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Abstract: Codon bias analysis of SARS-CoV-2 reveals suboptimal adaptation for translation in human cells it 

infects. The detailed examination of the codons preferentially used by SARS-CoV-2 shows a strong preference 

for LysAAA, GlnCAA, GluGAA, and Arg AGA infrequently used in human genes. In the absence of an adapted tRNA 

pool, efficient decoding of these codons requires a 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2) 

modification at the U34 wobble position of the corresponding tRNAs (tLysUUU; tGlnUUG; tGluUUC; tArgUCU). The 

optimal translation of SARS-CoV-2 open reading frames (ORFs) may therefore require several adjustments to 

the host's translation machinery, enabling the highly biased viral genome to achieve a more favorable "Ready-

to-Translate" state in human cells. Experimental approaches based on LC-MS/MS quantification of tRNA 

modifications and on alteration of enzymatic tRNA modification pathways provide strong evidence to support 

the hypothesis that SARS-CoV-2 induces U34 tRNA modifications and relies on these modifications for its 

lifecycle. The conclusions emphasize the need for future studies on the evolution of SARS-CoV-2 codon bias 

and its ability to alter the host tRNA pool through the manipulation of RNA modifications. 

Keywords : SARS-CoV-2 ; codon usage ; tRNA ; epitranscriptome ; translation 

 

1. Introduction: The Critical Role of Codon Bias in Translation Efficiency 

The efficiency of genetic code translation into amino acid is of utmost importance for rapidly 

dividing organisms. This tedious process is carried out by the ribosome and necessitates accurate 

decoding of the genetic code in messenger RNA (mRNA), through the selection of transfer RNAs 

(tRNA). The standard genetic code is degenerate: with the exception of tryptophan (Trp) and 

methionine (Met), most amino acids are encoded by two or more synonymous codons, which are 

used unequally within a genome (Figure 1A) [1]. This non-random distribution of synonymous 

codons, known as codon usage bias (CUB) [2], evolved alongside the expansion of the genetic code, 

shaped by evolution and natural selection [3,4]. CUB affects translation efficiency based on the 

availability of cognate codon-specific tRNAs, the effector molecules of translation, to ensure 

incorporation of the correct amino acids during polypeptide synthesis through complementary 

codon–anticodon base pairing [5,6]. CUB varies in a given genome. Highly expressed genes typically 

display stronger CUB, aligning with abundant tRNAs for optimal translation [7,8]. Conversely, rare 

codons may be selected on purpose, particularly at the beginning of coding sequences in eukaryotes. 

Indeed low CUB in the 5′ region decreases the translation elongation rate and reduces the likelihood 

of ribosomal traffic jams as translation progresses towards the 3′ end [9]. Additionally, reducing the 

elongation rate can promote the recruitment of chaperons facilitating co-translational protein folding 

[10,11]. Notably, CUB influences gene expression beyond translation, affecting transcription 

efficiency [12], termination  [13], chromatin structure, and splicing [14]. As CUB varies depending 

on the organism [15,16], it is crucial for investigating the adaptation of infectious agents in their hosts, 
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as well as virus evolution and pathogenesis. This report focuses on these aspects using SARS-CoV-2 

as a case study. 

 

Figure 1. A, standard genetic code, tRNA anticodons and their base modifications found in Homo 

sapiens. U34 modifications are in purple (mcm5s2U), orange (mcm5U) or green (ncm5U). Non-U34 

modifications on the anticodon bases are in light blue, including Inosine (I), pseudouridine (Ψ), 2’-O-

methylguanosine (Gm), 2’-O-methylcytosine (Cm), and Queuosine (Q). B, position of the multiple 

modifications on tRNA skeleton. C, U34-modified tRNAs and enzyme complexes involved in U34 

tRNA modifications. tRNAArgUCU can be found with both marks either mcm5 or mcm5s2.1.1. The 

wobble hypothesis and tRNA U34 modifications. 

Besides the three codons that signal translation termination ((UAA, UAG or UGA), 61 codons in 

mRNA are decoded through sequence complementarity with tRNA anticodon. Human cells display 

over 270 isodecoder genes (tRNAs with the same anticodon but different body sequence) among 

more than 610 annotated tRNA genes. Yet there are only 49 isoacceptor families (tRNAs with distinct 

anticodons but incorporating the same amino acid) to decode the 21 amino acids specified by the 

genetic code. Thus, the efficient deciphering of the 61 amino acid codons implies that some tRNAs 

can recognize more than one codon. 

This conundrum led to the wobble hypothesis, introduced by Francis Crick in 1966 [17], 

proposing that only the first two bases of the codon pair precisely with corresponding bases in the 

anticodon, while the third position allows for flexibility or “wobble”. Accordingly, 30–40% of all 

codon recognition in a given organism is achieved through tRNA wobble recognition [18]. The 

modified wobble hypothesis of 1991 [19–21] expanded on the original hypothesis by including the 

role of certain base modifications occurring in or near the tRNA anticodon loop (Figure 1B). These 

modifications, ranging from simple methyl groups, to more complex structures such as sugars, affect 

either the folding of the tRNA [22] or its ability to bind to codons [23]. Progressively, the impact of 
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these modifications in almost all steps of RNA metabolism has emerged [24], and their potential 

consequences for translation fidelity are being characterized [21]. Currently, these modifications are 

recognized as major architects of the anticodon structure, capable of preventing, favoring or 

expanding wobble base pairing, depending on their nature and position on the tRNA [25,26].  

Recently, modifications in the tRNAs anticodon-loop, particularly at the U34 position of tRNA 

have emerged as a central pillar in controlling codon bias interpretation by the translational 

machinery, impacting translation fidelity [27]. Position 34 in the anticodon loop of tRNAs has indeed 

been identified as a hot spot for base modifications. The addition of a methoxycarbonylmethyl group 

at position 5 and a thiol group at position 2 (mcm5s2) of U34 in tRNALysUUU, tRNAGlnUUG, tRNAGluUUC 

and tRNAArgUCU, by the stepwise action of the Elongator (ELP1-6), ALKBH8, CTU1/2 multi-enzyme 

complex [28] enhances base pairing with A-ending codons that are infrequent in the human genome 

(Lys AAA; Gln CAA; Glu GAA; Arg AGA codons) (Figure 1C). The first two enzymatic steps 

(Elongator and ALKBH8) generate mcm5 modifications at the U34 position of two additional tRNA 

(tRNAGlyUCC and tRNAArgUCU) whereas Elongator alone can attach carbamoylmethyl (ncm5) to U34 of 

six different tRNA (tRNAAlaUGC, tRNAThrUGU, tRNAProUGG, tRNASerUGA, tRNAValUAC, tRNALeuUmAA). 

Additionally, KIAA1456 [29] (a human Trm9 homolog) has been recently shown to generate mcm5U 

directly from uridine [30]. In humans, additional modifications at position 34 include pseudouridine 

(Ψ), inosine (I), methycytidine (m5C) and queuosine (Q). Without these tRNA modifications, a codon-

specific slowdown of translation occurs, impacting the overall translation efficiency of mRNAs 

enriched in corresponding codons  [31–33]. 

