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Abstract: Federated Learning (FL), as a distributed machine learning method, is particularly suitable for training

models that require large amounts of data while meeting increasingly strict data privacy and security requirements.

Although FL effectively protects the privacy of participants by avoiding the sharing of raw data, balancing the

risks of privacy leakage with model performance remains a significant challenge. To address this, this paper

proposes a new algorithm—FL-APB (Federated Learning with Adversarial Privacy-Performance Balancing). This

algorithm combines adversarial training with privacy protection mechanisms to dynamically adjust privacy

and performance budgets, optimizing the balance between the two while enhancing and ensuring performance.

Experimental results demonstrate that the FL-APB algorithm significantly improves model performance across

various adversarial training scenarios, while effectively protecting the privacy of participants through adversarial

training of privacy data.

Keywords: federated learning; adversarial training; privacy protection; reinforcement learning

1. Introduction

Federated Learning (FL) [1,2] is an emerging distributed machine learning approach designed
for effective model training in scenarios with high data privacy and security requirements. Unlike
traditional centralized learning, FL allows multiple participants to collaboratively train a global model
without sharing raw data. Each participant conducts local model training and sends the updated
model parameters to a central server for aggregation, while the raw data remains on local devices. This
model protects participant privacy while effectively utilizing decentralized data resources, making it
widely applicable in fields such as finance, healthcare, and intelligent transportation [3–6].

The key advantage of FL is its ability to avoid the privacy leakage risks associated with data
centralization, aligning with increasingly stringent data privacy regulations (such as GDPR [7]).
Furthermore, FL leverages distributed computing resources to enhance training efficiency and reduce
the costs and risks of data transmission. Therefore, FL not only aids in building efficient machine
learning systems but also provides a viable solution for applying machine learning in scenarios where
data privacy and security are critical [8].

Despite its significant privacy protection advantages, FL faces numerous challenges [9–11]. First,
privacy concerns remain a core issue for FL. Although participants do not need to share raw data, the
transmission of model update parameters may reveal sensitive information about the original data,
allowing attackers to infer participants’ private data by analyzing patterns in the model updates [12].
Additionally, balancing privacy protection and model performance poses a significant challenge.
Excessive privacy protection mechanisms (such as differential privacy) can prevent data leakage but
may lead to declines in model performance, affecting accuracy and usability [13].

Second, model performance also encounters various technical challenges. In FL, participants’ data
is often heterogeneous (uneven data distribution and significant feature differences), which can hinder
model convergence, especially with a large number of participants [14]. Moreover, communication
overhead and computational resource constraints can affect training efficiency, making it an important
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direction of FL research to improve model performance and convergence speed while ensuring
privacy [15].

To address the privacy and robustness issues in FL [16], adversarial training (AT) has gradually
been introduced into the FL domain [17]. Adversarial training introduces adversarial attack samples
during model training, enabling the model to maintain stability and robustness when faced with
malicious attacks [18]. This method not only enhances the model’s defense against privacy data
leakage attacks but also improves overall model security [19]. However, the application of adversarial
training in FL also comes with certain drawbacks.

First, while adversarial training can effectively enhance model robustness, it can slow down con-
vergence speed and increase computational complexity during training. Additionally, the introduction
of adversarial samples may result in decreased model performance (such as accuracy). Particularly in
FL environments, data heterogeneity and distribution differences exacerbate these issues, making it a
pressing challenge to maintain model performance while protecting privacy [20–24].

To balance privacy protection and model performance during FL training, this paper proposes
a new algorithm—FL-APB (Federated Learning with Adversarial Privacy-Performance Balancing).
Existing methods often focus on improving one aspect of performance, either emphasizing privacy
protection at the cost of model accuracy and convergence speed, or prioritizing model performance
while neglecting the risks of privacy leakage. Therefore, designing an algorithm that simultaneously
considers privacy protection and performance optimization has become the main motivation for this
research.

The core idea of FL-APB is to combine adversarial training with privacy protection mechanisms,
dynamically adjusting the privacy budget and performance budget during training to achieve a balance
between the two. This algorithm maximizes model performance while ensuring privacy protection
and mitigates the negative impact of adversarial training through adaptive adjustments.

The goal of this paper is to achieve a balance between privacy protection and performance
optimization in FL. To this end, we propose the FL-APB algorithm and validate its effectiveness across
different adversarial training methods through theoretical analysis and experimental verification. The
main contributions of this paper are as follows:

1. Proposing the FL-APB algorithm, which achieves a balance between privacy protection and
performance optimization by dynamically adjusting the privacy budget and performance budget.

2. Introducing adversarial training, which enhances the robustness of FL models while improving
overall performance in conjunction with privacy protection.

