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Abstract: Background. Gastrointestinal (GI) distress is prevalent and often persistent among cancer 

survivors, impacting their quality of life, nutrition, daily function, and mortality. GI health screening 

is important to prevent and manage this distress. However, accurate classification methods for GI 

health remain unexplored. We aimed to develop machine learning (ML) models to classify GI health 

status (better vs. worse) by incorporating biological aging and social determinants of health (SDOH) 

indicators in cancer survivors. Methods. We included 645 adult cancer survivors from the 1999-2002 

NHANES survey. Using training and test datasets, we employed six ML models to classify GI health 

conditions (better vs. worse). These models incorporated leukocyte telomere length (TL), SDOH, 

and demographic/clinical data. Results. Among the ML models, the random forest (RF) performed 

the best, achieving a high area under the curve (AUC = 0.98) in the training dataset. The gradient 

boosting machine (GBM) demonstrated excellent classification performance with a high AUC (0.80) 

in the test dataset. TL, several socio-economic factors, cancer risk behaviors (including lifestyle 

choices), and inflammatory markers were associated with GI health. The most significant input 

features for better GI health in our ML models were longer TL and an annual household income 

above the poverty level, followed by routine physical activity, low white blood cell counts, and food 

security. Conclusions. Our findings provide valuable insights into classifying and identifying risk 

factors related to GI health, including biological aging and SDOH indicators. To enhance model 

predictability, further longitudinal studies and external clinical validations are necessary. 

Keywords: cancer survivors; gastrointestinal health; telomere; social determinants of health; 

machine learning 
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1. Introduction 

Cancer is the second leading cause of death in the United States, after heart disease. Projections 

for 2024 estimated 2.0 million new cases and 611,720 cancer deaths [1]. Encouragingly, medical 

advancements have increased survival rates among patients with cancer [2,3]. However, cancer 

survivors often deal with multiple short- and long-term side effects over the course of their cancer 

treatments [2,3]. These effects include physical (e.g., pain, neuropathy, functional limitations), 

gastrointestinal (GI), and mental health (e.g., depression, anxiety) concerns [2-4]. The prevalence and 

severity of these physical, GI, and mental health concerns can vary widely, impacting survivors’ 

health-related quality of life (HRQOL), treatment adherence, daily functioning, nutrition, and overall 

prognosis. Addressing these overall health concerns is essential for enhancing cancer survivors’ well-

being in the long term.  

Of note, GI symptoms often persist in cancer survivors even after completing treatment. These 

symptoms include nausea/vomiting, appetite loss, altered bowel movements (e.g., diarrhea or 

constipation), bloating, indigestion, heartburn, and abdominal pain [5-9]. GI symptoms rank as the 

most common chronic physical side effects of cancer treatments, after psychological distress and 

fatigue in cancer survivors with mixed cancer types [10]. In 142 breast cancer survivors, the GI 

symptom cluster was the second most prevalent after chemotherapy [11]. In 413 colorectal cancer 

survivors, 81% experienced persistent GI symptoms 8 years post-treatment [8]. In a review of GI 

toxicity after radiotherapy in rectal cancer survivors, long-term GI toxicity continued for over 3 

months and included diarrhea (35%), fecal incontinence (22%), abdominal gas (71%), and abdominal 

pain (13%) [12].  

GI side effects related to cancer treatments are prevalent in older adults cancer patients, 

impacting physical and social functioning and HRQOL [13]. GI symptoms are significant concerns 

for older adults cancer patients, with the incidence of overall GI symptoms reported to be as high as 

40% in cancer patients on standard-dose chemotherapy and 100% on high-dose chemotherapy [14]. 

Several factors contribute to the increased prevalence of GI issues in this population. Firstly, the aging 

process causes clinically significant effects on oropharyngeal motility, upper-esophageal motility, 

colonic function, and GI immunity [15]. Second, older adults often have comorbidities and long-term 

exposure to medications, alcohol, and tobacco that may exacerbate GI distress [16]. Further, cancer 

treatments can induce accelerated aging in individuals with cancer [17]. Mechanisms such as 

oxidative stress, inflammation, and mitochondrial dysfunction are implicated [17]. This accelerated 

aging phenomenon can worsen existing GI health conditions. As such, GI health concerns may be 

associated with the aging process, and cancer survivors can be more vulnerable to these connections.   

Recent studies highlight the increased significance of biological over chronological aging in 

cancer survivors’ physical and psychological well-being [18-20]. Of note, telomere length (TL), which 

shortens during cell division, is a validated measure of biological aging [21,22]. In individuals of the 

same chronological age, shorter TL is linked to accelerated biological aging and various health 

conditions in cancer survivors [20,21]. While the association of TL with survival and mortality is well-

studied in cancer survivors [22], its association with HRQOL, including GI health, requires further 

investigation [18,19]. Social determinants of health (SDOH) significantly impact the physical and 

mental health of cancer survivors. Factors such as race/ethnicity, socioeconomic status, education, 

and marital status play crucial roles in the health outcomes of cancer survivors [23,24]. Chronic stress 

associated with poor SDOH triggers systemic inflammation, exacerbating physical symptoms [25,26]. 