1.2. Codon Bias and tRNA Pool 

Translation efficiency cannot be explained solely by CUB, since preferentially used codons are 

not necessarily translated faster than non-preferred ones [34]. The overall control of translation 

efficiency also depends on the relationship between codon usage and the concentration of cognate 

tRNA. In any given organism, the set of tRNA molecules, known as the tRNA pool, is fitted to the 

corresponding genome’s codon bias to ensure optimal translation. This mutual alignment, 

measurable by the tRNA adaptation index (tAI, defined below) [35,36], defines codon optimality, 

indicating how efficiently a codon is translated by the ribosome. Indeed, adapting CUB to the most 

abundant tRNAs, decreases the time required for selecting the correct tRNAs, thereby reducing the 

likelihood of binding non-cognate tRNAs. In most prokaryotes and eukaryotes, there is a close 

correlation between tRNA level and the efficiencies of each codon–anticodon pairing. Consistent with 

translational selection, most optimal codons also have abundant corresponding tRNA copies in the 

human genome, although some still require wobble tRNAs. Yet, a close correlation between codon 

usage and tRNA abundance is not consistently observed, especially in multicellular organisms with 

higher tRNA gene redundancy [9]. In mammals, direct adaptation to anticodon pools does not fully 

explain synonymous codon usage, which is also shaped by mutational biases and genetic drift [35], 

such as GC-biased gene conversion [37]. Despite weak correlations between synonymous CUB and 

tRNA pools [38], the global correlation between codon and anticodon pools in mammals is strong 

and stable across different cell types and cell states [39,40]. Obviously, the extent of base modification 

in tRNAs also influences this balance especially for codons decoded through tRNA wobble 

recognition. 

1.3. Viral Manipulation of Host Translational Machinery through tRNA Modifications 

Viruses are obligatory parasites that rely entirely on the host’s translation machinery to translate 

their genome [41]. Numerous analyses comparing virus and host cell genomes in terms of codon 

usage have revealed that they use synonymous codons at different frequencies. Since discrepancy 

between the viral codon usage and the availability of the corresponding tRNAs in the host tRNA pool 

induces ribosome pausing [27], the central question we would like to bring to light is how viruses 

overcome the inadequacy between their own CUB and the suboptimal tRNA pool composition of the 

cells they infect, to efficiently translate their genome. In this context, viruses may need to maneuver 

host tRNAs to decode their skewed codons and optimize translation [42–45]. Moreover, because the 
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tRNA pool in each cell type contains a subset of all the isodecoder and isoacceptor tRNAs needed for 

correct amino acids incorporation through complementary codon–anticodon base pairing, the 

differential expression of tRNA genes across tissues and individuals [46,47] may also influence viral 

tropism.  

2. Results and Discussion 

2.1. Analysis of SARS-CoV-2 Codon Bias 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 

recent devastating coronavirus disease 2019 (COVID-19) pandemic [48,49], which has infected over 

600 million people and caused more than 6 million deaths worldwide (https://covid19.who.int). 

Coronaviruses belong to the order “Nidovirales”, with those infecting humans falling into two genera: 

alphacoronaviruses (HCoV-229E and HCoVNL63), and betacoronaviruses (HCoV-HKU1, HCoV-

OC43, Middle East respiratory syndrome coronavirus (MERS-CoV), the severe acute respiratory 

syndrome coronavirus (SARS-CoV1 and SARS-CoV-2). Since SARS-CoV-2 belongs to the same genus 

as SARS-CoV-1 and MERS-CoV, they share several structural characteristics [50] briefly outlined 

below [51,52].  

SARS-CoV-2 is an enveloped virus with a positive-sense, single-stranded RNA genome of ~30 

kb. Upon cell entry, two overlapping open reading frames (ORFs) ORF1a and ORF1b are translated 

from the positive strand genomic RNA (Figure 2A). The translation of ORF1b involves a -1 ribosomal 

frameshift enabling read-through of the ORF1a stop codon. ORF1a and ORF1b encode continuous 

polypeptides that are processed into 16 nonstructural proteins (Nsps) [53,54]. The viral genome is 

then used by the viral RNA-dependent RNA polymerase, Nsp12, to produce negative-strand RNA 

intermediates that serve as templates for the synthesis of positive-strand genomic RNA and 

subgenomic RNAs [55,56]. The subgenomic transcripts contain a common 5' leader sequence fused 

to different segments from the 3′ end of the viral genome [57], along with a 5′ cap structure [58] and 

a 3′ poly(A) tail [59]. They encode four conserved structural proteins: spike protein (S), envelope 

protein (E), membrane or matrix protein (M), nucleocapsid protein (N), along with several accessory 

proteins. By homology with SARS-CoV1, SARS-CoV-2 is predicted to translate 9 accessory proteins 

[60]. Nevertheless, the current annotation of SARS-CoV-2 (Reference Sequence: NC_045512.2) 

includes only 6 accessory proteins (3a, 6, 7a, 7b, 8, and 10), and not all of these ORFs have been 

experimentally reproducibly confirmed [61,62]. Using ribosome profiling techniques, the accurate 

quantification of canonical viral ORFs expression was established, along with 23 novel unannotated 

viral ORFs [63]. These include several in-frame internal ORFs lying within existing ORFs, resulting 

in N-terminally truncated products, and internal out-of-frame ORFs producing novel polypeptides.  
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Figure 2. A, genome organization of SARS-CoV-2 and corresponding Codon Adaptation Index (CAI) 

with human genome. B, SARS-CoV-2 CAI (ORF-size weighted average) with respect to various 

species. 

2.1.1. Codon Bias Analysis: A Tool to Shed Light on Virus History, Origins and Evolution 

It is well established that mutation pressure and natural selection are the primary factors shaping 

the codon usage of an organism [64]. Codon usage can also be influenced by nucleotide composition, 

synonymous substitution rate, gene length, expression level, and transfer RNA (tRNA) abundance 

[65,66]. Due to their reliance on host tRNA, viruses may evolve their codon usage to optimize or 

deoptimize translation in relation to their host’s codon usage [67,68]. Therefore, exploring the codon 

usage of viral genes is critical for uncovering viral evolutionary history [69], understanding virus-

host interactions, and identifying the evolutionary forces shaping viral genomes [70,71]. Such 

information can also help characterize newly emerging viruses and trace their propagation across 

different host species.  

Codon analysis toolbox  

The level of bias can be investigated according to widely used bioinformatic tools:  

Codon Adaptation Index (CAI) - The CAI estimates the degree of adaptation between a gene 

segment or an entire virus genome, and a potential host  [72–74]. It compares the codon usage in the 

viral sequence to a reference set of highly expressed genes from the host which are assumed to use 

the most optimal codons for the host’s translational machinery. The CAI value ranges from zero to 

one, with one indicating that a gene uses the most frequently synonymous codon for each encoded 

amino acid, and values close to zero indicating the use of less common synonymous codons. Higher 

CAI values between different genes on genome segments, indicate a better adaptation to the host’s 

cell translational machinery. However, the CAI index is not strictly speaking a measure of CUB as 

codon usage is inherently multivariate and requires complementary approaches for comprehensive 

analysis.  