3. Conducting experimental validation and theoretical analysis to verify the convergence, robust-
ness, privacy protection capabilities, and performance optimization effects of the FL-APB algorithm
through multiple sets of experiments, showcasing its application potential in real-world scenarios.

4. Providing a new solution for privacy protection and performance optimization, serving as a
reference for further research on balancing privacy protection and performance optimization in FL.

The content of this paper is arranged as follows: Section 2 briefly reviews related work on privacy
protection and performance optimization in Federated Learning. Section 3 introduces the FL-APB
system model, analyzes issues related to privacy protection and performance optimization, and
conducts convergence analysis and privacy-performance trade-off analysis of the FL-APB algorithm.
Section 4 provides a brief introduction to the experimental setup. Section 5 analyzes and discusses the
experimental results. Section 6 concludes the paper and outlines future research directions.

2. Related Work

In this section, we will systematically review the existing literature on differential privacy within
the context of FL, elucidating their applications and inherent limitations, particularly with respect
to their impact on model performance. Additionally, we will explore the integration of adversarial
training in FL, emphasizing its potential to enhance model robustness while critically examining its
detrimental effects on convergence speed and overall performance. Furthermore, we will analyze
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current research focused on optimizing performance in FL, addressing challenges related to data het-
erogeneity, accelerating model convergence, and minimizing communication overhead. This analysis
will include a discussion of the trade-offs between these optimization techniques concerning privacy
protection and performance. Ultimately, we will provide insights into how recent advancements seek
to balance privacy protection with performance optimization, setting the stage for the introduction of
our proposed FL-APB algorithm.

2.1. Differential Privacy in FL

In FL, data privacy remains a core challenge. To address this, blockchain [25], homomorphic
encryption [26], secure multi-party computation (SMPC) [27], and differential privacy (DP) [13] are
widely implemented within the FL framework. Among these, DP protects participants’ private data
by introducing noise into data or model updates, thus preventing data leakage and safeguarding
against potential attacks. Article [28] proposes a user-level differential privacy method (UDP) and
derives the theoretical convergence upper bound for the UDP algorithm. Additionally, it introduces a
communication round discount (CRD) method that balances computational complexity and conver-
gence performance effectively. Article [29] presents a DP-based FL framework designed for generating
personalized models for heterogeneous clients, analyzing its convergence performance and the optimal
trade-offs among various metrics. Article [30] introduces a FL method called Dynamic Fisher Personal-
ization and Adaptive Constraint (FedDPA) to address non-IID data distribution and mitigate privacy
leakage risks in personalized FL. FedDPA leverages layer-wise Fisher information to assess the informa-
tional content of local parameters, allowing it to retain local parameters with high Fisher values during
the personalization process and avoid noise interference. It also employs adaptive constraint strategies
to enhance the convergence of both personalized and shared parameters. Article [31] proposes a local
differential privacy scheme (ACS-FL) aimed at training clustered FL models on heterogeneous IoT data
through adaptive clipping, weight compression, and parameter shuffling. ACS-FL achieves a favorable
balance between privacy and utility by alleviating the curse of dimensionality, reducing LDP noise,
and minimizing communication overhead. Article [32] presents a perturbation algorithm (PDPM)
designed to meet personalized local differential privacy (PLDP) requirements. The PDPM algorithm
allows clients to adjust privacy parameters based on data sensitivity, providing personalized privacy
protection. While these methods effectively enhance privacy and achieve a favorable balance between
privacy and utility, they often negatively impact model performance, as excessive noise injection can
lead to decreased accuracy.

2.2. Adversarial Training in FL

To further enhance models’ defenses against privacy leaks and malicious attacks, adversarial
training has been gradually integrated into FL. In adversarial training, participants generate adver-
sarial samples for model training, enabling models to remain robust against malicious attacks. The
paper [33] explores fairness issues in FL, promoting individual fairness through distributed adversarial
training without compromising data privacy. The paper [34] proposes a federated adversarial learning
paradigm (FAL) tailored for FL, aimed at utilizing decentralized training data. This approach ad-
dresses unique vulnerabilities exposed by multi-step local updates prior to aggregation and conducts
convergence analysis using appropriate gradient approximation and coupling techniques. The pa-
per [23] introduces a margin-based federated adversarial training method (GEAR), which encourages
minority classes to maintain larger margins by introducing a margin-based cross-entropy loss, while
regularizing the decision boundary to be smoother, thereby providing an improved decision boundary
for the global model. However, while adversarial training enhances model robustness, it inevitably
increases training complexity and slows convergence, particularly in heterogeneous FL environments.
Furthermore, the introduction of adversarial samples can result in diminished model performance (e.g.,
accuracy), posing a significant challenge in balancing privacy protection and performance optimization
through adversarial training.
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2.3. Balancing Privacy and Performance in FL