Moreover, there is a potential link between TL, SDOH, and inflammation [27]. Poor SDOH status was 

associated with TL shortening due to chronic stress and inflammation in US adults living in the 

community [27]. Therefore, SDOH and TL may be related to GI health in cancer survivors. 

Understanding this complex interplay could inform interventions to improve GI health in cancer 

survivors.  
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The classification of GI health conditions and identification of contributing factors are crucial 

steps in choosing and applying personalized interventions for cancer survivors [28,29]. Machine 

learning (ML) offers substantial advantages in cancer survivorship care, particularly in classification 

or prediction models [30,31]. Unlike traditional statistical methods, ML can handle small sample sizes 

and multiple variables with complex relationships by controlling covariates and multicollinearity. It 

excels at identifying intricate patterns, handling high-dimensional data, and adapting over time 

[30,31]. This capability is especially beneficial in cancer survivorship research, where the number of 

survivors for certain types of cancer might be limited, and the relationships among cancer treatments, 

and health outcomes can be complex [28,29]. While ML has been employed to develop predictive 

models for cancer diagnosis and survival [32], its application to GI health conditions in cancer 

survivors remains relatively rare.  

Therefore, by leveraging ML with high precision, we aimed to develop and validate an ML 

classification model of GI health conditions (better vs. worse), incorporating TL and SDOH indicators 

as our primary interests, and demographic and clinical characteristics including inflammatory 

markers as secondary interests. The current study is a pilot to explore and identify the significant 

features including biological aging markers (i.e., TL in our study), and SDOH indicators to classify 

GI health conditions in adult cancer survivors, not just limited to those over 65. This approach 

enhances the performance of ML classification models by increasing sample size and providing a 

comprehensive understanding of GI health across different age groups. 

2. Methods  

2.1. Sample and Procedures 

In this secondary analysis, we employed data from the National Health and Nutrition 

Examination Survey (NHANES), conducted by the National Center for Health Statistics (NCHS) 

under the Centers for Disease Control (CDC) [33]. The NHANES includes cross-sectional, nationally 

representative health and nutritional data from 21,004 non-institutionalized US civilian aged 2 

months and older [33]. We combined NHANES surveys from 1999-2000 and 2001-2002, for which 

leukocyte DNA samples were obtained to assess TL in participants 20 years of age and above. Of the 

10,291 participants 20 or over, 7,827 (76%) had TL data. Among the participants with TL data, 645 

with self-reported cancer diagnoses were included in the current study. We also applied sampling 

weights in the analysis to address oversampling and non-response biases, ensuring the accuracy of 

estimates reflecting the broader US population [34]. We employed a standard mining approach 

consisting of four stages: (1) data acquisition, (2) preprocessing (e.g., data cleaning, exploratory data 

with addressing class imbalances, optimizing dataset classes with feature engineering, and data 

normalization), (3) model learning with training and testing data, and (4) model evaluation [35] 

(Figure 1).  
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Figure 1. Data Processing. This figure illustrates the comprehensive process of machine learning data 

processing. Model deployment is suggested in a future study. 

2.2. Features 

2.2.1. Demographic and clinical data including inflammatory markers.  

Information on chronological age (years), sex (male, female), comorbidities including 

hypertension, diabetes, cardiovascular disease, and history and types of cancer diagnosis were 

collected from self-reported questionnaires. White blood cell count (WBC) was extracted from 

complete blood count (CBC) data retrieved from the “Complete Blood Count with 5-part Differential 

- Whole Blood” category of the 1999-2002 NHANES laboratory data [36]. C-reactive protein (mg/dL) 

levels were measured by high-sensitivity, latex-enhanced nephelometry by the Immunology 

Division, Department of Laboratory Medicine, University of Washington Medical Center. As diet is 

relevant to GI health, we also included diet data [36].  

2.2.2. Telomere length (TL) measurement.  

The measurement of TL in the NHANES study has been published elsewhere [37-40]. Detailed 

protocols describing TL measurement for the NHANES study are accessible on the CDC website 

under the laboratory section [41]. In brief, TL was assessed by isolating purified DNA from whole 

blood samples using the Puregene (D-50 K) protocol. The TL assay was conducted via polymerase 

chain reaction. TL was measured relative to standard reference DNA (T/S ratio), with each sample 

analyzed three times on different days and in duplicate wells, totaling six data points. Potential 

outliers (<2% of samples) were identified and excluded. The interassay coefficient of variation was 
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6.5% [27]. The provided values represent the mean (standard deviation) of the T/S ratio. The CDC 

Institutional Review Board granted human subject approval for TL measurements, which were 

quality-controlled before being linked with the NHANES database.  