Plotting the effective number of codons (Nc plot) – Nc plots graph the effective number of codons 

used (Nc) against the G+C frequency at the third base position of the codon (GC3s). This quantifies 

how far a gene’s codon usage deviates from equal usage of synonymous codons [75]. Neutrality plots, 

which plots GC1+2 (mean G+C frequency at the 1st and 2nd position) against GC3 for each gene, are 

commonly used alongside Nc plots to estimate the respective contribution of mutation pressure and 

natural selection in shaping the CUB [76–78]. The slope of the curve in neutrality plots indicates the 

percentage contribution of mutual pressure to the overall codon bias. 

Relative Synonymous Codon Usage (RSCU) - RSCU determines the intrinsic preference of a given 

cell or virus gene for synonymous codons by calculating the ratio of observed codon frequency to the 

expected frequency, assuming equal usage of all synonymous codons for the same amino acid [79,80]. 

The codon bias is considered positive for RSCU > 1.6 and negative for RSCU < 0.6, and unbiased for 

values in between. 

tRNA Adaptation Index (tAI) - The tAI quantifies translational efficiency in a given context by 

considering the availability of tRNAs for each codon, factoring in wobble base pairing efficiency (Wi) 

[81]. The normalized Wi values indicate the nominal speed at which the ribosome translates a codon 

relative to tRNA concentration, gene copies and pairing efficiency. The tAI of a gene reflects the 

adaptation of its coding sequence to the intracellular tRNA pool, providing a measure of translational 

efficiency complementary to CAI, Nc and RSCU [82]. If tRNA levels are not available, tRNA gene 

copy number can be used instead [36,83] and retrieved from dedicated database GtRNAdb [84] 

(http://gtrnadb.ucsc.edu).  

2.1.2. SARS-CoV-2 Adaptation to Various Species 

Several reports based on state-of-the-art bioinformatics suggest that SARS-CoV-2 originated 

from an ancestral coronavirus in bats, specifically related to the bat RaTG13 coronavirus [85], that 

likely passed through intermediate hosts such as pangolin (Manis javanica) before crossing species 

barriers again to infect humans [86–88]. We performed CAI [73] comparisons of the Wuhan reference 
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strain NC_045512 of SARS-CoV-2 (weighted by the size of each ORF) against codon usage table (CUT) 

of several species from the HIVE-CUTs database (https://hive.biochemistry.gwu.edu/cuts/). Our 

analysis confirmed a high degree of SARS-CoV-2 codon usage adaptation to both pangolin and bat 

(Figure 2B), supporting their proposed role as animal sources for this emerging virus. Interestingly, 

our analysis also revealed an even higher adaptation index to snakes (Naja atra among others) and to 

the marsupial wombat (Vombatus ursinus), suggesting these animals may also be relevant in 

understanding the virus's transmission. Interestingly, the hypothesis that snake could serve as a 

potential intermediate host of SARS-CoV-2 between bats and humans has been debated [89–91] and 

remains plausible considering that snakes are common wildlife meal of Chinese people and are 

ordinarily sold at the Wuhan seafood and animal market [92]. The wombat seems less likely since it 

only lives in Australia. However, the recent trend among wealthy Chinese people to hunt wombats 

in Australian lodges [93,94] makes it a tiny but potential virus transmission niche. Global CAI 

analysis of SARS-CoV-2 ORFs shows oscillations around the 0.69 mark (Figure 2A), indicating that 

none of the multiple ORFs are fully adapted to their human host codon preferences, with some 

regions showing poor adaptation with CAI values below 0.6, compared to CAIs of 0.869, 0.882, and 

0.819 for the well-adapted highly expressed -globin, -myosin and -tubulin humans genes with 

protein abundance above 10,000 ppm, and CAI values below 0.78 for the poorly expressed RHA, RIG-

I and Kallmann Syndrome human genes (protein abundances below 300 ppm) [95]. 

2.1.3. Nc and Neutrality Plots  

If GC3s is the only determinant factor shaping the codon usage, the Nc values would align with 

a dotted theoretical curve representing random codon usage [96] (Figure 3A and 3B). If G+C 

compositional constraint alone influences the codon usage the gene of interest, then the GC3s and Nc 

correlated spots would lie on or below the expected curve. Nc values range from 20 to 61. A value of 

20 indicates a maximum level of codon bias, whereas a value of 61 indicates a complete lack of bias. 

In general, if the Nc value is ≤ 35, the coding sequence is considered to have significant codon usage 

bias. The Nc-GC3s plot has been widely used to determine whether codon usages of given genes are 

affected by mutation only (corresponding points would lie around the expected curve) or also by 

other factors such as selection (corresponding points would depart away from, considerably below 

the expected curve). When the Nc and GC3s values were plotted for the individual SARS-CoV-2 ORFs 

(Figure 3A, right), all points, except for ORFs 7a and 10, lied below the expected random curve, 

indicating that G+C compositional constraints might significantly influence SARS-CoV-2 codon 

usage. The deviation of almost all SARS-CoV-2 ORFs from the random curve towards the lower Nc-

values suggests that not only mutation but also other factors, such as translational selection, are likely 

to be involved in determining the selective constraints on codon bias in SARS-CoV-2 genes towards 

a preferred and limited set of codons. As a reference to human genome, translational selection is 

much more pronounced in housekeeping genes [97] such as Globin, Myosin and Tubulin than in 

poorly expressed humans genes (DHX9, DDX58, IFN-beta, or KAL) as outlined in the corresponding 

Nc plot (Figure 3A, center). Accordingly, the weighted average for all SARS-CoV-2 ORFs (black dot 

with Nc=45.1 and GC3s=0.28 in Figure 3A) markedly differs from other RNA viruses such as the 

Flaviviridae Zika virus ORFs (Figure 3A, left), that also have a bias towards A-ending codons [98–100], 

showing a much lower GC content and overall Nc value for SARS-CoV-2, stressing again the unique 

codon-wise characteristics of SARS-CoV-2. The same analysis was performed for Orf1a and Spike 

gene segments of various Coronavirus (Figure 3B) including SARS-CoV-2 (Wuhan initial reference 

isolate and Omicron recent isolate), SARS-CoV-1, MERC-CoV and various hCoV lineages (229E, 

OC43 and NL63). We observed that all points representing different strains were lower than the 

standard curve for both genes, Orf1a showing more dispersion on the Nc axis than Spike. 

Additionally, with the exception of SARS-CoV-2 Orf1a (Wuhan and Omicron), the coronavirus 

strains were not clustered together, highlighting again that mutational pressure combined with other 

factors may have contributed to the codon usage bias of SARS-CoV-2. Spike Nc plot shows more 

clustering between strains revealing less bias between strains for this gene segment, with a potential 

higher contribution of mutational pressure to the Spike codon bias. This was further confirmed with 
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the complementary neutrality plot analyses (Figure 3C) that revealed the greater contribution of 

mutation pressure to Spike than to Orf1a CUBs (Spike:32% >> Orf1a:23%), while the relative 

constraints on GC3 (natural selection) being the main evolutionary force driving CUB is conversely 

higher for Orf1a (Orf1a:77% >> Spike:68%). 

