+08 6.84E+08
worst 5557.155 2.05E+10 2.86E+08 3.31E+10 2.68E+08 1.37E+10 1.91E+09 3.61E+08 2.19E+09 5.8E+09 7.43E+09 1.78E+09 8.33E+08
std 110.0477 1.76E+09 68900930 2.04E+09 63226580 3.23E+09 3.63E+08 72223274 7.11E+08 2.43E+09 1.37E+09 7.81E+08 88084792
median 5367.014 1.93E+10 2.68E+08 3.05E+10 2.45E+08 1.18E+10 1.35E+09 3.18E+08 1.94E+09 2.96E+09 6.36E+09 4.02E+08 7.57E+08
rank 1 12 3 13 2 11 7 4 8 9 10 5 6
Sum rank 29 336 140 355 65 293 265 114 156 249 272 162 203
Mean rank 1 11.58621 4.827586 12.24138 2.241379 10.10345 9.137931 3.931034 5.37931 8.586207 9.37931 5.586207 7
Total rank 1 12 4 13 2 11 9 3 5 8 10 6 7
Figure 3. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=10).
Figure 3. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=10).
Preprints 119024 g003aPreprints 119024 g003b
Figure 4. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=30).
Figure 4. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=30).
Preprints 119024 g004aPreprints 119024 g004bPreprints 119024 g004c
Figure 5. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=50).
Figure 5. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=50).
Preprints 119024 g005aPreprints 119024 g005bPreprints 119024 g005c
Figure 6. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=100).
Figure 6. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2017 test suite (dimension=100).
Preprints 119024 g006aPreprints 119024 g006bPreprints 119024 g006c
The analysis of the simulation results for the dimension equal to 10 demonstrates that the OOA is the best optimizer for the benchmark functions C17-F1, C17-F3 to C17-F24, and C17-F27 to C17-F30. For the dimension equal to 30, OOA emerges as the top optimizer for the functions C17-F1, C17-F3 to C17-F5, C17-F7, C17-F12 to C17-F14, C17-F16 to C17-F18, and C17-F21 to C17-F29. As the dimension increases to 50, OOA remains the best optimizer for the functions C17-F1, C17-F3 to C17-F25, and C17-F27 to C17-F30. Finally, for the dimension equal to 100, OOA excels as the top performer for the functions C17-F1 and C17-F3 to C17-F30.
The simulation results clearly indicate that the OOA approach is capable of providing high-quality solutions for the CEC 2017 test suite. OOA demonstrates a strong ability to explore the search space comprehensively, exploit the best solutions effectively, and strike a completely different balance between exploration and exploitation compared to its competitor algorithms. Additionally, a comparison of the overall performance shows that the OOA outperforms most competing metaheuristic algorithms in solving the CEC 2017 test suite for the various problem dimensions of 10, 30, 50, and 100. This confirms the robustness and scalability of the OOA approach in handling different optimization challenges efficiently.

4.2. Statistical Analysis

To thoroughly assess and compare the performance of various metaheuristic algorithms, statistical indicators such as the mean, best, worst, standard deviation (std), median, and rank are typically utilized. These indicators provide valuable insights into the quality and performance of the algorithms, helping to highlight which approach demonstrates superiority over others. However, relying solely on these indicators may not fully capture the statistical significance of the differences between algorithms. Therefore, it is essential to conduct more detailed statistical analyses to verify whether the observed superiority of the proposed OOA approach is truly significant in comparison to competing algorithms.
In this section, we perform a completely different statistical analysis using the Wilcoxon rank-sum test [54], a non-parametric method specifically designed to evaluate whether there is a significant difference between two data samples. The Wilcoxon rank-sum test is particularly useful when the data does not follow a normal distribution, making it a robust choice for analyzing the performance differences between the OOA and other metaheuristic algorithms. By applying this test, we aim to determine whether the OOA's performance advantages are not just random but statistically significant.
The results of applying the Wilcoxon rank-sum test to compare the OOA with competing algorithms are summarized in Table 6. These results include the p-values for each comparison, and based on statistical convention, a p-value less than 0.05 indicates a significant difference. In the cases when the p-value is below this threshold, it can be concluded that the proposed OOA approach exhibits a statistically significant superiority over the corresponding competitor algorithm. This additional statistical validation offers a completely different and more robust understanding of the OOA's competitive edge, reinforcing the confidence in its optimization capabilities.
In conclusion, using more words and sentences in conjunction with statistical tests like the Wilcoxon rank-sum test provides a comprehensive and reliable evaluation of the OOA's performance. This ensures that the OOA's observed superiority is not just apparent but also statistically validated, offering deeper insights into its effectiveness when compared to other algorithms.