Despite significant advances in both privacy protection and performance optimization, achieving
an effective balance between the two remains a pressing issue. Reference [16] employs a natural
adversarial optimization method that trains an encoding function alongside a deep neural network for
private attribute classification. This approach proposes a stable and convergent optimization method
that successfully learns an encoder meeting privacy requirements while maintaining utility. Article [18]
investigates the robustness of machine learning (ML) through adversarial training in both centralized
and decentralized environments, exploring the design of ML algorithms to enhance training accuracy
across various adversarial training methods. Reference [19] introduces a novel adversarial training
framework that explicitly learns a degradation transformation for original video inputs to optimize
the trade-off between target task performance and the privacy budget of degraded videos. This frame-
work utilizes different definitions of privacy budgets to maintain high performance in target tasks
(such as action recognition) while effectively mitigating privacy breach risks. Article [20] conducts a
comprehensive robustness evaluation of existing FL methods to better understand their adversarial
vulnerabilities, proposing a new algorithm called Decision Boundary-based Federated Adversarial
Training (DBFAT), which incorporates local re-weighting and global regularization components to
improve the accuracy and robustness of FL systems. Reference [22] presents a new algorithm, FedDy-
nAT, designed for adversarial training (AT) in federated environments, significantly enhancing both
natural and adversarial accuracy while reducing model drift and accelerating convergence. Article [24]
examines the FAT problem under label skewness and identifies root causes of training instability
and degradation in natural accuracy. To address these issues, a Calibrated FAT (CalFAT) method is
proposed, which adaptively calibrates logits to balance classes, thus resolving stability challenges.
Existing privacy protection methods often prioritize enhancing privacy defenses while neglecting
their impact on model performance; conversely, some performance optimization algorithms focus
on accelerating convergence and improving accuracy but do not adequately address privacy protec-
tion. Therefore, designing a FL algorithm that concurrently considers both privacy protection and
performance optimization has become the primary motivation for this study. To this end, we propose
the FL-APB algorithm, which integrates adversarial training with privacy protection mechanisms to
dynamically adjust privacy and performance budgets, thereby achieving a balance between privacy
protection and performance optimization.

3. System Model

In this section, we introduce the main components and working mechanism of the FL-APB system
model. As shown in Figure 1, when FL training is subjected to privacy attacks, the FL-APB algorithm
balances privacy and performance budgets by generating adversarial training strategies to prevent
attackers from stealing sensitive information.

3.1. Problem Definition

In FL, each participant i has a local dataset Di and a local loss function Li(w), where w represents
the global model parameters. The global objective is to minimize the average loss across all participants:

min
w

1
N

N

∑
i=1

Li(w) (1)

To protect user privacy, participant i introduces differential privacy to its local dataset Di, ensuring
that model updates satisfy the ϵ-differential privacy (ϵ-DP) requirement:

P(M(D1) ∈ S) ≤ eϵ · P(M(D2) ∈ S) (2)

where M represents the mechanism used to compute model updates based on the dataset (such as
gradient computation or parameter aggregation), D1 and D2 are neighboring datasets that differ by
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very few data points, S is a subset of possible outcomes (i.e., the space of all potential model updates),
and ϵ controls the level of privacy protection, with smaller ϵ providing stronger privacy guarantees.
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Figure 1. FL-APB System Model.

Specifically, we enhance model robustness and privacy protection through adversarial training by
introducing perturbations δ to the input data x. The adversarial training loss is defined as:

Ladv(w) = E(x,y)∼D

[
max
∥δ∥≤α

ℓ( fw(x + δ), y)
]

(3)

where δ is the adversarial perturbation, α is the perturbation bound, and ℓ(·) denotes the model’s loss
function.

In adversarial training, the perturbation δ simulates small changes to the input data, which serves
a similar purpose as the differences between neighboring datasets in differential privacy.

We can express this relationship as:

P(M(x) ∈ S) ≤ P(M(x + δ) ∈ S) (4)

where x represents the original input data, and x + δ denotes the input perturbed by the adversarial
noise. This equation indicates that adversarial training minimizes the difference in the output distri-
bution of the model before and after introducing the perturbation δ, thereby ensuring the model’s
robustness and privacy protection. The perturbation δ thus acts similarly to the mechanism used in dif-
ferential privacy to control the variation in model outputs, making adversarial training an approximate
implementation of differential privacy.