 

Figure 3. A, Nc plots of SARS-CoV-2 Wuhan’s isolate individual gene segments (right) along with 

Flavivirus genomes (PF13, Asian genotype from French Polynesia (2013); MR766 original African 

genotype from Uganda (1955)) (left) and differentially expressed human genes (DHX9 (or RHA), 

DDX58 (RIG-I), KAL (Kallmann syndrome protein), IFN-beta (beta-interferon), Tubulin (beta-

tubulin), Myosin (Myosin Heavy Chain), Globin (beta-globin)) (center). The dotted line represents the 

expected Nc values if the codon bias is affected by GC3s only. Black dot represents the position of the 

SARS-CoV-2 total coding genome. B, Nc plot of Orf1a and Spike gene segments from seven 

coronaviruses. C, neutrality plot analysis corresponding to virus sequences used in B. GC12 

frequencies were plotted against GC3 frequencies. The y-axis (GC12) refers to the average GC 

frequency at the first and second codon positions. The x-axis (GC3) refers to the GC frequency at the 

third codon position. The slope value indicates the mutational pressure percentage. 

2.2. SARS-CoV-2 Genome is Enriched in U34-Sensitive Codons 

With the lack of information on the level of virus-mediated alteration of U34 tRNA modification 

in mind, we compared U34 sensitive codon frequencies in coronaviruses (HCOV-OC43, SARS-CoV-1, 

MERS-CoV and SARS-CoV-2) and human genomes using the RSCU indicator [15]. A striking contrast 

emerged when these frequencies were arranged in clusters (Figure 4). Codons preferred by SARS-

CoV-2 are (i) barely used in human cells and (ii) predominantly include codons requiring U34 

modifications on their cognate tRNAs for efficient decoding (with the exception of Gly (GGA)). 

Notably, SARS-CoV-2 exhibits a greater divergence from human codon frequencies compared with 

SARS-CoV-1 and MERS-CoV. Although the latter still shares some codon usage preferences with 

humans, SARS-CoV-2 contains a clear enrichment in U34-sensitive codons. This pattern was consistent 

across both nonstructural (Orf1a and Orf1b) or structural viral genes (Spike). U34-sensitive codon 

usage between SARS-CoV-2 and humans revealed a significant viral preference for U34-sensitive 
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codons with up to two-fold enrichment for some codons such as GlnCAA, ArgAGA, and LeuTTA. (not 

shown).  

 

Figure 4. Hierarchical cluster analysis of RSCU for Human Coronavirus (left) and SARS-CoV-2 

(Wuhan reference genome) longest ORFs (right), encoding non-structural genes (Orf1a an Orf1b) and 

structural gene Spike. Average linkage WPGMA (weighted pair group method with averaging) was 

used as agglomeration method. U34-sensitive codons are noted with asterisks and their cluster is 

outlined in yellow. 

2.2.1. Comparison of Coronavirus Translation Adaptation (tAI) 

Previous CAI measurements have the disadvantage of relying on highly expressed reference 

host genes. The translation adaptation index (tAI) offers a more nuanced approach as it can be based 

on either intracellular tRNA levels (when available) or tRNA gene copy numbers in the host genome. 

Here, we compared tAI of various ORFs encoding non-structural (ORF1ab) and structural proteins 

(S, E, M and N) among coronaviruses infecting humans. Our analysis revealed SARS-CoV-2 as the 

least adapted to the translational machinery of its human host, with all its ORFs having tAI below 

0.34, excepted for the Matrix protein (M) (Figure 5A). This tAI level obtained for SARS-CoV-2 is 

significantly lower than that observed for human ORFs encoding highly abundant proteins (such as 

-myosin, -globin, or -tubulin). Calculations were performed using human tRNA gene copy 

number retrieved from the genomic tRNA database (http://gtrnadb.ucsc.edu) known to mirror the 

global tRNA abundancy of a given organism but lacking information related to tissue specificity. 

However, it seems from the recent of the Nedialkova’s group [101] that tRNA transcript levels may 

fluctuate without affecting significantly tRNA anticodon pools abundancy and availability that 

primarily dictate decoding pace. Accordingly, tRNA anticodon pool was shown to remain stable 

across cell types (human primary cells (cardiomyocytes (CM), neuronal precursor cells (NPC) and 

mature neurons) differentiated from iPSC cells) ensuring consistent decoding rates throughout 

development, independently of cell identity. This stability across cell types of tRNA pool was further 

authenticated by plotting normalized tRNA gene copy number (GCN) against the normalized 

experimental data of tRNA anticodon expression level in these human primary cells (Figure 5B), 

showing a quasi-constant correlation between GCN and experimental tRNA levels in the four cell 

types. This observation validates the use of human tRNA GCN in the calculation of aforementioned 

tAI used in Figure 5A. 
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Figure 5. tRNA Adapatation Index (tAI) of Coronavirus. A, Calculations were performed with 

stAIcalc software (http://tau-tai.azurewebsites.net) using human tRNA gene copy number retrieved 

from the genomic tRNA database (http://gtrnadb.ucsc.edu), for non-structural (ORF1ab) or structural 

(S, E, M, N) ORFs of coronavirus infecting bat (RaTG13) and humans (hCoV 229E, hCoV OC43, SARS-

CoV-1, MERS-CoV and SARS-CoV-2). For comparison, tAI of human ORFs encoding highly abundant 

proteins (Protein Abundance Database (https://pax-db.org)) were calculated. B, correlation between 

normalized human tRNA gene copy number (GCN) and normalized experimental anticodon tRNA 

expression level in human primary cells derived from iPSC cells (CM, cardiomyocytes; NPC, neuronal 

progenitor cells), based on the data from Gao et al. (2024) [101]. Anticodons are colorcoded with 

respect to tRNA modifications occuring at position 34. 

2.2.2. The Enigma of Spike Protein’s Furin Cleavage Site 

Among the SARS-CoV-2 ORFs, the region encoding the spike protein has been extensively 

studied as it mediates attachment to the host cell by binding to the ACE2 membrane protein and 

facilitates viral fusion to the host cell membrane following efficient cleavage by furin proteases 

[102,103]. Early examination of the Wuhan SARS-CoV-2 isolate early revealed an unusual furin-like 

cleavage site at the S1/S2 junction of spike ORF [104,105]. This site, created by insertion of a 4-amino 

acid sequence (PRRA), corresponds to the insertion of 12 nucleotides (...U CCU CGG CGG GC...) 

absent from all other sarbecoviruses, including the closely related bat sarbecovirus RaTG13 with 

~96% genome sequence identity  [48], [106] (Figure 6A). In SARS-CoV-2, the furin site insertion lies 

in a region where codons are moderately adapted to the human host, as depicted by the CAI curve. 

