Altmetrics
Downloads
142
Views
75
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
27 September 2024
Posted:
29 September 2024
You are already at the latest version
Samples | Implementation |
---|---|
Storage silos, biogas containers, fuel containers, post boxes, etc. | Storage devices |
Snowboards, frames, bicycle, ball, tennis racket, | leisure and sport goods |
Laptops cases mobile cases, | Electronics appliances |
Carpet, mats, sacking, hessians, bags, ropes, pipes, covers, units, bath, shower, helmets, paperweights, helmets, suitcases, lampshades, partitions, food trays, Profiles of door-frame, interior paneling, door panels, Fencing elements, chairs, and tables |
Utility and household products |
Panel for false and partition ceiling, door and window frames, floor, wall, partition boards, roof tiles, bridge, railing, transportable buildings that are resilient to natural disasters. | Construction and building sector |
Architectural moldings, interior paneling, boats, railway and automobile coach interior, spare-wheel pan, spare tyre covers, parcel shelves, decking, trunk liners, pallets, car door, dash boards, headliners, seat backs, door panels | Aviation, transportation and automobile sector |
Applicability | Requirement | Effect | ||
---|---|---|---|---|
*Overall programs for aerospace | *Less weightage | * Use of low density materials * Stiffened structures or thin-walled box * Semi-monocoque construction * Composites * Al-alloys * Wood * High weight strain and weight/stiffness |
||
*Every space program | • Elevated dependability | * Certification: evidence of design * Ensure accurate data Tight quality control * Extensive testing to |
||
* Vehicles for passengers | * Safety of passengers | * Comprehensive testing: Reliability * Using materials that are fire retardant |
||
Reusable Spacecraft Aircraft | *Durability: Corrosion and fatigue Vacuum Radiation Thermal Degradation |
* High-integrity thin materials * Thorough testing in the necessary setting * Damage and safe-life, life extension issues * Issues with damage, safe life, and life extension * There is no fatigue limit for al-alloys. * Thorough fatigue testing and analysis |
||
Spaceships Reusable aircraft |
Performance in aerodynamics |
*Machinability: N/C Milling and Molding *Intricately curved shapes *Dynamics *Extremely intricate loading *Deformed shape-aeroelasticity *Control surfaces and flexible, thin, wings |
||
*Every Aerospace initiative |
*Multiple functions or roles |
*Application: composites with useful characteristics *Effective design |
||
Airplanes, primarily fighters but some passenger |
*Fly-by-wire | *EMI protection *Prolonged usage of devices and computers *Elevator-servo-elevator *Arrangement-Control Relationships |
||
*Particular use in military aerospace | *Stealth | *Stealth coatin *Aircraft shape and Specific surface |
||
*Aircraft | *Weather-Related Operations | *Erosion resistance, lightning protection |