By introducing perturbations to the input data, adversarial training ensures that the model output
remains stable even in the presence of minor changes to the dataset (such as the perturbation δ or the
alteration of one data point), thereby providing privacy protection. This aligns with the core principle
of differential privacy, which seeks to limit the changes in the model’s output to prevent attackers from
inferring the original data from model updates.

To simultaneously optimize privacy protection and model performance, we define a total loss
function Lt, which combines performance loss and privacy protection loss. Privacy and performance
budgets control the weights of these components:

Lt(w) = λ1Lper(w) + λ2Lpri(w) (5)
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where Lper(w) represents the model’s performance loss, including either regular training loss or
adversarial training loss. Lpri(w) represents the privacy protection-related loss, such as the impact
of noise added to meet differential privacy requirements. λ1 and λ2 are dynamic weights, satisfying
λ1 + λ2 = 1, used to adjust the balance between privacy protection and performance optimization.

3.1.1. Design of FL-APB

The goal of FL-APB is to minimize the total loss function Lt, which integrates model performance
loss and privacy protection loss. The objective function is expressed as:

Ltotal(w, λ1, λ2) = λ1Lper(w) + λ2Lpri(w) (6)

To dynamically adjust λ1 and λ2, we introduce the Proximal Policy Optimization (PPO) algorithm.
PPO is a reinforcement learning algorithm that updates weight parameters through policy gradient
methods, ensuring stability and convergence of each update.

FL-APB uses the policy πθ(λ1, λ2|s) to generate weights λ1 and λ2, where s is the current state
(such as privacy leakage level and model performance), and θ is the policy parameter. The policy
objective is to maximize the reward Rt, which is the reward obtained from actions taken in the given
state.

The loss function for FL-APB is defined as:

LAPB(θ) = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
(7)

where rt(θ) is the ratio of the current policy to the old policy:

rt(θ) =
πθ(λ1, λ2|st)

πθold
(λ1, λ2|st)

(8)

Ât is the advantage function used to evaluate the superiority of the current action relative to other
possible actions. ϵ is a parameter controlling the update range, ensuring that the policy update does
not exceed the ϵ limit.

In each training iteration, new values of λ1 and λ2 are generated to balance privacy loss and
performance loss. The weight update formula is:

λ1(t + 1), λ2(t + 1) = arg max
λ1,λ2

E[Rt] (9)

where Rt is the reward for each training round, typically related to the balance between privacy
protection and model performance.

The final optimization objective is to minimize the loss function Lt, while generating and optimiz-
ing weights λ1 and λ2:

min
w

λ1Lper(w) + λ2Lpri(w) subject to λ1, λ2 ∼ πθ(λ1, λ2|s) (10)

Finally, the policy parameters θ are updated to generate better λ1 and λ2:

θt+1 = θt + α∇θ LAPB(θ) (11)

where α is the learning rate, and ∇θ LAPB(θ) is the policy gradient used to optimize the policy parame-
ters.

3.2. Theoretical Analysis

In this section, we will perform a theoretical analysis of the FL-APB algorithm, focusing on its
convergence and the trade-offs between privacy and performance.
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3.2.1. Convergence Analysis

Firstly, FL-APB balances privacy leakage and model performance by dynamically adjusting the
weights λ1 and λ2 for privacy protection and performance optimization. The PPO (Proximal Policy
Optimization) reinforcement learning algorithm used in FL-APB has good convergence properties. In
each iteration, PPO avoids drastic policy fluctuations by restricting the magnitude of policy updates,
ensuring the stability of the training process.

In FL-APB, the core idea of using PPO is to optimize the dynamic weights λ1 and λ2 through
policy gradients, thereby minimizing the total loss function Lt(w) in Equation (5). The FL-APB
algorithm aims to simultaneously optimize privacy protection and model performance. We have two
loss functions: Lper(w), which evaluates the model’s standard training error, representing the model’s
performance; and Lpri(w), which measures the impact of privacy protection, typically including noise
introduced by differential privacy. In each local training, the model’s performance loss Lper(w) and
privacy loss Lpri(w) are independent and can be balanced through dynamic adjustment of weights.

According to the Lagrange multiplier method, we can represent the problem as a constrained
optimization problem as shown in Equation (10). To solve this constrained optimization problem, we
introduce the Lagrange multiplier µ and define the Lagrangian function L:

L(w, λ1, λ2, µ) = λ1Lper(w) + λ2Lpri(w) + µ(λ1 + λ2 − 1) (12)

Next, we take the derivatives of L and find the optimal solution by setting the derivatives to zero.
First, we differentiate with respect to λ1 and λ2:

∂L
∂λ1

= Lper(w) + µ (13)

∂L
∂λ2

= Lpri(w) + µ (14)

We also handle the constraint λ1 + λ2 = 1:

∂L
∂µ

= λ1 + λ2 − 1 (15)

Setting these partial derivatives to zero:

Lper(w) + µ = 0 ⇒ µ = −Lper(w) (16)

Lpri(w) + µ = 0 ⇒ µ = −Lpri(w) (17)

Thus:

Lper(w) = Lpri(w) (18)

This equation suggests that, in theory, the performance loss and privacy loss should be balanced
at an optimal point. However, in practical applications, the trade-off between privacy protection
and performance often depends on specific requirements. To improve the model’s performance,
performance loss should typically decrease over time, while the relative privacy loss may increase
as more resources are allocated to privacy protection. This does not mean privacy leakage increases
but rather reflects the system’s prioritization of safeguarding privacy. When Lper(w) = Lpri(w), it
may not fully meet performance expectations. In such cases, FL-APB automatically adjusts the weight
parameters to strike a better balance between performance loss and privacy protection loss.
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FL-APB dynamically adjusts the weight parameters λ1 and λ2 through the PPO algorithm, itera-
tively moving toward the optimal balance between privacy protection and performance. The objective
of the PPO algorithm is to maximize the reward Rt, which is defined as a weighted combination of
privacy performance and model performance. In each iteration, the reward Rt is assumed to be directly
related to this balance, and its formula is given by:

Rt = λ1(t) · per(w)− λ2(t) · pri(w) (19)

where per(w) represents the model performance, pri(w) represents the privacy performance, and λ1(t)
and λ2(t) are dynamic parameters that control the relative importance of these two components.

To integrate this reward function within the PPO framework, we convert Rt into a scalar value,
enabling it to serve as the feedback signal for policy optimization in each iteration. Specifically, the
PPO algorithm adjusts λ1 and λ2 by maximizing the expected reward, as expressed in Equation (9).
Combined with the PPO policy gradient optimization method, the policy gradient update rule is given
by Equation (11).

According to policy gradient theory, the PPO algorithm will converge to the optimal policy after
multiple iterations. For FL-APB, this means that the weight parameters λ1 and λ2 will gradually
converge to an optimal balance point, ensuring that the model meets both performance and privacy
protection requirements.

Moreover, the convergence of FL-APB is ensured by the PPO update mechanism, which limits the
step size of policy updates through the clipping operation in Equation (8), ensuring that new policies
remain within a neighborhood of the old policies, thereby preventing excessive deviations. This
mechanism controls the magnitude of policy updates via the parameter ϵ, ensuring small, incremental
adjustments. Such controlled updates guarantee that the algorithm converges gradually under various
training conditions, resulting in stable weight adjustment strategies.

3.2.2. Privacy and Performance Trade-off Analysis

The core objective of the FL-APB algorithm is to make a reasonable trade-off between model
performance and privacy protection. In differential privacy mechanisms, as shown in Equation (2),
the privacy leakage level is controlled by the privacy parameter ϵ. A smaller ϵ value implies stronger
privacy protection but may negatively impact model performance, such as increased noise during
training, leading to slower convergence or decreased performance, i.e.:

Lper(w) ∝
1
ϵ

and Lpri(w) ∝ ϵ (20)

This means that when privacy protection (i.e., smaller ϵ) increases, the performance loss Lpri(w)

becomes larger, and vice versa. Therefore, FL-APB balances the performance loss due to differential
privacy and the actual application needs of the model by introducing dynamic weights λ1 and λ2.

Specifically, when the risk of privacy leakage is high, the policy generates a larger λ2 value to
enhance privacy protection and limit the possibility of attackers stealing private data. Conversely,
when the model’s performance is poor, the policy generates a larger λ1 value to prioritize performance
optimization. Through this dynamic weight adjustment mechanism, FL-APB can make targeted opti-
mization decisions at different training stages to achieve a balance between privacy and performance.

According to the PPO policy optimization algorithm, the long-term expected reward Rt of FL-APB
directly reflects the balance between privacy protection and performance optimization. In each training
iteration, the policy generates the optimal weight combination λ1(t) and λ2(t) based on the current
state st (such as privacy leakage level and model performance) to minimize the loss function and
maximize the reward. As training progresses, the policy will converge, allowing the FL system to meet
privacy protection requirements while ensuring the model’s performance.
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4. Experimental Setup

This section introduces the experimental setup used to evaluate the proposed FL-APB algorithm,
including the dataset, baseline methods, evaluation metrics, and implementation details.