Most codons in this region are commonly used in the virus genome (high RSCU), except for the 

arginine dicodon (CGG CGG (R R)). Interestingly, the corresponding unique CGG codon is less 

preferred than AGA in SARS-CoV-2 (SARS-CoV-2 RSCUCGG=0.17, SARS-CoV-2 RSCUAGA=2.63,)), 

which is not the case in the human genome (human RSCUAGA =1.29, human RSCUCGG =1.21) (Figure 

6C). During the pandemic, mutations impacting the furin site have been rare, suggesting a strong 

purifying selection in humans [107,108]. However, non-arginine residues in the PRRAR motif remain 

permissive to potential optimization during human viral evolution in different variants of concern 

and interest (Figure 6B). This complex interplay between codon usage and furin site evolution 

warrants further investigations to unravel its significance in SARS-CoV2 origins.  
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Figure 6. Insertional furin cleavage site in SARS-CoV-2 Spike gene segment. A, sequence alignment 

between Wuhan SARS-CoV-2 isolate and bat RaTG13 sequences along with their respective RSCUs 

and human-related CAI profiles. B, sequence variation of SARS-CoV-2 variants in the furin site 

vicinity. Codons highlighted in yellow represent codon variations between SARS-CoV-2 and RaTG13 

without amino acid change. C, RSCU of Arg codons found in the different ORFs of Wuhan SARS-

CoV-2 primary isolate compared to the ArgRSCU of the highly expressed human beta-myosin ORF. 

2.3. Suitability of the SARS-CoV2 Highly Biased Codon Composition for Viral Translation in Target Tissues 

The translation efficiency of the viral genome is heavily influenced by codon optimality, which 

is determined by the balance between the viral codon usage bias and the availability of a suitable 

tRNA pool in target cells. However, recent reports highlighted the significant variability in tRNA 

gene expression across human tissues [46,109–111]. This variability suggests the necessity to 

reevaluate codon optimality by considering tissue-specific codon usage in compliance with virus 

tropism [112]. Whereas the evaluation of the effect of tissue-specific codon optimality on viral protein 

synthesis may remain experimentally elusive, a recent in silico study by Hernandez-Alias et al. [113] 

analyzing the relative codon usage landscape over 500 human-infecting viruses alongside with 

tissue-specific tRNA expression profiles from 23 human tissues from The Cancer Genome Atlas 

(TCGA), has suggested that tRNA repertoires could determine tissue-specific translational efficiency 

[114]. They proposed that the SARS-CoV-2 proteome was well-adapted to tissues like the upper 

respiratory airways, lung alveoli [115,116] and gastrointestinal tract [117], seemingly matching the 

observed SARS-CoV-2 tropism. However, the translation appropriateness of these tissues was also 

matching with other viruses such as Flavivirus or Alphavirus that exhibit tropisms that do not share 

one shred of similarity with SARS-CoV-2 tropism. Several flaws of this study, including the use of 

tRNA abundance data derived from cancer cells in which profound deregulation of tRNA expression 

occurs [118–121], restrict its significance. Interestingly, recent studies showed that highly expressed 

genes in human lung primary tissue have a codon composition perfectly aligned with SARS-CoV-2 

codon usage, suggesting that the virus might have optimized its codon bias to take advantage of lung 

cells [122]. The recent Nedialkova’s report [101] that illustrated the broad stability of tRNA anticodon 

pools across human cell types (shown above in Figure 5B), reinforces even more the prohibition of 

cancer cells in approaches aiming tRNA pool dynamics.  

Taken together, these observations underscore the crucial need to further investigate how the 

codon composition of the viral ORFeome influences the translation rate of host genes and promotes 

viral translation. 
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2.3.1. tRNA Modifications: Do RNA Viruses Have a Wobble? 

In analyzing virus-host interactions, it is crucial to consider the modification of host cell tRNAs 

promoted by the virus. While the functional importance of the virus mRNA epitranscriptome has 

been extensively reported in human cells [123,124] and more recently in the SARS-CoV-2 RNA 

genome and subgenomic transcripts [125–128], our understanding of virus-induced modifications in 

host tRNAs is still limited although increasingly relevant [129]. As outlined earlier, modifications of 

the anticodon loop of tRNA regulate translation rate and fidelity, contributing to the translational 

adaptation [130]. For instance, changes in tRNA modifications significantly impact translation 

efficiency in response to physiological stresses [131,132]. Hypomodification, occurring especially at 

position U34 of specific tRNAs, namely tRNALysUUU; tRNAGlnUUG; tRNAGluUUC, slows down translation, 

disrupts protein homeostasis and reduces cellular fitness. These mechanisms are crucial for 

maintaining cellular function and viability during stress until normal conditions are restored. While 

these mechanisms may have a critical influence on viral translation, this aspect of virus/host 

relationships remains largely unexplored. 

2.3.2. SARS-CoV-2 Codon Bias Dynamics during the Pandemic 

Besides providing crucial information on viral genetic adaptation to host [133,134], evaluating 

nucleotide composition and CUB in viral genome also provide further insights into the mutational 

patterns of viruses over time and can be crucial for vaccines and antiviral therapy development [135]. 

A recent study analyzing over 3.5 million SARS-CoV-2 sequences revealed unique mutational trends 

with consistent nucleotide and codon frequencies [136]. This study also highlighted variations over 

time, including synonymous mutations, silent at the amino acid level, and nonsynonymous 

mutations inducing amino acid changes, impacting protein levels. It also revealed an unexpectedly 

high proportion of nonsynonymous mutations in the Spike gene when compared with glycoprotein 

genes from other RNA viruses.  

To deepen this analysis, we examined the sequences from the various SARS-CoV2 clade (Alpha, 

Beta/Mu, Delta, Lambda/Gamma and Omicron) extracted from the Fumagalli’s paper [136] and 

generated their respective RSCU profile, monthly from December 2019 to July 2022. The RSCU 

pattern will here give us a snapshot of the average CUB for each month (Figure 7A). Focusing on 

SARS-CoV-2 Orf1ab and Spike genes, we analyzed the overall codon bias patterns by cluster analysis 

in order to compare the temporal codon usage variations of each clade. Notably, all seven clades were 

present and detectable at the very beginning of the pandemic albeit with variable abundancy. The 

Alpha clade was the first to strongly emerge and spread worldwide, while Beta/Mu and 

Lambda/Gamma remained at low levels of diffusion. Regarding their respective CUBs, all clades 

exhibited very similar patterns during the first 3 months of 2020. From April to September 2020, the 

RSCU pattern of Alpha clade began to fluctuate markedly before reaching a long period of stability 

from October 2020 to September 2021, coinciding with the peak of Alpha clade expansion worldwide. 

Surprisingly, the CUB pattern during this high transmission period was reversed compared to the 

initial pattern. The pattern of a stabilized, reversed CUB was observed not only in the Alpha clade 

but also in the Delta and Omicron clades, when they both reached their highest levels of transmission.  

The clear correlation between CUB inversion and peak of diffusion can be interpreted in two 

opposite ways: a) the high level of expansion has selected sub-variants with a stable CUB, or b) a 

highly adapted sub-variant with optimized CUB preceded the peak, driving the exponential 

expansion. Although both scenarios might be involved, the persistence of inverted CUB beyond peak 

diffusion suggests natural selection of an optimized CUB likely played a role (favoring option b). 

Comparing the RSCU of both genes at peak expansion for each clade reveals that Spike exhibits 

a much stronger preference for codons ending by A/U, especially those recognized by tRNAs 

modified at U34 position (e.g. ArgAGA, LysAAA, GluGAA and GlnCAA) (Figure 7B). This necessitates 

analyzing RSCU patterns for each gene individually at expansion peaks. Interestingly, each clade 

shows different CUB optimization pattern during peak diffusion, indicating that multiple codon 

patterns can support an optimal viral translation (Figure 7C and 7D). For instance, Omicron has 

evolved a codon bias diametrically opposed to the CUB of other clades, while Alpha and Delta Spike 
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sequences share a similar CUB pattern (Figure 7C). Conversely, the Orf1ab gene in Alpha and 

Gamma/Lambda clades show the closest patterns (Figure 7D). Furthermore, within a given clade 

Orf1ab and Spike genes have developed distinct RSCU pattern. These varying preferences for A/U 

ending codons or codons requiring U34-modified tRNAs, suggest that efficient translation might 

depend on subtle but specific factors like translation speed and protein folding parameters. 

 

Figure 7. A. SARS-CoV-2 codon bias variation over time. RSCUs for Spike and Orf1ab were calculated 

from the various clade sequences extracted from the Fumagalli’s paper [136] and analyzed overtime 

for each clade by cluster analysis (using Genesis algorithm [180]). Sequence count profiles are shown 

beneath each clade time scale to trace each clade expansion. B. Comparison of RSCUs at expansion 

peak of each clade. Cluster analysis was established for both Spike and Orf1ab together (B) or 

individually (C and D). U34-sensitive codons are highlighted in yellow. 

2.4. Hypothesis: Virus-Driven Manipulation of the tRNA Pool and tRNA Modifications Forces Translation 

of SARS-CoV-2 Genes 

Bioinformatic approaches like the tAI and the CAI measures, reasonably predict gene expression 

but can be improved. More precise estimations of amino acid-loaded tRNAs (“ready-to-translate” 

tRNAs) availability would be more realistic than using concentration of tRNA molecules or its 

estimate from tRNA gene copy number. The real availability of functional tRNAs, influenced by 

tissue-specific pools, is required for high translation efficiency. Another important mechanism for 

efficient protein synthesis is the channeling effect, which involves the direct transfer of aminoacyl-

tRNA/tRNA between aminoacyl-tRNA synthetases (ARS), elongation factors, and ribosomes. This 

process is crucial because it regenerates and concentrates frequently used tRNAs near specific 

translation sites  [137,138]. Additionally, the global CUB measures (CAI, tAI, RSCU) do not consider 

the order of favorable and unfavorable codons along the transcript, which can create fast or slow 

translation segments [42,139]. Environment-dependent dynamic variations in the tRNA pool and 

tRNA demand, should also be integrated in future models of translation efficiency. Using tRNAs 

composition from cancer cells can distort prediction of virus/host-tissue translational compatibility 

due to altered tRNA levels [118–121,140] and tRNA modifying enzymes in pathological conditions 

[141]. U34 modifications, in particular, rapidly respond to metabolic changes [142] such as methionine 

metabolism, carbon balance, or phosphate homeostasis [143–145].  

Translational reprogramming is clearly appearing as a key element in cell adaptation to 

changing environments [146] and may aid virus adaptation to hosts. We have here highlighted 

striking discrepancies between SARS-CoV-2 preference for U34-sensitive codons and availability of 

cognate U34-modified tRNAs (ie: mcm5s2) in target cells. Since SARS-CoV-2 hasn't fully adjusted its 

codon bias to match human target cells, its recent rapid expansion may be due to its ability to 

manipulate U34 modifications, optimizing translation and facilitating its infection cycle. By reducing 

the need for precise codon usage adaptation, this ability could allow the virus to infect a broader 

range of hosts  [147]. 
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2.5. Evidences Supporting the Ability of SARS-CoV-2 to Exploit the tRNA Epitranscriptome in Order to 

Favor Viral Translation 

2.5.1. Potential Manipulation of tRNAs by SARS-CoV-2 

Direct evidence supporting this hypothesis for SARS-CoV-2 is currently limited in the literature, 

except for a recent study by Tao Pan’s group [148], which reported the presence of cellular tRNA in 

SARS-CoV-2 particles. This study suggested that each virion contains at least four different tRNA 

molecules. Notably, among the eight tRNAs preferentially enriched in SARS-CoV-2 particles, 75% 

require U34 modification for efficient decoding, including tRNALysUUU and tRNAGluUUC, both bearing 

the mcm5s2U34 modification. This observation suggests preferential packaging of critical tRNAs 

complementing skewed SARS-CoV-2 codons, reinforcing the assumption that U34-sensitive codons 

in viral genes require adaptation of the host tRNA pool for efficient viral translation. Other enzymes 

involved in tRNA modifications might also be involved in this virus-mediated translational control, 

such as the tRNA methyltransferase TRMT1 that generates the m22G26 mark. Indeed, recently we [149] 

and others [150,151] have shown that TRMT1 was specifically proteolyzed by the SARS-CoV-2 Nsp5 

main protease leading to a decrease of the m22G26 modification on tRNAs in infected cells negatively 

impacting viral replication. This manipulation, suggests a role of m22G26 tRNA modification patterns 

in cellular pathogenesis and biology of SARS-CoV-2 infection. 

This situation is not unique to SARS-CoV2. Recent studies have shown that during the 

Alphavirus CHIKV infection, deregulated expression of KIAA1456, an ALKBH8 homolog able to 

generate the mcm5U34 modification of tRNAs, consequently reprogramed codon optimality and 

favored viral RNA translation [30]. This mechanism was also shown to occur during the Flavivirus 

DENV infection, which like CHIKV exhibits a strong enrichment in U34-sensitive codons [30,129]. In 

parallel, a recent preprint  [152] proposed that DENV is also able to exploit the host tRNA by a 

different mechanism involving the ALKBH1 RNA modifier and the virally-encoded NS5 protein 

(with dual RNA methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) enzyme 

activities). The cellular and viral enzymes can both mediate f5Cm-modification of the cytoplasmic 

tRNA-Leu(CAA) at the wobble position C34, and collaboratively promote pro-viral translational 

remodeling during DENV infection. 

2.5.2. Experimental Data Revealing SARS-CoV-2 Induced tRNA Epitranscriptome Modulations 

To assess the validity of our hypothesis, we investigated the dynamic changes in tRNA 

modifications within SARS-CoV-2-infected cells. We first explored by LC-MS/MS the behavior of 

epitranscriptomic marks in the tRNA subpopulation extracted from SARS-CoV-2 infected VeroE6 

cells (Figure 8A). Using this approach, we tracked 21 different tRNA post-transcriptional 

modifications and discovered that modifications at position 34, including ncm5U, mcm5U and 

mcm5s2U, were noticeably increased. We extended our analysis to human Caco2 cells, a more suitable 

cellular model for exploring SARS-CoV-2 infections given the known COVID-19 gastrointestinal 

manifestations. Our focus on U34 modifications once again highlighted the early and rapidly changing 

nature of the three marks we examined (Figure 8B). By simultaneously tracking tRNA levels, we also 

found that two of the four U34-modified tRNAs (tGluUUG and tGlnUUC) were upregulated at later time 

points (Figure 8C). Overall, these preliminary results indicate the possible role of tRNA modifications 

in SARS-CoV-2 infection and reinforce the idea that SARS-CoV-2 can manipulate the host's tRNA 

transcriptome. However, it remains unclear whether these changes can genuinely benefit viral 

infection.  
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Figure 8. (A) Compiled variations of tRNA modifications in tRNA subpopulation of SARS-CoV-2-

infected VeroE6 cells relative to mock control cells (fold variation relative to non-infected (NI) VeroE6 

cells). U34 modifications are shaded in yellow. (B) Fold change variation of tRNA U34 modifications in 

SARS-CoV-2-infected human Caco2 cells relative to NI cells. (C) Fold change of tRNA levels in SARS-

CoV-2-infected human Caco2 cells. In all experiments, cells were infected at an MOI of 0.2. 

2.5.3. SARS-CoV-2 Infection is Impaired when the tRNA U34 Modification Pathway is Disrupted  

In mammals, enzymes responsible for the chemical U34 modification include the Elongator 

complex (Elp1–6), Alkylation repair homolog 8 (Alkbh8), and thiouridylases (Ctu1/Ctu2)  [153]. If 

the induction of ncm5U, mcm5U and mcm5s2U marks indeed benefits viral translation, virus infection 

should be closely tied to the accurate activity of the Elongator complex. Using primary fibroblasts 

from patients with Familial Dysautonomia (FD) (Figure 9A), which lack Elp1 expression (=IKBKAP-

/-) and consequently have reduced levels of all three U34 tRNA modifications (Figure 9B)  [154], we 

observed significantly lower levels of SARS-CoV-2 infection in FD cells compared to control 

fibroblasts (wt) from healthy individuals (Figure 9C). These preliminary data emphasize the critical 

role played by U34 modifications of host tRNAs in SARS-CoV-2 lifecycle and provide the first 

evidence of SARS-CoV-2 ability to rewire the tRNA epitranscriptome to facilitate translation of its 

heavily codon-biased genome. 

 

Figure 9. (A) Primary human fibroblasts from Familial Dysautunomia (FD) patient were transduced 

by a lentivector expressing ACE2 receptor to allow SARS-CoV-2 entry. (B) tRNA U34 modification 

levels in wt or FD human primary fibroblasts determined by mass spectrometry analysis performed 

on tRNA subpopulation expressed in number of modifications per 104 unmodified ribonucleosides 

(rNs). (C) wt and FD cells previously transduced ACE2-expressing lentivector (VLPACE2, controled in 

A), were infected with increasing MOI of SARS-CoV-2 (0.05 to 0.2). SARS-CoV-2 infection levels were 
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quantified by RT-qPCR, with GAPDH mRNA used as an internal control for normalization. Each 

experiment was performed in triplicate. 

3. Concluding Remarks 

3.1. Is altering tRNA Epitranscriptome a Common Viral Strategy? 

Viruses are highly dependent on the host cell's translation machinery, including host tRNAs, for 

the efficient translation of their genetic material  [42,155,156], and this process is heavily influenced 

by chemical modifications of tRNAs, catalyzed by various tRNA-modifying enzymes, particularly 

within the tRNA anticodon loop region  [27,157]. We here showcased SARS-CoV-2's ability to 

directly target this crucial step by upregulating U34 tRNA modifications to facilitate the translation of 

its genome, which is enriched in U34-sensitive codons. In addition to Chikungunya and Dengue for 

which the ability to interfere with the host tRNA epitranscriptome has been suggested  

[30,129,152,158], Zika can have also evolved the same tactic to overcome its high degree of preference 

for U34-sensitive codons  [98]. Besides tRNA modification, translation efficiency favoring viral 

translation can also be manipulated by altering tRNA levels  [159], as we briefly illustrated in the 

case of SARS-CoV-2. Retrovirus such as HIV  [160] or DNA viruses, such as SV40  [161], EBV  [162], 

Adenovirus  [163] or HSV-1  [164], are able to manipulate tRNA levels by stimulating Pol III 

transcription of tRNA genes. 

3.2. Future Priority Investigation Areas 

New approaches to explore the dynamics of tRNA epitranscriptome during viral infections are 

imperative. The direct quantification of tRNA pools with new experimental approaches like the 

recently developed mim-tRNAseq, which simultaneous measures tRNA abundance and 

modifications [165,166] could provide insight alongside with Ribo-seq analysis of viral and cellular 

translatomes. Expansion of the toolbox for quantitative recording and understanding the chemical 

biology of the tRNA epitranscriptome is clearly needed. It will include emerging technologies for 

mass spectrometry-based [167,168], nanopore-based tRNA modification mapping [169,170] and 

analysis of ribosome-bound tRNAs [171]. In this respect, MLC-seq  [172] (mass spectrometry ladder 

complementation sequencing), a recent groundbreaking mass spectrometry approach, offers a 

potential solution to these challenges by providing quantitative, and site-specific mapping of RNA 

modifications, revealing the truly complete informational content of tRNA. The recent development 

of DORQ-seq  [173], a combination of cDNA hybridization and deep sequencing, will also deliver a 

detailed tRNA composition matrix from femtomolar amounts of total tRNA. Advances in nanopore 

sequencing are anticipated with optimized basecalling models that could allow enhanced detection 

of RNA modifications and mapping  [174]. 

The essential role of tRNA modifications in translation regulation is clearly appearing as a new 

crucial host process hijacked by RNA viruses to adapt host translation to their sub-optimal codon 

bias. It is therefore decisive to investigate the underlying mechanisms involved, particularly those 

targeting U34 tRNA modifications. By genetically inactivating U34 enzymes using CRISPR/Cas9 or 

RNA interference, we can assess their impact on SARS-CoV-2 translation and replication. 

Additionally, exploring how individual viral proteins influence the abundance and activity of U34 

enzymes can provide valuable insights into the mechanisms of this new level of virus-host 

interaction. 

Technological and scientific advances in RNA modification, highlighted their role in viral RNA 

structure, localization, splicing, stability, and translation [175,176]. Understanding viral- or host-

induced alterations of RNA marks is essential for understanding gene regulation, identify essential 

marks for virus cycle and designing appropriate drugs. Nucleoside-derived inhibitors targeting 

SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase have recently shown promise in crippling the 

stability of viral RNA [177]. Exploring virus–tRNA epitranscriptome interactions could open 

promising new avenues for therapeutic intervention. 
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4. Material and Methods 

4.1. Bio-Informatics - Codon Analysis 

Codon adaptation index (CAI) and Relative Synonymous Codon Usage (RSCU) calculations 

were done using CAIcal web available tools (http://genomes.urv.es/CAIcal)  [73]. Nc data were 

obtained using CAIcal and plotted with Rstudio-ggplot2. Codon frequency were calculated with 

Codon Utilization Tool (CUT) website (http://pare.sunycnse.com/cut/index.jsp)  [178]. tRNA 

adaptation index (tAI) was calculated using the stAIcalc software  [179] 

(http://www.cs.tau.ac.il/&sim;tamirtul/stAIcalc/stAIcalc.html). Cluster analysis were done with 

Genesis 1.8.1  [180] and Cluster 3.0  [181] and visualization were made with Java Treeview  [182]. 

Protein abundance were derived from PaxDb database version 4.1 (https://pax-db.org/)  [183].  

To verify the accuracy of tAI interpretation, we compared the consistency of tRNA expression 

across different human primary cell types by visually examining the relationship between tRNA gene 

copy number (GCN) and experimentally measured tRNA levels in various human primary cell types. 

We used a previously published dataset from the Nedialkova group [101] including addition 

information concerning modifications at position 34 occurring on some specific tRNAs. 

4.2. SARS-CoV-2 Sequences 

Accession numbers of the main SARS-CoV-2 sequences used in this report are listed in annex 1 

and downloaded from NCBI database with the exception of SARS-CoV-2 FRA that was from the 

european virus archive (http://www.european-virus-archive.com) and corresponded to the exact 

2020 isolate from Paris-Ile-de-France we used in our infection experiments. Analysis of clade-related 

RSCU evolution of SARS-CoV-2 during the pandemic, was performed using sequences recovered 

from the dataset generated in the Fumagalli’s paper [136]. 

4.3. Experimental Data 

4.3.1. Cells and Viruses 

Patient primary fibroblasts were from Coriell Institute: GMO1652 derived from non-FD control 

(Skin fibroblast (arm) from 11 years old Caucasian female); GMO4959 derived from FD patient (Skin 

fibroblast (arm) from 10 years old Caucasian female). The SARS-CoV-2 was a French Ile de France 

isolate (www.european-virus-archive.com/virus/sars-cov-2-isolate-betacovfranceidf03722020). Viral 

stocks were generated by amplification on VeroE6 cells (epithelial kidney of an African green 

monkey, ATCC CRL-1586). The supernatant was collected, filtered through a 0.45 µm membrane, 

and tittered using a TCID50 assay. Caco2 cells (epithelial colon adenocarcinoma, ATCC HTB-37) were 

used for tRNA modifications quantification upon SARS-CoV-2 infection. 

4.3.2. Quantification of tRNA Modifications by Mass Spectrometry (LC-MS/MS) 

RNA preparations enriched in tRNAs were obtained using mirVana™ miRNA Isolation Kit 

(Thermo). RNA samples were then digested by Nuclease P1 and treated by Alkaline phosphatase. 

Samples were then injected into LC-MS/MS. The nucleosides were separated by reverse phase ultra-

performance liquid chromatography on a C18 column with online mass spectrometry detection using 

Agilent 6490 triple-quadrupole LC mass spectrometer in multiple reactions monitoring (MRM) 

positive electrospray ionization (ESI) mode. Quantification was performed by comparing with the 

standard curve obtained from pure nucleoside standards running with the same batch of samples. 

4.3.3. Assays for Viral Replication 

For infections, the cells were previously transduced with a Lentiviral vector expressing ACE2 

using the lentiviral construct RRL.sin.cPPT.SFFV/Ace2.WPRE (MT136) kindly provided by Caroline 

Goujon (Addgene plasmid # 145842) [176]. Seventy-two hours after transduction, accurate ACE2 

expression was controlled on western blot probed with anti-ACE2 antibody (Human ACE‑2 
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Antibody, AF933, R&D systems). ACE2-positive cells (70-80% confluence) were then infected with 

SARS-CoV-2 diluted to achieve the desired MOI. After 24 hours in culture, the cells were lysed with 

the Luna cell ready lysis module (New England Biolabs). The amplification reaction was run on 

LightcyclerR 480 thermocycler (Roche Diagnostics) using the Luna Universal One-Step RT-qPCR kit 

(New England Biolabs), and SARS_For: 5’-ACAGGTACGTTAATAGTTAATAGCGT; SARS_Rev: 5’-

ATATTGCAGCAGTACGCACACA; GAPDH_For: 5’-GCTCACCGGCATGGCCTTTCGCGT and 

GAPDH_Rev: 5’-TGGAGGAGTGGGTGTCGCTGTTGA primers. Each qPCR was performed in 

triplicate, and the means and standard deviations were calculated. Relative quantification of data 

obtained from RT-qPCR was used to determine changes in SARS-CoV-2 gene expression across 

multiple samples after normalization to the internal reference GAPDH gene. Individual tRNA 

quantification was performed by RTqPCR using tRNA gene specific primers and miR103a primers 

for internal normalization purposesi (see Appendix B). 

Appendix A. Virus Sequences 

Virus genus Name Accession 

Alphacoronavirus 
Human CoV NL63 MK334043.1 

Human CoV 229E MN306046.1 

Betacoronavirus 

BatCoV RaTG13 MN996532.2 

Human CoV-OC43 KF530087.1 

MERS-CoV JX869059.2 

SARS-CoV-1 KY352407.1 

SARS-CoV-2 FRA european-virus-archive betacovfranceidf03722020 

SARS-CoV-2 Wuhan NC_045512.2 

SARS-CoV-2 Omicron ON248829.1 

Flavivirus 
Zika MR766 MK105975 

Zika PF13 KY766069 

Appendix B. tRNA RTqPCR Primers 

Primer Target tRNA Sequence (5‘→3’) 

tLys-TTT-For tRNA-Lys-TTT-3-1  TCAGTCGGTAGAGCATCAGA 

tLys-TTT-Rev tRNA-Lys-TTT-3-1  CCCGAACAGGGACTTGAAC 

tGln-TTG-For tRNA-Gln-TTG-1-1 TGGTGTAATGGTTAGCACTCTG 

tGln-TTG-Rev tRNA-Gln-TTG-1-1 CCGAGATTTGAACTCGGATCG 

tGlu-TTC-For tRNA-Glu-TTC-1-1 CATATGGTCTAGCGGTTAGGATTC 

tGlu-TTC-Rev tRNA-Glu-TTC-1-1 CCCATACCGGGAGTCGAA 

tArg-TCT-For tRNA-Arg-TCT-1-1 CCGTGGCGCAATGGATA 

tArg-TCT-Rev tRNA-Arg-TCT-1-1 CTCGAACCCGGAACCTTT 

tAsn-GTT-For tRNA-Asn-GTT-1-1 TGTGGCGCAATCGGTTAG 

tAsn-GTT-Rev tRNA-Asn-GTT-1-1 GAACCACCAACCTTTCGGTTA 

tAsp-GTC-For tRNA-Asp-GTC-2-9 GTATAGTGGTGAGTATCCCC 

tAsp-GTC-Rev tRNA-Asp-GTC-2-9 AATCGAACCCCGGTCTCC 

teMet-CAT-For    tRNA-Met-CAT-4-2  GCGTCAGTCTCATAATCTGA 

teMet-CAT-Rev  tRNA-Met-CAT-4-2 GCCCTCTCTGAGGCTCGAAC 

103-For miRNA103a-3p GCTTCTTTACAGTGCTGCCT 

103-Rev miRNA103a-3p TTCATAGCCCTGTACAATGCT 
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