5. OOA for Real-World Applications

In this section, the effectiveness of the proposed OOA approach in addressing optimization challenges in real-world applications is thoroughly examined. To achieve this, the CEC 2011 test suite, which comprises twenty-two constrained optimization problems derived from practical applications, has been employed. A comprehensive description and full details of the CEC 2011 test suite are available in [55]. The results of the OOA implementation, along with competitor algorithms, when applied to the CEC 2011 test suite, are summarized in Table 7. Additionally, the comparative performance of OOA and the other algorithms is illustrated through boxplots in Figure 7.
From a detailed comparison of the simulation results, it becomes clear that the OOA approach consistently outperforms the competitors, emerging as the top optimizer across all the problems ranging from C11-F1 to C11-F22. This clearly highlights OOA's robustness and effectiveness in dealing with real-world optimization problems. Notably, the simulation results indicate that OOA ranks as the best optimizer in the majority of the optimization problems from the CEC 2011 test suite, showcasing its superior performance when compared to the other algorithms.
Moreover, the statistical analysis conducted using the Wilcoxon rank-sum test further reinforces the advantage of the OOA approach. The results demonstrate a significant statistical superiority for OOA over the competing algorithms, confirming its enhanced ability to optimize the CEC 2011 test suite more effectively.

5. Conclusions and Future Works

In this paper, a completely different bio-inspired metaheuristic algorithm called the Orangutan Optimization Algorithm (OOA) was introduced, showcasing its capability in solving optimization problems across a variety of scientific disciplines and real-world applications. This novel approach is inspired by two distinct natural behaviors of orangutans: their foraging strategies for obtaining food and their nesting behavior for resting. These behaviors formed the foundation for the design of OOA, which was mathematically structured into two key phases—exploration and exploitation.
The performance of OOA was rigorously tested on twenty-nine standard benchmark functions from the CEC 2017 test suite, where the results demonstrated that OOA excels in balancing exploration and exploitation throughout the search process. When compared to twelve other widely-recognized metaheuristic algorithms, OOA showed a superior performance, producing better optimization results for most benchmark functions. Additionally, OOA was applied to twenty-two optimization problems from the CEC 2011 test suite, further validating its effectiveness in solving real-world optimization challenges.
Moreover, the introduction of OOA opens several new avenues for future research. One of the most promising directions is the development of binary and multi-objective versions of OOA. Furthermore, expanding the application of OOA to address optimization challenges in completely different scientific fields and a broader range of real-world scenarios provides exciting opportunities for future studies.

Author Contributions

Conceptualization, T.H. and K.E.; methodology, M.D. and Z.M.; software, T.H. and B.B.; validation, Z.M. and M.D.; formal analysis, B.B.; investigation, K.E..; resources, F.W.; data curation, Z.M.; writing—original draft preparation, T.H.; writing—review and editing, F.W.; visualization, B.B..; supervision, M.D.; project administration, F.W.; funding acquisition, K.E. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence 2022, 114, 105075. [Google Scholar] [CrossRef]
  2. Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Scientific reports 2018, 8, 1–9. [Google Scholar] [CrossRef]
  3. Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. International Transactions in Operational Research 2005, 12, 263–285. [Google Scholar] [CrossRef]
  4. Qawaqneh, H. New contraction embedded with simulation function and cyclic (α, β)-admissible in metric-like spaces. International Journal of Mathematics and Computer Science 2020, 15, 1029–1044. [Google Scholar]
  5. Hamadneh, T.; Athanasopoulos, N.; Ali, M. In Minimization and positivity of the tensorial rational Bernstein form, 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT - Proceedings), IEEE: 2019; pp 474-479, 8717503.
  6. Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Scientific Reports 2022, 12, 9924. [Google Scholar] [CrossRef]
  7. Hamadneh, T.; Wisniewski, R. In The Barycentric Bernstein Form for Control Design, 2018 Annual American Control Conference (ACC), 27-29 June 2018; 2018; pp 3738-3743. 29 June.
  8. Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Applied Sciences 2020, 2, 1–15. [Google Scholar] [CrossRef]
  9. de Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: a gentle step towards a comparison methodology. Natural Computing 2022, 21, 265–287. [Google Scholar] [CrossRef]
  10. Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Applied Sciences 2020, 10, 6173. [Google Scholar] [CrossRef]
  11. Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization. Scientific Reports 2023, 13, 10312. [Google Scholar] [CrossRef]
  12. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1997, 1, 67–82. [Google Scholar] [CrossRef]
  13. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
  14. Kennedy, J.; Eberhart, R. In Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 27 Nov.-1 Dec. 1995; IEEE: Perth, WA, Australia, 1995; pp 1942-1948 vol.4.