4.1. Dataset Description

To thoroughly evaluate the performance of the FL-APB algorithm, we selected the CIFAR-10
dataset, which consists of 60,000 32x32 color images evenly distributed across 10 categories, with each
class containing 6,000 images. This dataset is widely used in machine learning research due to its
balanced representation of image classes, making it suitable for evaluating FL algorithms.

To simulate a realistic Non-IID scenario in FL, we applied a Dirichlet distribution to partition
the dataset. This method enables controlled imbalances in the data distribution by assigning varying
proportions of each class to different clients, effectively capturing the diversity of data allocation
across clients. The Dirichlet distribution allows for a flexible, client-specific data distribution, where
some clients may hold more examples of certain classes than others, mimicking the challenges in
real-world data environments. At the same time, we ensured that each client received at least a
minimum threshold of data to avoid extreme imbalance, which could undermine the model’s training
stability. This approach enhances the experimental design by closely replicating the data heterogeneity
often encountered in FL settings.

4.2. Baseline Methods

To validate the effectiveness of the FL-APB algorithm, we compared it with the standard FL
algorithm, FedAvg, which lacks privacy protection mechanisms. Specifically, we compared the test
accuracy of the model after 100 rounds of training under FL-APB optimization. Additionally, we
analyzed the impact of different adversarial training methods (FGSM [35], PGD [36], EOTPGD [37],
FFGSM [38], TPGD [39], MIFGSM [40], UPGD, TIFGSM [41], Jitter [42], NIFGSM [43], PGDRS [44],
DIFGSM [45], SINIFGSM [43], VMIFGSM [46], VNIFGSM [46], CW [47], PGDL2 [36], PGDRSL2 [44],
SPSA [48], PIFGSM [49], PIFGSMPP [50]) on the optimization effectiveness of FL-APB. To further assess
the privacy protection capabilities of the FL-APB algorithm, we conducted privacy attack experiments
using the DLG and iDLG algorithms on models trained with different methods. In particular, we
compared the mean squared error (MSE) between the images recovered by DLG and iDLG and the
original private images for both the FL-APB and VANILLA methods. A higher MSE (greater than 1)
indicates that the recovered images do not reveal private information, which allows us to evaluate the
model’s performance in protecting training data privacy.

4.3. Implementation Details

The experiments were implemented based on the PyTorch framework, using the FedAvg FL algorithm
for 100 communication rounds. In each round, 10 participants were randomly selected for training,
and the data was distributed in a Non-IID manner. During each round, 50% of the participants were
randomly chosen to perform actual model training, using the LeNet convolutional neural network for
image classification tasks. The LeNet network consists of three convolutional layers and one fully connected
layer, which is suitable for handling image classification problems. For training, the optimizer used for
FedAvg was SGD, with a learning rate of 0.15, and a batch size of 16, where each participant conducted 5
local training iterations. In contrast, FL-APB used the Adam optimizer with a learning rate of 3e-4. For the
privacy attack experiments, the DLG and iDLG algorithms were employed to test the recovery of the same
images under different adversarial perturbations. The optimizer used was LBFGS, with a learning rate of
0.2, and the number of iterations was set to 400.

5. Results and Discussion

This section presents an in-depth performance evaluation of the FL-APB algorithm under different
adversarial training scenarios, focusing on the algorithm’s performance in privacy protection and
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optimization. Through a series of experiments, we verify the effectiveness of the FL-APB algorithm in
both model accuracy and privacy protection, and provide a comparative analysis.

The experimental design begins by setting the same privacy and performance budgets to evaluate
the FL-APB algorithm under these constraints. To further demonstrate its advantages, we compare it
with the standard FL algorithm, FedAvg, with a focus on analyzing the improvements of FL-APB in
balancing privacy protection and performance.

Subsequently, we will present detailed experimental results from multiple dimensions, including
privacy protection, model performance, and the training process, and explore the differences in FL-
APB’s performance under varying experimental conditions and the potential reasons behind these
differences.

5.1. Balancing Privacy and Performance

Privacy budgets are typically expressed in the form of differential privacy, used to limit the
amount of sensitive information exposed to attacks. A higher privacy budget often implies stronger
privacy protection, but it can also lead to a decrease in model performance, as stricter privacy protection
requires more noise injection or interference to gradient information.

The FL-APB algorithm balances privacy protection and model performance through various
adversarial training strategies. Figure 2 shows the privacy budget and standard deviation under
multiple adversarial training methods (e.g., FGSM, PGD, MIFGSM, etc.), with detailed values provided
in Table 1. From this, we can infer that FL-APB requires different levels of privacy budget investment
to maintain system security under different attack strategies.

Table 1. Comparison of privacy budget and prediction accuracy under different adversarial training
methods

Adversarial Training
Method Mean Privacy Budget Std Dev of Privacy

Budget
Mean Prediction

Accuracy
Std Dev of

Prediction Accuracy

VANILLA 0 0 47.68 2.33

FGSM 0.149864 0.014829 48.57 3.02

PGD 0.149572 0.013512 47.84 3.47

EOTPGD 0.150512 0.013789 48.30 3.37

FFGSM 0.149884 0.014836 48.67 3.60

TPGD 0.149184 0.014005 48.44 3.08

MIFGSM 0.149884 0.014836 48.67 3.60

UPGD 0.149884 0.014836 48.67 3.61

TIFGSM 0.149720 0.015097 48.11 2.97

Jitter 0.149320 0.014373 48.34 3.39

NIFGSM 0.149828 0.014835 48.53 3.53

PGDRS 0.149628 0.014538 48.50 3.25

DIFGSM 0.149772 0.014843 48.39 2.74

SINIFGSM 0.149900 0.014828 48.29 3.23

VMIFGSM 0.150588 0.014247 48.37 3.30

VNIFGSM 0.150592 0.014248 48.23 3.30

CW 0.149804 0.014873 47.95 2.48

PGDL2 0.149932 0.013331 47.81 2.78

PGDRSL2 0.149236 0.013958 47.96 3.18

SPSA 0.150136 0.013484 47.93 2.82

PIFGSM 0.149892 0.014858 48.88 3.50

PIFGSMPP 0.149896 0.014856 47.93 3.27
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For instance, under PGDL2 and SPSA adversarial training, FL-APB’s privacy budget is relatively
high (close to 0.150), indicating that more resources are required to enhance protection in response
to these complex and powerful attacks. In contrast, adversarial trainings like TPGD and Jitter show
relatively lower privacy budgets, indicating that these attacks are less severe, requiring less effort to
protect system privacy.

Further analysis of the privacy budget and standard deviation of various adversarial attack
methods can reveal the fluctuation in privacy protection demands across different communication
rounds. A larger standard deviation means that under the given attack, the privacy protection demand
of the FL-APB algorithm fluctuates greatly between rounds, leading to lower system stability; a smaller
standard deviation indicates less fluctuation in privacy protection demand.

PGDL2 and SPSA have relatively small standard deviations of 0.0133 and 0.0135, respectively,
indicating that the privacy protection demand is stable under these attacks, and FL-APB can smoothly
adjust the privacy budget to maintain a relatively consistent level of privacy protection.

In contrast, methods like TIFGSM and VNIFGSM show larger standard deviations, 0.0151 and
0.0142, respectively, indicating less stability in FL-APB’s privacy protection demand under these attacks,
potentially requiring more complex dynamic adjustment strategies to balance privacy protection.

The size and volatility of the privacy budget are closely related to the complexity and intensity of
the attack. More adaptive attacks like PGDL2 and CW (with a privacy budget of 0.1498 and a standard
deviation of 0.0148) often require higher privacy budgets to defend against.
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Figure 2. Privacy budget of FL-APB algorithm under different adversarial training methods after 100
communication rounds.
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5.2. Model Performance

Figure 3 illustrates the average accuracy and standard deviation of the FL-APB algorithm under
various adversarial training methods after 100 communication rounds, with specific values provided
in Table 1. Adversarial training is a critical approach for enhancing the robustness of FL systems.
however, different adversarial training methods can influence model accuracy and performance while
protecting against attacks.

As a baseline model, VANILLA achieves an average accuracy of 47.68% with a standard devia-
tion of 2.33%, demonstrating relatively stable performance. However, without the incorporation of
adversarial training, the baseline model, while stable, exhibits weaker robustness and resistance to
privacy attacks.

In comparison to the baseline model, the introduction of adversarial training samples controlled
by the FL-APB strategy has resulted in improved average accuracy across most adversarial training
methods. For instance, methods such as FGSM (48.57%) and MIFGSM (48.67%) demonstrate superior
accuracy compared to the baseline, indicating that these adversarial training techniques can maintain
or enhance model performance.
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Figure 3. Performance of FL-APB algorithm under different adversarial training methods after 100
communication rounds.

Among all adversarial training methods, PIFGSM achieves the highest average accuracy at 48.88%,
with a standard deviation of 3.50%, reflecting notable robustness and performance advantages. This
method enhances model accuracy by integrating multiple attack pathways while maintaining relatively
low performance variability. Although most methods exhibit slight improvements in accuracy, others,
such as FFGSM (48.67%) and UPGD (48.67%), demonstrate larger standard deviations (3.60% and 3.61%,
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respectively), indicating significant performance fluctuations across different communication rounds.
For these methods with considerable variability, despite their higher average accuracy, their stability
may be compromised, potentially leading to performance degradation in certain communication
rounds.

5.3. Privacy Protection

As shown in Figure 4, different adversarial perturbation methods produce visually distinct effects
on the same data. FL-APB adjusts the privacy budget and sets varying amounts of data to participate
in adversarial training to meet privacy protection requirements. According to Figures 5 and 6, when
private data undergoes adversarial perturbation and is subjected to privacy attacks by the DLG and
iDLG algorithms, the MSE value typically remains higher than that of VANILLA data as the attack
rounds increase. When the MSE exceeds 1, it indicates a failed attack (the lower the MSE, the smaller
the difference between the reconstructed data and the original private data, and the better the attack
effect). Similarly, as shown in Figures 7 and 8, the performance of adversarial training methods in
countering privacy attacks is slightly inferior or superior.

VANILA

FGSM PGD EOTPGD FFGSM TPGD MIFGSM UPGD

DIFGSM TIFGSM Jitter NIFGSM PGDRS SINIFGSM VMIFGSM

VNIFGSM CW PGDL2 PGDRSL2 SPSA PIFGSM PIFGSMPP

Figure 4. Perturbations on the same data using different adversarial training methods.
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Figure 5. Cont.
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Figure 5. Under the FL-APB algorithm, the performance of different adversarial training methods in
addressing DLG privacy attacks is superior compared to the VANILLA algorithm.
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Figure 6. Under the FL-APB algorithm, the performance of different adversarial training methods in
addressing iDLG privacy attacks is superior compared to the VANILLA algorithm.
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Figure 7. Under the FL-APB algorithm, the performance of different adversarial training methods in
addressing DLG privacy attacks is somewhat inferior or slightly superior compared to the VANILLA
algorithm.
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(h) PGDL2 vs VANILLA
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Figure 8. Under the FL-APB algorithm, the performance of different adversarial training methods in
addressing iDLG privacy attacks is somewhat inferior or slightly superior compared to the VANILLA
algorithm.

5.4. Discussion

One of the core challenges of the FL-APB algorithm is how to achieve the optimal balance between
privacy protection and performance. Although increasing the privacy budget can enhance system
security, it may lead to performance losses (e.g., decreased model accuracy, slower convergence, etc.).
Therefore, the choice of adversarial training strategy not only affects the strength of privacy protection
but also significantly impacts system efficiency and model performance.

For example, the attack methods PIFGSM and FFGSM are able to maintain a relatively low
mean privacy budget (about 0.1498) while exhibiting good model prediction accuracy (48.88% and
48.67%, respectively), indicating that they strike a better balance between privacy protection and
model performance. On the other hand, EOTPGD has a slightly higher mean privacy budget (0.1505),
but its model performance is slightly lower than the two methods mentioned above (48.30%). This
result suggests that EOTPGD may expose more privacy but offers a trade-off in maintaining model
performance.

Similarly, PGDL2 has a low and stable privacy budget (mean of 0.1499, standard deviation of
0.0133), but its model performance is relatively weak (47.81%), making it suitable for scenarios where
high privacy protection is required, but tolerance for model performance degradation is high.

From a defense perspective, Figures 5b and 6b demonstrate the strong defense capabilities of the
FFGSM method against the DLG and iDLG algorithms, while Figures 5o and 6l show the excellent
performance of PIFGSM in defending against such attacks. However, Figures 7b and 6a indicate that
EOTPGD performs poorly in defending against DLG or iDLG attacks, and Figures 5l and 8h also show
that PGDL2 has shortcomings in this regard.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 October 2024 doi:10.20944/preprints202409.2292.v2

https://doi.org/10.20944/preprints202409.2292.v2


20 of 22

6. Conclusion and Prospect

In this study, we investigate the balance between privacy and performance challenges faced by
adversarial training in Federated Learning and propose the FL-APB algorithm to effectively regulate
the privacy and performance budgets in training models. By comparing the FL-APB algorithm with
various adversarial training methods in a Non-IID data environment, we validate the algorithm’s
effectiveness in ensuring and enhancing model performance while assessing its capability for privacy
protection against adversarial data.

Future research will further explore the adaptability of the FL-APB algorithm across different
application scenarios, particularly in more complex Non-IID data environments. Moreover, with the
continuous evolution of privacy attack methods and adversarial training techniques, evaluating the
privacy protection efficacy against various adversarial attacks and their long-term impact on model
performance will be a significant focus of our research. Finally, reducing the computational resource
consumption of the algorithm is another essential area that requires attention.

Data Availability Statement: Data are contained within the article.
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