Thermosets | Thermo-plastics | |||
Creates cross-linked networks during heating-curing polimerization | No alteration in composition | |||
Polyimides | Polyester | Phenolics | Epoxies | PPS, PEEK |
* Brittle *Complicated to handle *3000C high temperature application |
* Recommended for general use at room temperature * Simple to employ *Low cost |
* Difficult to obtain composites of high quality * Reduced viscosity *High temperature consumption * Simple to operate *Less expensive |
*Comparatively expensive *Moderately high temperature* Most often used (80% of all composites) | *Process is challenging since a high temperature of 400–3000C is needed. *High resilience to damage |
High shrinkage (about 7.5 percent) | Volatiles released while curing More shrinkage |
*No volatiles are released when curing *Less shrinkage |
||
*Low Temperature *Brittle *Broad spectrum of propetiles, albeit less so than epoxies *Natural stability in the face of oxidation * Strong resilience to chemicals |
*More brittle than epoxy *Good resistance to fire and naming *Natural stability in the face of Oxidations |
May be polymerized in a number of ways, yielding a wide range of structures, morphologies, and characteristics. | ||
Challenging to prepare | *Less stable storage and challenging preparation | Sufficient storage stability for preparing | Endless existence in storage. But challenging to prepare | |
Less moisture-sensitive than epoxy | • Absorbs moisture, but molasses has no discernible impact on its operational range. | Long-term ultra violet degradation. Complete wetness (5–6%), which causes temperature pastries to expand and degrade | Absence of moisture absorption |
Fibers | Global Production (×103 t) |
Country | Reference |
---|---|---|---|
Rice | 16000000 | China, India, Indonesia, Malaysia, Bangladesh | [90,91] |
Corn | 122080 | USA, China, brazil, Argentina, India, | [92] |
Cotton | 21400000 | Asia, USA | [93] |
Ramie | 10000 | India, China, Brazil, Philippines | [94,95,96,97,98,99,100,101,102,103,104] |
Kenaf | 97000 | India, Bangladesh, United States | [94,95,96,97,98,99,100,101,102,105] |
Bamboo | 3000 | India, China, Indonesia, Malaysia, Philippines | [94,95,96,97,98,99,100,101,102] |
Oil palm | 4000 | Malaysia, Indonesia | [94,95,98,99,106,107] |
Flax | 83000 | Canada, France, Belgium | [94,95,96,97,98,99,100,101,102,103] |
Abaca | 7000 | Philippines, Ecuador, Costa Rica | [94,95,96,97,98,99,108] |
Banana | 1920 | Latin America and the Caribbean Asia Africa | [109] |
Jute | 230000 | India, China, Bangladesh | [94,95,96,97,98,99,100,101,102,110] |
Pineapple | 7400 | Philippines, Thailand, Indonesia | [94,95,98,99,100,101,102,104] |
Sisal | 37800 | Tanzania, Brazil, Kenya | [94,95,96,97,98,99,100,101,102,104,108,110,111] |
Coir | 10000 | India, Sri Lanka, Philippines, Malaysia | [94,95,96,97,98,99,100,101,102,112,113,114,115,116,117] |
Coconut | 7700 | Indonesia, Philippines, India, Sri Lanka | [118] |
Sugar can bagasse | 7500000 | India, Brazil, China | [94,95,96,97,98,99,100,101,102] |
Fibre Code | Fibres | Micro-fibrillar angle [◦] | Lignin (wt%) | Hemicellulose (wt%) | Cellulose (wt%) | Moisture content (%) | Reference |
NF 1 | Rice | 20 | 19–28 | 35–45 | 7,9 | [94,95,96,98,99,100,101,102,108,119,120] | |
NF 2 | Corn | - | 7,4 | 46 | 41,7 | 8,5 | [121,122] |
NF 3 | Cotton | 82,7–92 | 9,8 | [121,123] | |||
NF 4 | Ramie | 61,85–85 | 3–7,58 | 0,5–9,06 | 69–83 | 9 | [94,95,96,100,101,119,120,121,124,125,126] |
NF 5 | Kenaf | 2 2–6,2 | 9 8–21 | 20–33 | 31–72 | 9,2 | [94,95,96,98,99,100,101,102,108,114,119,120,121,124,125,127,129,130] |
NF 6 | Bamboo | - | 21–31 | 17,2–43,8 | 22,8–56,7 | 8,9 | [94,95,96,100,101,102,119,120,121,130] |
NF 7 | Oil palm | 24,45–29 | 19,06 | 47,91–65 | 11 | [94,95,96,119,120,121,138] | |
NF 8 | Flax | 5–10 | 2–5 | 10,37–20,6 | 64,1–75 | 7 | [94,95,96,98,99,100,101,102,108,114,121,122,124,127,128,129,133,134,135,136,137] |
NF 9 | Abaca | 20–25 | 7–12,4 | 20–25 | 56–63 | 15 | [94,95,96,98,99,100,101,102,108,119,120,121,123,124,128,129,138,139] |
NF 10 | Banana | 11–12 | 5–10 | 10–24 | 60–65 | 12,1 | [100,101,121,124,140,141] |
NF 11 | Jute | 8 | 5–13 | 13–20,4 | 61–71 | 12 | [94,95,96,98,99,100,101,102,108,114,119,120,121,124,127,128,129,133,136,142,143] |
NF 12 | Pineapple | 5-12,7 | 18 | 70–82 | 13 | [94,95,96,101,102,112,119,120,121] | |
NF 13 | Sisal | 10–25 | 8–14 | 10–38,2 | 60–78 | 11 | [94,95,96,98,99,100,101,102,108,114,119,120,121,127,128,129,133,143,144,145,146] |
NF 14 | Coir | 30,45 | 40–45 | 0,15–0,25 | 32–43 | 10 | [94,95,96,98,99,100,101,102,108,114,119,120,121,124,125,127,128,129,143,147] |
NF 15 | Coconut | 8–13,1 | 4–20 | 70–77,6 | 8,2 | [121,123,148] | |
NF 16 | Sugar can bagasse | 22,3–25,3 | 16,8–31,8 | 41,1–55,2 | 8,8 | [94,95,96,119,120,121,149,150] |
Fibre Code | Fiber source | Elongation at break (%) | Young’s modulus (GPa) | Tensile strength | Density (g/cm3) |
References |
NF 1 | Rice | 2,2 | 0,3–2,6 | 19–135 | 1,4 | [100,101,102,116,151] |
NF 2 | Corn | 3–4,7 | 10,1–16,3 | 355–580 | 1,2–1,4 | [95,96,105,115,121,152,153,154,155,156,157,158] |
NF 3 | Cotton | 3–10 | 5,5–12,6 | 45,5–1000 | 1,5–1,6 | [95,96,105,114,121,152,153,154,155,156,157] |
NF 4 | Ramie | 1,2–8 | 24,5–128 | 348–938 | 1,45–1,5 | [94,96,105,114,121,152,153,154,155,156,157,158] |
NF 5 | Kenaf | 1,6–6,9 | 2,86–60 | 215,4–1191 | 0,6–1,5 | [94,95,96,98,99,100,101,102,103,114,121,128,129,152,153,154,155,156,157,158,159,160,161,165,166] |
NF 6 | Bamboo | 1,5-11 | 11–17 | 140–230 | 0,6–11 | [121,159] |
NF 7 | Oil palm | 8–25 | 1–9 | 92-1200 | 0,7–1,55 | [121] |
NF 8 | Flax | 1,2–10 | 24–80 | 88–1600 | 0,6–1,5 | [94,95,96,105,110,114,128,129,134,143,152,153,154,155,156,157,158,159,160,161,162,163,164,166,167,168] |
NF 9 | Abaca | 3–10 | 3–12 | 220–980 | 1,5 | [96,99,105,107,112,113,114,121,152,153,154,155,156,157,160,169,170] |
NF 10 | Banana | 3–53 | 12–33,8 | 350–980 | 1,35 | [96,105,114,121,152,153,154,155,156,157,158,169] |