  15. Karaboga, D.; Basturk, B. In Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, International fuzzy systems association world congress, Springer: 2007; pp 789-798.
  16. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications 2022, 191, 116158. [Google Scholar] [CrossRef]
  17. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Advances in Engineering Software 2014, 69, 46–61. [Google Scholar] [CrossRef]
  18. Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Systems with Applications 2022, 188, 116026. [Google Scholar] [CrossRef]
  19. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Systems with Applications 2020, 152, 113377. [Google Scholar] [CrossRef]
  20. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering 2021, 158, 107408. [Google Scholar]
  21. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowledge-Based Systems 2022, 108457. [Google Scholar] [CrossRef]
  22. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Mathematics and Computers in Simulation 2022, 192, 84–110. [Google Scholar] [CrossRef]
  23. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Advances in engineering software 2016, 95, 51–67. [Google Scholar] [CrossRef]
  24. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence 2020, 90, 103541. [Google Scholar] [CrossRef]
  25. Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Systems with Applications 2022, 116924. [Google Scholar] [CrossRef]
  26. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Machine Learning 1988, 3, 95–99. [Google Scholar] [CrossRef]
  27. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 1997, 11, 341–359. [Google Scholar] [CrossRef]
  28. De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft computing 2003, 7, 526–544. [Google Scholar] [CrossRef]
  29. Beyer, H.-G.; Schwefel, H.-P. , Evolution strategies–a comprehensive introduction. Natural computing 2002, 1, 3–52. [Google Scholar] [CrossRef]
  30. Reynolds, R.G. In An introduction to cultural algorithms, Proceedings of the third annual conference on evolutionary programming, World Scientific: 1994; pp 131-139.
  31. Koza, J.R.; Koza, J.R. Genetic programming: on the programming of computers by means of natural selection. MIT press: 1992; Vol. 1.
  32. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. science 1983, 220, 671–680. [Google Scholar] [CrossRef]
  33. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: a gravitational search algorithm. Information sciences 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
  34. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures 2012, 110, 151–166. [Google Scholar]
  35. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications 2016, 27, 495–513. [Google Scholar] [CrossRef]
  36. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
  37. Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Information Sciences 2012, 182, 40–55. [Google Scholar] [CrossRef]
  38. Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access 2019, 7, 66084–66109. [Google Scholar] [CrossRef]
  39. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems 2020, 191, 105190. [Google Scholar] [CrossRef]
  40. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Information sciences 2013, 222, 175–184. [Google Scholar] [CrossRef]
  41. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Advances in Engineering Software 2017, 110, 69–84. [Google Scholar] [CrossRef]
  42. Pereira, J.L. J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha Jr, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Systems with Applications 2021, 170, 114522. [Google Scholar] [CrossRef]
  43. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems 2019, 101, 646–667. [Google Scholar] [CrossRef]
  44. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design 2011, 43, 303–315. [Google Scholar] [CrossRef]
  45. Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
  46. Al-Betar, M.A.; Alyasseri, Z.A. A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications 2021, 33, 5011–5042. [Google Scholar]
  47. Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Computing and Applications 2022, 34, 409–455. [Google Scholar] [CrossRef]
  48. Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022. [CrossRef]
  49. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
  50. Payne, J.; Prudente, J.C. Orang-utans: behaviour, ecology and conservation. New Holland Publishers: 2008.
  51. Rijksen, H.D.; Meijaard, E. Our vanishing relative: the status of wild orang-utans at the close of the twentieth century. Springer: 1999.
  52. Wich, S.A.; Setia, T.M.; van Schaik, C.P. Orangutans: geographic variation in behavioral ecology and conservation. OUP Oxford: 2010.
  53. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technology Report 2016.
  54. Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in statistics, Springer: 1992; pp 196-202.
  55. Das, S.; Suganthan, P.N. Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata 2010, 341-359.
Figure 1. Orangutan taken from: free media Wikimedia Commons.
Figure 1. Orangutan taken from: free media Wikimedia Commons.
Preprints 119024 g001
Figure 2. Flowchart of OOA.
Figure 2. Flowchart of OOA.
Preprints 119024 g002
Figure 7. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2011 test suite.
Figure 7. Boxplot diagrams of OOA and the competitor algorithms performances for the CEC 2011 test suite.
Preprints 119024 g007aPreprints 119024 g007b
Table 1. Control parameters values.