2.2.3. Social determinants of health (SDOH). 

We included nine selected SDOH variables based on sociodemographic variables and cancer 

health risk behaviors identified in the CDC Healthy People 2030 SDOH framework [42] and in the 

National Academy of Medicine [43]. The nine risk factors corresponding to SDOH domains included 

in our study were: i) Racial/ethnic minorities, ii) Low education achievement (i.e., less than a high 

school diploma or equivalent), iii) poverty-income ratio (i.e., Family Income/Poverty Threshold;  A 

ratio <1 indicates annual family income is below the poverty level), (iv) Food insecurity as per the 

Kendall/Cornell scale (i.e., low or very low food security)[46], (v) Current smokers (individuals who 

have smoked a minimum of 100 cigarettes in their lifetime and who currently smoke either daily or 

occasionally), (vi) Heavy drinkers (as per the Alcohol Use Disorders Identification Test-Concise 

[AUDIT-C] screening tool, > 4 for males and > 3 for females indicating a moderate risk of alcohol 

abuse) [47], (vii) Low physical activity (engaging in less than 10 minutes of moderate or intense 

activity or strength training in the past month), (viii) lack of a partner (divorced/widowed/single 

marital status) [45], and (ix) diet quality. In the NHANES 1999-2002 datasets, dietary information was 

collected using 24-hour recalls [37]. Using this NHANES data, we included major food groups - total 

energy in kcal, total protein, total carbonate, total saturated fat, total fatty acid, total sodium, and total 

fruit and vegetables - based on the U.S. Dietary Guidelines for Americans in our study [38]. Then, we 

further computed overall diet quality using the Healthy Eating Index (HEI) 2015 [37,39]. The overall 

HEI-2015 score varies from 0, indicating nonadherence, to 100, perfect adherence. There is no 

established minimal clinically significant difference for the HEI-2015 [37,39].   

2.3. Outcome 

2.3.1. GI health. 

We evaluated GI health status (i.e., worse or better status) using the Health Status Questionnaire, 

which includes the CDC health-related quality of life  

(HRQOL)-4. The HRQOL-4 shows high reliability (0.57 - 0.75) in the general population and 

cancer survivors [48]. For GI health conditions, participants were asked to answer “Did you have a 

stomach or intestinal illness over the last month?” (No -better GI health versus Yes -worse GI health). 

2.4. Data Analyses  

2.4.1. Initial data analysis. 

For descriptive analyses, categorical variables were presented as counts and percentages, while 

continuous variables were presented as means and standard deviations. We primarily compared the 

training and test datasets using two-sample independent t-tests or Chi-square tests. Additionally, we 

examined the initial associations of input data with GI health (better versus worse) using two-sample 

independent t-tests or Chi-square tests.  

2.4.2. Machine learning model. 

Data preprocessing. We only included input variables showing significant associations with GI 

health in our initial data analyses. We used the permutation feature importance to quantify the 

impact of each feature (i.e. input variables) on GI health prediction in our ML models [31,49]. Among 

645 adult cancer survivors used to build the model, all had TL data and most of the employed features 

were available with low missing data rates (missing data rates <4%). Despite the rates of missing data 

in our study being trivial, we applied multivariate imputation with chained equations to address 

missing data. Prior to model training, continuous features underwent min-max normalization, while 
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categorical features were target-encoded [49] reducing feature dimensions and enhancing the 

performance and stability of our ML models. 

Classification modeling. We first created a training dataset by randomly matching 75% of all 

cancer survivors in the dataset and created a test dataset within the remaining 25% of cancer 

survivors (Figure 1). Python's train_test_split function was employed to  

randomly assign samples to either the training or testing set based on the average prevalences 

of better GI health, ensuring dataset integrity [30]. The training dataset had 484 cancer survivors, and 

the test dataset had 161 cancer survivors. We utilized the training dataset for initial modeling and the 

test dataset to assess the model’s performance in classifying GI health on unseen data. When we 

considered the number of features in the 645 sample size, we applied 6 supervised ML modeling 

methods, including logistic regression (LR), supportive vector machine (SVM), decision tree (DT), 

random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost) 

[30]. Each method was assessed with a specific learning algorithm to determine its effectiveness in 

classifying GI health conditions. Logistic regression, a widely used binary classifier, served as the 

baseline model for comparison. Hyperparameter tuning was conducted through random search with 

five-fold cross-validation to prevent overfitting [49]. Binary cross-entropy was used as the evaluation 

criterion. Hyperparameters such as tree complexity, learning rate, and number of trees were adjusted 

for RF, GBM, and XGBoost. Linear kernel functions were favored over nonlinear ones, like radial 

basis function kernel, in support vector machine models to avoid overfitting in a small dataset [49]. 

Feature importance analysis identified and sorted the top influential features for predicting GI health 

conditions. Finally, the prediction model performance was evaluated for various metrics, including 

accuracy, precision, recall (sensitivity), specificity, F1 score, and area under the receiver operating 

characteristic curve (AUC). 

We controlled for other input features that showed significant relationships with GI health in 

our ML models. A significance level of p < 0.05 was applied, and the statistical analyses were carried 

out using R software, the MLR (Machine Learning in R) R package (version 3.6.3, R Foundation for 

Statistical Computing, Vienna, Austria), and Python (version 3.10.2, Python Software Foundation, 

Wilmington, USA). 

2.5. Conceptual Framework 

The conceptual framework (Figure 2) for this study is based on the original framework, the 

Integral Conceptual Model of Frailty [50]. Figure 2 displays this framework, which includes various 

factors (e.g., life course determinants) and diseases (e.g., cancer and cancer treatment) that may 

impact frailty, which is correlated with accelerated aging. This impact is seen in the model’s sub-

dimensions, namely physical, psychological, and social frailty. These three sub-dimensions can be 

characterized by a decline in various factors. Specifically, a decline in nutrition, mobility, physical 

activity, and physical function in the GI tract is relevant to GI health. Increases in frailty (specifically 

physical GI function in our study) ultimately result in adverse events (i.e., GI distress in our study). 

We used TL as a proxy for accelerated aging, which is impacted by SDOH as well as cancer disease 

and its treatment. Our review analyzed and synthesized the data by mapping TL (accelerated aging), 

SDOH (life course determinants), and GI health (adverse events) in adult cancer survivors to elements 

of the Integral Conceptual Model of Frailty [50]. In our study, we focused on the components 

represented by the grey boxes in this framework (Figure 2). 
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Figure 2. Integral Conceptual Model of Frailty Adapted to the Current Study. We have obtained 

permission to revise the original framework, adapted to the current study, ensuring compliance with 

copyright regulations. Both reproduction and adaptation of the original framework have been 

granted copyright permission.(Supplementary material). 

3. Results 

3.1. Initial Descriptive Analyses 

3.1.1. Participant characteristics, clinical data including inflammatory markers, TL, and GI health. 

Table 1 describes the participant demographic and clinical characteristics and TL of both the 

training (N = 484, 75% of the total sample N = 645 adult cancer survivors) and the test (N = 161, 25% 

of the total sample N = 645 adult cancer survivors) datasets. The mean participant age was 66.3 ± 14.7 

years for the training dataset and 65.5 ± 16.2 for the test dataset (p =.102). Approximately half of the 

participants were women, and skin cancer (approximately half were melanoma) was the most 

common cancer type in both datasets. WBC, CRP, and TL did not significantly differ between the 

training and test datasets. 66.7% reported better GI health for the training dataset, while 62.7% 

reported better GI health in the test dataset (p =.412). 

Table 1. Patients Characteristics, Telomere Lengths, and their relationships with GI Health. 

Total cancer 

survivors 

(N = 645) 

Training seta 

 (n = 75% of total 

sample, n = 484 

Test setb 

(n = 25% of 

total sample, n 

= 161) 

 

p 

GI health (n, %) 

Better Worse p 

Age (years)  

mean ± SE, range 
66.3 ± 14.7 (21-85) 

65.5 ± 16.2 (22-

85) 
.102 63.3 (10.9)  66.4 (11.2) 47.4, .031 

Female (n,%) 235 (49.5) 84 (50.7) .311 153 (47) 103(65) 6.1, .013 

Modified 

Comorbidities(>2)(n

,%) 

168 (42.3) 66 (43.2) .122 133(41) 71 (45) 5.4, .043      

Types of Cancers  

(n,%) 

Skin: 152 (21.2) 

GU: 102 (21.0) 

Breast: 75 (15.6) 

Skin: 44 (27.3) 

Breast: 35 

(21.7) 

.143 
Skin: 65 (20.1) 

GU: 62 (19) 

Skin: 31(19.8) 

GU: 26 (16.2) 
12.1, .100 
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Ovary-Uterine: 45 

(9.3) 

Head & Neck: 42 

(8.6) 

GI: 41 (8.4) 

Lung: 15 (3.1) 

Hematological: 

12(2.5) 

GU: 30 (18.6) 

Head & Neck: 

21(13.0) 

GI: 15 (9.3) 

Ovary-Uterine: 

8 (5.0) 

Lung: 5 (3.1) 

Hematological:  

3 (1.9) 

Breast: 53 

(16.3) 

Ovary-

Uterine: 37 

(11.3) 

Head & Neck: 

31 (9.5) 

GI: 27 (8.5) 

Lung:13 (4.1) 

Hematologica

l: 36 (11.2) 

Breast:27(17.3

) 

Ovary-

Uterine: 

18(11.5) 

Head & 

Neck: 17 

(10.9) 

GI: 15 (9.3) 

Lung: 8 (5.2) 

Hematologic

al 15 (9.8) 

WBC (k/ul), normal  

(4 -11k/ul), mean ± SE 
7.0 (2.1) 7.04 (2.0) .192 5.4 (1.1) 8.5 (1.5) 146.3, .046 

CRP (mg/dl), normal 

(<0.3mg/dl), mean ± SE 
0.5 (0.9) 0.6 (1.4) .124 0.4 (0.8) 1.0 (1.1) 238.4, .001 

Telomere Lengths (kb) 

mean ± SE 
0.93 (0.2) 0.93 (0.2) .823 0.97 (0.2) 0.64 (0.3) 85.1, .013 

Gastrointestinal 

Health 

(n, %)  

Worse: 158 (32.5) 

Better: 324 (66.7) 

Worse: 59 (36.6) 

Better: 101 

(62.7) 

.412    Not applicable 

Note. N and means are based on unweighted raw sample; % and standard errors (SE) are based on weighted 

NHANES 1999-2002 participants. aTraining dataset samples n: Weighted population n = 13,186,077. bTest dataset 

samples n = Weighted population n = 4,386,277. P-values in bold if they are <.05, as this is considered the 

statistical significance level, based on either using two sample independent t-test or Chi-square test. 

3.1.2. SDOH variables. 

Table 2 presents the SDOH variables for both datasets. Most participants were non-Hispanic 

Whites, married, and had an education level of high school or below. Cancer risk behaviors (such as 

smoking, heavy alcohol consumption, physical activity, and diet quality score – HEI) were not 

significantly different between the two datasets. The prevalences of participants’ annual family 

incomes below the poverty level, and experiencing food insecurity were similar in both datasets 

(39.7% versus 37.3%, p =0.423; 8.6% versus 8.1%, p =0.879, in the training dataset versus the test 

dataset, respectively).  

Table 2. Descriptive statistics for SDOH and their relationships with GI health conditions. 

Total cancer survivors 

(N = 645). 

n (%) otherwise specified 

Training 

seta 

 (n = 75% 

of total 

sample, 

 n = 484 

Test setb 

(n = 25% 

of total 

sample, n 

= 161) 

p 

GI Health (n, %) 

Better Worse p 

Race/Ethnicity   .413   

24.2, .039 

   Non-Hispanic White 356 (73.3) 121(75.0)  
260 

(80.3) 

122 

(77.3) 

   Non-Hispanic Black 53 (10.9) 18 (11.0)  35 (10.7) 
17 

(10.5) 

   Non-Hispanic Other 6 (1.2) 2 (1.2)  5 (1.5) 2 (1.5) 

   Hispanic  69(14.2) 20 (12.8)  24 (7.5) 
17 

(10.7) 

Marital status    .541   3.6, .730 
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   Married/Partnered 329 (68.1) 110 (68.3)  220(67.9) 
104 

(65.6) 

   

Divorced/Widowed/Single 
155 (31.9) 51 (31.7)  104(32.1) 

54 

(34.4) 

Education   .112   

16.6, .502 

   High school or less 247 (51.0) 80 (49.7)  158(48.8) 
81 

(51.1) 

   College of technical 

school  
130 (26.9) 44 (27.3)  88 (27.1) 

41 

(25.8) 

   Graduate school  107 (22.1) 37 (23.0)  78 (24.1) 
36 

(23.1) 

Household Income (yr.)    .353   

8.43, .038 

    Less than $25,000 169 (34.9) 57 (35.4)  114(35.3) 
58 

(36.8) 

    $25,000 to <$55,000 150 (31.0) 51 (31.7)  100(31.0) 
45 

(28.3) 

    $55,000 to <$75,000 45 (9.2) 17 (10.6)  50 (15.4) 
26 

(16.4) 

    $75,000 and over 107 (22.1) 33 (20.5)  59 (18.3) 
29 

(18.5) 

Poverty-income ratio 

(PIR) <1 indicating a high 

poverty level  (Yes): 

Annual household income 

below the poverty level.  

193 (39.7) 60 (37.3) .423 113(34.9) 
59 

(37.6) 
18.01,<.001 

Food Insecurity (Yes) 42 (8.6) 13 (8.1) .879 18 (5.6) 
13 

(8.0) 
17.01, .021 

Cancer Health Behaviors (Yes) 

   Current Smoking Status  86 (17.7) 31 (19.3) .114 53 (16.3) 
31 

(19.5) 
13.1, .080 

   Current Heavy Alcohol 

Use 
86 (17.7) 21 (13.0) .198 49 (15.2) 

34 

(21.3) 
37.01,<.001 

   Regular physical 

activity 
286 (58.8) 76 (47.2) .108 189(58.3) 

61 

(38.5) 
.52.4, .035 

  Diet quality(HEI-2015  

   Score, 0-100, mean ± 

SE) 

48.8 (12.3) 48.9 (8.3) .103 52.5 (5.6) 
47.3 

(7.5) 
56.1, .038 

Note. N and means are based on unweighted raw sample; % and standard errors (SE) are based on weighted 

NHANES 1999-2002 participants. aTraining dataset samples n: Weighted population n = 13,186,077. bTest dataset 

samples n = Weighted population n = 4,386,277. P-values in bold if they are <.05, as this is considered the 

statistical significance level, based on either using two sample independent t-test or Chi-square test. 

3.1.3. Potential risk factors for GI health within the training dataset. 

Before developing the ML model for GI health, we examined the associations between potential 

risk factors, including demographics, clinical data including inflammatory markers, TL, and SDOH, 

and GI Health in the training dataset. Tables 1 and 2 summarize the results of these comparisons 

between the cancer survivors with better and worse GI health. The better GI health group was 

younger (63.3 years vs. 66.4 years, p = 0.031), contained a smaller number of females (47% vs. 65%, p 

= 0.013), and had fewer comorbidities (41% vs. 45%, p = 0.043). Mean WBC (k/ul) and CRP (mg/dl) 

levels were also lower in the better GI health group. The mean TL (kb) was longer in the better GI 

health group (Table 1). Non-Hispanic Whites were more prevalent in the better GI health group 

(80.3% vs. 77.3%). Hispanic individuals were more prevalent in the worse GI health group (10.7% vs. 
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7.5%, p = 0.039) (Table 2). Higher-income levels were associated with better GI health (p = 0.038). In 

terms of cancer risk behaviors, heavy alcohol users (21.3% vs. 15.2%, p <.001) were more prevalent in 

the worse GI health group compared to the better GI health group. Cancer survivors with regular 

physical activity (38.5% vs. 58.3%, p =.035) and better diet quality (7.5% vs. 5.6%, p =.038) were more 

likely to have better GI health status, compared to those with worse GI health status. The worse GI 

health group had higher prevalences of income below the poverty level (37.6%) and experiencing 

food insecurity (8%) than the better GI health group. Marital status, education, and current smoking 

status were not associated with GI health status.  

3.2. Machine Learning Models for GI Health 

3.2.1. Performance comparison for classification models. 

We present the classification performance of all ML models using the training dataset as a 

development phase and the test dataset as a validation phase (Table 3). This evaluation was 

conducted with five-fold cross-validation. Furthermore, Figure 3 illustrates and compares the AUCs 

for each model in the training and test datasets. In the training dataset, random forest (RF) performed 

well across multiple metrics with a higher AUC value and F1 score (AUC: 0.9842, F1 score: 0.9489) 

compared to other models (Table 3). In the test dataset, the gradient boosting machine (GBM) model 

showed the best performance with the highest accuracy (0.7442), a strong AUC (0.8035), and an F1 

score (0.8092), indicating good overall performance in distinguishing between the positive and 

negative cases. Incorporating TL (a value of feature importance = 0.31 in training dataset) and several 

SDOH indicators (feature importance values ranges: 0.03 to 0.24) in our ML models proved their 

relative importance significantly contributing to classifying GI health conditions, achieving good 

classification performance, and demonstrating potential high predictive accuracy for both the 

training and test datasets. 

Table 3. Performance comparison of the classification models for GI health conditions for the training 

and test datasets with five-fold cross-validation. 

Model AUC  Accuracy Precision 
Sensitivity 

(Recall) 
Specificity F1 Score 

Training Dataset  

LR 0.7918 0.7192 0.7214 0.8978 0.4197 0.8111 

SVM 0.7994 0.7112 0.7753 0.7585 0.6321 0.7668 

Decision Tree 0.9758 0.9089 0.9340 0.9195 0.8912 0.9267 

RF 0.9842 0.9341 0.9213 0.9783 0.8601 0.9489 

GBM 0.8952 0.7907 0.7867 0.9133 0.5855 0.8453 

XGBoost 0.7829 0.7755 0.9195 0.5544 0.5544 0.8414 

Test Dataset  

LR 0.7904 0.7287 0.7447 0.8642 0.5312 0.8312 

SVM 0.7774 0.7054 0.7792 0.7407 0.6458 0.7595 

Decision Tree 0.6480 0.6512 0.7093 0.7531 0.4792 0.7305 

RF 0.7760 0.7364 0.7640 0.8395 0.5625 0.8000 

GBM 0.8035 0.7442 0.7609 0.8642 0.5417 0.8092 

XGBoost 0.7834 0.7287 0.7500 0.8519 0.5208 0.7977 

Note. AUC: the area under the receiver operating characteristics (ROC) curve known as the AUC; GBM: Gradient 

boosting machine; LR: Logistic regression, RF: Random forest; SVM: Support vector machine; XGBoost: Extreme 

gradient boosting. 
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Figure 3. Receiver Operating Characteristic (ROC) Curves and Area Under the Curve (AUC) for 

Model Performance. The ROC curve is a graphical representation of a model’s diagnostic ability, 

plotting the True Positive Rate (TPR) against the False Positive Rate (FPR). Both graphs plot the True 

Positive Rate (TPR) on the y-axis, ranging from 0 to 1, and the False Positive Rate (FPR) on the x-axis, 

also ranging from 0 to 1. The AUC in ROC curves represents the probability that the classifier will 

rank a randomly chosen positive instance higher than a randomly chosen negative one. An AUC close 

to 1 indicates a high model accuracy, 0.7 < AUC < 0.8 indicates a good and moderate model accuracy, 

0.5 < AUC < 0.7  indicates a poor performance, and an AUC < 0.5 indicates a fail. SVM= supportive 

vector machine, XGBoost = extreme gradient boosting. 

3.2.2. Feature Importance.  

The most significant features of the best-performing models in each dataset (the RF model in the 

training dataset and the GBM in the test dataset), were separately ranked using the permutation 

feature importance (Figure 4). Figure 4 illustrates the relative importance of input features included 

in the ML models. Among the 13 input features excluding marital status, education, and smoking 

status in each RF and GBM model, the important top features for GI health were similar between the 

training versus testing datasets. A longer TL was the most influential feature, followed by an annual 

household income below the poverty level. Physical activity, lower WBC, and food security were 

among the top-ranked features of importance for better GI health in both datasets. While several other 

features (e.g., lower WBC levels, no food insecurity, higher income, younger chronological age, non-

Hispanice White group) play a role in better GI health, their impact is comparatively modest.  
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Figure 4. Feature Importance. The bar graph indicates the positive associations of input features with 

a better GI health condition. The height of the bar graph of the feature importance, represents the 

importance of the feature, with relative importance compared to the importance values of other 

features to understand their significance. The feature importance scores were calculated using the 

Gini impurity metric. Interpretation of this graph should be based on a relative comparison of the 

values. 

4. Discussion 

This study is the first to develop and validate the ML classification models for GI health in adult 

cancer survivors using supervised ML approaches to account for multiple factors. Although we used 

cross-sectional data, the ML algorithms used in our study constructed classification models based on 

demographics and clinical characteristics including inflammatory markers, TL, and SDOH factors for 

GI health, with good (if 0.5 < AUC < 0.7) to moderate to high (if > 0.7) prediction accuracy [29-31,49]. 

We also identified the relative importance of features classifying GI health conditions, by 

demonstrating that TL and some SDOH features (e.g., economic status, lifestyles) significantly 

influence the outcome classification (Better vs. Worse GI health status). The ML models developed 

and validated in our study could inform personalized approaches to identify cancer survivors at high 

risk for long-term GI distress, and thus, provide tailored interventions that address unmet needs 

triggering GI distress in adult cancer survivors.  

Despite various predictive ML models being used in cancer survivors such as cancer diagnosis 

risk predictions, cancer survival rates, or detection of psychological symptoms [51-54], few studies 

have applied ML algorithms to classify or predict GI health in cancer survivors. Previous research 
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has identified risk factors for GI distress in cancer survivors [7,8], but these studies did not explore 

the associations of TL and SDOH with GI distress. Emerging evidence supports the impact of SDOH 

[55,56] and biological age [56,57] on symptom disparities and HRQOL in cancer survivors. Our study 

addresses this gap by demonstrating the feasibility of using ML approaches to classify GI health. 

Specifically, we explore how TL and SDOH factors contribute to GI health in cancer survivors, 

providing new knowledge in this area. The ML models can handle numerous features effectively, 

minimizing both Type I and Type II errors in multiple comparisons. This advantage is often not 

feasible in traditional statistical methods (e.g., regressions and univariate analyses). Furthermore, ML 

models predict or classify GI health conditions more accurately than traditional statistical methods 

by leveraging large datasets and complex relationships among multiple input features.  

Our findings suggested that not all features contributed equally to classifying GI health 

conditions. TL was identified as the most influential factor in GI health, independent of chronological 

age, suggesting a potential role for biological aging in GI conditions. The results of our study 

identified the positive relationships between better GI health, younger age, and longer TL. Having 

an income higher than the poverty level and routine physical activity also significantly contributed 

to better GI health.  

Telomeres, protective caps at the ends of chromosomes, play a crucial role in cellular aging [39]. 

Beyond chronological age, short TL lengths are associated with cellular senescence, where cells lose 

their ability to divide and function properly. Furthermore, senescent cells release inflammatory 

molecules, contributing to chronic inflammation associated with GI disorders like inflammatory 

bowel disease, altered bowel patterns, abdominal pain, indigestion, bloating, nausea, and 

gastroenteritis [19,58]. Biological aging influences gut health by impairing the integrity of the 

intestinal barrier, affecting immune cell function, and impacting gut microbial diversity [19,58]. 

Further, our findings reveal that the biological age might better reflect the functional aging of the GI 

tract, compared to chronological age [59]. Wang et al. [19] similarly discovered that longer leukocyte 

TL was associated with better GI function in patients with functional GI disorders. Investigating the 

mechanisms responsible for the shorter leukocyte TL observed in these settings could provide 

insights into managing GI health beyond chronological age considerations in cancer survivors.  

The poverty-income ratio (PIR), was the second most significant feature of GI health in our 

study, other SDOH variables—such as lower income levels and racial/ethnic minority groups—were 

also associated with worse GI health. Previous studies support our findings that socially and 

economically vulnerable populations are exposed to more chronic stress, which can influence 

accelerating aging and pro-inflammatory status in the body [60,61]. Furthermore, socially and 

economically vulnerable populations face challenges in accessing healthcare resources, including 

community health services, oncology care, and primary care providers (PCPs). Additionally, 

vulnerable populations are more likely to reside in unsafe environments and neighborhoods, which 

may contribute to housing and food insecurity [62]. Collectively, all of the aforementioned risk factors 

can contribute to various forms of GI distress in cancer survivors [61]. 

Cancer risk behaviors, including lifestyle choices, smoking, and alcohol consumption, have well-

documented associations with physical and psychological symptoms and HRQOL in cancer 

survivors [24,63,64]. However, limited research has explored the specific relationships between these 

risk behaviors and GI health in cancer survivorship. Our findings reveal that cancer risk behaviors 

play a significant role in GI health conditions. Although previous research has primarily focused on 

other aspects of survivorship such as HRQOL and psychological symptoms [24,63,64], our study 

highlights the need to consider GI-specific factors. The identification of risk behaviors associated with 

GI health provides actionable insights for survivor care. Of note, food security was a more significant 

feature of GI health compared to self-reported diet quality as measured by HEI. This discrepancy in 

feature importance for GI health could be due to several reasons. First, self-reported diet quality may 

not fully capture nutrient intake or align with actual dietary behaviors [65]. Some individuals may 

report high diet quality despite lacking essential nutrients [65]. Second, food security is prevalent 

among cancer survivors in the U.S. (from 4% to 83.6%) and directly influences nutrient intake, beyond 

broader social determinants such as poverty, and health literacy [66,67]. Furthermore, food insecurity 
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induces stress, which can exacerbate the risk of GI diagnoses including GI cancers and GI disorders 

by promoting impaired gut mobility, immune responses, and barrier function [68,69]. Access to 

diverse healthy foods ensures essential nutrients and greater microbiome diversity, which are vital 

for overall well-being including GI health [68,69]. 

Clinical Implications. ML plays a crucial role in classifying or predicting GI health, particularly 

for socially vulnerable cancer survivors. ML models analyze data from cancer survivors to pinpoint 

those at greater risk of GI distress. Once identified, targeted interventions can address their unmet 

needs, whether through pharmacological or non-pharmacological approaches. Integrating ML 

algorithms into platforms like mobile apps or websites (such as MyChart) is a practical approach. 

Furthermore, users can access personalized insights about their GI health, receive recommendations, 

and make informed decisions based on ML-driven risk classifications. ML models can help to further 

tailor interventions for high-risk groups by considering their specific social needs and vulnerabilities. 

For example, routine assessment of accelerated aging in cancer survivors could be essential for overall 

well-being and GI health. Addressing smoking cessation, promoting healthy lifestyles (healthy diet 

and physical activity), and minimizing alcohol consumption directly could also impact GI health and 

serve as an anti-aging strategy. Lastly, routine screening for socio-economic needs may contribute to 

optimal GI health in cancer survivors. For example, oncologists or PCPs can refer to nutritional 

education or food assistance programs. Increasing multidisciplinary collaboration with social 

workers, nutritionists, and community resources is warranted not only for overall HRQOL but also 

for GI health.  

Strengths and Limitations. The strengths of our study lie in the inclusion of a variety of input 

data, specifically inflammatory markers, TL, and SDOH features. Additionally, our focus on GI 

health—an unexplored area in cancer survivorship—along with the application of ML models, 

contributes to the development of powerful classification models for GI health that consider both 

biological and social mechanisms. The findings of our study also reflect the importance of biological 

age in GI health conditions, applicable to all adult cancer survivors, not just older adults. 

Furthermore, our ML model was validated using an independent test dataset. Our study has several 

limitations. First, NHANES is a cross-sectional survey, which may limit the predictability of our ML 

model. To enhance predictability, longitudinal studies with predictors and GI health conditions 

measured at different time points are needed. Second, the usefulness of inflammatory markers (WBC 

and CRP) for classifying GI health remains unclear in our study. One possible reason is that mean 

WBC and CRP levels fell within the clinically normal range in our samples. Third, findings regarding 

prediction performance should be interpreted with caution due to the overall small sample size of 

the test dataset. Further studies with larger sample sizes are warranted to prevent model overfitting. 

Fourth, using a single question to ask about GI health may have limitations in fully capturing the GI 

health conditions. Furthermore, the roles of SDOH on the relationships between TL and GI healthy 

is unknown. Lastly, cancer-related clinical characteristics, such as cancer stages, years since diagnosis, 

and types of treatments, were not available in our samples, although they are potential covariates for 

our ML models related to GI health. 

5. Conclusions 

Using an ML approach to develop and validate GI health classification (better vs. worse) models 

inclusive of TL and SDOH is feasible among cancer survivors. Overall, the RF- and GBM-generated 

models showed the best accuracy for GI health classification. This finding suggests the potential of 

ML to further develop a longitudinal prediction model for GI health. TL and poverty status were the 

most significant features used to classify GI health, and could be implemented to prevent and manage 

GI conditions in cancer survivors.  We suggest including biological markers and SDOH in ML GI 

health models to optimize classification accuracy. Future longitudinal studies and external clinical 

validations are warranted to confirm our findings and improve model predictability.  

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org 
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