NF 11 | Jute | 1,16–8 | 10–55 | 385–850 | 1,3–1,5 | [96,105,114,121,152,153,154,155,156,157,158,169] |
NF 12 | Pineapple | 1–14,5 | 60–82 | 170–1672 | 0,8–1,6 | [95,96,105,114,121,152,153,154,155,156,157,158] |
NF 13 | Sisal | 2–25 | 9–38 | 80–840 | 1,3–1,5 | [94,95,96,99,100,101,102,105,110,114,115,121,127,128,129,143,144,152,166,167,168,171,172] |
NF 14 | Coir | 14,21–59,9 | 1,27–6 | 106–593 | 1,1–1,6 | [94,96,105,110,114,115,121,127,128,129,143,144,152,166,167,168,172] |
NF 15 | Coconut | 10-23 | 21,1 | 150 | 0,43 | |
NF 16 | Sugar can bagasse | 1,1 | 17–27,1 | 20–290 | 1,2–1,5 | [95,96,105,114,121,152,153,154,155,156,157,158,159] |
Fibre Code | Fibers | Width of lumen (micron) |
Thickness of single cell wall (micron) |
Fiber diameter (mm) |
Fiber length (mm) |
NF 1 | Rice | 8,7 | 1,2 | 15,5 | 8,7 |
NF 2 | Corn | 20,1 | 1,4 | 26,7 | 20,1 |
NF 3 | Cotton | 16,4 | 56,0 | 45,0 | 16,4 |
NF 4 | Ramie | 13,0 | 60,4 | 80,0 | 13,0 |
NF 5 | Kenaf (core) | 22,7 | 1,1 | 37,0 | 22,7 |
NF 6 | Bamboo | 8,6 | 9,0 | 17,8 | 3,0 |
NF 7 | Oil palm | 9,8 | 11 | 25,0 | 1,4 |
NF 8 | Flax | 6,42 | 20,0 | 38,0 | 65,0 |
NF 9 | Areca | 18,1 | 1,2 | 476 | 60 |
NF 10 | Banana | 22,4 | 1,5 | 30,0 | 4,2 |
NF 11 | Jute | 7,6 | 11,3 | 30,0 | 6,0 |
NF 12 | Pineapple | 3 | 18,3 | 80,0 | 9,0 |
NF 13 | Sisal | 12,0 | 25,0 | 47,0 | 8,0 |
NF 14 | Coir | 21 | 0,06 | 12,0 | 0,3 |
NF 15 | Coconut | 3,2 | 8,0 | 14,0 | 1,0 |
NF 16 | Sugar can bagasse | 19,1 | 9,4 | 40,0 | 2,8 |
Criteria | % |
Physical | 16,98 |
Mechanical | 44,29 |
Chemical | 38,73 |
Micro-fibrillar angle | Lignin | Hemicellulose | Cellulose | Moisture content | Normalized Principal Eigenvector | |||
Chemical Features | 1 | 2 | 3 | 4 | 5 | |||
Micro-fibrillar angle | 1 | 1/3 | 1/3 | 1/4 | 1/2 | 7,92% | ||
Lignin | 3 | 1 | 1 | 1/2 | 1/2 | 16,02% | ||
Hemicellulose | 3 | 1 | 1 | 1/2 | 1/2 | 16,02% | ||
Cellulose | 4 | 2 | 2 | 1 | 1/3 | 24,69% | ||
Moisture content | 2 | 2 | 2 | 3 | 1 | 35,34% | ||
Mechanical Features | Elongation at break | Young's modulus | Tensile strength | Density | Normalized Principal Eigenvector | |||
Elongation at break | 1 | 2 | 3 | 1 | 36,32% | |||
Young's modulus | 1/2 | 1 | 1/2 | 1/2 | 13,82% | |||
Tensile strength | 1/3 | 2 | 1 | 1/2 | 17,88% | |||
Density | 1 | 2 | 2 | 1 | 31,98% | |||
Physical Features | Width of lumen | Thickness of single cell wall | Fiber diameter | Fiber length | Normalized Principal Eigenvector | |||
Width of lumen | 1 | 1/3 | 1/2 | 1/4 | 9,97% | |||
Thickness of single cell wall | 3 | 1 | 2 | 1 | 34,52% | |||
Fiber diameter | 2 | 1/2 | 1 | 1/2 | 18,50% | |||
Fiber length | 4 | 1 | 2 | 1 | 37,01% |
Normalized | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro-fibrillar angle | 0,062 | 0,062 | 0,062 | 0,224 | 0,013 | 0,062 | 0,062 | 0,023 | 0,069 | 0,035 | 0,025 | 0,027 | 0,054 | 0,093 | 0,062 | 0,062 |
Ligning | 0,081 | 0,030 | 0,062 | 0,021 | 0,060 | 0,105 | 0,107 | 0,014 | 0,039 | 0,030 | 0,036 | 0,062 | 0,044 | 0,171 | 0,042 | 0,094 |
Hemicel. | 0,073 | 0,144 | 0,062 | 0,016 | 0,083 | 0,094 | 0,060 | 0,047 | 0,070 | 0,053 | 0,052 | 0,056 | 0,075 | 0,001 | 0,038 | 0,076 |
Cellulose | 0,042 | 0,044 | 0,091 | 0,080 | 0,054 | 0,041 | 0,059 | 0,073 | 0,062 | 0,066 | 0,069 | 0,080 | 0,072 | 0,039 | 0,077 | 0,050 |
Moisture Content | 0,049 | 0,053 | 0,061 | 0,056 | 0,057 | 0,055 | 0,068 | 0,043 | 0,093 | 0,075 | 0,074 | 0,081 | 0,068 | 0,062 | 0,051 | 0,055 |
Elong. | 0,013 | 0,023 | 0,039 | 0,027 | 0,025 | 0,037 | 0,098 | 0,033 | 0,039 | 0,166 | 0,053 | 0,046 | 0,080 | 0,218 | 0,098 | 0,007 |
Young's modulus | 0,004 | 0,033 | 0,022 | 0,188 | 0,076 | 0,036 | 0,012 | 0,128 | 0,018 | 0,055 | 0,080 | 0,175 | 0,058 | 0,009 | 0,052 | 0,054 |
Tensile Strength | 0,010 | 0,061 | 0,010 | 0,085 | 0,081 | 0,024 | 0,085 | 0,111 | 0,096 | 0,087 | 0,083 | 0,121 | 0,060 | 0,046 | 0,020 | 0,020 |
Density | 0,057 | 0,053 | 0,063 | 0,060 | 0,042 | 0,235 | 0,045 | 0,042 | 0,061 | 0,055 | 0,057 | 0,049 | 0,057 | 0,055 | 0,017 | 0,055 |
Width of lumen | 0,041 | 0,095 | 0,077 | 0,061 | 0,107 | 0,041 | 0,046 | 0,030 | 0,085 | 0,106 | 0,036 | 0,014 | 0,057 | 0,099 | 0,015 | 0,090 |
Thicknes | 0,005 | 0,006 | 0,238 | 0,257 | 0,005 | 0,038 | 0,047 | 0,085 | 0,005 | 0,006 | 0,048 | 0,078 | 0,106 | 0,000 | 0,034 | 0,040 |
Fiber D. | 0,015 | 0,026 | 0,044 | 0,079 | 0,036 | 0,018 | 0,025 | 0,037 | 0,469 | 0,030 | 0,030 | 0,079 | 0,046 | 0,012 | 0,014 | 0,039 |
Fiber length | 0,036 | 0,083 | 0,068 | 0,054 | 0,094 | 0,012 | 0,006 | 0,269 | 0,248 | 0,017 | 0,025 | 0,037 | 0,033 | 0,001 | 0,004 | 0,012 |
Priorities | ||||||||||||||||
Micro-fibrillar angle | 0,005 | 0,005 | 0,005 | 0,018 | 0,001 | 0,005 | 0,005 | 0,002 | 0,005 | 0,003 | 0,002 | 0,002 | 0,004 | 0,007 | 0,005 | 0,005 |
Ligning | 0,013 | 0,005 | 0,010 | 0,003 | 0,010 | 0,017 | 0,017 | 0,002 | 0,006 | 0,005 | 0,006 | 0,010 | 0,007 | 0,027 | 0,007 | 0,015 |
Hemicel. | 0,012 | 0,023 | 0,010 | 0,003 | 0,013 | 0,015 | 0,010 | 0,008 | 0,011 | 0,009 | 0,008 | 0,009 | 0,012 | 0,000 | 0,006 | 0,012 |
Cellulose | 0,010 | 0,011 | 0,023 | 0,020 | 0,013 | 0,010 | 0,015 | 0,018 | 0,015 | 0,016 | 0,017 | 0,020 | 0,018 | 0,010 | 0,019 | 0,012 |
Moisture Content | 0,017 | 0,019 | 0,021 | 0,020 | 0,020 | 0,019 | 0,024 | 0,015 | 0,033 | 0,026 | 0,026 | 0,028 | 0,024 | 0,022 | 0,018 | 0,019 |
Elong. | 0,005 | 0,008 | 0,014 | 0,010 | 0,009 | 0,013 | 0,036 | 0,012 | 0,014 | 0,060 | 0,019 | 0,017 | 0,029 | 0,079 | 0,036 | 0,002 |
Young's modulus | 0,000 | 0,005 | 0,003 | 0,026 | 0,011 | 0,005 | 0,002 | 0,018 | 0,003 | 0,008 | 0,011 | 0,024 | 0,008 | 0,001 | 0,007 | 0,007 |
Tensile Strength | 0,002 | 0,011 | 0,002 | 0,015 | 0,014 | 0,004 | 0,015 | 0,020 | 0,017 | 0,016 | 0,015 | 0,022 | 0,011 | 0,008 | 0,004 | 0,004 |
Density | 0,018 | 0,017 | 0,020 | 0,019 | 0,014 | 0,075 | 0,014 | 0,014 | 0,019 | 0,017 | 0,018 | 0,016 | 0,018 | 0,017 | 0,006 | 0,017 |
Width of lumen | 0,004 | 0,009 | 0,008 | 0,006 | 0,011 | 0,004 | 0,005 | 0,003 | 0,009 | 0,011 | 0,004 | 0,001 | 0,006 | 0,010 | 0,002 | 0,009 |