Table 1. Control parameters values.
Algorithm parameter value
GA
Type Real coded
Selection Roulette wheel (Proportionate)
Crossover Whole arithmetic (Probability = 0.8, α 0.5 ,   1.5 )
Mutation Gaussian (Probability = 0.05)
PSO
Topology Fully connected
Cognitive and social constant (C1, C2) = ( 2 ,   2 )
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range
GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1
TLBO
TF: teaching factor TF = round ( 1 + r a n d )
random number rand is a random number between 0 1 .
GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.
MVO
wormhole existence probability (WEP) Min(WEP) = 0.2 and Max(WEP)=1.
Exploitation accuracy over the iterations (p) p = 6 .
WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.
r is a random vector in 0 1 .
l is a random number in 1,1 .
TSA
Pmin and Pmax 1, 4
c1, c2, c3 random numbers lie in the range of 0 1 .
MPA
Constant number P=0.5
Random vector R is a vector of uniform random numbers in 0 ,   1 .
Fish Aggregating Devices (FADs) FADs=0.2
Binary vector U= 0 or 1
RSA
Sensitive parameter β = 0.01
Sensitive parameter α = 0.1
Evolutionary Sense (ES) ES: randomly decreasing values between 2 and −2
AVOA
L1, L2 0.8, 0.2
w 2.5
P1, P2, P3 0.6, 0.4, 0.6
WSO
Fmin and Fmax 0.07, 0.75
τ, ao, a1, a2 4.125, 6.25, 100, 0.0005
Table 6. Wilcoxon rank sum test results.
Table 6. Wilcoxon rank sum test results.
Compared algorithm Objective function type
CEC 2017
D=10 D=30 D=50 D=100
OOA vs. WSO 8.41E-24 8.21E-24 8.21E-24 8.21E-24
OOA vs. AVOA 1.57E-21 1.26E-23 8.21E-24 8.21E-24
OOA vs. RSA 8.21E-24 8.21E-24 8.21E-24 8.21E-24
OOA vs. MPA 3.93E-22 6.50E-19 2.76E-20 8.21E-24
OOA vs. TSA 3.96E-23 8.21E-24 8.21E-24 8.21E-24
OOA vs. WOA 3.96E-23 8.21E-24 8.21E-24 8.21E-24
OOA vs. MVO 3.76E-21 8.87E-24 8.21E-24 8.21E-24
OOA vs. GWO 2.18E-23 8.21E-24 8.21E-24 8.21E-24
OOA vs. TLBO 1.54E-23 8.21E-24 8.21E-24 8.21E-24
OOA vs. GSA 6.66E-21 8.41E-24 8.21E-24 8.21E-24
OOA vs. PSO 6.41E-22 9.79E-24 8.21E-24 8.21E-24
OOA vs. GA 1.13E-21 8.21E-24 8.21E-24 8.21E-24
Table 7. Optimization results for the CEC 2011 test suite.
Table 7. Optimization results for the CEC 2011 test suite.
OOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA
C11-F1 mean 5.920103 17.39022 13.33731 21.05706 8.715436 18.01704 13.58734 14.23293 11.54006 18.04442 20.81796 17.62171 22.26941
best 2E-10 14.61193 9.495939 18.71472 1.804603 17.30358 8.520687 12.06721 2.440182 16.94885 18.26611 11.98458 21.09797
worst 12.30606 19.66117 16.68954 23.05217 13.19969 19.09799 16.93418 16.75519 17.9142 20.10811 22.0111 23.14246 24.25607
std 7.196379 2.400987 4.013324 1.99914 5.368972 0.818959 4.018352 2.542719 6.891004 1.494681 1.835857 5.329393 1.456657
median 5.687176 17.6439 13.58188 21.23068 9.928723 17.8333 14.44725 14.05466 12.90292 17.56037 21.49731 17.67991 21.8618
rank 1 7 4 12 2 9 5 6 3 10 11 8 13
C11-F2 mean -26.3179 -14.2624 -19.9064 -11.8736 -23.3368 -11.6356 -17.8532 -9.528 -21.2568 -11.3023 -15.241 -21.2983 -13.0262
best -27.0676 -15.7508 -20.5241 -12.1168 -23.9079 -15.1534 -21.0988 -11.2824 -23.3867 -12.0527 -19.2658 -22.4767 -15.3514
worst -25.4328 -13.1382 -19.3344 -11.5246 -22.093 -9.58355 -14.2074 -8.10438 -18.0907 -10.7637 -11.6643 -19.023 -11.3361
std 0.738935 1.333128 0.544996 0.26244 0.884624 2.715589 3.570128 1.384544 2.41029 0.60266 3.68196 1.640456 1.953962
median -26.3856 -14.0804 -19.8835 -11.9266 -23.6732 -10.9027 -18.0533 -9.36262 -21.775 -11.1964 -15.0169 -21.8468 -12.7086
rank 1 8 5 10 2 11 6 13 4 12 7 3 9
C11-F4 mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
worst 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
std 2E-19 1.86E-11 2.13E-09 4.18E-11 6.64E-14 5.81E-14 6.62E-14 9E-13 6.7E-14 1.08E-13 6.62E-14 6.62E-14 6.62E-14
median 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
rank 1 11 13 12 6 8 4 10 7 9 3 2 5
C11-F4 mean 0 0 0 0 0 0 0 0 0 0 0 0 0
best 0 0 0 0 0 0 0 0 0 0 0 0 0
worst 0 0 0 0 0 0 0 0 0 0 0 0 0
std 0 0 0 0 0 0 0 0 0 0 0 0 0
median 0 0 0 0 0 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1 1 1 1 1 1
C11-F5 mean -34.1274 -25.2175 -27.9963 -21.1342 -32.3358 -27.1746 -27.5944 -27.0569 -30.9071 -13.3897 -27.3571 -11.5656 -12.2902
best -34.7494 -26.0919 -28.9217 -22.8513 -32.8473 -30.8993 -27.7615 -31.0961 -33.1007 -15.1957 -30.9286 -14.6193 -13.5569
worst -33.3862 -24.4915 -27.632 -19.2053 -31.2781 -22.7089 -27.2665 -25.0029 -27.5749 -12.0369 -24.7099 -10.0326 -10.9043
std 0.589989 0.736666 0.651398 2.066682 0.751817 3.543313 0.235926 3.016868 2.471951 1.43243 2.882071 2.246734 1.211154
median -34.1871 -25.1432 -27.7158 -21.2401 -32.609 -27.5451 -27.6749 -26.0642 -31.4763 -13.1632 -26.8949 -10.8052 -12.3498
rank 1 9 4 10 2 7 5 8 3 11 6 13 12
C11-F6 mean -24.1119 -14.0897 -18.2974 -13.2521 -21.3104 -8.63171 -19.0738 -10.2921 -18.8022 -4.21747 -20.6998 -4.94712 -5.71111
best -27.4298 -14.764 -19.1411 -14.6227 -23.6053 -16.0875 -22.4303 -17.7564 -20.7928 -4.93827 -24.3079 -7.0585 -9.74747
worst -23.0059 -13.5426 -17.602 -12.2858 -19.8721 -5.52345 -13.0723 -3.7729 -17.0597 -3.7729 -16.9161 -3.7729 -4.0188
std 2.324951 0.65053 0.809346 1.065169 1.807309 5.248737 4.379777 7.752062 1.994112 0.529975 3.477442 1.570632 2.860723
median -23.0059 -14.026 -18.2232 -13.0499 -20.8821 -6.45794 -20.3964 -9.81963 -18.6782 -4.07935 -20.7876 -4.47854 -4.53909
rank 1 7 6 8 2 10 4 9 5 13 3 12 11
C11-F7 mean 0.860699 1.558108 1.288623 1.820738 0.99202 1.303556 1.673227 0.951373 1.107406 1.65236 1.117491 1.15425 1.670577
best 0.582266 1.521316 1.182697 1.605716 0.862127 1.172989 1.588548 0.885728 0.881194 1.479679 0.968488 0.897931 1.35767
worst 1.025027 1.635861 1.394596 1.96165 1.059349 1.59616 1.803919 1.02631 1.309296 1.756946 1.298184 1.369651 1.829346
std 0.211503 0.055246 0.118873 0.159565 0.095148 0.206503 0.098956 0.075607 0.186797 0.131117 0.158446 0.258564 0.224931
median 0.91775 1.537629 1.2886 1.857793 1.023301 1.222537 1.650222 0.946726 1.119568 1.686408 1.101647 1.17471 1.747647
rank 1 9 7 13 3 8 12 2 4 10 5 6 11
C11-F8 mean 220 278.3988 241.0229 312.3393 225.8807 255.1568 262.5186 227.2504 229.9897 227.2504 245.9581 433.4045 225.9188
best 220 255.5256 226.2458 277.3029 222.2252 222.2252 243.9974 222.2252 222.2252 222.2252 222.2252 246.7904 222.2252
worst 220 310.8709 258.4594 348.7748 231.2187 340.1051 304.4945 236.4643 239.4366 240.8062 288.7436 521.1187 231.5722
std 0 25.63005 14.43071 31.00166 4.442577 59.87582 29.60888 6.826963 9.25062 9.508314 32.95358 135.3033 4.579606
median 220 273.5994 239.6932 311.6397 225.0395 229.1484 250.7913 225.156 229.1484 222.985 236.4317 482.8545 224.9389
rank 1 11 7 12 2 9 10 5 6 4 8 13 3
C11-F9 mean 8789.286 504826.7 354448.5 929153.6 53342.71 92037.41 351366.3 148488.9 72528.14 379914.4 728516.7 946357 1669534
best 5457.674 345338.8 322389.6 615208 32194.85 74383.89 197262.9 112757.3 38425.67 333470.8 624500.4 753374.8 1597320
worst 14042.29 584496.9 381767.1 1088516 65230.14 119930.5 582900.7 201975.7 104307.5 472974.3 768053.7 1146793 1778056
std 3889.181 117306.7 26662.14 223901 15947.1 21113.5 183601 41402.58 28515.35 66519.34 73166.54 216193.9 88492.94
median 7828.591 544735.5 356818.6 1006445 57972.91 86917.64 312650.8 139611.4 73689.68 356606.2 760756.3 942629.9 1651381
rank 1 9 7 11 2 4 6 5 3 8 10 12 13
C11-F10 mean -21.4889 -13.6607 -16.1383 -12.2399 -17.9061 -14.0129 -12.7392 -14.2748 -13.7729 -11.4072 -12.9746 -11.491 -11.2428
best -21.8299 -14.3725 -16.7205 -12.4723 -18.5767 -17.4621 -13.2762 -20.137 -14.5805 -11.9091 -13.8309 -11.9553 -11.6709
worst -20.7878 -13.1969 -15.7944 -11.9599 -17.3594 -11.938 -12.3829 -11.2489 -12.4952 -11.0793 -12.0186 -11.1889 -10.9583
std 0.498616 0.527305 0.445566 0.266005 0.585583 2.52099 0.409228 4.184379 0.941716 0.371762 0.818242 0.343631 0.318359
median -21.669 -13.5366 -16.0191 -12.2637 -17.8442 -13.3258 -12.6488 -12.8566 -14.0078 -11.3203 -13.0246 -11.4099 -11.171
rank 1 7 3 10 2 5 9 4 6 12 8 11 13
C11-F11 mean 571712.3 5272454 1232488 7839331 1793336 5392008 1420866 1498856 3618899 4774892 1585228 4784193 5541427
best 260837.9 5107868 1058371 7600047 1728921 4633051 1360288 859467.4 3495887 4729579 1539942 4748182 5463937
worst 828560.9 5525958 1352575 7967240 1875084 6379519 1525324 2772377 3928789 4846534 1677837 4846534 5679235
std 260922.1 207728.9 130596.6 180776.5 64144.21 762344.6 75885.36 906932.5 217780.3 52692.61 67680.62 45577.61 99412.38
median 598725.2 5227994 1259503 7895018 1784669 5277731 1398926 1181790 3525459 4761727 1561566 4771028 5511268
rank 1 10 2 13 6 11 3 4 7 8 5 9 12
C11-F12 mean 1199805 7567324 3356778 11634817 1593020 4745383 5404660 1637420 1718522 12552409 5383533 2465510 12687503
best 1155937 7280380 3293066 10848229 1533606 4529257 5016677 1473502 1584886 11856053 5104008 2332813 12602758
worst 1249353 7835976 3423927 12340363 1669648 4877249 5583985 1780806 1844952 13104339 5562149 2663064 12761027
std 47157.58 247077.4 56234.99 642185.6 59426.91 173011 280042.1 132583.4 112208.9 553507.6 211689.3 148250.5 68583.36
median 1196965 7576470 3355059 11675339 1584414 4787514 5508990 1647685 1722125 12624622 5433988 2433081 12693114
rank 1 10 6 11 2 7 9 3 4 12 8 5 13
C11-F13 mean 15444.2 15805.61 15461.49 16185.9 15474.24 15496.94 15534.98 15511.81 15506.11 15869.08 110296.6 15497.48 27688.41
best 15444.19 15647.1 15457.78 15842.51 15469.61 15485.91 15494.82 15491.36 15497.6 15609.61 80421.19 15480.31 15478.16
worst 15444.21 16179.68 15467.86 17050.98 15479.23 15508.27 15590.66 15550.36 15512.72 16342.08 150810.9 15524.7 64042.27
std 0.009091 264.6824 4.630429 611.0784 4.134745 13.28135 46.60689 28.12276 6.737851 348.5 33308.79 20.1553 25474.47
median 15444.2 15697.84 15460.17 15925.06 15474.06 15496.79 15527.22 15502.77 15507.06 15762.32 104977.1 15492.45 15616.61
rank 1 9 2 11 3 4 8 7 6 10 13 5 12
C11-F14 mean 18295.35 97633.27 18682.8 195620.9 18757.09 19533.06 19276.3 19439.01 19282.13 264278.7 19164.53 19191.89 19181.17
best 18241.58 75011.44 18613.02 144878.1 18661.23 19307.69 19122.12 19329.12 19134.19 28547.81 18912.02 19044.6 18932.51
worst 18388.08 135292.4 18772.36 280518.7 18827.98 20021.3 19404.44 19534.56 19465.07 507229.8 19316.17 19321.83 19459.96
std 71.59938 28333.14 85.39038 63854.81 80.72001 345.4167 134.2456 91.02157 152.7497 241544.1 188.2708 122.2792 227.9891
median 18275.87 90114.63 18672.9 178543.3 18769.57 19401.62 19289.31 19446.17 19264.63 260668.5 19214.96 19200.56 19166.11
rank 1 11 2 12 3 10 7 9 8 13 4 6 5
C11-F15 mean 32883.58 781176.2 108312 1627642 45341.41 63506.54 201447.2 45468.92 45450.31 12983382 269689.6 45627.01 6690553
best 32782.17 319976.9 43595.67 678569 32904.1 33271.47 33021.41 33026.54 33051.55 2736525 228340.9 33253.65 3042549
worst 32956.46 1941570 171262.9 4224324 51625.56 123795.5 287013.3 51781.2 51703.43 19358805 291640.4 51902.61 11460012
std 76.94696 816676.8 70280.06 1822751 8897.118 42920.58 120525.5 8899.828 8868.206 7940200 30947.35 8853.229 4054593
median 32897.86 431579.1 109194.6 803837.2 48417.99 48479.6 242877.1 48533.97 48523.12 14919100 279388.6 48675.9 6129825
rank 1 10 7 11 2 6 8 4 3 13 9 5 12
C11-F16 mean 133550 817900.7 136863 1662172 138948.3 145227.4 142736.4 142437.6 145854.6 74771248 15765094 66926236 64261251
best 131374.2 264960.8 136069.7 420357.3 137599.1 143439.6 136665.8 134044.7 142569.7 72863394 8018850 55365044 51941418
worst 136310.8 1901072 137623.9 4096895 142513 147081.2 147681.1 150317.3 150973.4 76922213 28504369 79970878 82187377
std 2392.2 773155 895.5159 1737676 2504.36 1601.356 4827.072 7126.149 3777.487 1787965 9310709 11148097 13504451
median 133257.5 552785 136879.1 1065717 137840.5 145194.4 143299.4 142694.1 144937.6 74649692 13268579 66184512 61458106
rank 1 8 2 9 3 6 5 4 7 13 10 12 11
C11-F17 mean 1926615 8.18E+09 2.59E+09 1.37E+10 6.48E+08 1.72E+09 8.8E+09 6.49E+08 6.49E+08 1.94E+10 1.01E+10 1.82E+10 1.9E+10
best 1916953 7.28E+09 2.23E+09 1.02E+10 4.63E+08 1.35E+09 6.28E+09 4.64E+08 4.63E+08 1.89E+10 8.88E+09 1.6E+10 1.79E+10
worst 1942685 8.82E+09 2.73E+09 1.64E+10 8.61E+08 2.09E+09 1.17E+10 8.61E+08 8.62E+08 2E+10 1.07E+10 2.07E+10 2.13E+10
std 12003.53 7.26E+08 2.55E+08 2.79E+09 1.76E+08 3.26E+08 2.4E+09 1.76E+08 1.76E+08 5.05E+08 8.76E+08 2.17E+09 1.7E+09
median 1923412 8.32E+09 2.71E+09 1.41E+10 6.35E+08 1.73E+09 8.61E+09 6.35E+08 6.36E+08 1.93E+10 1.04E+10 1.8E+10 1.85E+10
rank 1 7 6 10 2 5 8 4 3 13 9 11 12
C11-F18 mean 942057.5 46968550 6246568 1E+08 1551619 2458384 8789489 1565381 1601545 26802059 10091478 1.14E+08 97052378
best 938416.2 32165899 3860025 69122918 1166395 2105030 3833110 1208053 1185497 21028845 7729212 95817548 93529199
worst 944706.9 53337276 10680388 1.14E+08 2092481 2764259 15367297 2036921 2235896 29424540 13030136 1.26E+08 1E+08
std 2774.139 10456522 3372738 22297257 413798.4 297588.8 5119786 368195.2 475034.6 4090135 2516208 14506058 3013638
median 942553.5 51185512 5222930 1.09E+08 1473799 2482124 7978775 1508275 1492394 28377426 9803282 1.17E+08 97106275
rank 1 10 6 12 2 5 7 3 4 9 8 13 11
C11-F19 mean 1025341 46337780 6425512 98329374 1785097 2899712 9420437 2070008 1974259 30755816 6098260 1.46E+08 97467953
best 967927.7 39329617 5431525 84714139 1177061 2367354 1993479 1210246 1380176 21455451 3147832 1.33E+08 94730931
worst 1167142 59275780 8194119 1.24E+08 2340168 3422486 16978182 3061406 2544052 38744416 8333924 1.68E+08 1.01E+08
std 99675.04 9379552 1288187 19079537 614570.1 483548.6 7410517 845585.3 632984 7705989 2276422 16187798 2637573
median 983146.6 43372862 6038202 92318587 1811579 2904504 9355044 2004190 1986404 31411698 6455643 1.41E+08 97257575
rank 1 10 7 12 2 5 8 4 3 9 6 13 11
C11-F20 mean 941250.4 48967515 5532949 1.06E+08 1385714 2114060 6700575 1396197 1417828 29648330 12578064 1.35E+08 97487351
best 936143.2 43137685 4951268 92693847 1359767 1937660 6319847 1377810 1385798 28996475 8553436 1.23E+08 92859483
worst 946866.6 57917146 6133039 1.26E+08 1422491 2356836 7209610 1424318 1451737 30311072 19190127 1.46E+08 1.01E+08
std 5013.552 6621981 512099.1 14830816 29465.74 198216.7 400304.6 23341.83 32784.24 576825.8 4891126 13500555 3641038
median 940995.9 47407614 5523745 1.02E+08 1380299 2080873 6636421 1391330 1416889 29642886 11284346 1.35E+08 98019702
rank 1 10 6 12 2 5 7 3 4 9 8 13 11
C11-F21 mean 12.71443 47.65386 23.5954 69.70586 18.79433 30.4773 38.01922 28.5535 24.21289 90.0843 39.62681 94.3193 91.6871
best 9.974206 40.21741 22.58455 53.28962 17.08664 27.83265 35.2891 25.60463 22.88643 45.69564 35.56843 81.89725 54.46949
worst 14.97499 55.7929 25.17928 86.27352 20.76606 31.91199 41.59334 31.2056 26.23347 130.3305 41.73212 104.4449 110.8826
std 2.412667 7.133006 1.166637 15.39462 1.711693 1.90116 3.027254 3.198601 1.538292 36.44639 3.002921 11.57281 27.60483
median 12.95425 47.30257 23.30889 69.63015 18.66231 31.08228 37.59723 28.70189 23.86583 92.15553 40.60334 95.46753 100.6981
rank 1 9 3 10 2 6 7 5 4 11 8 13 12
C11-F22 mean 16.12513 45.62653 29.33206 59.65088 22.29539 33.27953 45.2224 33.41087 27.26913 92.56565 45.52291 95.95859 84.12789
best 11.50133 40.43442 24.92922 44.92083 19.89289 29.90147 39.94322 26.60935 26.82319 61.62802 39.50369 81.4849 83.34725
worst 19.55286 50.76417 34.23744 68.2016 24.26827 35.40932 49.68618 38.15783 27.77753 108.4826 52.56221 105.311 85.4577
std 4.197797 4.567446 4.678654 10.69338 2.342326 2.483074 4.622637 5.34673 0.464144 22.23837 5.653775 11.1633 0.993915
median 16.72317 45.65375 29.08079 62.74054 22.51019 33.90365 45.63009 34.43814 27.2379 100.076 45.01286 98.51922 83.8533
rank 1 9 4 10 2 5 7 6 3 12 8 13 11
Sum rank 22 192 110 232 55 147 146 119 98 222 158 199 224
Mean rank 1 8.727273 5 10.54545 2.5 6.681818 6.636364 5.409091 4.454545 10.09091 7.181818 9.045455 10.18182
Total rank 1 9 4 13 2 7 6 5 3 11 8 10 12
Wilcoxon: p-value 2.00E-14 3.54E-17 7.12E-18 7.97E-06 2.23E-17 2.40E-17 7.29E-14 8.79E-15 1.52E-17 3.67E-17 7.12E-18 1.04E-17
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated