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Abstract: Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it
infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference
for Lys#A4, GIn©A4, Glu®A4, and Arg AG4 infrequently used in human genes. In the absence of an adapted tRNA
pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm?3s?)
modification at the Uss+ wobble position of the corresponding tRNAs (tLysUYY; tGInUUS; tGluVUS; tArgUc). The
optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to
the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-
to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA
modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support
the hypothesis that SARS-CoV-2 induces Us: tRNA modifications and relies on these modifications for its
lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias
and its ability to alter the host tRNA pool through the manipulation of RNA modifications.
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1. Introduction: The Critical Role of Codon Bias in Translation Efficiency

The efficiency of genetic code translation into amino acid is of utmost importance for rapidly
dividing organisms. This tedious process is carried out by the ribosome and necessitates accurate
decoding of the genetic code in messenger RNA (mRNA), through the selection of transfer RNAs
(tRNA). The standard genetic code is degenerate: with the exception of tryptophan (Trp) and
methionine (Met), most amino acids are encoded by two or more synonymous codons, which are
used unequally within a genome (Figure 1A) [1]. This non-random distribution of synonymous
codons, known as codon usage bias (CUB) [2], evolved alongside the expansion of the genetic code,
shaped by evolution and natural selection [3,4]. CUB affects translation efficiency based on the
availability of cognate codon-specific tRNAs, the effector molecules of translation, to ensure
incorporation of the correct amino acids during polypeptide synthesis through complementary
codon-anticodon base pairing [5,6]. CUB varies in a given genome. Highly expressed genes typically
display stronger CUB, aligning with abundant tRNAs for optimal translation [7,8]. Conversely, rare
codons may be selected on purpose, particularly at the beginning of coding sequences in eukaryotes.
Indeed low CUB in the 5' region decreases the translation elongation rate and reduces the likelihood
of ribosomal traffic jams as translation progresses towards the 3’ end [9]. Additionally, reducing the
elongation rate can promote the recruitment of chaperons facilitating co-translational protein folding
[10,11]. Notably, CUB influences gene expression beyond translation, affecting transcription
efficiency [12], termination [13], chromatin structure, and splicing [14]. As CUB varies depending
on the organism [15,16], it is crucial for investigating the adaptation of infectious agents in their hosts,
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as well as virus evolution and pathogenesis. This report focuses on these aspects using SARS-CoV-2
as a case study.
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Figure 1. A, standard genetic code, tRNA anticodons and their base modifications found in Homo
sapiens. Uss+ modifications are in purple (mcm’s?U), orange (mcm’U) or green (ncm’U). Non-Uss
modifications on the anticodon bases are in light blue, including Inosine (I), pseudouridine (W), 2’-O-
methylguanosine (Gm), 2’-O-methylcytosine (Cm), and Queuosine (Q). B, position of the multiple
modifications on tRNA skeleton. C, Us+-modified tRNAs and enzyme complexes involved in Us
tRNA modifications. tRNAA®ucu can be found with both marks either mcm® or mem®s2.1.1. The
wobble hypothesis and tRNA Uss modifications.

Besides the three codons that signal translation termination (UAA, UAG or UGA), 61 codons in
mRNA are decoded through sequence complementarity with tRNA anticodon. Human cells display
over 270 isodecoder genes (tRNAs with the same anticodon but different body sequence) among
more than 610 annotated tRNA genes. Yet there are only 49 isoacceptor families (tRNAs with distinct
anticodons but incorporating the same amino acid) to decode the 21 amino acids specified by the
genetic code. Thus, the efficient deciphering of the 61 amino acid codons implies that some tRNAs
can recognize more than one codon.

This conundrum led to the wobble hypothesis, introduced by Francis Crick in 1966 [17],
proposing that only the first two bases of the codon pair precisely with corresponding bases in the
anticodon, while the third position allows for flexibility or “wobble”. Accordingly, 30-40% of all
codon recognition in a given organism is achieved through tRNA wobble recognition [18]. The
modified wobble hypothesis of 1991 [19-21] expanded on the original hypothesis by including the
role of certain base modifications occurring in or near the tRNA anticodon loop (Figure 1B). These
modifications, ranging from simple methyl groups, to more complex structures such as sugars, affect
either the folding of the tRNA [22] or its ability to bind to codons [23]. Progressively, the impact of
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these modifications in almost all steps of RNA metabolism has emerged [24], and their potential
consequences for translation fidelity are being characterized [21]. Currently, these modifications are
recognized as major architects of the anticodon structure, capable of preventing, favoring or
expanding wobble base pairing, depending on their nature and position on the tRNA [25,26].

Recently, modifications in the tRNAs anticodon-loop, particularly at the Uss position of tRNA
have emerged as a central pillar in controlling codon bias interpretation by the translational
machinery, impacting translation fidelity [27]. Position 34 in the anticodon loop of tRNAs has indeed
been identified as a hot spot for base modifications. The addition of a methoxycarbonylmethyl group
at position 5 and a thiol group at position 2 (mcm?s?) of Uss in tRNALysyuy, tRNACMuug, tRNACGHuuc
and tRNAAtucy, by the stepwise action of the Elongator (ELP1-6), ALKBHS, CTU1/2 multi-enzyme
complex [28] enhances base pairing with A-ending codons that are infrequent in the human genome
(Lys AAA; GIn CAA; Glu GAA; Arg AGA codons) (Figure 1C). The first two enzymatic steps
(Elongator and ALKBHS8) generate mem® modifications at the Uss position of two additional tRNA
(tRNASYucc and tRNAABucu) whereas Elongator alone can attach carbamoylmethyl (ncm®) to Uss of
six different tRNA (tRNAAkyce, tRNAT™ gy, tRNAPreucs, tRNASruca, tRNAValuac, tRNALetumaa).
Additionally, KIAA1456 [29] (a human Trm9 homolog) has been recently shown to generate mem5U
directly from uridine [30]. In humans, additional modifications at position 34 include pseudouridine
(W), inosine (I), methycytidine (m°C) and queuosine (Q). Without these tRNA modifications, a codon-
specific slowdown of translation occurs, impacting the overall translation efficiency of mRNAs
enriched in corresponding codons [31-33].

1.2. Codon Bias and tRNA Pool

Translation efficiency cannot be explained solely by CUB, since preferentially used codons are
not necessarily translated faster than non-preferred ones [34]. The overall control of translation
efficiency also depends on the relationship between codon usage and the concentration of cognate
tRNA. In any given organism, the set of tRNA molecules, known as the tRNA poo], is fitted to the
corresponding genome’s codon bias to ensure optimal translation. This mutual alignment,
measurable by the tRNA adaptation index (tAl, defined below) [35,36], defines codon optimality,
indicating how efficiently a codon is translated by the ribosome. Indeed, adapting CUB to the most
abundant tRNAs, decreases the time required for selecting the correct tRNAs, thereby reducing the
likelihood of binding non-cognate tRNAs. In most prokaryotes and eukaryotes, there is a close
correlation between tRNA level and the efficiencies of each codon-anticodon pairing. Consistent with
translational selection, most optimal codons also have abundant corresponding tRNA copies in the
human genome, although some still require wobble tRNAs. Yet, a close correlation between codon
usage and tRNA abundance is not consistently observed, especially in multicellular organisms with
higher tRNA gene redundancy [9]. In mammals, direct adaptation to anticodon pools does not fully
explain synonymous codon usage, which is also shaped by mutational biases and genetic drift [35],
such as GC-biased gene conversion [37]. Despite weak correlations between synonymous CUB and
tRNA pools [38], the global correlation between codon and anticodon pools in mammals is strong
and stable across different cell types and cell states [39,40]. Obviously, the extent of base modification
in tRNAs also influences this balance especially for codons decoded through tRNA wobble
recognition.

1.3. Viral Manipulation of Host Translational Machinery through tRNA Modifications

Viruses are obligatory parasites that rely entirely on the host’s translation machinery to translate
their genome [41]. Numerous analyses comparing virus and host cell genomes in terms of codon
usage have revealed that they use synonymous codons at different frequencies. Since discrepancy
between the viral codon usage and the availability of the corresponding tRNAs in the host tRNA pool
induces ribosome pausing [27], the central question we would like to bring to light is how viruses
overcome the inadequacy between their own CUB and the suboptimal tRNA pool composition of the
cells they infect, to efficiently translate their genome. In this context, viruses may need to maneuver
host tRNAs to decode their skewed codons and optimize translation [42-45]. Moreover, because the
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tRNA pool in each cell type contains a subset of all the isodecoder and isoacceptor tRNAs needed for
correct amino acids incorporation through complementary codon-anticodon base pairing, the
differential expression of tRNA genes across tissues and individuals [46,47] may also influence viral
tropism.

2. Results and Discussion

2.1. Analysis of SARS-CoV-2 Codon Bias

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the
recent devastating coronavirus disease 2019 (COVID-19) pandemic [48,49], which has infected over
600 million people and caused more than 6 million deaths worldwide (https://covid19.who.int).
Coronaviruses belong to the order “Nidovirales”, with those infecting humans falling into two genera:
alphacoronaviruses (HCoV-229E and HCoVNL63), and betacoronaviruses (HCoV-HKU1, HCoV-
0OC43, Middle East respiratory syndrome coronavirus (MERS-CoV), the severe acute respiratory
syndrome coronavirus (SARS-CoV1 and SARS-CoV-2). Since SARS-CoV-2 belongs to the same genus
as SARS-CoV-1 and MERS-CoV, they share several structural characteristics [50] briefly outlined
below [51,52].

SARS-CoV-2 is an enveloped virus with a positive-sense, single-stranded RNA genome of ~30
kb. Upon cell entry, two overlapping open reading frames (ORFs) ORFla and ORF1b are translated
from the positive strand genomic RNA (Figure 2A). The translation of ORF1b involves a -1 ribosomal
frameshift enabling read-through of the ORF1la stop codon. ORFla and ORF1b encode continuous
polypeptides that are processed into 16 nonstructural proteins (Nsps) [53,54]. The viral genome is
then used by the viral RNA-dependent RNA polymerase, Nsp12, to produce negative-strand RNA
intermediates that serve as templates for the synthesis of positive-strand genomic RNA and
subgenomic RNAs [55,56]. The subgenomic transcripts contain a common 5' leader sequence fused
to different segments from the 3’ end of the viral genome [57], along with a 5’ cap structure [58] and
a 3' poly(A) tail [59]. They encode four conserved structural proteins: spike protein (S), envelope
protein (E), membrane or matrix protein (M), nucleocapsid protein (N), along with several accessory
proteins. By homology with SARS-CoV1, SARS-CoV-2 is predicted to translate 9 accessory proteins
[60]. Nevertheless, the current annotation of SARS-CoV-2 (Reference Sequence: NC_045512.2)
includes only 6 accessory proteins (3a, 6, 7a, 7b, 8, and 10), and not all of these ORFs have been
experimentally reproducibly confirmed [61,62]. Using ribosome profiling techniques, the accurate
quantification of canonical viral ORFs expression was established, along with 23 novel unannotated
viral ORFs [63]. These include several in-frame internal ORFs lying within existing ORFs, resulting
in N-terminally truncated products, and internal out-of-frame ORFs producing novel polypeptides.
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Figure 2. A, genome organization of SARS-CoV-2 and corresponding Codon Adaptation Index (CAI)
with human genome. B, SARS-CoV-2 CAI (ORF-size weighted average) with respect to various
species.

2.1.1. Codon Bias Analysis: A Tool to Shed Light on Virus History, Origins and Evolution

It is well established that mutation pressure and natural selection are the primary factors shaping
the codon usage of an organism [64]. Codon usage can also be influenced by nucleotide composition,
synonymous substitution rate, gene length, expression level, and transfer RNA (tRNA) abundance
[65,66]. Due to their reliance on host tRNA, viruses may evolve their codon usage to optimize or
deoptimize translation in relation to their host’s codon usage [67,68]. Therefore, exploring the codon
usage of viral genes is critical for uncovering viral evolutionary history [69], understanding virus-
host interactions, and identifying the evolutionary forces shaping viral genomes [70,71]. Such
information can also help characterize newly emerging viruses and trace their propagation across
different host species.

Codon analysis toolbox

The level of bias can be investigated according to widely used bioinformatic tools:

Codon Adaptation Index (CAI) - The CAI estimates the degree of adaptation between a gene
segment or an entire virus genome, and a potential host [72-74]. It compares the codon usage in the
viral sequence to a reference set of highly expressed genes from the host which are assumed to use
the most optimal codons for the host’s translational machinery. The CAI value ranges from zero to
one, with one indicating that a gene uses the most frequently synonymous codon for each encoded
amino acid, and values close to zero indicating the use of less common synonymous codons. Higher
CAI values between different genes on genome segments, indicate a better adaptation to the host’s
cell translational machinery. However, the CAI index is not strictly speaking a measure of CUB as
codon usage is inherently multivariate and requires complementary approaches for comprehensive
analysis.

Plotting the effective number of codons (Nc plot) — Nc plots graph the effective number of codons
used (Nc) against the G+C frequency at the third base position of the codon (GC3s). This quantifies
how far a gene’s codon usage deviates from equal usage of synonymous codons [75]. Neutrality plots,
which plots GC1+2 (mean G+C frequency at the 1st and 2nd position) against GC3 for each gene, are
commonly used alongside Nc plots to estimate the respective contribution of mutation pressure and
natural selection in shaping the CUB [76-78]. The slope of the curve in neutrality plots indicates the
percentage contribution of mutual pressure to the overall codon bias.

Relative Synonymous Codon Usage (RSCU) - RSCU determines the intrinsic preference of a given
cell or virus gene for synonymous codons by calculating the ratio of observed codon frequency to the
expected frequency, assuming equal usage of all synonymous codons for the same amino acid [79,80].
The codon bias is considered positive for RSCU > 1.6 and negative for RSCU < 0.6, and unbiased for
values in between.

tRNA Adaptation Index (tAl) - The tAl quantifies translational efficiency in a given context by
considering the availability of tRNAs for each codon, factoring in wobble base pairing efficiency (Wi)
[81]. The normalized Wi values indicate the nominal speed at which the ribosome translates a codon
relative to tRNA concentration, gene copies and pairing efficiency. The tAl of a gene reflects the
adaptation of its coding sequence to the intracellular tRNA pool, providing a measure of translational
efficiency complementary to CAI, Nc and RSCU [82]. If tRNA levels are not available, tRNA gene
copy number can be used instead [36,83] and retrieved from dedicated database GtRNAdb [84]
(http://gtrnadb.ucsc.edu).

2.1.2. SARS-CoV-2 Adaptation to Various Species

Several reports based on state-of-the-art bioinformatics suggest that SARS-CoV-2 originated
from an ancestral coronavirus in bats, specifically related to the bat RaTG13 coronavirus [85], that
likely passed through intermediate hosts such as pangolin (Manis javanica) before crossing species
barriers again to infect humans [86-88]. We performed CAI [73] comparisons of the Wuhan reference
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strain NC_045512 of SARS-CoV-2 (weighted by the size of each ORF) against codon usage table (CUT)
of several species from the HIVE-CUTs database (https://hive.biochemistry.gwu.edu/cuts/). Our
analysis confirmed a high degree of SARS-CoV-2 codon usage adaptation to both pangolin and bat
(Figure 2B), supporting their proposed role as animal sources for this emerging virus. Interestingly,

our analysis also revealed an even higher adaptation index to snakes (Naja atra among others) and to
the marsupial wombat (Vombatus ursinus), suggesting these animals may also be relevant in
understanding the virus's transmission. Interestingly, the hypothesis that snake could serve as a
potential intermediate host of SARS-CoV-2 between bats and humans has been debated [89-91] and
remains plausible considering that snakes are common wildlife meal of Chinese people and are
ordinarily sold at the Wuhan seafood and animal market [92]. The wombat seems less likely since it
only lives in Australia. However, the recent trend among wealthy Chinese people to hunt wombats
in Australian lodges [93,94] makes it a tiny but potential virus transmission niche. Global CAI
analysis of SARS-CoV-2 ORFs shows oscillations around the 0.69 mark (Figure 2A), indicating that
none of the multiple ORFs are fully adapted to their human host codon preferences, with some
regions showing poor adaptation with CAI values below 0.6, compared to CAls of 0.869, 0.882, and
0.819 for the well-adapted highly expressed B-globin, B-myosin and B-tubulin humans genes with
protein abundance above 10,000 ppm, and CAI values below 0.78 for the poorly expressed RHA, RIG-
I and Kallmann Syndrome human genes (protein abundances below 300 ppm) [95].

2.1.3. Nc and Neutrality Plots

If GC3s is the only determinant factor shaping the codon usage, the Nc values would align with
a dotted theoretical curve representing random codon usage [96] (Figure 3A and 3B). If G+C
compositional constraint alone influences the codon usage the gene of interest, then the GC3s and Nc
correlated spots would lie on or below the expected curve. Nc values range from 20 to 61. A value of
20 indicates a maximum level of codon bias, whereas a value of 61 indicates a complete lack of bias.
In general, if the Nc value is < 35, the coding sequence is considered to have significant codon usage
bias. The Nc-GC3s plot has been widely used to determine whether codon usages of given genes are
affected by mutation only (corresponding points would lie around the expected curve) or also by
other factors such as selection (corresponding points would depart away from, considerably below
the expected curve). When the Nc and GC3s values were plotted for the individual SARS-CoV-2 ORFs
(Figure 3A, right), all points, except for ORFs 7a and 10, lied below the expected random curve,
indicating that G+C compositional constraints might significantly influence SARS-CoV-2 codon
usage. The deviation of almost all SARS-CoV-2 ORFs from the random curve towards the lower Nc-
values suggests that not only mutation but also other factors, such as translational selection, are likely
to be involved in determining the selective constraints on codon bias in SARS-CoV-2 genes towards
a preferred and limited set of codons. As a reference to human genome, translational selection is
much more pronounced in housekeeping genes [97] such as Globin, Myosin and Tubulin than in
poorly expressed humans genes (DHX9, DDX58, IFN-beta, or KAL) as outlined in the corresponding
Nc plot (Figure 3A, center). Accordingly, the weighted average for all SARS-CoV-2 ORFs (black dot
with Nc=45.1 and GC3s=0.28 in Figure 3A) markedly differs from other RNA viruses such as the
Flaviviridae Zika virus ORFs (Figure 3A, left), that also have a bias towards A-ending codons [98-100],
showing a much lower GC content and overall Nc value for SARS-CoV-2, stressing again the unique
codon-wise characteristics of SARS-CoV-2. The same analysis was performed for Orfla and Spike
gene segments of various Coronavirus (Figure 3B) including SARS-CoV-2 (Wuhan initial reference
isolate and Omicron recent isolate), SARS-CoV-1, MERC-CoV and various hCoV lineages (229E,
OC43 and NL63). We observed that all points representing different strains were lower than the
standard curve for both genes, Orfla showing more dispersion on the Nc axis than Spike.
Additionally, with the exception of SARS-CoV-2 Orfla (Wuhan and Omicron), the coronavirus
strains were not clustered together, highlighting again that mutational pressure combined with other
factors may have contributed to the codon usage bias of SARS-CoV-2. Spike Nc plot shows more
clustering between strains revealing less bias between strains for this gene segment, with a potential
higher contribution of mutational pressure to the Spike codon bias. This was further confirmed with
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the complementary neutrality plot analyses (Figure 3C) that revealed the greater contribution of
mutation pressure to Spike than to Orfla CUBs (Spike:32% >> Orfla:23%), while the relative

constraints on GC3 (natural selection) being the main evolutionary force driving CUB is conversely
higher for Orfla (Orfla:77% >> Spike:68%).
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Figure 3. A, Nc plots of SARS-CoV-2 Wuhan'’s isolate individual gene segments (right) along with
Flavivirus genomes (PF13, Asian genotype from French Polynesia (2013); MR766 original African
genotype from Uganda (1955)) (left) and differentially expressed human genes (DHX9 (or RHA),
DDX58 (RIG-I), KAL (Kallmann syndrome protein), IFN-beta (beta-interferon), Tubulin (beta-
tubulin), Myosin (Myosin Heavy Chain), Globin (beta-globin)) (center). The dotted line represents the
expected Nc values if the codon bias is affected by GC3s only. Black dot represents the position of the
SARS-CoV-2 total coding genome. B, Nc plot of Orfla and Spike gene segments from seven
coronaviruses. C, neutrality plot analysis corresponding to virus sequences used in B. GC12
frequencies were plotted against GC3 frequencies. The y-axis (GC12) refers to the average GC
frequency at the first and second codon positions. The x-axis (GC3) refers to the GC frequency at the
third codon position. The slope value indicates the mutational pressure percentage.

2.2. SARS-CoV-2 Genome is Enriched in Uss+-Sensitive Codons

With the lack of information on the level of virus-mediated alteration of Us: tRNA modification
in mind, we compared Uss sensitive codon frequencies in coronaviruses (HCOV-OC43, SARS-CoV-1,
MERS-CoV and SARS-CoV-2) and human genomes using the RSCU indicator [15]. A striking contrast
emerged when these frequencies were arranged in clusters (Figure 4). Codons preferred by SARS-
CoV-2 are (i) barely used in human cells and (ii) predominantly include codons requiring Uss
modifications on their cognate tRNAs for efficient decoding (with the exception of Gly (GGA)).
Notably, SARS-CoV-2 exhibits a greater divergence from human codon frequencies compared with
SARS-CoV-1 and MERS-CoV. Although the latter still shares some codon usage preferences with
humans, SARS-CoV-2 contains a clear enrichment in Uss-sensitive codons. This pattern was consistent
across both nonstructural (Orfla and Orflb) or structural viral genes (Spike). Uss-sensitive codon
usage between SARS-CoV-2 and humans revealed a significant viral preference for Us-sensitive
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codons with up to two-fold enrichment for some codons such as GIn44, ArgAGA, and Leu™™. (not

shown).
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Figure 4. Hierarchical cluster analysis of RSCU for Human Coronavirus (left) and SARS-CoV-2
(Wuhan reference genome) longest ORFs (right), encoding non-structural genes (Orfla an Orflb) and
structural gene Spike. Average linkage WPGMA (weighted pair group method with averaging) was
used as agglomeration method. Uss-sensitive codons are noted with asterisks and their cluster is
outlined in yellow.

2.2.1. Comparison of Coronavirus Translation Adaptation (tAl)

Previous CAI measurements have the disadvantage of relying on highly expressed reference
host genes. The translation adaptation index (tAl) offers a more nuanced approach as it can be based
on either intracellular tRNA levels (when available) or tRNA gene copy numbers in the host genome.
Here, we compared tAI of various ORFs encoding non-structural (ORFlab) and structural proteins
(S5, E, M and N) among coronaviruses infecting humans. Our analysis revealed SARS-CoV-2 as the
least adapted to the translational machinery of its human host, with all its ORFs having tAl below
0.34, excepted for the Matrix protein (M) (Figure 5A). This tAl level obtained for SARS-CoV-2 is
significantly lower than that observed for human ORFs encoding highly abundant proteins (such as
B-myosin, B-globin, or B-tubulin). Calculations were performed using human tRNA gene copy
number retrieved from the genomic tRNA database (http:/gtrnadb.ucsc.edu) known to mirror the
global tRNA abundancy of a given organism but lacking information related to tissue specificity.
However, it seems from the recent of the Nedialkova’s group [101] that tRNA transcript levels may
fluctuate without affecting significantly tRNA anticodon pools abundancy and availability that
primarily dictate decoding pace. Accordingly, tRNA anticodon pool was shown to remain stable
across cell types (human primary cells (cardiomyocytes (CM), neuronal precursor cells (NPC) and
mature neurons) differentiated from iPSC cells) ensuring consistent decoding rates throughout
development, independently of cell identity. This stability across cell types of tRNA pool was further
authenticated by plotting normalized tRNA gene copy number (GCN) against the normalized
experimental data of tRNA anticodon expression level in these human primary cells (Figure 5B),
showing a quasi-constant correlation between GCN and experimental tRNA levels in the four cell
types. This observation validates the use of human tRNA GCN in the calculation of aforementioned
tAl used in Figure 5A.
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Figure 5. tRNA Adapatation Index (tAl) of Coronavirus. A, Calculations were performed with
stAlcalc software (http://tau-tai.azurewebsites.net) using human tRNA gene copy number retrieved
from the genomic tRNA database (http://gtrnadb.ucsc.edu), for non-structural (ORF1ab) or structural
(S, E, M, N) ORFs of coronavirus infecting bat (RaTG13) and humans (hCoV 229E, hCoV OC43, SARS-
CoV-1, MERS-CoV and SARS-CoV-2). For comparison, tAl of human ORFs encoding highly abundant
proteins (Protein Abundance Database (https://pax-db.org)) were calculated. B, correlation between
normalized human tRNA gene copy number (GCN) and normalized experimental anticodon tRNA
expression level in human primary cells derived from iPSC cells (CM, cardiomyocytes; NPC, neuronal
progenitor cells), based on the data from Gao et al. (2024) [101]. Anticodons are colorcoded with
respect to tRNA modifications occuring at position 34.

2.2.2. The Enigma of Spike Protein’s Furin Cleavage Site

Among the SARS-CoV-2 ORFs, the region encoding the spike protein has been extensively
studied as it mediates attachment to the host cell by binding to the ACE2 membrane protein and
facilitates viral fusion to the host cell membrane following efficient cleavage by furin proteases
[102,103]. Early examination of the Wuhan SARS-CoV-2 isolate early revealed an unusual furin-like
cleavage site at the 51/S2 junction of spike ORF [104,105]. This site, created by insertion of a 4-amino
acid sequence (PRRA), corresponds to the insertion of 12 nucleotides (..U CCU CGG CGG GC...)
absent from all other sarbecoviruses, including the closely related bat sarbecovirus RaTG13 with
~96% genome sequence identity [48] [106] (Figure 6A). In SARS-CoV-2, the furin site insertion lies
in a region where codons are moderately adapted to the human host, as depicted by the CAI curve.
Most codons in this region are commonly used in the virus genome (high RSCU), except for the
arginine dicodon (CGG CGG (R R)). Interestingly, the corresponding unique CGG codon is less
preferred than AGA in SARS-CoV-2 (SARS-CoV-2 RSCUccc=0.17, SARS-CoV-2 RSCUaxca=2.63,)),
which is not the case in the human genome (human RSCUaca =1.29, human RSCUccc =1.21) (Figure
6C). During the pandemic, mutations impacting the furin site have been rare, suggesting a strong
purifying selection in humans [107,108]. However, non-arginine residues in the PRRAR motif remain
permissive to potential optimization during human viral evolution in different variants of concern
and interest (Figure 6B). This complex interplay between codon usage and furin site evolution
warrants further investigations to unravel its significance in SARS-CoV2 origins.
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Figure 6. Insertional furin cleavage site in SARS-CoV-2 Spike gene segment. A, sequence alignment
between Wuhan SARS-CoV-2 isolate and bat RaTG13 sequences along with their respective RSCUs
and human-related CAI profiles. B, sequence variation of SARS-CoV-2 variants in the furin site
vicinity. Codons highlighted in yellow represent codon variations between SARS-CoV-2 and RaTG13
without amino acid change. C, RSCU of Arg codons found in the different ORFs of Wuhan SARS-
CoV-2 primary isolate compared to the Argrscu of the highly expressed human beta-myosin ORF.

2.3. Suitability of the SARS-CoV2 Highly Biased Codon Composition for Viral Translation in Target Tissues

The translation efficiency of the viral genome is heavily influenced by codon optimality, which
is determined by the balance between the viral codon usage bias and the availability of a suitable
tRNA pool in target cells. However, recent reports highlighted the significant variability in tRNA
gene expression across human tissues [46,109-111]. This variability suggests the necessity to
reevaluate codon optimality by considering tissue-specific codon usage in compliance with virus
tropism [112]. Whereas the evaluation of the effect of tissue-specific codon optimality on viral protein
synthesis may remain experimentally elusive, a recent in silico study by Hernandez-Alias et al. [113]
analyzing the relative codon usage landscape over 500 human-infecting viruses alongside with
tissue-specific tRNA expression profiles from 23 human tissues from The Cancer Genome Atlas
(TCGA), has suggested that tRNA repertoires could determine tissue-specific translational efficiency
[114]. They proposed that the SARS-CoV-2 proteome was well-adapted to tissues like the upper
respiratory airways, lung alveoli [115,116] and gastrointestinal tract [117], seemingly matching the
observed SARS-CoV-2 tropism. However, the translation appropriateness of these tissues was also
matching with other viruses such as Flavivirus or Alphavirus that exhibit tropisms that do not share
one shred of similarity with SARS-CoV-2 tropism. Several flaws of this study, including the use of
tRNA abundance data derived from cancer cells in which profound deregulation of tRNA expression
occurs [118-121], restrict its significance. Interestingly, recent studies showed that highly expressed
genes in human lung primary tissue have a codon composition perfectly aligned with SARS-CoV-2
codon usage, suggesting that the virus might have optimized its codon bias to take advantage of lung
cells [122]. The recent Nedialkova’s report [101] that illustrated the broad stability of tRNA anticodon
pools across human cell types (shown above in Figure 5B), reinforces even more the prohibition of
cancer cells in approaches aiming tRNA pool dynamics.

Taken together, these observations underscore the crucial need to further investigate how the
codon composition of the viral ORFeome influences the translation rate of host genes and promotes
viral translation.
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2.3.1. tRNA Modifications: Do RNA Viruses Have a Wobble?

In analyzing virus-host interactions, it is crucial to consider the modification of host cell tRNAs
promoted by the virus. While the functional importance of the virus mRNA epitranscriptome has
been extensively reported in human cells [123,124] and more recently in the SARS-CoV-2 RNA
genome and subgenomic transcripts [125-128], our understanding of virus-induced modifications in
host tRNAs is still limited although increasingly relevant [129]. As outlined earlier, modifications of
the anticodon loop of tRNA regulate translation rate and fidelity, contributing to the translational
adaptation [130]. For instance, changes in tRNA modifications significantly impact translation
efficiency in response to physiological stresses [131,132]. Hypomodification, occurring especially at
position Uss of specific tRNAs, namely tRNALysyuu; tRNACyuc; tRNASyuc, slows down translation,
disrupts protein homeostasis and reduces cellular fitness. These mechanisms are crucial for
maintaining cellular function and viability during stress until normal conditions are restored. While
these mechanisms may have a critical influence on viral translation, this aspect of virus/host
relationships remains largely unexplored.

2.3.2. SARS-CoV-2 Codon Bias Dynamics during the Pandemic

Besides providing crucial information on viral genetic adaptation to host [133,134], evaluating
nucleotide composition and CUB in viral genome also provide further insights into the mutational
patterns of viruses over time and can be crucial for vaccines and antiviral therapy development [135].
A recent study analyzing over 3.5 million SARS-CoV-2 sequences revealed unique mutational trends
with consistent nucleotide and codon frequencies [136]. This study also highlighted variations over
time, including synonymous mutations, silent at the amino acid level, and nonsynonymous
mutations inducing amino acid changes, impacting protein levels. It also revealed an unexpectedly
high proportion of nonsynonymous mutations in the Spike gene when compared with glycoprotein
genes from other RNA viruses.

To deepen this analysis, we examined the sequences from the various SARS-CoV2 clade (Alpha,
Beta/Mu, Delta, Lambda/Gamma and Omicron) extracted from the Fumagalli’s paper [136] and
generated their respective RSCU profile, monthly from December 2019 to July 2022. The RSCU
pattern will here give us a snapshot of the average CUB for each month (Figure 7A). Focusing on
SARS-CoV-2 Orflab and Spike genes, we analyzed the overall codon bias patterns by cluster analysis
in order to compare the temporal codon usage variations of each clade. Notably, all seven clades were
present and detectable at the very beginning of the pandemic albeit with variable abundancy. The
Alpha clade was the first to strongly emerge and spread worldwide, while Beta/Mu and
Lambda/Gamma remained at low levels of diffusion. Regarding their respective CUBs, all clades
exhibited very similar patterns during the first 3 months of 2020. From April to September 2020, the
RSCU pattern of Alpha clade began to fluctuate markedly before reaching a long period of stability
from October 2020 to September 2021, coinciding with the peak of Alpha clade expansion worldwide.
Surprisingly, the CUB pattern during this high transmission period was reversed compared to the
initial pattern. The pattern of a stabilized, reversed CUB was observed not only in the Alpha clade
but also in the Delta and Omicron clades, when they both reached their highest levels of transmission.

The clear correlation between CUB inversion and peak of diffusion can be interpreted in two
opposite ways: a) the high level of expansion has selected sub-variants with a stable CUB, or b) a
highly adapted sub-variant with optimized CUB preceded the peak, driving the exponential
expansion. Although both scenarios might be involved, the persistence of inverted CUB beyond peak
diffusion suggests natural selection of an optimized CUB likely played a role (favoring option b).

Comparing the RSCU of both genes at peak expansion for each clade reveals that Spike exhibits
a much stronger preference for codons ending by A/U, especially those recognized by tRNAs
modified at Uss position (e.g. Argaca, Lysaas, Glucaa and Glncaa) (Figure 7B). This necessitates
analyzing RSCU patterns for each gene individually at expansion peaks. Interestingly, each clade
shows different CUB optimization pattern during peak diffusion, indicating that multiple codon
patterns can support an optimal viral translation (Figure 7C and 7D). For instance, Omicron has
evolved a codon bias diametrically opposed to the CUB of other clades, while Alpha and Delta Spike
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sequences share a similar CUB pattern (Figure 7C). Conversely, the Orflab gene in Alpha and
Gamma/Lambda clades show the closest patterns (Figure 7D). Furthermore, within a given clade
Orflab and Spike genes have developed distinct RSCU pattern. These varying preferences for A/U
ending codons or codons requiring Us+-modified tRNAs, suggest that efficient translation might
depend on subtle but specific factors like translation speed and protein folding parameters.

A

. Apha BetalMu Delta Gammallambda Omicron

) oA
F&ES “ﬁ§;§ & &L “¢5ﬁ_ F&E 05;§ﬁg

~ Orfab
RSCU

[ spike Orftab }:: Spike I‘:. [ orftab

Figure 7. A. SARS-CoV-2 codon bias variation over time. RSCUs for Spike and Orflab were calculated
from the various clade sequences extracted from the Fumagalli’s paper [136] and analyzed overtime
for each clade by cluster analysis (using Genesis algorithm [180]). Sequence count profiles are shown
beneath each clade time scale to trace each clade expansion. B. Comparison of RSCUs at expansion
peak of each clade. Cluster analysis was established for both Spike and Orflab together (B) or
individually (C and D). U34-sensitive codons are highlighted in yellow.

2.4. Hypothesis: Virus-Driven Manipulation of the tRNA Pool and tRNA Modifications Forces Translation
of SARS-CoV-2 Genes

Bioinformatic approaches like the tAl and the CAIl measures, reasonably predict gene expression
but can be improved. More precise estimations of amino acid-loaded tRNAs (“ready-to-translate”
tRNAs) availability would be more realistic than using concentration of tRNA molecules or its
estimate from tRNA gene copy number. The real availability of functional tRNAs, influenced by
tissue-specific pools, is required for high translation efficiency. Another important mechanism for
efficient protein synthesis is the channeling effect, which involves the direct transfer of aminoacyl-
tRNA/tRNA between aminoacyl-tRNA synthetases (ARS), elongation factors, and ribosomes. This
process is crucial because it regenerates and concentrates frequently used tRNAs near specific
translation sites [137,138]. Additionally, the global CUB measures (CAI, tAl, RSCU) do not consider
the order of favorable and unfavorable codons along the transcript, which can create fast or slow
translation segments [42,139]. Environment-dependent dynamic variations in the tRNA pool and
tRNA demand, should also be integrated in future models of translation efficiency. Using tRNAs
composition from cancer cells can distort prediction of virus/host-tissue translational compatibility
due to altered tRNA levels [118-121,140] and tRNA modifying enzymes in pathological conditions
[141]. Uss modifications, in particular, rapidly respond to metabolic changes [142] such as methionine
metabolism, carbon balance, or phosphate homeostasis [143-145].

Translational reprogramming is clearly appearing as a key element in cell adaptation to
changing environments [146] and may aid virus adaptation to hosts. We have here highlighted
striking discrepancies between SARS-CoV-2 preference for Uss-sensitive codons and availability of
cognate Us-modified tRNAs (ie: mem®s?) in target cells. Since SARS-CoV-2 hasn't fully adjusted its
codon bias to match human target cells, its recent rapid expansion may be due to its ability to
manipulate Uss modifications, optimizing translation and facilitating its infection cycle. By reducing
the need for precise codon usage adaptation, this ability could allow the virus to infect a broader
range of hosts [147].
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2.5. Evidences Supporting the Ability of SARS-CoV-2 to Exploit the tRNA Epitranscriptome in Order to
Favor Viral Translation

2.5.1. Potential Manipulation of tRNAs by SARS-CoV-2

Direct evidence supporting this hypothesis for SARS-CoV-2 is currently limited in the literature,
except for a recent study by Tao Pan’s group [148], which reported the presence of cellular tRNA in
SARS-CoV-2 particles. This study suggested that each virion contains at least four different tRNA
molecules. Notably, among the eight tRNAs preferentially enriched in SARS-CoV-2 particles, 75%
require Us: modification for efficient decoding, including tRNAMsuuu and tRNACGuuc, both bearing
the memSs?Uss modification. This observation suggests preferential packaging of critical tRNAs
complementing skewed SARS-CoV-2 codons, reinforcing the assumption that Us-sensitive codons
in viral genes require adaptation of the host tRNA pool for efficient viral translation. Other enzymes
involved in tRNA modifications might also be involved in this virus-mediated translational control,
such as the tRNA methyltransferase TRMT1 that generates the m2Gzs mark. Indeed, recently we [149]
and others [150,151] have shown that TRMT1 was specifically proteolyzed by the SARS-CoV-2 Nsp5
main protease leading to a decrease of the m»Gazs modification on tRNAs in infected cells negatively
impacting viral replication. This manipulation, suggests a role of m%Gzs tRNA modification patterns
in cellular pathogenesis and biology of SARS-CoV-2 infection.

This situation is not unique to SARS-CoV2. Recent studies have shown that during the
Alphavirus CHIKV infection, deregulated expression of KIAA1456, an ALKBHS8 homolog able to
generate the mcm®Uss modification of tRNAs, consequently reprogramed codon optimality and
favored viral RNA translation [30]. This mechanism was also shown to occur during the Flavivirus
DENV infection, which like CHIKV exhibits a strong enrichment in Uss-sensitive codons [30,129]. In
parallel, a recent preprint [152] proposed that DENV is also able to exploit the host tRNA by a
different mechanism involving the ALKBH1 RNA modifier and the virally-encoded NS5 protein
(with dual RNA methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) enzyme
activities). The cellular and viral enzymes can both mediate f*Cm-modification of the cytoplasmic
tRNA-Leu(CAA) at the wobble position Css, and collaboratively promote pro-viral translational
remodeling during DENV infection.

2.5.2. Experimental Data Revealing SARS-CoV-2 Induced tRNA Epitranscriptome Modulations

To assess the validity of our hypothesis, we investigated the dynamic changes in tRNA
modifications within SARS-CoV-2-infected cells. We first explored by LC-MS/MS the behavior of
epitranscriptomic marks in the tRNA subpopulation extracted from SARS-CoV-2 infected VeroE6
cells (Figure 8A). Using this approach, we tracked 21 different tRNA post-transcriptional
modifications and discovered that modifications at position 34, including ncm5U, mem®U and
mcm?s2U, were noticeably increased. We extended our analysis to human Caco2 cells, a more suitable
cellular model for exploring SARS-CoV-2 infections given the known COVID-19 gastrointestinal
manifestations. Our focus on Uss modifications once again highlighted the early and rapidly changing
nature of the three marks we examined (Figure 8B). By simultaneously tracking tRNA levels, we also
found that two of the four Uss-modified tRNAs (tGluVY¢ and tGInUUC) were upregulated at later time
points (Figure 8C). Overall, these preliminary results indicate the possible role of tRNA modifications
in SARS-CoV-2 infection and reinforce the idea that SARS-CoV-2 can manipulate the host's tRNA
transcriptome. However, it remains unclear whether these changes can genuinely benefit viral
infection.
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Figure 8. (A) Compiled variations of tRNA modifications in tRNA subpopulation of SARS-CoV-2-
infected VeroE®6 cells relative to mock control cells (fold variation relative to non-infected (NI) VeroE6
cells). Uss modifications are shaded in yellow. (B) Fold change variation of tRNA Uss modifications in
SARS-CoV-2-infected human Caco2 cells relative to NI cells. (C) Fold change of tRNA levels in SARS-
CoV-2-infected human Caco2 cells. In all experiments, cells were infected at an MOI of 0.2.

2.5.3. SARS-CoV-2 Infection is Impaired when the tRNA U34 Modification Pathway is Disrupted

In mammals, enzymes responsible for the chemical Us: modification include the Elongator
complex (Elp1-6), Alkylation repair homolog 8 (Alkbh8), and thiouridylases (Ctul/Ctu2) [153]. If
the induction of ncm5U, mem5U and mem?®s2U marks indeed benefits viral translation, virus infection
should be closely tied to the accurate activity of the Elongator complex. Using primary fibroblasts
from patients with Familial Dysautonomia (FD) (Figure 9A), which lack Elp1 expression (<IKBKAP-
/-) and consequently have reduced levels of all three Uss tRNA modifications (Figure 9B) [154], we
observed significantly lower levels of SARS-CoV-2 infection in FD cells compared to control
fibroblasts (wf) from healthy individuals (Figure 9C). These preliminary data emphasize the critical
role played by Us:s modifications of host tRNAs in SARS-CoV-2 lifecycle and provide the first
evidence of SARS-CoV-2 ability to rewire the tRNA epitranscriptome to facilitate translation of its
heavily codon-biased genome.
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Figure 9. (A) Primary human fibroblasts from Familial Dysautunomia (FD) patient were transduced
by a lentivector expressing ACE2 receptor to allow SARS-CoV-2 entry. (B) tRNA Uss modification
levels in wt or FD human primary fibroblasts determined by mass spectrometry analysis performed
on tRNA subpopulation expressed in number of modifications per 10* unmodified ribonucleosides
(rNs). (C) wt and FD cells previously transduced ACE2-expressing lentivector (VLPACE2, controled in
A), were infected with increasing MOI of SARS-CoV-2 (0.05 to 0.2). SARS-CoV-2 infection levels were
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quantified by RT-qPCR, with GAPDH mRNA used as an internal control for normalization. Each
experiment was performed in triplicate.

3. Concluding Remarks

3.1. Is altering tRNA Epitranscriptome a Common Viral Strategy?

Viruses are highly dependent on the host cell's translation machinery, including host tRNAs, for
the efficient translation of their genetic material [42,155,156], and this process is heavily influenced
by chemical modifications of tRNAs, catalyzed by various tRNA-modifying enzymes, particularly
within the tRNA anticodon loop region [27,157]. We here showcased SARS-CoV-2's ability to
directly target this crucial step by upregulating Us« tRN A modifications to facilitate the translation of
its genome, which is enriched in Uss-sensitive codons. In addition to Chikungunya and Dengue for
which the ability to interfere with the host tRNA epitranscriptome has been suggested
[30,129,152,158], Zika can have also evolved the same tactic to overcome its high degree of preference
for Uss-sensitive codons [98]. Besides tRNA modification, translation efficiency favoring viral
translation can also be manipulated by altering tRNA levels [159], as we briefly illustrated in the
case of SARS-CoV-2. Retrovirus such as HIV  [160] or DNA viruses, such asSV40 [161], EBV [162],
Adenovirus [163] or HSV-1 [164], are able to manipulate tRNA levels by stimulating Pol III
transcription of tRNA genes.

3.2. Future Priority Investigation Areas

New approaches to explore the dynamics of tRNA epitranscriptome during viral infections are
imperative. The direct quantification of tRNA pools with new experimental approaches like the
recently developed mim-tRNAseq, which simultaneous measures tRNA abundance and
modifications [165,166] could provide insight alongside with Ribo-seq analysis of viral and cellular
translatomes. Expansion of the toolbox for quantitative recording and understanding the chemical
biology of the tRNA epitranscriptome is clearly needed. It will include emerging technologies for
mass spectrometry-based [167,168], nanopore-based tRNA modification mapping [169,170] and
analysis of ribosome-bound tRNAs [171]. In this respect, MLC-seq [172] (mass spectrometry ladder
complementation sequencing), a recent groundbreaking mass spectrometry approach, offers a
potential solution to these challenges by providing quantitative, and site-specific mapping of RNA
modifications, revealing the truly complete informational content of tRNA. The recent development
of DORQ-seq [173], a combination of cDNA hybridization and deep sequencing, will also deliver a
detailed tRNA composition matrix from femtomolar amounts of total tRNA. Advances in nanopore
sequencing are anticipated with optimized basecalling models that could allow enhanced detection
of RNA modifications and mapping [174].

The essential role of tRNA modifications in translation regulation is clearly appearing as a new
crucial host process hijacked by RNA viruses to adapt host translation to their sub-optimal codon
bias. It is therefore decisive to investigate the underlying mechanisms involved, particularly those
targeting Uss tRNA modifications. By genetically inactivating Uss enzymes using CRISPR/Cas9 or
RNA interference, we can assess their impact on SARS-CoV-2 translation and replication.
Additionally, exploring how individual viral proteins influence the abundance and activity of Uss
enzymes can provide valuable insights into the mechanisms of this new level of virus-host
interaction.

Technological and scientific advances in RNA modification, highlighted their role in viral RNA
structure, localization, splicing, stability, and translation [175,176]. Understanding viral- or host-
induced alterations of RNA marks is essential for understanding gene regulation, identify essential
marks for virus cycle and designing appropriate drugs. Nucleoside-derived inhibitors targeting
SARS-CoV-2 nspl4 (N7-guanine)-methyltransferase have recently shown promise in crippling the
stability of viral RNA [177]. Exploring virus—tRNA epitranscriptome interactions could open
promising new avenues for therapeutic intervention.
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4. Material and Methods

4.1. Bio-Informatics - Codon Analysis

Codon adaptation index (CAI) and Relative Synonymous Codon Usage (RSCU) calculations
were done using CAlcal web available tools (http://genomes.urv.es/CAlcal) [73]. Nc data were
obtained using CAlcal and plotted with Rstudio-ggplot2. Codon frequency were calculated with
Codon Utilization Tool (CUT) website (http://pare.sunycnse.com/cut/index.jsp) [178]. tRNA
adaptation index (tAI) was calculated using the stAlcalc software [179]
(http://www.cs.tau.ac.il/&sim;tamirtul/stAlcalc/stAlcalc.html). Cluster analysis were done with
Genesis 1.8.1 [180] and Cluster 3.0 [181] and visualization were made with Java Treeview [182].
Protein abundance were derived from PaxDb database version 4.1 (https://pax-db.org/) [183].

To verify the accuracy of tAl interpretation, we compared the consistency of tRNA expression
across different human primary cell types by visually examining the relationship between tRNA gene
copy number (GCN) and experimentally measured tRNA levels in various human primary cell types.
We used a previously published dataset from the Nedialkova group [101] including addition
information concerning modifications at position 34 occurring on some specific tRNAs.

4.2. SARS-CoV-2 Sequences

Accession numbers of the main SARS-CoV-2 sequences used in this report are listed in annex 1
and downloaded from NCBI database with the exception of SARS-CoV-2 FRA that was from the
european virus archive (http://www.european-virus-archive.com) and corresponded to the exact
2020 isolate from Paris-Ile-de-France we used in our infection experiments. Analysis of clade-related
RSCU evolution of SARS-CoV-2 during the pandemic, was performed using sequences recovered
from the dataset generated in the Fumagalli’s paper [136].

4.3. Experimental Data

4.3.1. Cells and Viruses

Patient primary fibroblasts were from Coriell Institute: GMO1652 derived from non-FD control
(Skin fibroblast (arm) from 11 years old Caucasian female); GMO4959 derived from FD patient (Skin
fibroblast (arm) from 10 years old Caucasian female). The SARS-CoV-2 was a French Ile de France
isolate (www.european-virus-archive.com/virus/sars-cov-2-isolate-betacovfranceidf03722020). Viral
stocks were generated by amplification on VeroE6 cells (epithelial kidney of an African green
monkey, ATCC CRL-1586). The supernatant was collected, filtered through a 0.45 pum membrane,
and tittered using a TCID50 assay. Caco2 cells (epithelial colon adenocarcinoma, ATCC HTB-37) were
used for tRNA modifications quantification upon SARS-CoV-2 infection.

4.3.2. Quantification of tRNA Modifications by Mass Spectrometry (LC-MS/MS)

RNA preparations enriched in tRNAs were obtained using mirVana™ miRNA Isolation Kit
(Thermo). RNA samples were then digested by Nuclease P1 and treated by Alkaline phosphatase.
Samples were then injected into LC-MS/MS. The nucleosides were separated by reverse phase ultra-
performance liquid chromatography on a C18 column with online mass spectrometry detection using
Agilent 6490 triple-quadrupole LC mass spectrometer in multiple reactions monitoring (MRM)
positive electrospray ionization (ESI) mode. Quantification was performed by comparing with the
standard curve obtained from pure nucleoside standards running with the same batch of samples.

4.3.3. Assays for Viral Replication

For infections, the cells were previously transduced with a Lentiviral vector expressing ACE2
using the lentiviral construct RRL.sin.cPPT.SFFV/Ace2. WPRE (MT136) kindly provided by Caroline
Goujon (Addgene plasmid # 145842) [176]. Seventy-two hours after transduction, accurate ACE2
expression was controlled on western blot probed with anti-ACE2 antibody (Human ACE-2
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Antibody, AF933, R&D systems). ACE2-positive cells (70-80% confluence) were then infected with
SARS-CoV-2 diluted to achieve the desired MOIL. After 24 hours in culture, the cells were lysed with
the Luna cell ready lysis module (New England Biolabs). The amplification reaction was run on
LightcyclerR 480 thermocycler (Roche Diagnostics) using the Luna Universal One-Step RT-qPCR kit
(New England Biolabs), and SARS_For: 5-ACAGGTACGTTAATAGTTAATAGCGT; SARS_Rev: 5'-
ATATTGCAGCAGTACGCACACA; GAPDH_For: 5-GCTCACCGGCATGGCCTTTCGCGT and
GAPDH_Rev: 5-TGGAGGAGTGGGTGTCGCTGTTGA primers. Each qPCR was performed in
triplicate, and the means and standard deviations were calculated. Relative quantification of data
obtained from RT-qPCR was used to determine changes in SARS-CoV-2 gene expression across
multiple samples after normalization to the internal reference GAPDH gene. Individual tRNA
quantification was performed by RTqPCR using tRNA gene specific primers and miR103a primers
for internal normalization purposesi (see Appendix B).

Appendix A. Virus Sequences

Virus genus Name Accession
Alphacoronavirus Human CoV NL63 MK334043.1
Human CoV 229E MN306046.1

BatCoV RaTG13 MN996532.2

Human CoV-OC43 KF530087.1

MERS-CoV JX869059.2

Betacoronavirus SARS-CoV-1 KY352407.1

SARS-CoV-2 FRA european-virus-archive betacovfranceidf03722020

SARS-CoV-2 Wuhan NC_045512.2

SARS-CoV-2 Omicron ON248829.1

Flavivirus Zika MR766 MK105975

Zika PF13 KY766069

Appendix B. tRNA RTqPCR Primers
Primer Target tRNA Sequence (5'23)

tLys-TTT-For
tLys-TTT-Rev
tGIn-TTG-For
tGIn-TTG-Rev
tGlu-TTC-For

tRNA-Lys-TTT-3-1
tRNA-Lys-TTT-3-1
tRNA-GIn-TTG-1-1
tRNA-GIn-TTG-1-1
tRNA-Glu-TTC-1-1

TCAGTCGGTAGAGCATCAGA
CCCGAACAGGGACTTGAAC
TGGTGTAATGGTTAGCACTCTG
CCGAGATTTGAACTCGGATCG
CATATGGTCTAGCGGTTAGGATTC

tGlu-TTC-Rev tRNA-Glu-TTC-1-1 CCCATACCGGGAGTCGAA
tArg-TCT-For tRNA-Arg-TCT-1-1 CCGTGGCGCAATGGATA
tArg-TCT-Rev tRNA-Arg-TCT-1-1 CTCGAACCCGGAACCTTT
tAsn-GTT-For tRNA-Asn-GTT-1-1 TGTGGCGCAATCGGTTAG
tAsn-GTT-Rev tRNA-Asn-GTT-1-1 GAACCACCAACCTTTCGGTTA
tAsp-GTC-For tRNA-Asp-GTC-2-9 GTATAGTGGTGAGTATCCCC
tAsp-GTC-Rev tRNA-Asp-GTC-2-9 AATCGAACCCCGGTCTCC
teMet-CAT-For tRNA-Met-CAT-4-2 GCGTCAGTCTCATAATCTGA
teMet-CAT-Rev tRNA-Met-CAT-4-2 GCCCTCTCTGAGGCTCGAAC
103-For miRNA103a-3p GCTTCTTTACAGTGCTGCCT
103-Rev miRNA103a-3p TTCATAGCCCTGTACAATGCT
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