Thicknes | 0,002 | 0,002 | 0,082 | 0,089 | 0,002 | 0,013 | 0,016 | 0,029 | 0,002 | 0,002 | 0,017 | 0,027 | 0,037 | 0,000 | 0,012 | 0,014 |
Fiber D. | 0,003 | 0,005 | 0,008 | 0,015 | 0,007 | 0,003 | 0,005 | 0,007 | 0,087 | 0,005 | 0,005 | 0,015 | 0,009 | 0,002 | 0,003 | 0,007 |
Fiber length | 0,013 | 0,031 | 0,025 | 0,020 | 0,035 | 0,005 | 0,002 | 0,100 | 0,092 | 0,006 | 0,009 | 0,014 | 0,012 | 0,000 | 0,002 | 0,004 |
Weighted Score | 0,104 | 0,150 | 0,231 | 0,263 | 0,159 | 0,189 | 0,165 | 0,247 | 0,313 | 0,185 | 0,157 | 0,204 | 0,195 | 0,185 | 0,124 | 0,129 |
Polymer code | Polymer material |
Elongation at break (%) |
Modulus of elasticity(GPa) | Tensile strength (MPa) | Density (g/cm3) | References |
P 1 | Vinyl ester resin | 2 | 2–4,5 | 40–90 | 1,2–1,5 | [175,176,177] |
P 2 | Polystyrene | 1–3,6 | 1,2–2,6 | 35,9–56,6 | 1,04–1,06 | [100,101,102,142] |
P 3 | Epoxy | 1–6 | 3–6 | 35–100 | 1,1–1,4 | [175,176,177] |
P 4 | Polybutylene terephthalate | 250 | 1,93–3 | 50–60 | 1,30–1,38 | [139] |
P 5 | Polyethylene terephthalate | 30–300 | 2,76–4,14 | 48,3–72,4 | 1,29–1,40 | [100,101,102,142] |
P 6 | Polycarbonate | 70–150 | 2–2,44 | 60–72,4 | 1,14–1,21 | [100,101,102,142] |
P 7 | Nylon 6 | 20–150 | 2,9 | 43–79 | 1,12–1,14 | [175,176,177] |
P 8 | Polyamide | 30–100 | 1,2–3,2 | 90–165 | 1,12–1,14 | [100,101,102,142] |
P 9 | High density polyethylene (HDPE) | 2,0–130 | 0,4–1,5 | 14,5–38 | 0,94–0,96 | [175,176,177] |
P 10 | Low-density polyethylene (LDPE) | 90–800 | 0,055–0,38 | 40–78 | 0,910–0,925 | [175,176,177] |
P 11 | Acrylonitrile b utadiene styrene | 1,5–100 | 1,1–2,9 | 27,6–55,2 | 1–1,2 | [100,101,102,142] |
P 12 | PP | 15–700 | 0,95–1,77 | 26–41,4 | 0,899–0,920 | [175,176,177] |
Normalized | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elongation at break | 0,001 | 0,001 | 0,002 | 0,143 | 0,094 | 0,063 | 0,049 | 0,094 | 0,066 | 0,254 | 0,029 | 0,204 | |
Young's modulus | 0,115 | 0,067 | 0,159 | 0,088 | 0,123 | 0,078 | 0,102 | 0,078 | 0,032 | 0,007 | 0,067 | 0,085 | |
Tensile Strength | 0,092 | 0,064 | 0,092 | 0,078 | 0,085 | 0,094 | 0,087 | 0,181 | 0,038 | 0,084 | 0,058 | 0,048 | |
Density | 0,099 | 0,077 | 0,092 | 0,096 | 0,099 | 0,086 | 0,083 | 0,083 | 0,070 | 0,067 | 0,081 | 0,066 | |
Priorities | |||||||||||||
Elongation at break | 0,000 | 0,000 | 0,001 | 0,052 | 0,034 | 0,023 | 0,018 | 0,034 | 0,024 | 0,092 | 0,010 | 0,074 | |
Young's modulus | 0,016 | 0,009 | 0,022 | 0,012 | 0,017 | 0,011 | 0,014 | 0,011 | 0,004 | 0,001 | 0,009 | 0,012 | |
Tensile Strength | 0,016 | 0,011 | 0,016 | 0,014 | 0,015 | 0,017 | 0,015 | 0,032 | 0,007 | 0,015 | 0,010 | 0,009 | |
Density | 0,032 | 0,025 | 0,029 | 0,031 | 0,032 | 0,028 | 0,027 | 0,027 | 0,022 | 0,021 | 0,026 | 0,021 | |
Total Weighted Score | 0,065 | 0,046 | 0,069 | 0,109 | 0,098 | 0,078 | 0,074 | 0,104 | 0,058 | 0,130 | 0,056 | 0,115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated